

© 2012 IBM Corporation

IBM Operational Decision Manager V8.0.1

Decision engine for zRule Execution Server

This presentation introduces the new decision engine for running rules in a zRule
Execution Server.

ODM801_DecisionEngine.ppt Page 1 of 21

Table of contents

� Review rule environments on z/OS
– Rule execution environments
– Rule engines

� Decision engine topics
– Motivation and scope
– Architecture comparison with the classic rule engine
– Deployment
– Invocation from COBOL
– Testing with a Java application
– Differences from the classic rule engine
– Where to look in the Information Center

Decision engine for zRule Execution Server © 2012 IBM Corporation

Before discussing the decision engine, the environments for processing rules in z/OS are
reviewed. Then the motivation and applicable scope for the decision engine is described.
The architecture is then compared with that of the classic rule engine. How rules using the
decision engine are deployed, invoked from COBOL and tested with a Java application
are presented. Some of the differences in the decision engine and classic rule engine are
highlighted and a map is provided to help you find decision engine relevant material in the
Information Center.

ODM801_DecisionEngine.ppt Page 2 of 21

Review rule execution environments on z/OS

� Rule execution environments
– Rule Execution Server on WebSphere Application Server for z/OS

• Rules invoked with HTTP, EJB, SOAP
• Rules invoked from COBOL using WebSphere optimized local adapter

– zRule Execution Server on z/OS
• Rules invoked only from COBOL

– zRule Execution Server for z/OS on CICS JVM server
• Rules invoked only from COBOL
• Access to CICSPlex System Manager capabilities

– Native COBOL
• Rules generated into COBOL subprograms
• Compiled and linked within your COBOL program

Decision engine for zRule Execution Server © 2012 IBM Corporation

There are several different environments for running rules on z/OS. The first is using the
Rule Execution Server running on WebSphere Application Server. This environment is a
Decision Server, and rules can be invoked in many different ways, such as using HTTP,
SOAP and EJB. Rules in this environment can also be called from COBOL using the
WebSphere optimized local adapter.

The next environment is the zRule Execution Server. It is used only for calling rules from
COBOL programs.

The third environment is the zRule Execution Server for z/OS on CICS JVM server. This
also is only used for calling rules from COBOL. However, because it is running in CICS,
capabilities such as the CICSPlex System Manager are also available.

Finally, a non-server based mechanism is using native COBOL. Rules are used to
generate COBOL subprograms, which are then compiled and linked with the calling
COBOL programs.

ODM801_DecisionEngine.ppt Page 3 of 21

Review rule execution environments on z/OS

� Rule engines
– Classic rule engine

• Rule engine with the same architecture as prior releases
– Decision engine

• New rule engine architecture introduced in this release

Decision engine for zRule Execution Server © 2012 IBM Corporation

In addition to the environments for running rules, there are also two different runtime
engines for processing rules. The first is called the classic rule engine and is the same
basic implementation and architecture used for running rules in previous releases. The
next is called the decision engine and is the topic of this presentation. It is a new
implementation in version 8.0.1.

ODM801_DecisionEngine.ppt Page 4 of 21

Decision engine – Motivation and scope

� Motivation
– Improve overall performance of rule execution
– Reduce load time for rule applications
– Make a compelling story for rule execution versus native COBOL

• Native COBOL performs faster then rules in classic rule engine
• However, using native COBOL rules are much less flexible
• Decision engine performance significantly reduces the performance gap
• Therefore, flexibility can trump performance differences when deciding which to use

� Scope
– Decision engine is only available for zRule Execution Server
– Use of Decision engine or classic rule engine is a deployment option for a rule project

Decision engine for zRule Execution Server © 2012 IBM Corporation

Before delving into the decision engine, this slide addresses the motivation for introducing
the decision engine and defines the scope of where it applies.

The major reason for introducing the new decision engine is to provide an overall
improvement in the performance of rule execution and to decrease the time needed to
load a rule application.

While performance gains are good in and of themselves, there is an additional factor at
play here, to make rule execution performance competitive with rules in native COBOL.
Execution in native COBOL is much faster than when using the classic rule engine.
However, there is much less flexibility and more overhead in maintaining rules in native
COBOL when compared to deploying rules to a server environment. The decision engine
significantly reduces the performance gap between server based rule execution and
native COBOL. Therefore, it is no longer a significant performance tradeoff to choose the
more flexible option.

The decision engine is only available in one environment, the zRule Execution Server.
Also, projects deployed to the zRule Execution Server can use either the classic rule
engine or the decision engine. The choice is an authoring time decision.

ODM801_DecisionEngine.ppt Page 5 of 21

Decision engine architecture comparison to classic rule engine

� Different deployment archive
– Engine selected at authoring

time

� Optimization and compilation
– Decision engine - done at

authoring time
– Classic rule engine – done at

load time

� Execution
– Decision engine – fully compiled

Java
– Classic rule engine – compiled

Java and interpreted code

Decision engine for zRule Execution Server © 2012 IBM Corporation

The architecture of the classic rule engine is shown on the left as compared to that on the
decision engine on the right. Each has a different deployment archive and therefore the
selection of which engine is used is made at authoring time.

There are basically two fundamental differences between the two architectures. With the
classic rule engine, the optimization and compilation of the rules is done after deployment
when the rule project is loaded into the server. For the decision engine, the optimization
and compilation of the rules is done at authoring time before deployment.

The other fundamental difference between the architectures affects the actual execution of
the rules. With the classic rule engine, the execution of the rules is a combination of
running compiled code and interpreted code. With the decision engine, the execution is
fully compile code.

It is these differences in architecture that help contribute to the reduced load time and
increased performance of the decision engine.

ODM801_DecisionEngine.ppt Page 6 of 21

Deployment – Setting the build mode

� Setting the build mode
– Open the Properties view of your rule project
– Ruleset Build Mode � Decision engine for zRule Execution Server for z/OS

Decision engine for zRule Execution Server © 2012 IBM Corporation

The build mode determines which engine is used for your project’s rule execution. This is
done by opening the Properties view of the rule project, selecting Ruleset Build Mode and
then selecting which engine to use.

ODM801_DecisionEngine.ppt Page 7 of 21

Deployment to zRule Execution Server

� Deploying from Rule Designer
– Select Deploy… from the RuleApp menu
– Select version handling option
– Provide URL and credentials for zRule Execution Server
– Results shown in Console view

Decision engine for zRule Execution Server © 2012 IBM Corporation

This slide provides an example of how to deploy from Rule Designer to zRule Execution
Server. You must have a rule application associated with you rule project. From the rule
application’s pop-up menu, select RuleApp, then select Deploy, and the Deploy RuleApp
Archive dialog opens. On the first panel select how you’d like version handling done in the
deployment and on the next panel provide the URL and credentials for your zRule
Execution Server. Status of the deployment is returned in the Console view of Rule
Designer.

ODM801_DecisionEngine.ppt Page 8 of 21

Deployment – Build mode conflict warning

� Setting of build mode
– The build mode is set by you on a rule project
– When a RuleApp project is created, a build mode property is set based on the rule

project build mode setting
– Changing the build mode in a rule project for which there is an existing RuleApp project

does not update the RuleApp project’s build mode property

� Deployment build mode conflict warning
– When you deploy a RuleApp, a warning is issued if the rule project and RuleApp project

do not specify the same build mode

– It is best to respond “No” to this dialog and resolve the conflicting settings

Decision engine for zRule Execution Server © 2012 IBM Corporation

This slide provides some background about a build mode conflict warning you might
encounter when deploying.

The build mode is set by you on a rule project as was described on a previous slide. When
you create a rule application project, the value of the build mode property in the rule
project is used to set a property in the rule application project. Subsequently, changing the
build mode on the rule project does not update the property in the rule application project.

When this happens, deploying the rule application leads to an error dialog with a warning
that the build mode properties of the rule project and rule application project are not
equivalent. You are given the option to continue, but it best to respond no to this dialog so
that you can first resolve the conflicting settings.

ODM801_DecisionEngine.ppt Page 9 of 21

Deployment – Build mode conflict warning

� Resolving the conflicting settings
– After changing the Rule project, delete and re-create the RuleApp project
– Make sure in the delete dialog you select to delete from the file system contents

– Use the Rule Project Map to re-create your RuleApp

Decision engine for zRule Execution Server © 2012 IBM Corporation

There is no mechanism provided to change the build mode property for the rule
application, so the best approach is to delete and then re-create it. When deleting the rule
application, make sure you select to delete the contents on the file system. Then you can
use the Rule Project Map to re-create your RuleApp project.

ODM801_DecisionEngine.ppt Page 10 of 21

Invocation from COBOL

� The COBOL API is the same as that used to invoke projects deployed with the classic rule
engine

� Copybooks required:
– HBRWS – Defines HBRA-CONN-AREA, the data structure passed when making calls
– HBRC – Defines the reason codes passed back from the calls

Copybook defining program data

Level 01 to contain the reason codes

HBRC – All the reason code constants are level 10

HBRWS – HBRA-CONN-AREA starts at level
01

� API calls:
– HBRCONN – Establishes a connection between the COBOL program and rule server
– HBRRULE

• Invokes a ruleset
• The ruleset to call and parameters are passed in HBRA-CONN-AREA

– HBRDISC – Terminates the connection between the COBOL program and rule server

Decision engine for zRule Execution Server	 © 2012 IBM Corporation

Calling a rule project that is deployed for the decision engine uses the same COBOL APIs
as rule projects deployed for the classic rule engine.

There are two required copybooks that must be included in your working storage section.
The first is HBRWS which defines the HBRA-CONN-AREA data structure that is passed
on the API calls. The second is HBRC which provides a set of reason code constants
used to communicate status of a call.

HBRC constants are all defined at level 10, so the copybook should be pulled in within a
higher level structure. HBRWS starts at level 1, so it is self contained.

The API has three calls. HBRCONN establishes the connection between the COBOL
program and the rule execution server. HBRRULE invokes a ruleset with
HBR_CONN_AREA used to pass the ruleset name and ruleset parameters. Finally,
HBRDISC is used to terminate the connection between the COBOL program and the rule
execution server.

ODM801_DecisionEngine.ppt	 Page 11 of 21

Invocation from COBOL – Connecting and Disconnecting

� Connecting
– Initialization of HBRA-CONN-AREA is not needed before calling HBRCONN
– HBRENVPR DD in JCL defines the target rule runtime to connect to
– Example code shows relevant fields to check for success or reason for failure

� Disconnecting

Decision engine for zRule Execution Server © 2012 IBM Corporation

To connect using HBRCONN, the HBRA-CONN-AREA does not need to be initialized.
The rule execution server to connect to is specified by the HBRENVPR DD statement in
your JCL. The example code on the slide shows how to check if the connection was
successful, and which fields contain relevant information if there was a failure.

To disconnect from the rule execution server, call HBRDISC as is shown in the code
sample.

ODM801_DecisionEngine.ppt Page 12 of 21

Invocation from COBOL – Calling the rule

� The application parameter data needs to be initialized

� Initialize HBRA-CONN-AREA
– Ensure the return codes are set to zero
– Specify the name of the ruleset that is to be called
– Provide the parameters

• Name
• Length
• Address of the data

� Invoke the ruleset using HBRRULE

Decision engine for zRule Execution Server © 2012 IBM Corporation

To call the rule using HBRRULE there are a few things you need to do. First, the ruleset
parameter need to be initialized and next the HBRA-CONN-AREA needs to be set up.
This involves ensuring that the return codes are set to zero, that the name of the ruleset to
call is provided, and that the name, length and address of each parameter is set. Once
this is done, you then call HBRRULE. Following the invocation, you need to check the
return codes. The code to do this is the same as the code for HBRCONN shown on the
previous slide.

ODM801_DecisionEngine.ppt Page 13 of 21

Testing with a Java application

� A rule project using decision engine can be tested in Rule Designer using a Java application

� Basic steps are:
– Create a Java Project for Rules

• Generates the decision engine specific code needed
– Write your application specific code

• Initialize input parameters
• Examination/printing of output parameters

– Run as a Java application with rules

� Additional options
– Provide your own class loader to load the XOM
– Provide exception handling
– Query how many rules were fired
– Attach an observer to get notifications

Decision engine for zRule Execution Server © 2012 IBM Corporation

A rule project that uses the decision engine can be tested in Rule Designer using a Java
application. First you create a Java Project for Rules which generates the decision engine
specific code needed to invoke the rules. Within this generated code, you then add your
application specific code that initializes the input parameters and examines or prints the
output parameters. The Java code is then run in Rule Designer by selecting run as a Java
application with rules.

In addition, there are other things you can do when testing this way. There is the ability to
provide your own class loader for the execution object model. Also, you can include
exception handling, query how many rules were fired, and attach an observer to get
notifications.

ODM801_DecisionEngine.ppt Page 14 of 21

© 2012 IBM Corporation Decision engine for zRule Execution Server

Testing with a Java Application – The generated code

Add code to initialize your
Input parameter

Set your initialized input parameter

Add code to examine/print the
output parameter

This is an example of the code that is generated for you when testing your decision engine
rule project with Java. The yellow highlighted areas show where you need to modify or
add code. The top one is where you add the code to set up and initialize the ruleset input
parameters. In the middle, you modify the code to reference the input parameters. At the
bottom, the generated code prints out the output parameter. However, in most cases, you
normally add code here to check the output parameter values or to print in a more
readable fashion.

ODM801_DecisionEngine.ppt Page 15 of 21

Differences from the classic rule engine

� Compilation and deployment of rules is different (as previously discussed)

� Decision engine does not support:
– Update with refresh modifier in an action rule
– Finders (replaces rule conditions with application specific code)

� Decision Validation Services (DVS) do not support the decision engine
– Decision engine projects can still use DVS
– If results from DVS and running with decision engine are not the same, it is a bug that

should be reported to IBM

� The Java APIs for using the engines from Java are different

� In the Rule Execution Server Console, the archive content cannot be viewed

Decision engine for zRule Execution Server © 2012 IBM Corporation

In addition to the architecture previously described for compilation and deployment of
rules, there are other differences between the classic rule engine and the decision engine.

The decision engine supports neither the update with refresh modifier in an action rule, nor
finders, the use of application specific code in place of rule conditions.

Decision validation services does not support the decision engine, but projects configured
for the decision engine can still be tested with DVS. The results from DVS should be the
same as results from rules deployed with the decision engine. If they are not, it is
considered a bug and should be reported through your IBM support channels.

The Java API shown on previous slides is different than the Java API for testing classic
rule engine projects.

Finally, the archive content cannot be viewed in the Rule Execution Server console.

ODM801_DecisionEngine.ppt Page 16 of 21

2

© 012 IBM Corporation Decision engine for zRule Execution Server

Where to look in the
Information Center

There are new sections in the Information Center describing the decision engine and there
are other sections that are updated with decision engine specific information. This slide
and the next provide you with a map to all the places in the Information Center that
contain decision engine relevant content.

The arrow pointing off the bottom of the slide refers to the content shown on the next slide.

ODM801_DecisionEngine.ppt Page 17 of 21

© 2012 IBM Corporation Decision engine for zRule Execution Server

Where to look in the
Information Center

This slide is a continuation of the previous slide showing more Information Center content
for the decision engine.

ODM801_DecisionEngine.ppt Page 18 of 21

Summary

� Reviewed the rule environments on z/OS
– Rule execution environments
– Rule engines

� Discussed decision engine topics
– Motivation and scope
– Architecture comparison with the classic rule engine
– Deployment
– Invocation from COBOL
– Testing with a Java application
– Differences from the classic rule engine
– Where to look in the Information Center

Decision engine for zRule Execution Server © 2012 IBM Corporation

In this presentation the rule environments for z/OS were reviewed. Then the decision
engine specific topics were addressed, starting with the motivation for the decision engine
and the scope to which it applies. The architecture was then compared to that of the
classic rule engine. Following that, how rules using the decision engine are deployed,
invoked from COBOL and tested with a Java application were presented. Some of the
differences in the decision engine and classic rule engine were highlighted and a map was
provided to help you find decision engine relevant material in the Information Center.

ODM801_DecisionEngine.ppt Page 19 of 21

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better meet your
needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send email feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_ODM801_DecisionEngine.ppt

This module is also available in PDF format at: ../ODM801_DecisionEngine.pdf

Decision engine for zRule Execution Server © 2012 IBM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

ODM801_DecisionEngine.ppt Page 20 of 21

 Trademarks, disclaimer, and copyright information

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. Other product and service
names might be trademarks of IBM or other companies. A current list of other IBM trademarks is available on the web at "Copyright and trademark
information" at http://www.ibm.com/legal/copytrade.shtml

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. THE INFORMATION
CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE MADE TO VERIFY
THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT PRODUCT PLANS AND
STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES
ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION. NOTHING
CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2012. All rights reserved.

21 © 2012 IBM Corporation

ODM801_DecisionEngine.ppt Page 21 of 21

