
WASv7_RADJavaEE5.ppt

This presentation provides an overview of Java™ EE 5 development tools that are 

available in Rational® Application Developer V7.5.

Page 1 of 22



WASv7_RADJavaEE5.ppt

The first section of this presentation includes an overview of the Java EE 5 specification, 

which includes many important technology updates like EJB 3.0 and the Java Persistence 

API. The rest of the presentation discusses the tools that the Rational Application 

Developer workbench provides for building, compiling, and testing Java EE 5 applications. 

This includes creating projects, working with annotations, and using new Web 

development tools. Other tools for Web services, EJB, and JPA development are covered 

in separate modules.

Page 2 of 22



WASv7_RADJavaEE5.ppt

The main goal of Java EE 5 is to simplify the programming model. The new specification 

aims to make it as easy as possible to implement simple things, while keeping complex 

things possible. In many cases this is accomplished by utilizing contextually appropriate 

default values, allowing you to override the defaults when needed. When it is possible for 

the container to figure something out, it will do so, rather than requiring a developer to 

provide unnecessary information. With this simplification, regular Java developers should 

be more able to make the transition to developing enterprise Java applications. The EJB 

specification has been heavily revised, and is now a plain-old Java object based 

programming model. This approach extends even to data persistence, with the 

introduction of JPA, the Java Persistence API. Java EE 5 also incorporates the latest Java 

Web services standards, such as JAX-WS, the Java API for XML Web services. Web 

application technologies, such as servlets, JavaServer Pages, and JavaServer Faces 

have also been revised in this specification.

Page 3 of 22



WASv7_RADJavaEE5.ppt

The rest of this presentation focuses on the tools in the Rational Application Developer 

V7.5 workbench that support Java EE 5 development. The first section describes how to 

create projects, how to work with project facets, and changes in the Java EE 5 application 

packaging model. The Java EE 5 programming model is heavily annotations-based, and 

tools for doing annotation-based development are covered in the next section of the 

presentation. Finally, the presentation covers new tools for Web development, including a 

graphical Web page designer and enhanced tools for developing JavaServer Faces. There 

are many other specialized tools in the workbench for working with EJB 3.0 artifacts, JPA 

constructs, and doing Web services development. These tools are covered in separate 

modules.

Page 4 of 22



WASv7_RADJavaEE5.ppt

This section describes how to create Java EE projects, how to manipulate project facets, 

and discusses changes in application packaging that are a part of the Java EE 5 

specification.

Page 5 of 22



WASv7_RADJavaEE5.ppt

There is a wizard to walk you through creating a Java EE project. First, launch the EAR 

Application Project wizard using the product menus. On the second panel of the wizard, 

provide a name for the project and select other runtime configuration options. The target 

runtime that you associate with the project is the runtime that you are going to use to test 

your application. If you choose WebSphere Application Server V7, then the default EAR 

version is 5.0 for Java EE 5. You can select a different Java EE level for the project using 

the dropdown menu. The configuration profile that you choose determines which facets 

are associated with your project. Either choose a configuration profile from the dropdown 

menu or use the Modify button to manually configure the facets for your project. 

Page 6 of 22



WASv7_RADJavaEE5.ppt

After choosing the runtime and workspace configuration options for your project, you have 

the option of creating modules for your enterprise. If you do not want to create any 

modules, you can exit the wizard by clicking Finish on the Enterprise Application settings 

panel – this creates an empty EAR project that you can later customize with application 

modules. Alternatively, if you want to create application modules at project creation time, 

click the New Module button to choose which modules to create. On the new Java EE 

module page, you have the option of creating an application client, EJB, Web, or 

connector module. Choose the options you want and click Finish to create the enterprise 

application.

Page 7 of 22



WASv7_RADJavaEE5.ppt

Java EE projects typically have facets, which describe the functions that are contained in 

the project. When you add a facet to a project, the project is configured to perform a 

certain task, fulfill certain requirements, or have certain characteristics. For example, the 

EAR facet sets up a project to function as an enterprise application by adding necessary 

metadata and setting up the classpath for a project. Using product tools, you can easily 

add EJB 3.0 or JPA facets to a plain Java project, which converts the project to a Java EE 

project. 

Page 8 of 22



WASv7_RADJavaEE5.ppt

By modifying the project facets, you control the technologies that are available to the 

application that you are developing in that project. You can add and remove facets to your 

project and change the version of a facet. For example, to use the Java Persistence API in 

a Web project, select the check box next to Java Persistence to add that facet to the 

project. If you want to change the target JDK level for a project, click the arrow in the 

version column next to Java and choose the appropriate JDK level.

Page 9 of 22



WASv7_RADJavaEE5.ppt

Java EE 5 provides a simplified packaging model for enterprise applications. In most 

cases, deployment descriptors are optional, so the specification relies on file name 

extensions and package contents to identify application components. For example, a WAR 

file is a Web application, a RAR file is a resource adapter, and an EAR file is an enterprise 

application. Since JAR file packages can contain different types of application 

components, the packaging model relies on the contents of the archive to identify the 

package type. For example, a JAR file with a main-class is an application client, and a 

JAR file with EJB annotations like the @Stateless annotation is an EJB module. Most 

applications no longer require deployment descriptors; include EJB applications, 

enterprise applications, and some Web applications. If a Web application contains 

technologies other than JavaServer Pages – for example, if the application contains 

Servlets – then a deployment descriptor is still required. You can still include a deployment 

descriptor in your application package, even if it is not required. In that case, the 

information in the deployment descriptor overrides information in the annotations in the 

application content.

Page 10 of 22



WASv7_RADJavaEE5.ppt

This section describes how annotations are used in Java EE 5 applications and some of 

the annotation tools available in the Rational Application Developer workbench.

Page 11 of 22



WASv7_RADJavaEE5.ppt

Java EE 5 supports the injection of annotations into your source code, so that you can 

embed resources, dependencies, services, and life-cycle notifications in your source code, 

without having to maintain these artifacts elsewhere. An annotation is a modifier or 

Metadata tag that provides additional data to Java classes, interfaces, constructors, 

methods, fields, parameters, and local variables. Annotations replace boilerplate code, 

common code that is required by certain applications. For example, an annotation can 

replace the paired interface and implementation required for a Web service. Annotations 

can also replace additional files that programs require, which are maintained separately. 

By using an annotation, this separate file is no longer required. For example, annotations 

can replace the need for a separately maintained deployment descriptor for JavaBeans. 

Page 12 of 22



WASv7_RADJavaEE5.ppt

Java EE 5 defines several annotations that can be injected into your source code. To 

declare an annotation, you precede the keyword with an "at" sign (@). There are special 

annotations defined for doing EJB development, Web services development, and using 

the Java Persistence API to map Java objects to databases. Annotations also allow you to 

inject resources directly into your application. For example, rather than having to do a 

complex lookup and cast an EJB as an appropriate object type to be able to access its 

data in an application, you can use a simplified annotation-based programming model to 

create an instance of an EJB in your application. In Java EE 5, you can create an instance 

of an EJB in your application using the @EJB annotation, the name of the EJB you want 

to use, and the name of the variable that will contain the EJB. The line “@EJB 

ShoppingCart myCart”, for example, injects a callable instance of the EJB ShoppingCart 

into a Java program.

Page 13 of 22



WASv7_RADJavaEE5.ppt

The Annotations view provides a way for you to create, edit, browse, and generally keep 

track of the annotations that you use in your applications. This view detects annotation 

types from the metadata in the annotation tag implementation class to provide rich editing 

capability, including the ability to indicate what attributes can be defined for an annotation 

and which attributes are required and to provide default validation and user assistance for 

each annotation. This view also displays in an easy-to-navigate tree structure all of your 

annotations in your Java classes. You can add and remove annotations using the toolbar 

icons above the tree. You can filter the tree by typing a filter value in the type filter text 

field. The view displays implied attributes, default values for attributes that are not 

required, and annotation values that are being overridden by deployment descriptors.

Page 14 of 22



WASv7_RADJavaEE5.ppt

The last section of this presentation describes new tools in Rational Application Developer 

for developing Web applications.

Page 15 of 22



WASv7_RADJavaEE5.ppt

The development workbench contains a simple wizard for creating a new Web page. It 

allows you to create artifacts for HTML, XHTML, JSP, and JSP fragments. Open the new 

Web page panel, provide a name for the page, and indicate what type of page you are 

creating. You can also choose from one of several pre-defined page templates. Many of 

the templates offer optional navigation components.

Page 16 of 22



WASv7_RADJavaEE5.ppt

The Web page designer is a multi-tabbed editor that makes it easy to edit HTML, XHTML, 

page template files, JavaServer Pages, Faces JavaServer Pages, and embedded 

JavaScript code. By clicking on a Page Designer tab, you can display multiple 

representations of each page: Design, Source, Split, and Preview. The Design page is the 

WYSIWYG environment that enables you to create and work with a file while viewing its 

elements on the page. For example, you can see the graphics that you have inserted into 

the file and continually check the visual presentation of the Web page as you design it. 

You can drag page components from the Palette to the Design panel. The Source page 

enables you to view and work with a file's source code directly. The Outline and Properties 

views both have features that supplement the Source page. They combine the Source 

page and either the Design page or the Preview page in a split screen view. Changes that 

you make in one part of the split screen can immediately be seen in the other part of the 

split screen. You can split the screen horizontally or vertically. The Preview page shows 

you how the current page is likely to look when viewed in an external Web browser. To 

preview any dynamic content (such as JSP tags), you use the Run on Server option from 

the page's pop-up menu in the Enterprise Explorer view.

Page 17 of 22



WASv7_RADJavaEE5.ppt

A custom component library contains new and modified JSF components that you can use 

in your Web applications and distribute the libraries to your development team. A custom 

component library is a Faces-enabled Web project with the Faces component 

development facet selected. Each custom component is created in a separate JSP. After 

one or more JavaServer Pages are created, the project is built and a new custom tag 

library is generated automatically. The custom JSF components can be added to Web 

pages.

Page 18 of 22



WASv7_RADJavaEE5.ppt

A Faces Library Definition contains project resources needed for a component library and 

the metatdata necessary for the interpretation of JSF tags. To configure the Faces Library 

Definition, double-click your Faces Library Definition to open the library definition file in the 

editor. Your library definition file has a JLD extension. Once you have configured your 

library definition, save the file. The definition is updated. To update the file, click Update 

Library Definition then click Perform update. The update process finds new tags and 

attributes in the tag library and adds them to the library definition.

Page 19 of 22



WASv7_RADJavaEE5.ppt

This section provides a summary of this presentation.

Page 20 of 22



WASv7_RADJavaEE5.ppt

Rational Application Developer V7.5 provides rich tools for Java EE 5 application 

development. There are specialized tools available for creating and working with 

enterprise application projects. The workbench includes an annotations view that allows 

you to visually browse through and edit the annotations in your application. Web 

application development tools have been enhanced with a drag-and-drop page designer 

tool and the ability to create customized JSF libraries.

Page 21 of 22



WASv7_RADJavaEE5.ppt Page 22 of 22


