
IRADv6_Profiling.ppt Page 1 of 34

®

IBM Software Group

© 2004 IBM Corporation

Updated January 25, 2005

IBM® Rational® Application Developer V6.0

Profiling Tools

This presentation will focus on the IBM Rational Application Developer V6.0 Profiling tools.

IRADv6_Profiling.ppt Page 2 of 34

IBM Software Group

2

Profiling Tools © 2004 IBM Corporation

Goals

�Describe the architecture of the profiling tools

�Provide an overview of profiling features

�Highlight profiling enhancements new in V6

�Describe the advantages of using the IBM Rational
Application Developer V6 profiling tools

The goals for this presentation are to describe the architecture of the profiling tools,
provide an overview of the new profiling features, and describe the benefits of using the
new profiling capabilities.

IRADv6_Profiling.ppt Page 3 of 34

IBM Software Group

3

Profiling Tools © 2004 IBM Corporation

Agenda

�Profiling Overview

�Memory Leak Detection

�Thread Bottleneck Detection

�Code Coverage

�Performance Bottlenecks

�Probe Kit

�Summary and References

The agenda for this presentation is to start off with an overview of the profiling capabilities
available in IBM Rational Application Developer V6.0. The remainder of this presentation
will focus on some of the individual features that are available with the profiling

capabilities. These features include: memory leak detection, thread analysis, code
coverage, performance analysis, and Probe Kit .

IRADv6_Profiling.ppt Page 4 of 34

IBM Software Group

4

Profiling Tools © 2004 IBM Corporation

Profiling OverviewProfiling Overview

Section

The next section will provide an overview of the Profiling tools available in IBM Rational
Application Developer V6.0.

IRADv6_Profiling.ppt Page 5 of 34

IBM Software Group

5

Profiling Tools © 2004 IBM Corporation

Profiling Tools: Overview

�Used to recognize and isolate the following types
of runtime problems

�Memory leaks

�Performance bottlenecks

�Excessive Object creation

�System resource limits

�Gather information while the application is running

�Applications running on WebSphere® Application Server

�Individual Java™ processes

�Profiling can be done on local or remote machine

The profiling capabilities included with IBM Rational Application Developer V6 are aimed
at helping developers recognize and isolate a variety of performance problems before
these issues become critical in a production environment. The types of problems IBM

Rational Application Developer V6.0 can help identify are things such as memory leaks,
performance bottlenecks, excessive object creation, and exceeding system resource
limits. The primary development perspective is the Profiling and Logging perspective and

the views associated with it. This set of views allow the developer to visualize and
understand runtime behavior in order to identify ways to improve performance and
correctness of an application. The profiling tools allow developers to gather information
about an application as it is running. It is possible to profile individual Java processes as

well as applications running on WebSphere Application Server. Finally, it should be
pointed out that applications running on either the local or a remote host (with respect to

the development host) can be profiled.

IRADv6_Profiling.ppt Page 6 of 34

IBM Software Group

6

Profiling Tools © 2004 IBM Corporation

Architecture

Java
Virtual

Machine

Profiler
Agent

JVMPI
Events

Controls

This diagram provides an overview of the profiling architecture. One of the first things to
note here is that the profiling tools require that the IBM Rational Agent controller be
installed in order to facilitate data collection between the various agents and the

development hosts. Each application process shown in the diagram above represents a
JVM that is executing a Java application that is being profiled. Each application will have
a profiling agent attached to it to collect the appropriate runtime data for a particular type

of profiling analysis. Note that the profiling agent is based on the Java Virtual Machine
Profiler Interface (JVMPI) architecture. The data collected by the agent is then sent to the
agent controller. The agent controller forwards this information on to Application
Developer for analysis and visualization.

There are two types of profiling agents available that you should be aware of. The first is

the Java Profiling agent that is based on the JVMPI architecture and is shown in the
diagram above. The second type is the J2EE Request Profiling agent. This agent resides
in an application server process and collects runtime data for J2EE applications by

intercepting requests to the EJB or web containers. Although the J2EE Request Profiling

agent is used to profile J2EE-based applications, Java Profiling agents can collect profiling
data for both individual Java processes as well as applications running on an application

server.

IRADv6_Profiling.ppt Page 7 of 34

IBM Software Group

7

Profiling Tools © 2004 IBM Corporation

Profiling Features

A range of problems with user-defined custom probesCustom Probes

Areas of code not exercised by a particular execution

scenario or test run

Code Coverage

Performance problems by highlighting the most time

intensive areas in the code

Execution Time Analysis

Thread contention and deadlock problemsThread Analysis

Memory management problems including manual and

automatic leak detection capabilities

Memory Analysis

Used to detectFeature

There are several types of profiling analysis available with IBM Rational Application Developer V6, and each
type is used to detect particular type of runtime issue. The following is a description of each analysis type.

Memory analysis is used to detect memory management problems. In this release there is new support
offered to provide automatic detection of memory leaks. Memory analysis can help developers identify
memory leaks as well as excessive object allocation that may cause performance problems.

Thread analysis is used to help identify thread contention and deadlock problems in a Java application.
Thread contention issues can cause performance problems, while deadlocks are a correctness issue that
can cause a critical runtime issue. The thread analysis capabilities provide analysis data for detecting both
of these types of problems.

Execution time analysis is used to detect performance problems by highlighting the most time intensive
areas in the code. This type of analysis helps developers identify and remove unused or inefficient coding
algorithms.

Code coverage analysis is used to detect areas of code not exercised by a particular execution scenario or
test run. This is a new feature in this release of the product that can be combined with a component test
provide some analysis of where a particular component test is covering all the code and whether it should be
enhanced to cover more of the code.

Probekit analysis provides the ability to write custom probes that can be instrumented in an application.
These probes can be used to analyze a variety of runtime problems.

IRADv6_Profiling.ppt Page 8 of 34

IBM Software Group

8

Profiling Tools © 2004 IBM Corporation

Profiling: Getting Started

Install and
Configure IBM
Rational Agent
Controller
(RAC)

Configure
WebSphere
Application
Server (if
applicable)

Start
application
server in profile
mode if
analyzing an
application
running on
WebSphere
Application
Server

Configure the
profiling set for
the analysis

Verify the RAC
is running

Begin
monitoring the
application

Exercise
appropriate
scenarios for
profiling run

Use table and
graph views to
analyze
profiling data

Tune java code
and
environment as
appropriate to
address
performance
and memory
problems

Before profiling an application, there are several things that must be done. In this
discussion you will see some of the steps that are necessary to get started using the
profiling capabilities. The first phase to consider is installation. As mentioned previously,

the IBM Rational Agent Controller (RAC) must be installed to take advantage of the
profiling capabilities. Many of the steps needed to start profiling an application are similar
irrespective of whether you are profiling an individual Java process or an application

running on an application server. However there are some important additional steps you
must be sure to take when profiling an application running on an application server. Most
notably, during the setup phase you need to be sure that the application server has been
started in profile mode. For both a single process and an application running on an

application server you need to configure a profiling set before you begin profiling your
application. Also during the setup phase it is a good idea to verify that the RAC is running

before beginning the profiling run. Once the profiling set has been configured, you can
begin profiling the application. After monitoring has started you should exercise the
application with the appropriate scenarios that are necessary for this profiling run. Once a

sufficient amount of data has been collected you can use the table and graph views to

analyze the profiling data. As problems are uncovered the code can be corrected or tuned
appropriately to address any performance or memory problems.

IRADv6_Profiling.ppt Page 9 of 34

IBM Software Group

9

Profiling Tools © 2004 IBM Corporation

Setting up a Profiling Configuration

Predefined
profiling sets

Define a new
profiling set

Edit configuration
of profiling set

Profiling types
associated with
this profiling set

Right click on resource in Project Explorer
and select Profile > Profile

The setup of a profiling configuration is slightly different in version 6.0. To begin there are
a number of pre-defined profiling sets that are available to address a variety of common
profiling scenarios. Each profiling set has one or more profiling types associate with it,

and each profiling type can be configured individually. Developers can choose to use a
default profiling set or create a new profiling set that is made up of one or more profiling
types, along with the appropriate default configuration values. Further profiling

configuration is set from the Profiling > Limits and Profiling > Destination tab. For
example, on the destination tab you can specify a file to dump any profiling data that is
generated. Also, each profiling type has an individual set of configuration values that can
be set. When customizing the values for a particular profiling type, you can also specify
filter criteria. It is this filter criteria that allows you to include or exclude profiling

information from a particular class.

IRADv6_Profiling.ppt Page 10 of 34

IBM Software Group

10

Profiling Tools © 2004 IBM Corporation

Viewing and Analyzing Profiling Data

Use this menu to
select items
appearing in this
view

Profiling details

Process Profiling agent

Host

Once profiling begins you will use the Profiling and Logging perspective to work with the
profiling resources and analyze the data. One of the important views for working with
profiling resources is the Profiling Monitor view. This view is used to administer your

profiling activities. This view displays all of the profiling resources that are available to you
for a particular profiling run. You can choose to hide some of the profiling resources by
selecting the triangle icon in the top right corner of the toolbar for this view.

For each profiling run you will start by locating the appropriate process listed in the

Profiling monitor view. Underneath the process you will see a profiling agent with profiling
details for the various profiling types listed underneath. The profiling details is the data
you will use to analyze the applications runtime behavior.

IRADv6_Profiling.ppt Page 11 of 34

IBM Software Group

11

Profiling Tools © 2004 IBM Corporation

Memory AnalysisMemory Analysis

Section

The next section will discuss the Memory Analysis features.

IRADv6_Profiling.ppt Page 12 of 34

IBM Software Group

12

Profiling Tools © 2004 IBM Corporation

Memory Analysis: Overview

�Used to detect memory management problems
such as memory leaks

�The following predefined profile sets are available

�Memory Analysis (v5)

�Memory Leak Analysis – Manual

�Memory Leak Analysis – Automatic

Table view displaying sets of object referencesObject References

Graphical view highlighting allocation path of leak
candidates

Object Reference Graph

Identifies the most likely objects responsible for leaking

memory

Leak Candidates

DescriptionView

New
V6

New
V6

New
V6

New
V6

The memory analysis capabilities are used to detect memory management problems, such as memory

leaks. Memory usage problems can occur in a Java application when a references to objects are

inadvertently held past the time they are needed. This situation can decrease performance and can cause

the application to terminate.

There are three profiling sets available to choose from. Memory analysis is used to analyze memory usage

patterns in an application, but is not used to provide memory leak analysis or data. The primary views for the

Memory analysis is the Object references and the object allocation graph.

There are several ways to do leak analysis:

Manual heap dumps

Timed intervals

Import heap dumps collected outside the workbench

The primary difference between the manual and automatic heap dumps is the configuration of the profile set.

The most important views when doing leak analysis are the leak candidates and Object Reference Graph.

When using the automatic leak detection type, you can not choose automatic leak detection in combination

with other profiling types in the same run when creating your own profiling set.

IRADv6_Profiling.ppt Page 13 of 34

IBM Software Group

13

Profiling Tools © 2004 IBM Corporation

Memory Leak Detection: Example

The primary steps necessary to do a memory leak analysis with manual heap dumps is
listed on this slide and the next. First you will need to define a new profiling configuration
and select Memory Leak Analysis – Manual set for the profiling run. After setting up the

profiling configuration start profiling the application. In the leak candidates view, select the
heap dump icon to collect the first heap dump. Notice that this dump shows up on the
Profiling Monitor view. After collecting the first heap dump, exercise the code as

appropriate for the area of code with the suspected memory usage problem. Collect a
second heap dump, and then click the analyze icon in the leak candidates view. In order
to do leak analysis you must collect at least 2 heap dumps.

IRADv6_Profiling.ppt Page 14 of 34

IBM Software Group

14

Profiling Tools © 2004 IBM Corporation

Memory Leak Detection: Example (cont.)

Most likely leak
candidate

Allocation path for
leak candidate

When the analysis is complete, the leak candidates view will list the possible problem
objects that are not being reclaimed. To learn more about the allocation path for this
object, double click on the candidate and the Object Reference graph will open and

highlight the allocation path along with where the object is leaking. The object reference
view and the leak candidate view are synchronized.

IRADv6_Profiling.ppt Page 15 of 34

IBM Software Group

15

Profiling Tools © 2004 IBM Corporation

Thread AnalysisThread Analysis

Section

The next section will discuss the Thread analysis capabilities.

IRADv6_Profiling.ppt Page 16 of 34

IBM Software Group

16

Profiling Tools © 2004 IBM Corporation

Thread Analysis Overview

�Used to analyze thread contention and deadlock

�The following predefined profile sets are available

�Thread Analysis

UML2 Object Interaction and UML2 Thread
Interactions views help show sequence of calls made
in profiling run

�Synchronized with Thread View

UML2 Sequence Diagram

Call stack for each thread is listed underneath Thread
Analysis profiling details

Profiling Monitor

Shows a graphical view of all threads that are available
and their state. Included with this information is what
locks are being held and by which thread

Thread View

DescriptionView

New
V6

The thread analysis features are used to detect thread contention and deadlock issues.
To perform a thread analysis run, you must create a profiling configuration that selects a
profiling set that includes the Thread Analysis profiling type. There are several views

associated with Thread analysis that help you to understand threading issues in your
application. The primary view is the Thread View. This view shows a graphical
representation of all the threads that are available and their state. Included with this

information is what locks are being held and by which thread. Used in conjunction with the
Thread View, the UML2 Sequence Diagram views help show the sequence of calls made
in a particular profiling run. Finally, the Profiling monitor view displays a call stack for each
thread that is listed underneath the Thread Analysis profiling details. This call stack is also

synchronized with the Thread view and shows the point in time that is selected in the
thread view.

IRADv6_Profiling.ppt Page 17 of 34

IBM Software Group

17

Profiling Tools © 2004 IBM Corporation

Thread Analysis: Example

Select Open With >
Thread View

Hide/Show Legend

Display Threads as list or tree

Display linear or compressed time

Toggle between time displays

Use slider to zoom

Deadlock
Example

This slide highlights using the Thread view to analyze threading issues. To open the thread view, go to the
Profiling Monitor view and find the process that is being profiled. Expand the process and right click on the
Thread Analysis resource underneath the agent. From the context menu select Open With > Thread View.
When the thread view opens, you should see a graphical representation of all of the running threads. There
is a legend that can be used to understand the various states of the threads. This legend, can optionally be
hidden by pressing the Hide/Show Legend button on the Thread View toolbar. Each running thread is listed
in a frame to the left of the graphical time representation of the thread states. This thread listing can be
viewed in a list or tree view.

The time line graph that lists each thread state is very useful for understanding and detecting threading
issues. There are two ways to view this time data. The first way is using a linear time scale to display the
thread states. The second way is using a compressed time scale. Using the compressed time option helps
developers see interesting activities and time events that may not be clearly shown on a linear time scale.
Also available is a slider on the whole time scale that can be used to narrow in on a particular time slice in
the profiling run. This slider is adjustable from right to left. The time range for the slider position is shown in
the time window scale (visible below the whole time scale).

The Thread View shown on this slide provides an example of a thread deadlock scenario. The Thread View
is indicating that thread-2 is waiting on a lock held by thread-0, and thread-0 is waiting on a lock held by
thread-2. Furthermore, this view indicates that Thread-1 is waiting on a lock held by Thread-0. This
information is indicated by the arrows originating from one thread and pointing to another. This arrow
indicates that the thread is waiting on a lock held by the thread it is pointing to. In addition to this, if you
hover your cursor offer the thread near the arrow, a pop up information box will display indicating that a
particular thread is waiting on a lock held by another thread. Even though this example shows detecting a
deadlock situation, the Thread View can also be helpful to identify thread contention issues that are more of
a performance issue than a correctness issue as is the case with deadlocks.

IRADv6_Profiling.ppt Page 18 of 34

IBM Software Group

18

Profiling Tools © 2004 IBM Corporation

Thread Analysis: Example (cont.)

UML2 Thread
Interactions view

Select thread to view
in sequence diagram

Select a point in diagram
and time slider is updated

Expand Thread
Analysis to view
thread call stacks

As discussed on the previous slide, the Thread View is an important view for quickly
identifying threading issues from a visual perspective. Once this issue has been identified,
a developer will need to analyze the particular execution flow to understand what is

causing the threading issue. There are two other views that work in conjunction with the
Thread view. These views are the Sequence Diagram views (Thread interactions or
Object interactions) and the Profiling monitor (lists the call stack for each thread). Both of

these views are synchronized with the Thread View such that the vertical time slider
shown in the thread view selects a particular time slice and this information (call stack, etc)
will be displayed in the other views.

For this type of analysis you can select a point in the sequence diagram that you are

interested in, and you get a time slider in the thread view to show you a visual
representation of what all the threads were doing at that point (the various states). You

can also see the thread stack for each of the stacks that are running. Likewise, if you then
move the slider in the Thread View you will be taken to a different part of the sequence

diagram.

IRADv6_Profiling.ppt Page 19 of 34

IBM Software Group

19

Profiling Tools © 2004 IBM Corporation

Execution Time AnalysisExecution Time Analysis

Section

The next section will discuss the Execution Time Analysis.

IRADv6_Profiling.ppt Page 20 of 34

IBM Software Group

20

Profiling Tools © 2004 IBM Corporation

Execution Time Analysis: Overview

�Used to detect performance bottlenecks

�The following predefined profile sets are available

�Execution History

�Execution History – Full Performance Call Graph

Performance data shown in a tabular formMethod Statistics

Alternate representation of global performance dataExecution Flow

Displays method level performance data in graphical
and tabular form

Method Details

Shows global performance data in a graphical formPerformance Call Graph

DescriptionView

New
V6

New
V6

The Execution Time Analysis capabilities are used to detect performance bottlenecks.
There are two profiling sets to choose from if you are doing performance monitoring. The
first is Execution History and the other is Execution History – Full Performance Call Graph.

The difference between these two sets is primarily the type of data that is collected during
the profiling run and whether or not all of the views are available to use in the analysis.
For example, with the Execution History profiling set, the Performance call graph view and

Method details view are not available.

The primary views that are used when doing an analysis that includes full performance call
graph is the Performance Call Graph and Method Details views. The Performance Call

Graph view is used to show global performance data in a graphical form. The Method
Details view shows essentially the same information as the Performance Call Graph but

displays this information in both a graphical and tabular format.

There are also a number of other views that can be used to analyze performance data.

The Execution Flow and Method statistics view are similar to the other views discussed so

far, but show the data in an alternate format. In addition to the views listed on this slide,

the UML2 Sequence diagrams are also available for this type of analysis.

IRADv6_Profiling.ppt Page 21 of 34

IBM Software Group

21

Profiling Tools © 2004 IBM Corporation

Performance Call Graph

Thicker lines illustrate
time intensive call paths

Lines represent
call paths

Hover over node to
display method
details

Right click on node to
select view options.

Double click on node
to open Method
Details view.

This slide shows the Performance Call Graph view. To open the Performance Call Graph
view, right click on the Execution Time Analysis resource in the Profiling Monitor view and
select Open With > Performance Call Graph from the context menu.

The nodes in this graph represent methods and the lines represent call paths. The thicker

lines in the graph indicate a time intensive call path and highlight an area of the code that
may require some further attention to improve performance. To view more detailed
performance information about a particular method you can hover over a node to display
method details in a pop up window. Alternatively, you can double click on a node and this
will open the Method Details view. The method details view will be highlighted on the next

slide.

The Performance Call Graph view also offers some filtering capabilities to highlight
performance hotspots. To take advantage of this filtering capability, right click on a node
and select the filter option. This option also allows you to remove a node from the graph

so that you can see the next most time intensive code path in the application (by filtering

out the most time intensive).

IRADv6_Profiling.ppt Page 22 of 34

IBM Software Group

22

Profiling Tools © 2004 IBM Corporation

Method Details

This slide shows the method details view. The information shown in this view is similar to
the information shown in the Performance Call Graph, however this information is
presented in a slightly different format with an emphasis on the details of a particular

method.

IRADv6_Profiling.ppt Page 23 of 34

IBM Software Group

23

Profiling Tools © 2004 IBM Corporation

Code CoverageCode Coverage

Section

New
V6

The next section will discuss the Code Coverage capabilities.

IRADv6_Profiling.ppt Page 24 of 34

IBM Software Group

24

Profiling Tools © 2004 IBM Corporation

Code Coverage: Overview

�Used to detect areas of code not exercised in a
particular execution scenario

�Integrates with Component Test capabilities

�The following predefined profile sets are available

�Method Coverage Information

�Method and Line Coverage Information

Coverage statistics shown in a tabular formCoverage Statistics

Shows class and method level statistics in graphical and
tabular form. Also shows an annotated source view

Annotated Source

Shows classes and methods with coverage statisticsCoverage Navigator

DescriptionView

The code coverage functionality is used to detect areas of code that have not been
exercised by a particular execution scenario. There are two predefined profile sets that
are available. These sets differ only by whether or not the code coverage information that

is gathered includes line level coverage information. The views that are available to
analyze the profiling data for method coverage includes only the Coverage Statistics view
while the Coverage Navigator and Annotated Source views can be used with Method and

Line Coverage analysis (as well as the Coverage Statistics view).

When setting up a profiling run that includes code coverage analysis, be sure to set up the
filtering set to include or exclude the appropriate packages or classes that you wish to

analyze.

Code coverage is a useful type of analysis to integrate with component test scenarios.
The code coverage statistics (including line-level analysis) can be used to identify test
cases that may be missing from a particular test suite. IBM Rational Application

Developer V6 makes it possible to integrate component test features with the code

coverage profiling capabilities.

IRADv6_Profiling.ppt Page 25 of 34

IBM Software Group

25

Profiling Tools © 2004 IBM Corporation

Code Coverage: Coverage Details

Toggles
between
data
and source
view

Lines of code not covered

Coverage indicator

To open the Coverage Navigator and Annotated Source views, right click on the
appropriate method and line code coverage resource in the profiling monitor view and
select Open With > Coverage Details. The Coverage Details option will open both the

Coverage Navigator view and the Annotated Source view.

The Coverage Details view offers a tree view listing of the packages and classes in your
application. Each item in this list, all the way down to the method level, includes
information about the percent of code covered in this profiling run. This data is indicated
at the left of each item in the list as a bar that indicates the percent coverage. From the
Coverage Navigator you can click on an item in the list to view more detailed information

in the Annotated Source view.

The Annotated Source has two purposes. First, this view shows package, class and
method level data in the form of pie charts and tables. As noted previously, this view is
synchronized with the Coverage Navigator such that particular items selected in the

Coverage Navigator will dictate what information is shown in the Annotated Source view.

The second usage for the Annotated Source view is to view a source view providing color

coded highlight of lines covered and lines not covered. A button is provided on the toolbar
for the Annotated Source view that allows developers to toggle between these two

representations.

IRADv6_Profiling.ppt Page 26 of 34

IBM Software Group

26

Profiling Tools © 2004 IBM Corporation

ProbekitProbekit

Section

New
V6

The next section will discuss the Probekit feature.

IRADv6_Profiling.ppt Page 27 of 34

IBM Software Group

27

Profiling Tools © 2004 IBM Corporation

Probekit Overview

�Byte-code instrumentation (BCI) framework used to
profile runtime problems

�Used to insert Java code fragments into an application

�Scriptable

�Rational Application Developer V6 provides an
editor to easily script probes

�Probes can be imported into a project and re-used

�Does not require re-compilation of project

Probekit is a new feature added to the Profiling support in IBM Rational Application
Developer V6. Probekit is a Byte-code instrumentation framework that is used to profile
runtime problems. This framework allows developers to insert a Java code fragment into

an application to collect detailed runtime information to profile applications in a customized
way. Probekit offers a scriptable interface for writing probes. The development
environment also provides a visual editor that helps developers script probes. Once a

probe has been developed and tested, it can be used to profile any number of
applications. One advantage of using this infrastructure is that projects using this probe
need not be re-compiled to use it.

IRADv6_Profiling.ppt Page 28 of 34

IBM Software Group

28

Profiling Tools © 2004 IBM Corporation

Probekit Overview (cont.)

� Probes can be instrumented

�At method entry and exit

�At a method call site

�During exception handling (in catch or finally block)

�Before original code in the class static initializer

� Probes can access the following information

�Package, class, and method names

�Method signature

�this object

�Arguments and return value

�Exception objects that cause exception handling to occur

Probes can be inserted into a number of locations in the profiled application. For example
probes can be instrumented at method entry and exit, a method call site, during exception
handling, and before original code in the class static initializer. Also when writing code

fragments it is important to know the types of information that probes have access to. For
example, a probe can access package/class/method names, method signature, this
object, arguments and return value, and exception objects. The editor for probekit source

files helps developers access information that is available to them as well as specifying
points to instrument each probe.

IRADv6_Profiling.ppt Page 29 of 34

IBM Software Group

29

Profiling Tools © 2004 IBM Corporation

Probekit: Getting Started

�Create a new or use an existing Java project

�Create a new Probekit source file

�Must reside at the top level of a Java Developer Toolkit

source folder

�Convert Java project to Probekit Project

�Use the probe to profile an application

The show me tutorial linked on this slide demonstrates the steps necessary to create a
probe and use it to profile a Java application. The steps to complete this task includes:
(1) create a new or use an existing Java Project, (2) Create a new Probekit source file, (3)

Convert Java Project to a Probekit project, and (4) Use the probe to profile an application.
The last step involves profiling an application the same way that was discussed in the first
part of the presentation. The profiling set needed to profile an application with probe is

called “Probe Example”. After selecting this profiling set, click the edit button for the Probe
Insertion profiling type and select the appropriate probe.

IRADv6_Profiling.ppt Page 30 of 34

IBM Software Group

30

Profiling Tools © 2004 IBM Corporation

Summary and ReferenceSummary and Reference

Section

The next section will provide a summary and references.

IRADv6_Profiling.ppt Page 31 of 34

IBM Software Group

31

Profiling Tools © 2004 IBM Corporation

Summary

�Application Developer provides a range or profiling
capabilities to analyze

�Performance

�Memory usage

�Thread performance

�Code coverage

�Ability to profile

�Applications running on WebSphere Application Server

�Individual Java processes

� Integrates with Component Test functionality

IBM Rational Application Developer V6 offers a wide range of profiling analysis types to
help developers identify and correct application performance and memory issues before
going into production when such problems can become critical situations. The

development environment provides the ability to profile applications running on
WebSphere Application Server as well as individual Java processes. When combined
with IBM Rational Application Developer V6 component test functionality, the profiling

capabilities can provide a powerful combination to help test and tune applications before
going into production.

IRADv6_Profiling.ppt Page 32 of 34

IBM Software Group

32

Profiling Tools © 2004 IBM Corporation

AppendixAppendix

Section

The next section will provide a summary and references.

IRADv6_Profiling.ppt Page 33 of 34

IBM Software Group

33

Profiling Tools © 2004 IBM Corporation

Installing Rational Agent Controller

� Run launchpad.exe in the folder <install files directory>\disk1

� Select ‘Install Agent Controller’ on the main menu

� When prompted for the Java runtime specify

� <IRAD_INSTALL_DIR>\eclipse\jre\bin\java.exe

� When prompted for the location of the WebSphere Application Servers

V5.1 and V5.0, leave both blank if using the integrated V6 server

� After installation, a service is created called ‘IBM Rational Agent

Controller’, and it is automatically started

� To remove RAC, use Add/Remove Programs and select ‘IBM Rational

Agent Controller’

IRADv6_Profiling.ppt Page 34 of 34

34

IBM Software Group

Profiling Tools

Trademarks, Copyrights, and Disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IMS MQSeries Tivoli
IBM(logo) Cloudscape Informix OS/390 WebSphere
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Lotus pSeries zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice. Any statements regarding IBM's
future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or
services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program
Product in this document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or implied, regarding non-IBM products and
services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2004. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

Template Revision: 11/02/2004 5:50 PM

© 2004 IBM Corporation

