
Java6_EVTK_WAS_Scenario.ppt Page 1 of 14

®

IBM Software Group

© 2007 IBM Corporation

Updated December 7, 2007

IBM® SDK, Java™ Technology Edition, V6

Extensible Verbose Toolkit case study

This presentation will walk you through a case study that shows how to use data provided
by the Extensible Verbose Toolkit to help diagnose a heap sizing problem.

Java6_EVTK_WAS_Scenario.ppt Page 2 of 14

IBM Software Group

2

Extensible Verbose Toolkit case study © 2007 IBM Corporation

Agenda

� Typical usage scenarios

�WebSphere® Application Server heap sizing case
study

The first portion of the presentation will briefly describe some situations where you might
want to use the Extensible Verbose Toolkit. The second part of the presentation will use
the Extensible Verbose Toolkit to explore several different garbage collection
characteristics captures in the verbose garbage collection logs from a test run of the
WebSphere® Application Server that is acting a little sluggish. You will see that the
garbage collection data can provide insight into why the application is running poorly, and
how to fix it.

Java6_EVTK_WAS_Scenario.ppt Page 3 of 14

IBM Software Group

3

Extensible Verbose Toolkit case study © 2007 IBM Corporation

Usage scenariosUsage scenarios

Section

Garbage collection data analysis can be useful in helping you understand your Java
application behavior in many settings. This first section of the presentation describes a
few scenarios in which you might want to do some GC data analysis, using the Extensible
Verbose Toolkit.

Java6_EVTK_WAS_Scenario.ppt Page 4 of 14

IBM Software Group

4

Extensible Verbose Toolkit case study © 2007 IBM Corporation

Usage scenarios

� Investigate performance problems
�Long periods of pausing or unresponsiveness

� Evaluate your heap size
�Check heap occupancy and adjust heap size if needed

� Garbage collection policy tuning
�Examine GC characteristics, compare different policies

� Look for memory growth
�Heap consumption slowly increasing over time

�Evaluate the general health of an application

When experiencing poor Java application performance, people sometimes have a
tendency to jump to the conclusion that the garbage collector is to blame, but that is often
not the case. One way to check whether garbage collection might be bogging your
application down is by examining the logs. Is your application having to spend a large
percentage of its time collecting garbage? Are you noticing period of unresponsiveness in
your application that correspond to long garbage collection pause times in your logs? If
so, you can probably tune your garbage collection policies to get better behavior. If you
have concerns about your overall heap size, check out the Report tab portion of the
Extensible Verbose Toolkit. It contains information on your heap utilization and offers
recommendations for adjusting your heap size. To see how using different garbage
collection policies affect your application, gather logs for test runs using the different
policies, and then load those logs into an Extensible Verbose Toolkit workspace. You can
then view and compare their characteristics on a single plot. To check the overall health
of your application, use the Extensible Verbose Toolkit to examine your application’s heap
consumption over a long period of time. If your heap usage is slowly creeping up over
time, you might have a memory leak in your application. If you suspect a memory leak,
IBM® provides another tool called the Memory Dump Diagnostic for Java, also available as
a plug-in for IBM Support Assistant, that can help you isolate the source of the leak.

Java6_EVTK_WAS_Scenario.ppt Page 5 of 14

IBM Software Group

5

Extensible Verbose Toolkit case study © 2007 IBM Corporation

Heap utilization case studyHeap utilization case study

Section

The next section of the presentation will show you how to use the Extensible Verbose
Toolkit to understand why an application is acting sluggish. In this example, you will see
that there is not enough heap space allocated to the application.

Java6_EVTK_WAS_Scenario.ppt Page 6 of 14

IBM Software Group

6

Extensible Verbose Toolkit case study © 2007 IBM Corporation

Scenario description

� Running WebSphere® Application Server with typical usage
�Using the administrative console

�Deploying applications

�Accessing applications

� Notice that performance is sluggish
�Applications taking a long time to load

�Errors showing up in the administrative console

This problem scenario is taken from an artificially constrained test run of the WebSphere
Application Server. The maximum heap size was manually restricted to 60 megabytes in
order to force heap utilization issues. This is in no way a recommended configuration; the
default minimum heap configuration in the application server is 256 megabytes. Still, it is
useful to restrict the heap for learning purposes.

In this case, the application server was running with typical usage – working in the
administrative console, deploying applications, and accessing Web applications. The
performance of the application server was sluggish, applications were taking a long time to
load, and error screens started showing up in the administrative console. The next several
slides show Extensible Verbose Toolkit graphs using a verbose garbage collection log
from this test run.

Java6_EVTK_WAS_Scenario.ppt Page 7 of 14

IBM Software Group

7

Extensible Verbose Toolkit case study © 2007 IBM Corporation

Garbage collection trigger graphs

This graph shows intervals
between garbage collection
cycles. Notice that it shrinks to
near 0ms for extended periods
(horizontal portions of the graph)

Each dot in this graph represents a
garbage collection cycle. All of

these cycles ran for reason ‘af’ –
allocation failure. Notice that the

dot concentration lines up with the
trigger graph.

The graph in the upper left of the display shows the intervals between garbage collection
cycles. As the virtual machine is starting, there are several garbage collection cycles
close together, and then a fairly long pause before additional cycles kick in around 80
seconds into the test run. From that point on, there are several portions of the graph that
essentially look like horizontal lines, which means that the pause time between GC cycles
has shrunk to near zero. During these periods, the virtual machine is constantly trying to
collect garbage and is not free to perform the normal work of the application, and it is likely
that a user would experience sluggish performance and slow application response times.
Garbage collection can be triggered by a variety of events, including a forced system call
or an allocation failure. The graph in the lower right of the display shows that all of the
garbage collection cycles in this test run were the result of allocation failures, shown by the
reason code ‘af’ in the graph. Each dot in the trigger graph represents one garbage
collection cycle. Notice that there are portions of the graph where the dots are highly
concentrated, which indicates that many garbage collection cycles are occurring in a short
period of time. The sections of high concentration in the ‘GC reasons’ graph correspond
to the sections of the top graph with near zero intervals between garbage collection cycles.

Java6_EVTK_WAS_Scenario.ppt Page 8 of 14

IBM Software Group

8

Extensible Verbose Toolkit case study © 2007 IBM Corporation

Heap usage and occupancy recommendation

This graph shows heap
usage after garbage

collection; it jumps up to
around 60M and stays there

The summary report shows
that mean heap occupancy is
98% and that the application
is spending over a third of its
time doing garbage collection

The graph in the lower portion of the display shows the amount of used heap after each
garbage collection cycle. Recall that, in this testing scenario, the heap has been artificially
constrained to 60 megabytes, and notice that the used heap jumps up to 60 after running
for about two minutes, and then stays there for the duration of the test. The summary
report in the Extensible Verbose Toolkit provides garbage collection summary statistics
and recommendations on heap sizing. In this case, the mean heap occupancy for the test
run is 98%, which is very high. The application is having to spend over one third of its
processing time trying to do garbage collection due to allocation failures. The
recommendation in the summary report is to increase the heap size.

Java6_EVTK_WAS_Scenario.ppt Page 9 of 14

IBM Software Group

9

Extensible Verbose Toolkit case study © 2007 IBM Corporation

Results after increasing the heap size

� Increased the maximum heap size
from 60M to 256M
�256M is the default maximum heap

size for WebSphere Application Server

� Mean heap occupancy shrank to
64%

� Spent less than 3% of processing
time in garbage collection

� Reduced average pause time by
more than half
�From 217 ms to 98 ms

� Server performance no longer
appeared sluggish

After increasing the maximum heap size from 60 megabytes back to the default value of
256 megabytes, the overall health of the application’s garbage collection profile improved
substantially. The mean heap occupancy shrank from 98% to 64%; the time spent doing
garbage collection was cut from almost 35% to 3%; and the average pause time for a
garbage collection cycle was reduced by more than half. The Extensible Verbose Toolkit
line plots from the “healthy” test run look much better. The top graph shows the intervals
between garbage collection cycles, and in this case, the graph has a typical saw-edge
pattern. Unlike in the poor performing test run, here there are no periods where the
intervals shrink to near zero for an extended period. Similarly, the used heap profile is
much healthier than in the constrained test run.

Java6_EVTK_WAS_Scenario.ppt Page 10 of 14

IBM Software Group

10

Extensible Verbose Toolkit case study © 2007 IBM Corporation

Summary and referencesSummary and references

Section

This section contains a summary and links to reference materials.

Java6_EVTK_WAS_Scenario.ppt Page 11 of 14

IBM Software Group

11

Extensible Verbose Toolkit case study © 2007 IBM Corporation

Summary

� The Extensible Verbose Toolkit can be used to analyze
Java application behavior
�Performance concerns, garbage collection policy tuning, heap size

evaluation, overall application health

� Use multiple datasets and characteristics to investigate
issues

The Extensible Verbose Toolkit is useful for analyzing Java application behavior in a
variety of situations, from identifying potential performance bottlenecks to understanding
the impacts of different garbage collection policies to tuning your heap size. The tool
allows you to display over forty verbose garbage collection data characteristics, so when
you are using it, try to take advantage of multiple sets of data to gain better insight into
your application’s behavior.

Java6_EVTK_WAS_Scenario.ppt Page 12 of 14

IBM Software Group

12

Extensible Verbose Toolkit case study © 2007 IBM Corporation

References

� IBM Support Assistant
�http://www-306.ibm.com/software/support/isa/

� Diagnostics Guide
�http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/index.jsp

� developerWorks® articles about garbage collection
�http://www-128.ibm.com/developerworks/java/library/j-ibmjava2/

�http://www-128.ibm.com/developerworks/java/library/j-ibmjava3/

Here are some links to additional resources.

Java6_EVTK_WAS_Scenario.ppt Page 13 of 14

IBM Software Group

13

Extensible Verbose Toolkit case study © 2007 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:
mailto:iea@us.ibm.com?subject=Feedback_about_Java6_EVTK_WAS_Scenario.ppt

This module is also available in PDF format at: ../Java6_EVTK_WAS_Scenario.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

Java6_EVTK_WAS_Scenario.ppt Page 14 of 14

IBM Software Group

Extensible Verbose Toolkit case study © 2007 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

developerWorks IBM WebSphere

Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY
WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and
conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which
they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly
available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

© Copyright International Business Machines Corporation 2007. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

14

