IBM Operational Decision Manager V8.0.1

Decision engine for zRule Execution Server

© 2012 1BM Corporation

This presentation introduces the new decision engine for running rules in a zRule
Execution Server.

ODMB801_DecisionEngine.ppt Page 1 of 21

= Review rule environments on z/OS
— Rule execution environments
— Rule engines

= Decision engine topics
— Motivation and scope
— Architecture comparison with the classic rule engine
— Deployment
— Invocation from COBOL
— Testing with a Java application
— Differences from the classic rule engine
— Where to look in the Information Center

Decision engine for zRule Execution Server © 2012 1BM Corporation

Before discussing the decision engine, the environments for processing rules in z/OS are
reviewed. Then the motivation and applicable scope for the decision engine is described.
The architecture is then compared with that of the classic rule engine. How rules using the
decision engine are deployed, invoked from COBOL and tested with a Java application
are presented. Some of the differences in the decision engine and classic rule engine are
highlighted and a map is provided to help you find decision engine relevant material in the
Information Center.

ODMB801_DecisionEngine.ppt Page 2 of 21

= Rule execution environments
— Rule Execution Server on WebSphere Application Server for z/OS
* Rules invoked with HTTP, EJB, SOAP
* Rules invoked from COBOL using WebSphere optimized local adapter
— zRule Execution Server on z/OS
* Rules invoked only from COBOL
— zRule Execution Server for z/OS on CICS JVM server
* Rules invoked only from COBOL
» Access to CICSPlex System Manager capabilities
— Native COBOL
» Rules generated into COBOL subprograms
» Compiled and linked within your COBOL program

Decision engine for zRule Execution Server © 2012 1BM Corporation

There are several different environments for running rules on z/OS. The first is using the
Rule Execution Server running on WebSphere Application Server. This environment is a
Decision Server, and rules can be invoked in many different ways, such as using HTTP,
SOAP and EJB. Rules in this environment can also be called from COBOL using the
WebSphere optimized local adapter.

The next environment is the zRule Execution Server. It is used only for calling rules from
COBOL programs.

The third environment is the zRule Execution Server for z/OS on CICS JVM server. This
also is only used for calling rules from COBOL. However, because it is running in CICS,
capabilities such as the CICSPlex System Manager are also available.

Finally, a non-server based mechanism is using native COBOL. Rules are used to
generate COBOL subprograms, which are then compiled and linked with the calling
COBOL programs.

ODMB801_DecisionEngine.ppt Page 3 of 21

= Rule engines
— Classic rule engine
» Rule engine with the same architecture as prior releases
— Decision engine
» New rule engine architecture introduced in this release

Decision engine for zRule Execution Server © 2012 1BM Corporation

In addition to the environments for running rules, there are also two different runtime
engines for processing rules. The first is called the classic rule engine and is the same
basic implementation and architecture used for running rules in previous releases. The
next is called the decision engine and is the topic of this presentation. It is a new
implementation in version 8.0.1.

ODM801_DecisionEngine.ppt Page 4 of 21

= Motivation

— Improve overall performance of rule execution

— Reduce load time for rule applications

— Make a compelling story for rule execution versus native COBOL
» Native COBOL performs faster then rules in classic rule engine
» However, using native COBOL rules are much less flexible
« Decision engine performance significantly reduces the performance gap
» Therefore, flexibility can trump performance differences when deciding which to use

= Scope
— Decision engine is only available for zRule Execution Server
— Use of Decision engine or classic rule engine is a deployment option for a rule project

Decision engine for zRule Execution Server © 2012 1BM Corporation

Before delving into the decision engine, this slide addresses the motivation for introducing
the decision engine and defines the scope of where it applies.

The major reason for introducing the new decision engine is to provide an overall
improvement in the performance of rule execution and to decrease the time needed to
load a rule application.

While performance gains are good in and of themselves, there is an additional factor at
play here, to make rule execution performance competitive with rules in native COBOL.
Execution in native COBOL is much faster than when using the classic rule engine.
However, there is much less flexibility and more overhead in maintaining rules in native
COBOL when compared to deploying rules to a server environment. The decision engine
significantly reduces the performance gap between server based rule execution and
native COBOL. Therefore, it is no longer a significant performance tradeoff to choose the
more flexible option.

The decision engine is only available in one environment, the zRule Execution Server.
Also, projects deployed to the zRule Execution Server can use either the classic rule
engine or the decision engine. The choice is an authoring time decision.

ODMB801_DecisionEngine.ppt Page 5 of 21

Authoring

Deployment

Loading
in rule engine

in Rule Designer

Classic rule engine
Business: "
rules 4
Compilation

Low-level
textual rules
IRL

Ruleset
archive ,,':,
{:jax) °

Parsing

Compilation
and
optimization

Authoring
in Rule Designer

Deployment

Loading
in rule engine

Decision engine

Business.

rules b
Compilation

Decision
algorithm
optimization

Bytecade
generation

Ruleset
archive .‘:.
{.dsar) L

Java class
loading

= Different deployment archive
— Engine selected at authoring
time

= Optimization and compilation
— Decision engine - done at
authoring time
— Classic rule engine — done at
load time

= Execution
— Decision engine — fully compiled
Java

Partial
bytecode
generation

Run time

— Classic rule engine — compiled

Execution Invocation Java and interpreted code
Java class
Inading

Run time

Execution Invocation

Decision engine for zRule Execution Server © 2012 1BM Corporation

The architecture of the classic rule engine is shown on the left as compared to that on the
decision engine on the right. Each has a different deployment archive and therefore the
selection of which engine is used is made at authoring time.

There are basically two fundamental differences between the two architectures. With the
classic rule engine, the optimization and compilation of the rules is done after deployment
when the rule project is loaded into the server. For the decision engine, the optimization
and compilation of the rules is done at authoring time before deployment.

The other fundamental difference between the architectures affects the actual execution of
the rules. With the classic rule engine, the execution of the rules is a combination of
running compiled code and interpreted code. With the decision engine, the execution is
fully compile code.

It is these differences in architecture that help contribute to the reduced load time and
increased performance of the decision engine.

ODMB801_DecisionEngine.ppt Page 6 of 21

Deployment — Setting the build mode

| Rude Explorer. £3 =D
5 = operties for AgeClassifies
e Fir tost Rulesat Build Mode oo. -
Riesource =
Biders 1 Classic e engine
Business Cllect Moded % forzfos
Copy Categones
Paste % COBCL Management
Delote DTITiC EXSCUNON ObpCt M0
"Mm Sava Exacution Olbject Model
Frofect Facets
£aimpar. . Frofort Refereres
Expaort » Rulo Project Foiders.
% Rafrash Rz Buld Mode:
Y Fudaset Extractors
L b Fudeget Parameter
Runds » Fudeset Propertats
Debug is » FunDebug Settings
Frofis As » Seever
v Task Tags
Open Ruo Anlysss Helaitn,
Toam »
_ ____| Compwewith
e o :wmnﬂmwm
| COBOL Genaration Proy
A citine B0k 43 ool Code cenerscin
Dcaman Contar
Rude Eoecution Server
Dcisaon Vabdation Sarvioed: ¥ II il
Businigs Everts »
cotire , @ T
= m i

= Setting the build mode
— Open the Properties view of your rule project
—Ruleset Build Mode - Decision engine for zRule Execution Server for z/OS

Decision engine for zRule Execution Server © 2012 1BM Corporation

The build mode determines which engine is used for your project’s rule execution. This is
done by opening the Properties view of the rule project, selecting Ruleset Build Mode and
then selecting which engine to use.

ODMB801_DecisionEngine.ppt Page 7 of 21

=0

[ST g

v
a1 b AgeClchicationxom
= . v

Vakdate

]
Be cutine 11 | Comparn With
Fstors froen Local Hstary, .

Deployment to zRule Execution Server

- Deploy Ruledpp Archive

Deploy a RuleApp 1o Rule Execution Server

Select the. depinmac type:
15 ncresment Rukediop mar version
1 Incraesent Ribeape minar verson
1 focloce Ruledgn version
" Incresment ndesst major version
™ Incrasace ndssat mnor veesor
" Replace julesat verscrn

& Deploy RuleRpp Archive

Deploy a RuleApp 1o Rule Execution Server
Select the target Rule Exacution Server!

™ Salect existing Ruke Exscution Server configuotions:

 Creste & temporary Fiue Execution Server configur stion:

URl; | betpjmyos1 23, 0c . com: 341 t4fres
Logn: [recadmn]
Passord: [aseassen

I Daploy %0M of rule projects and achives contaned in the Fulsico

= Deploying from Rule Designer
— Select Deploy... from the RuleApp menu
— Select version handling option
— Provide URL and credentials for zRule Execution Server
— Results shown in Console view

Decision engine for zRule Execution Server

]

Carnel

sifieripp” RuleApp project was suc
erdpp/1.0 -> /hge

© 2012 1BM Corporation

This slide provides an example of how to deploy from Rule Designer to zRule Execution
Server. You must have a rule application associated with you rule project. From the rule
application’s pop-up menu, select RuleApp, then select Deploy, and the Deploy RuleApp
Archive dialog opens. On the first panel select how you’d like version handling done in the
deployment and on the next panel provide the URL and credentials for your zRule
Execution Server. Status of the deployment is returned in the Console view of Rule

Designer.

ODM801_DecisionEngine.ppt

Page 8 of 21

= Setting of build mode
— The build mode is set by you on a rule project
—When a RuleApp project is created, a build mode property is set based on the rule
project build mode setting
— Changing the build mode in a rule project for which there is an existing RuleApp project
does not update the RuleApp project’s build mode property

= Deployment build mode conflict warning
—When you deploy a RuleApp, a warning is issued if the rule project and RuleApp project
do not specify the same build mode

— It is best to respond “No” to this dialog and resolve the conflicting settings

Decision engine for zRule Execution Server © 2012 1BM Corporation

This slide provides some background about a build mode conflict warning you might
encounter when deploying.

The build mode is set by you on a rule project as was described on a previous slide. When
you create a rule application project, the value of the build mode property in the rule
project is used to set a property in the rule application project. Subsequently, changing the
build mode on the rule project does not update the property in the rule application project.

When this happens, deploying the rule application leads to an error dialog with a warning
that the build mode properties of the rule project and rule application project are not
equivalent. You are given the option to continue, but it best to respond no to this dialog so
that you can first resolve the conflicting settings.

ODMB801_DecisionEngine.ppt Page 9 of 21

Deployment — Build mode conflict warning

= Resolving the conflicting settings
— After changing the Rule project, delete and re-create the RuleApp project
— Make sure in the delete dialog you select to delete from the file system contents

Gmm ¥ o

T 5 '
{Profect cannck be restored vsing "Undo™)

1 Do ot delete cortents.

— Use the Rule Project Map to re-create your RuleApp

2, Rulo Project Map, 3 (% Problems| < Tasks |] DIS Praject Valdation | ¢ BOM Lipdate

SharingZMiniloan (& [wanos | 0 0 Loos)

Decision engine for zRule Execution Server © 2012 1BM Corporation

There is no mechanism provided to change the build mode property for the rule
application, so the best approach is to delete and then re-create it. When deleting the rule
application, make sure you select to delete the contents on the file system. Then you can
use the Rule Project Map to re-create your RuleApp project.

ODMB801_DecisionEngine.ppt Page 10 of 21

= The COBOL API is the same as that used to invoke projects deployed with the classic rule
engine

= Copybooks required:
— HBRWS - Defines HBRA-CONN-AREA, the data structure passed when making calls
— HBRC - Defines the reason codes passed back from the calls

WORKING-STORAGE SECTION.
COPY AGCLPRSN.

01 WS-REASON-CODES.
COPY HBRC.
COPY HBRWS.

= API calls:
— HBRCONN - Establishes a connection between the COBOL program and rule server
—HBRRULE
* Invokes a ruleset
» The ruleset to call and parameters are passed in HBRA-CONN-AREA
— HBRDISC - Terminates the connection between the COBOL program and rule server

Decision engine for zRule Execution Server © 2012 1BM Corporation

Calling a rule project that is deployed for the decision engine uses the same COBOL APIs
as rule projects deployed for the classic rule engine.

There are two required copybooks that must be included in your working storage section.
The first is HBRWS which defines the HBRA-CONN-AREA data structure that is passed
on the API calls. The second is HBRC which provides a set of reason code constants
used to communicate status of a call.

HBRC constants are all defined at level 10, so the copybook should be pulled in within a
higher level structure. HBRWS starts at level 1, so it is self contained.

The API has three calls. HBRCONN establishes the connection between the COBOL
program and the rule execution server. HBRRULE invokes a ruleset with
HBR_CONN_AREA used to pass the ruleset name and ruleset parameters. Finally,
HBRDISC is used to terminate the connection between the COBOL program and the rule
execution server.

ODMB801_DecisionEngine.ppt Page 11 of 21

Connecting
— Initialization of HBRA-CONN-AREA is not needed before calling HBRCONN
— HBRENVPR DD in JCL defines the target rule runtime to connect to
— Example code shows relevant fields to check for success or reason for failure

* Get connection to rule execution server
CALL "HBRCONN' USING HBRA-CONN-AREA.
IF HBRA-CONN-COMPLETION-CODE NOT EQUAL HBR-CC-0K
DISPLAY "connect =zRules failed"
DISPLAY "CC code " HBRA-CONN-COMPLETION-CODE

DISPLAY "RC code " HBRA-CONN-REASON-CODE

DISPLAY "Message " HBRA-RESPONSE-MESSAGE
ELSE

DISPLAY 'connect zRules successful'
END-IF

= Disconnecting

* Get disconnect to rule execution serwver

CALL 'HBRDISC' USING HBRA-CONN-AREA

Decision engine for zRule Execution Server © 2012 1BM Corporation

To connect using HBRCONN, the HBRA-CONN-AREA does not need to be initialized.
The rule execution server to connect to is specified by the HBRENVPR DD statement in
your JCL. The example code on the slide shows how to check if the connection was
successful, and which fields contain relevant information if there was a failure.

To disconnect from the rule execution server, call HBRDISC as is shown in the code
sample.

ODMB801_DecisionEngine.ppt Page 12 of 21

Initialize the ruleset parameter data
MOVE 'Russ’ TO name
MOVE *'19500221° TO dateOfBirth
MOWE ' TO ageGroup

Zero out return codes and specify the ruleset to call
MOVE ZERO TO HBRA-CONN-RETURN-CODES
MOVE "/AgeClassifierApp/AgeClassifier”

TO HBRA-COMN-RULEAPP-PATH
Set ruleset parameter data intoe HBRA-CONN-AREA
MOVE LOW-VALUES TO HBRA-RA-PARMETERS.
MOVE 'person’ TO HBRA-RA-PARAMETER-NAME (1)
MOVE LENGTH OF person TO HBRA-RA-DATA-LENGTH(1)
SET HBRA-RA-DATA-ADDRESS(1)
TO ADDRESS OF person

Invoke rule execution server
CALL 'HBRRULE® USING HBRA-CONN-AREA

= The application parameter data needs to be initialized

= |nitialize HBRA-CONN-AREA
— Ensure the return codes are set to zero
— Specify the name of the ruleset that is to be called
— Provide the parameters
* Name
* Length
» Address of the data

= Invoke the ruleset using HBRRULE

Decision engine for zRule Execution Server © 2012 1BM Corporation

To call the rule using HBRRULE there are a few things you need to do. First, the ruleset
parameter need to be initialized and next the HBRA-CONN-AREA needs to be set up.
This involves ensuring that the return codes are set to zero, that the name of the ruleset to
call is provided, and that the name, length and address of each parameter is set. Once
this is done, you then call HBRRULE. Following the invocation, you need to check the
return codes. The code to do this is the same as the code for HBRCONN shown on the
previous slide.

ODMB801_DecisionEngine.ppt Page 13 of 21

= A rule project using decision engine can be tested in Rule Designer using a Java application

= Basic steps are:
— Create a Java Project for Rules
» Generates the decision engine specific code needed
— Write your application specific code
« Initialize input parameters
« Examination/printing of output parameters
—Run as a Java application with rules

= Additional options
— Provide your own class loader to load the XOM
— Provide exception handling
— Query how many rules were fired
— Attach an observer to get natifications

Decision engine for zRule Execution Server © 2012 1BM Corporation

A rule project that uses the decision engine can be tested in Rule Designer using a Java
application. First you create a Java Project for Rules which generates the decision engine
specific code needed to invoke the rules. Within this generated code, you then add your
application specific code that initializes the input parameters and examines or prints the
output parameters. The Java code is then run in Rule Designer by selecting run as a Java
application with rules.

In addition, there are other things you can do when testing this way. There is the ability to
provide your own class loader for the execution object model. Also, you can include
exception handling, query how many rules were fired, and attach an observer to get
notifications.

ODMB801_DecisionEngine.ppt Page 14 of 21

public static void main(String[] args)
try {

File file = new File("rulekhrchivel.dsar™);
long t0 = 3ystem.currentTimeMillis():
EnginelLoader loader = new Engineloader (file);
EngineDefinition definition = loader.load();
Engine engine = definition.createEngine();
long tl = 3ystem.currentTimeMillis():

/¢ TODD check input parameters

/¢ Feed the engine with input parsmeters

EngineInput input = engine.createlnputi():
input.setParameter ("person®, /* TODO assign a wvalue #/);
long t2 = System.currentTimeMillis();

Enginefucput output = engine.execute|input);

long t3 = 3ystem.currentTimeMillis():

/¢ Display output parsmeters

System.out.princln("Output parsmeters:');

Map<3tring, Object:> outParameters = output.getlatal) .getout ()

for (Map.Entry<String, Object> p : outParameters.entry3et()) {
System.out.println("Name: " + p.getKey() + ", Walue: " + p.getValue());

H
System.out.printlni™\nloading time :
System.out.println("Execution time : "

+ catch (Exception exception)
exception.print3tackTrace (System.err)
i

Decision engine for zRule Execution Server © 2012 1BM Corporation

This is an example of the code that is generated for you when testing your decision engine
rule project with Java. The yellow highlighted areas show where you need to modify or
add code. The top one is where you add the code to set up and initialize the ruleset input
parameters. In the middle, you modify the code to reference the input parameters. At the
bottom, the generated code prints out the output parameter. However, in most cases, you
normally add code here to check the output parameter values or to print in a more
readable fashion.

ODMB801_DecisionEngine.ppt Page 15 of 21

= Compilation and deployment of rules is different (as previously discussed)

= Decision engine does not support:
— Update with refresh modifier in an action rule
— Finders (replaces rule conditions with application specific code)

= Decision Validation Services (DVS) do not support the decision engine
— Decision engine projects can still use DVS
— If results from DVS and running with decision engine are not the same, it is a bug that
should be reported to IBM

The Java APIs for using the engines from Java are different

= In the Rule Execution Server Console, the archive content cannot be viewed

Decision engine for zRule Execution Server © 2012 1BM Corporation

In addition to the architecture previously described for compilation and deployment of
rules, there are other differences between the classic rule engine and the decision engine.

The decision engine supports neither the update with refresh modifier in an action rule, nor
finders, the use of application specific code in place of rule conditions.

Decision validation services does not support the decision engine, but projects configured
for the decision engine can still be tested with DVS. The results from DVS should be the
same as results from rules deployed with the decision engine. If they are not, it is
considered a bug and should be reported through your IBM support channels.

The Java API shown on previous slides is different than the Java API for testing classic
rule engine projects.

Finally, the archive content cannot be viewed in the Rule Execution Server console.

ODMB801_DecisionEngine.ppt Page 16 of 21

= 14 Developing rule projects in Rule Designer
= Starting Rule Designer
= [Developing rule projects

Where to |Ook |n the 2 overview: Rule projects and rulesets
. # [Rule projects
meI’matIOI'] Centel' = EI.’fSettmg up a rule project

= [Exploring a rule project
[Creating ruleset parameters
El Choosing a build mode for zRule Execution Server for z/0S
= Extracting rules for a ruleset
[Designing Business Object Models
[configuring the BOM for rule authoring
[Orchestrating ruleset execution
= Authoring business rules
* [Reviewing a rule project

= Bl pedision Server v8.0.1
=1 4 Decision Server Rules
(14 Overview: Decision Server Rules
% [Getting started with business rules
I Tutorials
[samples
5c) Developing rule projects in Rule Designer
[Testing and simulating rulesets
mc) Running rule projects in Rule Designer = Running rule projects in Rule Designer
4 Deploying business rules % [Running and debugging
cfecd Managing business rule execufimaRule Execution Server [Ec] Executing business rules
4 Rule Execution Server Console online help L) Optimizing execution
[Developing scorecard projects in Scorecard Modeler = [Automating
(14 Reference

[Decision Server Events = [Deploying business rules
= El pecision Server for Z/0S v8.0.1 E Deployment options
4 overview: Decision Server for /05 E Exporting a ruleset archive
[Tutorials = Deploying rulesets
[samples # 14 Deploying Java XOMs

% [peveloping applications

= 4 Administering zRule Execution Server for z/0S
[Troubleshoating

(14 Reference

= 4 Overview: Decision Server for z/0S
[Business rule execution
I Event rule execution
= Developing business rule applications

B peveloping rule projects workflow
2 COBOL considerations for rule application development
E Handling data type differences between Java and COBOL

B validating ruleset execution

Decision engine for zRule Execution Server © [p12 1BM Corporation

There are new sections in the Information Center describing the decision engine and there
are other sections that are updated with decision engine specific information. This slide
and the next provide you with a map to all the places in the Information Center that
contain decision engine relevant content.

The arrow pointing off the bottom of the slide refers to the content shown on the next slide.

ODMB801_DecisionEngine.ppt Page 17 of 21

5 [Executing business rules
o Executing using the classic rule engine

. [T Executing on the . latform
Where to look in the Execiting uang s gencr

[Executing using a generated COBOL program
H El [Executing using the decision engine for zRule Execution Server for 2/0S
I nfo rm atl O n C e nte r Bl Decision engine for zRule Execution Server for z/0S
[pifferences between the decision engine and the classic rule engine
El [Testing the execution with a Java application
El Creating a Java Project for Rules
EI Checking the class path to the XOM and rule engine
Ei Defining a new class loader for the XOM
El [completing the ruleset execution code

- I Editing the ruleset execution method
=1 38 Running rule projects in Rule Dgsigner | Esiig S RS
£ i
g.‘; Running a:'d debqu”’;g El Getting the number of executed rules
P EXECUF”-_'Q USIness rule [l Getting notification during ruleset execution
" Bl Riexedior EI Decision engine application programming interface (API)
1% Automating

EI Mapping between classic rule engine API and decision engine APT

= 4 optimizing execution
EI Overview: What affects the performance of a Decision Server application
5c) Choosing an execution mode
[Runtime efficiency
[Optimizing the classic rule engine
B Optimizing the decision engine for zRule Execution Server for z/0S
[Adjusting conditions
El [1mproving the performance of the RetePlus execution mode
E RetePlus algorithm
[optimizing the object madel
[Improving the performance of equality or comparison evaluation
EI Improving the performance of the sequential execution mode
El Improving the performance of the Fastpath execution mode

Decision engine for zRule Execution Server

© 2012 1BM Corporation

This slide is a continuation of the previous slide showing more Information Center content
for the decision engine.

ODMB801_DecisionEngine.ppt Page 18 of 21

= Reviewed the rule environments on z/OS
— Rule execution environments
— Rule engines

= Discussed decision engine topics
— Motivation and scope
— Architecture comparison with the classic rule engine
— Deployment
— Invocation from COBOL
— Testing with a Java application
— Differences from the classic rule engine
— Where to look in the Information Center

Decision engine for zRule Execution Server © 2012 1BM Corporation

In this presentation the rule environments for z/OS were reviewed. Then the decision
engine specific topics were addressed, starting with the motivation for the decision engine
and the scope to which it applies. The architecture was then compared to that of the
classic rule engine. Following that, how rules using the decision engine are deployed,
invoked from COBOL and tested with a Java application were presented. Some of the
differences in the decision engine and classic rule engine were highlighted and a map was
provided to help you find decision engine relevant material in the Information Center.

ODMB801_DecisionEngine.ppt Page 19 of 21

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better meet your
needs by providing feedback.

= Did you find this module useful?
= Did it help you solve a problem or answer a question?

= Do you have suggestions for improvements?

Click to send email feedback:

This module is also available in PDF format at:

Decision engine for zRule Execution Server © 2012 1BM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

ODMB801_DecisionEngine.ppt Page 20 of 21

Trademarks, disclaimer, and copyright information

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. Other product and service
names might be trademarks of IBM or other companies. A current list of other IBM trademarks is available on the web at "Copyright and trademark
information" at http://www.ibm.com/legal/copytrade.shtml

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. THE INFORMATION
CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE MADE TO VERIFY
THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM'S CURRENT PRODUCT PLANS AND
STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES
ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION. NOTHING
CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2012. All rights reserved.

21 © 2012 1BM Corporation

ODMB801_DecisionEngine.ppt Page 21 of 21

