

© 2012 IBM Corporation

IBM Operational Decision Manager V8.0.1

Enhanced sharing of rule artifacts with COBOL

This presentation looks at several enhancements to IBM Operational Decision Manager
version 8.0.1 that enable new scenarios where rules are invoked from COBOL.

ODM801_ShareArtifactsWithCOBOL.ppt Page 1 of 31

Table of contents

� Motivation for enhancements

� Generation of a Java execution object model (XOM) from a COBOL copybook
– Preserving code added to a generate Java XOM
– Mapping a COBOL fixed length table to a Java List
– Mapping identical COBOL structures to same class

� Generation of a COBOL copybook from a business object model (BOM)
– BOM with virtual attributes and virtual classes
– Improved accessor support
– Copybook generation with multiple BOMs

2 Enhanced sharing of rule artifacts with COBOL © 2012 IBM Corporation

First you will learn the motivation behind these enhancements. Then you will look at the
enhancements in two groups.

The first group of enhancements is related to the generation of a Java execution object
model (XOM) from a COBOL copybook. One is the ability to regenerate a Java XOM from
a modified copybook, without losing the code added to the original generated Java.
Another is the ability to map a fixed-length COBOL table to a Java list. A third is the
mapping of identical COBOL structures to the same Java class.

The second group of enhancements is related to the generation of a COBOL copybook
from an existing business object model (BOM). One is support for a BOM containing
virtual attributes or virtual classes. Another is better support for the handling of accessors.
A third is the generation of a copybook from multiple BOMs.

ODM801_ShareArtifactsWithCOBOL.ppt Page 2 of 31

Motivation

� Motivation for these enhancements:
– Enable more scenarios allowing a rule project to be shared between COBOL clients and

other types of clients.

3 Enhanced sharing of rule artifacts with COBOL © 2012 IBM Corporation

A rule project can be deployed in such a way that there are a variety of ways to invoke it,
for example, calling it as a web service, as an EJB or directly from Java. When a rule
project is invoked from a COBOL program, there has to be a mapping between the
COBOL copybook and the executable rules. The motivation behind the enhancements
described here is to enable more scenarios where a rule project is shared between
COBOL clients and other types of clients.

ODM801_ShareArtifactsWithCOBOL.ppt Page 3 of 31

© 2012 IBM Corporation4 Enhanced sharing of rule artifacts with COBOL

Preserving code added to a generated Java XOMPreserving code added to a generated Java XOM

Section

The first enhancement is the ability to regenerate a Java XOM from a modified copybook
without losing updates that were made to the originally generated Java.

ODM801_ShareArtifactsWithCOBOL.ppt Page 4 of 31

Preserving code added to a generated Java XOM (1 of 3)

� Scenario addressed
– Initial development:

• Start with an existing COBOL copybook
• Generate a Java XOM from the copybook
• Add additional imports and Java methods to the XOM
• Generate a BOM from the Java XOM

– At some time in the future, discover a need to modify the COBOL copybook
• Update the COBOL copybook
• Regenerate the Java XOM from the modified copybook
• Resolve differences between the new Java XOM and the BOM

� Releases before V8.0.1
– Regeneration of the Java XOM overwrites the additional imports and Java methods
– Imports and Java methods have to be recoded before resolving differences between the

Java XOM and the BOM

5 Enhanced sharing of rule artifacts with COBOL © 2012 IBM Corporation

Here is the scenario that is addressed by this enhancement. Initially, a COBOL copybook
is used to generate a Java XOM. Additional import statements and Java methods are
added to the XOM and then a BOM is generated from the XOM. At a later date, the
copybook needs to be updated and therefore the Java XOM must be regenerated to
reflect the modifications to the copybook. Then, differences between the new Java XOM
and BOM need to be resolved. This can all easily be done through Rule Designer.

In releases before version 8.0.1, when an updated copybook is used to regenerate the
Java XOM, the additional import statements and Java methods are lost. As a result, you
have to manually recode in the Java XOM before the Java XOM and BOM differences can
be resolved. This enhancement in version 8.0.1 removes the need to do the manual
recoding.

ODM801_ShareArtifactsWithCOBOL.ppt Page 5 of 31

© 2012 IBM Corporation 6 Enhanced sharing of rule artifacts with COBOL

V8.0

V8.0.1
copybook

Add imports

Add code

Preserving code added to a generated Java XOM (2 of 3)

In the upper left corner of this slide is a screen capture of a COBOL copybook. Below it is
the generated Java XOM produced by version 8.0. On the right is the generated Java
XOM produced by version 8.0.1. The only difference is that, in version 8.0.1, there are
comments added, which serve as markers for where to add the additional import
statements and Java methods. These markers are //@user_import_begin and end, and
//@user_code_begin and end.

ODM801_ShareArtifactsWithCOBOL.ppt Page 6 of 31

Preserving code added to a generated Java XOM (3 of 3)

Original copybook

Updated copybook

7 Enhanced sharing of rule artifacts with COBOL © 2012 IBM Corporation

On this slide, the original copybook is in the upper left. Shown in the center of the slide is
an updated version of the copybook that contains an additional field, age. On the left side
is the originally generated Java XOM, which contains a manually added import statement
and Java method. On the right side is the regenerated Java XOM. You can see that the
additional import statement and Java method are preserved, and that new accessors for
the additional age field from the copybook have been added.

ODM801_ShareArtifactsWithCOBOL.ppt Page 7 of 31

Section

MMaappppiinngg aa CCOOBBOOLL ffiixxeedd lleennggtthh ttaabbllee ttoo aa

JJaavvaa LLiisstt

8 Enhanced sharing of rule artifacts with COBOL © 2012 IBM Corporation

The next enhancement allows a COBOL fixed length table to be mapped to a Java list.

ODM801_ShareArtifactsWithCOBOL.ppt Page 8 of 31

Mapping a COBOL fixed length table to a Java List (1 of 2)

� Scenario addressed
– A COBOL copybook that contains:

• A fixed length table
• A numeric count element associated with the table

– You are generating a Java XOM from the copybook
– You want the table to be mapped to a Java List (Java Array is the default)

� Releases before V8.0.1
– The mapping can only be to a Java Array

9 Enhanced sharing of rule artifacts with COBOL © 2012 IBM Corporation

In this scenario, you have a COBOL copybook that contains a fixed length table and a
numeric count element associated with the table. When generating Java XOM from this
copybook, you want the table to be represented as a Java list. In version 8.0, your only
option was to have the table represented as a Java array. That is also the default in
version 8.0.1.

ODM801_ShareArtifactsWithCOBOL.ppt Page 9 of 31

Mapping a COBOL fixed length table to a Java List (2 of 2)

COBOL copybook

Generated Java XOM

10 Enhanced sharing of rule artifacts with COBOL © 2012 IBM Corporation

This slide shows the series of screen captures for generating the Java list in the XOM.

In the upper left, you can see that the COBOL copybook contains a 10-element array,
called msgs, and an integer count field, called msg-count. The dialog for generating the
Java XOM from the COBOL copybook is shown in the top center of the slide. Down the
left side is a series of screen captures showing the steps to do the mapping. At first, the
field msgs is mapped to a Java String array. But using a dropdown, msgs can be changed
to a Java List. In the next screen capture, you can see the red error indicator next to
msgs. This is because you must have a count field when mapping to a List. From the
Reference field for msgs, you can open the dialog and select the field to be used as the
count. The result is shown in the lower left. On the right is the generated Java XOM with
msgs mapped to a Java List.

ODM801_ShareArtifactsWithCOBOL.ppt Page 10 of 31

© 2012 IBM Corporation11 Enhanced sharing of rule artifacts with COBOL

Mapping identical COBOL structures to sameMapping identical COBOL structures to same
classclass

Section

The next enhancement allows identical COBOL structures to be mapped to the same Java
class in the XOM.

ODM801_ShareArtifactsWithCOBOL.ppt Page 11 of 31

Mapping identical COBOL structures to same class (1 of 2)

� Scenario addressed
– A COBOL copybook that contains identical structures
– You are generating a Java XOM from the copybook
– You want the structures to map to the same generate class in the Java XOM

� Releases before V8.0.1
– Each structure mapped to a unique class

12 Enhanced sharing of rule artifacts with COBOL © 2012 IBM Corporation

This scenario applies when you have a COBOL copybook that contains identical
structures and you are generating the Java XOM from the copybook. To prevent the
proliferation of Java classes in the generated code, you want to map the identical
structures to the same Java class.

ODM801_ShareArtifactsWithCOBOL.ppt Page 12 of 31

Mapping identical COBOL structures to same class (2 of 2)

COBOL copybook

Generated Java XOM

13 Enhanced sharing of rule artifacts with COBOL © 2012 IBM Corporation

This slide shows the series of screen captures for mapping identical structures to the
same Java class.

In the upper left, you see that the COBOL copybook contains two identical structures,
BORROWER and COBORROWER. The dialog for generating the Java XOM from the
COBOL copybook is shown in the top center of the slide. Down the left side is a series of
screen captures showing the steps of the mapping. In the first panel, the structure
BORROWER is mapped to the Java type Borrower, and COBORROWER is mapped to
the Java type Coborrower. In the next panel, the Reference field is used to open a dialog
where you can specify that COBORROWER references BORROWER. As a result, the
bottom panel shows that COBORROWER is now mapped to the Java class Borrower.

On the right side, you can see that the generated Loan class contains two variables,
borrower and coborrower, each of which is of type Borrower. Below that is the generated
Borrower class.

ODM801_ShareArtifactsWithCOBOL.ppt Page 13 of 31

Section

BBOOMM wwiitthh vviirrttuuaall aattttrriibbuutteess aanndd vviirrttuuaall
ccllaasssseess

14 Enhanced sharing of rule artifacts with COBOL © 2012 IBM Corporation

The next few enhancements are related to the scenario where there is an existing
business object model (BOM) from which you generate a COBOL copybook. The first of
these deals with a BOM that contains virtual attributes or virtual classes.

ODM801_ShareArtifactsWithCOBOL.ppt Page 14 of 31

BOM with virtual attributes and virtual classes

� Scenario addressed
– Starting point – A rule project with:

• A Java based XOM
• A BOM containing a virtual attribute or a virtual class

– Requirement:
• Need to invoke the rule project from COBOL

� Releases before V8.0.1
– The COBOL copybook and marshaller is not correctly generated

15 Enhanced sharing of rule artifacts with COBOL © 2012 IBM Corporation

In this scenario, the Java XOM exists and is associated with a BOM containing a virtual
attribute or a virtual class. You want to call this rule project from COBOL; so you need to
generate a COBOL copybook.

In releases before version 8.0.1, you can’t generate a COBOL copybook in this scenario
because the copybook and marshaller are not correctly generated for virtual attributes and
virtual classes.

ODM801_ShareArtifactsWithCOBOL.ppt Page 15 of 31

BOM with virtual attribute

� What is a virtual attribute?
– An attribute defined in the BOM that does not exist in the XOM

� Example – BOM attribute ‘age’ where XOM only contains ‘dateOfBirth’

16 Enhanced sharing of rule artifacts with COBOL © 2012 IBM Corporation

In order to understand this enhancement, the next few of slides provide an explanation of
virtual attributes and virtual classes.

A virtual attribute is one that is defined in the business object model but does not exist in
the Java execution object model. The example shown here is a BOM with an attribute,
age, where the Java XOM only contains the date of birth. The top screen capture shows
that, in the BOM, the attribute age is defined as a read-only integer. The bottom screen
capture defines the getter method for the attribute. It contains the code that is necessary
to compute someone’s age, given their date of birth.

ODM801_ShareArtifactsWithCOBOL.ppt Page 16 of 31

BOM with virtual class

� What is a virtual class?
– A class defined in the BOM that does not exist in the XOM

� Possible use:
– Define a domain of static references (enumerated values) in the BOM
– Associate with a field in the XOM without value restrictions

� Example:
– XOM contains field � java.lang.String color
– BOM contains class � MyColors with static final members ‘red’, ‘green’, ‘blue’
– BOM attribute color defined as type MyColors rather than as type String

17 Enhanced sharing of rule artifacts with COBOL © 2012 IBM Corporation

Similar to a virtual attribute, a virtual class is one that exists in the business object model
but does not exist in the Java execution object model.

The possible use of a virtual class is where you want to treat an attribute as a set of
enumerated values in the BOM, even though its corresponding execution object model
field has no value restrictions.

To illustrate this with an example, assume you have a Java XOM with a String field named
color. In the BOM, you can have a virtual class such as MyColors, which has a set of
static final members red, green and blue. In the BOM, the color attribute can then be
defined to be of type MyColors rather than of type String. As a result, the color attribute
can only contain one of the strings “red,” “green,” or “blue.”

ODM801_ShareArtifactsWithCOBOL.ppt Page 17 of 31

© 2012 IBM Corporation 18 Enhanced sharing of rule artifacts with COBOL

BOM with virtual class example definition

XOM

BOM

Here is another example of a virtual class. The execution object model shown in the upper
left, has a class Person containing a String variable called ageGroup. In the upper right,
you can see the definition in the BOM for the member ageGroup. Notice that the type of
ageGroup is defined to be Group rather than String. On the left is the definition for the
class Group, which is a virtual class since it does not exist in the execution object model.
Group is composed of members Baby, Child, Teen, Adult and Senior, which are all
defined as static final members. Each has a getter that returns an appropriate string. For
example, the one shown on the right is for the member Child; and its getter returns the
string “Child”. In the lower left corner you can see that the class Group has a BOM to XOM
mapping of type String. The result of using this virtual class is that the variable ageGroup,
although defined as a String in the execution object model, can only contain one of the
values defined in the class Group.

ODM801_ShareArtifactsWithCOBOL.ppt Page 18 of 31

Using a virtual attribute and virtual class in a decision table

Virtual attribute used in
condition test

Virtual class used
in action

19 Enhanced sharing of rule artifacts with COBOL © 2012 IBM Corporation

On this slide you can see the virtual attribute and virtual class from the previous slides
being used in a decision table. The left column of the decision table is the condition test
and makes use of the age virtual attribute. The right column is the action and sets the
member ageGroup, using the values defined in the virtual class Group.

The result is that, given a person’s date of birth, this decision table can set the value for
the person’s age group.

ODM801_ShareArtifactsWithCOBOL.ppt Page 19 of 31

© 2012 IBM Corporation20 Enhanced sharing of rule artifacts with COBOL

Improved accessor supportImproved accessor support

Section

The next enhancement provides improved support for accessors.

ODM801_ShareArtifactsWithCOBOL.ppt Page 20 of 31

Improved accessor support (1 of 2)

� Scenario addressed
– Starting point – A rule project with:

• A Java based XOM
• Public attributes with no explicit accessor methods
• Boolean attribute with ‘isXxxxx’ accessor rather than ‘getXxxxx’

– Requirement:
• Need to invoke the rule project from COBOL

� Releases before V8.0.1
– The COBOL marshaller is not correctly generated

21 Enhanced sharing of rule artifacts with COBOL © 2012 IBM Corporation

The scenario addressed by this enhancement is a rule project that has an existing Java
execution object model. The Java XOM has public attributes but does not have getter and
setter methods explicitly defined for those attributes. In addition, there is a Boolean
attribute that has an “is” accessor method rather than a “get” accessor method. In releases
before version 8.0.1, this Java execution object model can’t be used when calling the rule
project from COBOL because the marshalling code is not correctly generated.

ODM801_ShareArtifactsWithCOBOL.ppt Page 21 of 31

© 2012 IBM Corporation 22 Enhanced sharing of rule artifacts with COBOL

Improved accessor support (2 of 2)

V8.0 V8.0.1

This slide shows an example of a Java XOM that has attributes for name (a String), age
(an int) and married (a Boolean). On the left is the code required in version 8.0 to make
the XOM compatible for use with COBOL. Each of the attributes has a private variable and
explicitly declared getter and setter methods. In version 8.0.1, the XOM on the left still
works; but alternatively, the XOM on the right also works. In this case, the name and age
attributes are public variables with no explicit getter and setter methods. And the getter
method for the Boolean variable married is defined as isMarried rather than getMarried.

ODM801_ShareArtifactsWithCOBOL.ppt Page 22 of 31

© 2012 IBM Corporation23 Enhanced sharing of rule artifacts with COBOL

Copybook generation with multiple BOMsCopybook generation with multiple BOMs

Section

This enhancement affects the ability to generate a COBOL copybook from multiple
business object models.

ODM801_ShareArtifactsWithCOBOL.ppt Page 23 of 31

Copybook generation with multiple BOMs (1 of 5)

� Scenario addressed
– Starting point:

• A rule project with more than one BOM
– Requirement:

• Use a single COBOL copybook when invoking the rule project

� Releases before V8.0.1
– A COBOL copybook can only be generated from a single BOM

24 Enhanced sharing of rule artifacts with COBOL © 2012 IBM Corporation

The starting point for this scenario is a rule project that has more than one BOM and the
requirement that only one copybook be used when calling these rules from COBOL. In
releases before version 8.0.1, separate copybooks have to be generated, one for each
BOM. The next few slides show you how to generate a single copybook from multiple
BOMs.

ODM801_ShareArtifactsWithCOBOL.ppt Page 24 of 31

Copybook generation with multiple BOMs (2 of 5)

Properties dialog for

rule project

Use Add button to add
each of the BOMs

COBOL Enabled BOM

25 Enhanced sharing of rule artifacts with COBOL © 2012 IBM Corporation

In the upper left is a rule project with two BOMs. One BOM is called person and has a
class Borrower; and the other BOM is called product and has a class Loan. The Properties
dialog for the rule project is shown in the middle of the slide. To begin the copybook
generation, navigate to COBOL Management, and COBOL Enabled BOM. Use the Add
button to add a BOM. Do this for each of the BOMs.

ODM801_ShareArtifactsWithCOBOL.ppt Page 25 of 31

Copybook generation with multiple BOMs (3 of 5)

The Manage button will open the
Copybook Generation dialog

Top Level Objects still need to be
selected

26 Enhanced sharing of rule artifacts with COBOL © 2012 IBM Corporation

After both BOMs have been added, use the Manage button to open the Copybook
Generation dialog. Initially the dialog reports an error because no Top Level Objects have
been specified yet.

ODM801_ShareArtifactsWithCOBOL.ppt Page 26 of 31

Copybook generation with multiple BOMs (4 of 5)

Select the right type

Select the right type

Clicking Add Top Level Object
will open Types dialog

Clicking Add Top Level Object
will open Types dialog

Now everything is correct

27 Enhanced sharing of rule artifacts with COBOL © 2012 IBM Corporation

Use the Add Top Level Object button to add the classes from each of the BOMs. In the
bottom right screen capture, you can see that the Borrower and Loan types have been
added.

ODM801_ShareArtifactsWithCOBOL.ppt Page 27 of 31

Copybook generation with multiple BOMs (5 of 5)

Resulting copybook maps both BOMs

28 Enhanced sharing of rule artifacts with COBOL © 2012 IBM Corporation

The resulting copybook contains the data structures for both BOMs, borrower and loan.

ODM801_ShareArtifactsWithCOBOL.ppt Page 28 of 31

Summary

� Explained the motivation for these enhancements

� Looked at the enhancements for
– Generation of a Java XOM from a COBOL copybook
– Generation of a COBOL copybook from a BOM

29 Enhanced sharing of rule artifacts with COBOL © 2012 IBM Corporation

In this presentation, you learned some of the motivation behind these enhancements to
Operational Decision Manager. You looked at the enhancements related to generating a
Java execution object model from a COBOL copybook and the enhancements related to
generating a COBOL copybook from a business object model.

ODM801_ShareArtifactsWithCOBOL.ppt Page 29 of 31

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better meet your
needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send email feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_ODM801_ShareArtifactsWithCOBOL.ppt

This module is also available in PDF format at: ../ODM801_ShareArtifactsWithCOBOL.pdf

30 Enhanced sharing of rule artifacts with COBOL © 2012 IBM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

ODM801_ShareArtifactsWithCOBOL.ppt Page 30 of 31

 Trademarks, disclaimer, and copyright information

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. Other product and service
names might be trademarks of IBM or other companies. A current list of other IBM trademarks is available on the web at "Copyright and trademark
information" at http://www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2012. All rights reserved.

31 © 2012 IBM Corporation

ODM801_ShareArtifactsWithCOBOL.ppt Page 31 of 31

