
Java6_DTFJ.ppt Page 1 of 12

®

IBM Software Group

© 2007 IBM Corporation

Updated December 18, 2007

IBM® SDK, Java™ Technology Edition, V6

IBM Diagnostic Tool Framework for Java

This presentation is about the IBM Diagnostic Tool Framework for Java.

Java6_DTFJ.ppt Page 2 of 12

IBM Software Group

2

IBM Diagnostic Tool Framework for Java © 2007 IBM Corporation

Agenda

� Diagnostic Tool Framework for Java (DTFJ)
�Overview

�Functionality

�Structure

�Class diagram

The Diagnostic Tool Framework for Java, often called the DTFJ, is a Java application
programming interface for IBM used to support the building of Java diagnostic tools. This
presentation will provide an overview of the DTFJ, the data that’s available using the API,
and how the APIs are structured.

Java6_DTFJ.ppt Page 3 of 12

IBM Software Group

3

IBM Diagnostic Tool Framework for Java © 2007 IBM Corporation

Diagnostic Tool Framework for JavaDiagnostic Tool Framework for Java

Section

This section provides an overview of the Diagnostic Tool Framework for Java, including
changes introduced in the Java 6 release.

Java6_DTFJ.ppt Page 4 of 12

IBM Software Group

4

IBM Diagnostic Tool Framework for Java © 2007 IBM Corporation

Diagnostic Tool Framework for Java

� Diagnostic Tool Framework for Java (DTFJ) is a Java API
used to build diagnostic tools for Java programs

� Allows people to write tools without needing to understand
the exact structure of dumps

� Can process system dumps and Javadumps
�The system dump viewer packaged with the SDK is built on the DTFJ

The Diagnostic Tool Framework for Java acts as a layer of abstraction between a tool
developer and the underlying structure of diagnostic data in the virtual machine. The
DTFJ APIs allow Java tool developers to access data in a dump – like the Java version,
threads, and heap data – without needing to understand the exact structure of the dump
itself. DTFJ is implemented in pure Java and tools written using DTFJ can be cross-
platform. Therefore, it is possible to analyze a dump taken from one machine on another
(remote and more convenient) machine. To work with a system dump, the dump must first
be processed by the dump extractor, jextract. The jextract tool produces metadata from
the dump, which allows the internal structure of the JVM™ to be analyzed. It is
recommended that you run jextract on the system that produced the dump; if that is not
possible, you can use a system that is running the same operating system and virtual
machine level as the system that produced the dump. In Version 6, DTFJ support has
been added for Javadumps. To work with a Javadump, no additional processing is
required.

Java6_DTFJ.ppt Page 5 of 12

IBM Software Group

5

IBM Diagnostic Tool Framework for Java © 2007 IBM Corporation

DTFJ functionality

� The DTFJ API helps diagnostic tools access this
information:
�Memory locations stored in the dump

�Relationships between memory locations and Java internals

�Java threads running within the JVM

�Native threads held in the dump

�Java classes and objects that were present in the heap

�Details of the machine on which the dump was produced

�Details of the java version that was being used

�The command line that launched the JVM

Some of the data that’s accessible with the Diagnostic Tool Framework for Java is
available in both Javadumps and system dumps; other data is only available in system
dumps. This slide shows which data is available in which dumps. If your DTFJ application
requests information that is not available in the Javadump, the API will return null or throw
a DataUnavailable exception. You might need to adapt DTFJ applications written to
process system dumps to make them work with Javadumps

Java6_DTFJ.ppt Page 6 of 12

IBM Software Group

6

IBM Diagnostic Tool Framework for Java © 2007 IBM Corporation

DTFJ structure

� The DTFJ interface is separated into two parts
�Classes with names that start with image (com.ibm.dtfj.image)

�Classes with names that start with Java (com.ibm.dtfj.java)

�Image and Java classes are linked using a JavaRuntime object
(com.ibm.dtfj.runtime)

� Generally, a DTFJ program will start by using an
ImageFactory to create an image based on a dump file
�Then traverse down the class hierarchy to eventually reach the

JavaRuntime

� Examples can be found in the diagnostics guide

To create applications that use DTFJ, you must use the DTFJ interface. Implementations
of this interface have been written that work with system dumps from IBM SDK for Java
versions 1.4.2, 5.0, and 6, and Javadumps from IBM SDK for Java 6. The full details of the
DTFJ Interface are provided with the SDK as Javadoc in the docs/content/apidoc
directory. DTFJ classes are accessible without modification to the class path. The starting
point for working with a dump is to obtain an Image instance by using the ImageFactory
class supplied with the concrete implementation of the API. Initial setup – opening the
dump file and preparing to access useful information stored in the dump – is done using
classes in the com.ibm.dtfj.image package. After you have obtained an Image instance,
you can begin analyzing the dump. Examples of how to write DTFJ applications are
available in the Diagnostics Guide.

Java6_DTFJ.ppt Page 7 of 12

IBM Software Group

7

IBM Diagnostic Tool Framework for Java © 2007 IBM Corporation

DTFJ class diagram

This slide contains a partial class diagram of the Diagnostic Tool Framework for Java. A
DTFJ application would start in the upper left of the diagram with the ImageFactory class.
You will need to create your ImageFactory based on different classes depending on
whether your application is going to process system dumps or Java dumps. For
processing system dumps, the DTFJ expects that you will provide the zip archive from the
dump extractor as input to the application; Javadump files do not require any pre-
processing to be used as input to the tool framework. Once you have created the
appropriate ImageFactory, you need to traverse down the class hierarchy and pull out the
ImageProcess. From there, you can begin programmatically accessing the components of
your Java runtime environment. The majority of DTFJ applications will follow this
structure.

Java6_DTFJ.ppt Page 8 of 12

IBM Software Group

8

IBM Diagnostic Tool Framework for Java © 2007 IBM Corporation

Summary and referencesSummary and references

Section

This section contains a summary and references.

Java6_DTFJ.ppt Page 9 of 12

IBM Software Group

9

IBM Diagnostic Tool Framework for Java © 2007 IBM Corporation

Summary

� Diagnostic Tool Framework for Java is a Java API used to
build diagnostic tools for Java programs

� Supports system dumps and Javadumps

� Sample applications are available in the diagnostics guide

The Diagnostic Tool Framework for Java is a set of APIs that allow you to write Java
applications to process system dump and Javadump files without needing to understand
the exact layout of those files. The data that’s available in your DTFJ application will vary
depending on the type of dump that you are processing. Many DTFJ applications will
have the same structure, and fully functioning examples are available in the Diagnostics
Guide.

Java6_DTFJ.ppt Page 10 of 12

IBM Software Group

10

IBM Diagnostic Tool Framework for Java © 2007 IBM Corporation

References

� Diagnostics Guide
�http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/index.jsp

Java6_DTFJ.ppt Page 11 of 12

IBM Software Group

11

IBM Diagnostic Tool Framework for Java © 2007 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:
mailto:iea@us.ibm.com?subject=Feedback_about_Java6_DTFJ.ppt

This module is also available in PDF format at: ../Java6_DTFJ.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

Java6_DTFJ.ppt Page 12 of 12

IBM Software Group

IBM Diagnostic Tool Framework for Java © 2007 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM

Java, JVM, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY
WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and
conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which
they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly
available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

© Copyright International Business Machines Corporation 2007. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

12

