
LeverageFeatures.ppt

The topic of this presentation is how to use web services features built into IBM InfoSphere®

Master Data Management Collaboration Server version 10 to integrate it with other products and

form a complete solution. IBM InfoSphere Master Data Management Collaboration Server is

referred to as MDMCS through out this presentation.

Page 1 of 22

LeverageFeatures.ppt

This presentation discusses web services features bundled with the product to make it more

powerful and robust. There is some terminology in this presentation you need to be aware of.

TOP is a variable which points to the installation directory of the product.

WSDL stands for Web Services Description Language. It is used to describe (in XML) exactly

what a web service does.

WSDD stands for Web Service Deployment Descriptor. It is an Axis specific web service

deployment configuration file and can be used to specify resources that should be exposed as

web services.

SOAP is an acronym for Simple Object Access Protocol. It is a transport protocol that sends

XML messages using HTTP (which runs on top of TCP, typically on port 80).

Axis is an XML based, open source framework for developing web services. It is a global

standard and currently MDMCS supports Axis 1.4.

Finally, RSA stands for Rational® Software architect and is the IBM implementation of Eclipse

platform to develop applications and web services.

This presentation is not meant to serve as a comprehensive programming or implementation

guide to help you implement web services. Rather, it is meant to familiarize you with the features

of the product to make using web services more convenient and efficient.

Page 2 of 22

LeverageFeatures.ppt

Detailed discussion of web services is beyond the scope of this presentation. See the links

displayed on this slide for details.

Page 3 of 22

LeverageFeatures.ppt

The $TOP/samples/webservices folder contains a list of web services which are bundled with

the product. You can use them as out of box services or you may modify them as per your

business need. In addition, the product also includes an Eclipse Dynamic Web Project that may

be used as a template for developing new web services and modifying the ones that are bundled

with the product.

This slide contains some of the out of box web services that the MDMCS administrator can use.

The search service returns a string of XML representation for the search result set by the search

query in WQL language. There are no limitations on this search and you may define any search

criteria in the WQL.

The product web services can be used to create, update, delete, or retrieve information from the

referenced item. The Item object included as an argument must include container name, primary

key value and display name.

The scheduler web services implement a complete range of scheduler function and have a

broad range of utilization. They may be used to create a report job, create a schedule to run a

job, and to retrieve the status of a schedule for a job. They may also be used to stop a

scheduled run, fetch details of a particular schedule for a job or all the schedules for the job, or

all the jobs currently in the system.

You can also modify any of these web services or use them as a template to develop new ones

for specialized functions. This is discussed in greater detail in the subsequent slides.

Page 4 of 22

LeverageFeatures.ppt

Sample services need to be deployed before you can use them. This presentation reviews the

steps required for deploying in WebSphere Application Server. Follow equivalent steps for other

application servers like Weblogic. Note that web services needs to be re-deployed in Weblogic

every time you restart the application server. With WebSphere Application Server, web services

need to be deployed once and can be used through multiple restarts.

In order to deploy these sample web services, ensure that the administration server, that is

server1, is running. You can check the status using serverStatus.sh and if it is not running, start

it using startServer.sh. After starting it, you can start the install_ws.sh to deploy it. Note that

currently this script does support horizontal and vertical MDMCS clusters but it will not work for

Weblogic or a WebSphere Application Server node cluster.

If you are using a set-up which is not supported by the script, you need to wrap the web services

in a .ear file and deploy them manually. You have two options for doing so; wsadmin command

prompt and WebSphere Application Server administration console. For WebSphere Application

Server command prompt, customize and use the command displayed on this slide. For the

administration console, deploy the .ear file as a “New Enterprise Application. Before deploying

manually, you need to ensure the JVM arguments like classpath and custom properties are

properly set. See the IBM Education Assistant module “Developing Web Services” for details on

how to configure them. This configuration is not needed if you use install_ws because the script

configures these variables itself.

Page 5 of 22

LeverageFeatures.ppt

After deploying the web service, you can access it using the web address as displayed on this

slide. Here hostname is the name of the server, port is the port number where the MDMCS

application server process listens and ws is the default context root for all web services bundled

with the product. Web services and MDMCS application server use the same port for

communicating.

Since these have not been implemented as per your custom need, you will get a message as

displayed in this screen capture. Once you customize it, it will perform the computation that you

need.

Page 6 of 22

LeverageFeatures.ppt

You can confirm and review the status of deployed web services through the “Service Provider”

window of the WebSphere Application Server administrative console. The deployed web

services opens as displayed in this screen capture. Remember, there is no implementation in

these deployed services. The implementation aspect is discussed in the next slides.

Page 7 of 22

LeverageFeatures.ppt

To implement and test web services, you will need an integrated Eclipse like development

environment. RSA is IBM’s version of an Eclipse like platform and currently it is the only platform

which has been tested with MDMCS and hence, supported by MDMCS Support.

To download RSA, use the Passport Advantage site. The link is displayed on this slide. MDMCS

comes with an RSA license and you can use that to validate it. The number of licenses are

limited and you may have to buy additional licenses. For further licensing questions, go to the

link displayed on this slide.

After downloading, install it and contact the IBM Rational help desk if you have questions. After

installation, set up a workspace for your web services issues.

Page 8 of 22

LeverageFeatures.ppt

To work with web services, you need to change the perspective to web. Follow the prompts

displayed on the screen to change it.

Page 9 of 22

LeverageFeatures.ppt

After creating a workspace, you need to import the web service sample build. First, download

the web services archive file from the location displayed on this slide to your hard disk. Then,

use the Import an existing project into the workspace option to import this build.

Page 10 of 22

LeverageFeatures.ppt

After you import the build, the directory structure is as displayed on this slide. Initially, you may

see some errors because it has not been built properly. Right click Build.xml, select “Run As”

and then “External Tools Configuration”. The resulting screen is for run time parameters. In the

Arguments section of the main tab, define a home parameter as displayed on this slide which

points to the MDMCS download directory. This should contain the contents of $TOP from the

instance that you want to connect to. Specify the location of the $TOP directory. Click Apply and

click Run to complete the build. If the variable was defined correctly, there should not be any

errors in the build.

Note that if you did not add any external jars to this workspace, then all the necessary tasks

have been completed by the script.

Page 11 of 22

LeverageFeatures.ppt

You will notice that the structure of the left pane is similar to what is displayed on this slide. A key

thing to note is that the source code for the implementation of the web service is stored under

“Java Resources” > “src” directory. You can click any of the web services to view the source

code.

Page 12 of 22

LeverageFeatures.ppt

You will notice that all the WSDL files are under the “WebContent” then “WEB-INF” then “wsdl”

directory as displayed on this slide in the figure to the left. The right part of the figure shows the

simplified view of the WSDL in RSA. It shows the various options with the web service and the

expected input and output parameters. For example, in the web service displayed on this slide,

the WSDL illustrates that you can use CatalogService which has four web services to create,

update, delete and get the details of a catalog.

The schematic diagram is from the design tab; you can switch to the “Source” tab to see the

actual WSDL file. You will observe that some source WSDLs specify the SOAP address location

as "REPLACE_WITH_ACTUAL_URL“. Replace this with the actual URL of your instance in the

WSDL file.

Page 13 of 22

LeverageFeatures.ppt

RSA provides some built in features to test web services. One of them is the web services

explorer which you can get to by right clicking the WSDL file, selecting “Web services” and then

“Test with Web Services Explorer”. The slide illustrates this approach. You can specify the actual

URL which is the one where this web service is deployed in the WSDL file to populate the end

point. The URL in this case is http://hostname:port/ws/CatalogService. The referenced node

contains four web services, each one of which may be invoked.

Page 14 of 22

LeverageFeatures.ppt

Displayed on this slide is a sample apparatus to test a web service. Select the end point which

was defined in the previous slide. The first parameter is the WQL that is started by this search

web service. This WQL will return all items within the specified catalog. The context parameters

like company, password, and user are the credentials which is used by this web service to

connect to MDMCS. Click go to start the web service and test the returned results.

These parameters are defined in the web service implementation code and may be different for

other web services.

Page 15 of 22

LeverageFeatures.ppt

On the same test screen, if you click the source link at the top right of the screen, it will show

you the SOAP envelope which was generated and sent by this web service. This is helpful if you

are familiar with SOAP programming and SOAP envelopes. You can also develop your web

services using XML instead of SOAP.

You can use a similar approach to modify and test other sample web services or any of your

custom web services.

Page 16 of 22

LeverageFeatures.ppt

As mentioned previously, the source code is located under “Java Resources” then “src”. Review

the source code and edit it as needed. As displayed on this slide, the search method takes in a

WQL and context to perform the search and these are the parameters you set while you were

testing the search web service. You can modify the implementation in any way that is best for

your business use case.

You can even add custom methods to any of the sample web services and use them as

invocation points for the custom implementation. After such modifications, you can build the file

again using build.xml to update the WSDL file as per the modification.

If you are not adding any new web services, then you can use the install_ws script to deploy

them after modification. For custom web services, you have to deploy them manually.

Note that all web service methods begin with @WebMethod keyword. Without this keyword, the

builder will not recognize them as a web service.

Page 17 of 22

LeverageFeatures.ppt

Another option is to use bundled web services as a template to create new ones. Create a new
web services under com.ibm.pim.services.impl package and use the structure of existing web
services for your custom build.

Once you add a new web service, the existing structure of build.xml is no longer accurate and
you need to add an entry for the new web service in the build.xml file. Right click build.xml and
select Open. Then add an entry for the new web service in accordance with the existing entries.
An example of Search Service entry is displayed on this slide. After this, you can continue to
leverage build.xml for building and compiling.

Page 18 of 22

LeverageFeatures.ppt

The Information Center has comprehensive documentation on implementing general web

services and these sample web services bundled with the product. Review the links displayed on

this slide for further details.

Page 19 of 22

LeverageFeatures.ppt

There is frequently a need to invoke a secure web service from MDMCS which is hosted outside

of the product. To do so, first import the SSL license into your application server. Without it, the

appserver JVM is unable to connect to the secure server hosting the web service. In WebSphere

Application Server, to import a certificate with a .cer extension, you can use the command

displayed on this slide to import the certificate.

Before invoking secure web services, you have to add webservices.client.jar to the classpath.

Doing this is a two step process. First is to either add the jar to the $TOP/jars directory or to add

the location of the jar to the jars-custom.txt file. After that, run configureEnv.sh to update the

classpath. You may also do this manually in your application server.

Finally, you need to invoke the web service using specific code. A sample has been provided on

the next slide.

Page 20 of 22

LeverageFeatures.ppt

This slide displays a sample code to invoke the custom hosted secure web service.

Page 21 of 22

LeverageFeatures.ppt Page 22 of 22

