
IPASv1_CommandLineInterface.ppt

There are three user interfaces in the IBM PureApplication™ System: the administrative

console, the rest APIs, and the command-line interface.

This presentation covers the command-line interface option.

Page 1 of 37

IPASv1_CommandLineInterface.ppt

This presentation will provide a high level overview of the command-line interface in the

IBM PureApplication System. It will discuss how to download and install the tool, provide

some basics about the command-line interface syntax and help features, and will provide

various command examples to help understand the tool.

Page 2 of 37

IPASv1_CommandLineInterface.ppt

This section provides a brief overview of the command-line interface tool.

Page 3 of 37

IPASv1_CommandLineInterface.ppt

The command-line interface enables you to manage your environment remotely, in a non-
graphical interface, either in a command-line format or a script format. It provides a Jython
scripting environment, by running scripts or Python C commands in three different modes,
namely interactive mode, command mode, and batch mode. Under the covers, the
command-line interface is built upon the REST APIs, so whatever can be done with a
REST API should be able to be done with the command-line interface. Sometimes, looking
at the REST API documentation correlating to a command-line interface command will
help you better understand what the command-line interface is doing.

With the command-line interface, you can perform most functions that are available from
the console, however, not all functionality found in the administrative console has a one-to-
one mapping to the command-line interface. Some functions can only be done using the
administrative console and some can only be done with the command-line interface. For
example, the virtual application builder functionality is only available from the
administrative console. Conversely, at this time, some pattern exports and imports can
only be done with the command-line interface.

Overall the PureApplication System command-line interface has few structural changes
from the IBM Workload Deployer command-line interface. The biggest change from
Workload Deployer is the separation of commands into two categories that correlate with
the separation of commands in the administrative console, namely the system console
commands and the workload console commands. In the command-line interface. the
system console commands are prefixed with the new “admin” verb, while the workload
console commands are prefixed with the “deployer” verb as they were in Workload
Deployer. And there are new commands for all the new or replaced objects in the
PureApplication System.

Page 4 of 37

IPASv1_CommandLineInterface.ppt

The next section will discuss the command-line interface download and installation.

Page 5 of 37

IPASv1_CommandLineInterface.ppt

If you have never downloaded the command-line interface tool from a PureApplication

System, then you will need to do so. The Workload Deployer version of the tool will not

work for a PureApplication System.

To download the command-line interface, go to the welcome page in either the workload

console or the system console, select the download link, and download and extract the

archive file to your local workstation. You can run the command-line interface on any

platform that contains a supported JRE.

If you are running on a Windows Server 2003 or a Windows Server 2008, see the

information center for information about customizing the command-line interface registry.

Additionally, if you are using a multi-byte character set, then also see the information

center for a command-line interface registry customization required. Traditional and

simplified Chinese, Korean, and Japanese languages are some examples that require this

registry customization.

Page 6 of 37

IPASv1_CommandLineInterface.ppt

The command-line interface download package is a .zip file. This single archive file

contains everything required regardless of platform you are running from, except for the

JRE. The command-line interface requires Java runtime environment version 6 or above,

which you must provide yourself. The command-line interface will run on any platform that

supports the JRE.

Extract this package with your favorite archive tool into a directory of your choosing. The

sub-directory created is called “pure.cli” (pure dot CLI). Under this directory is the “bin”

directory, with a sub-directory with the name of the PureApplication System firmware level

you downloaded the command-line interface from. Similarly under this directory is the “lib”

directory with the firmware specific sub-directory names. Note the “admin” subdirectory

here contain the system commands, and the “deployer” sub-directory contains the

workload commands.

As you access other racks with different firmware levels, upon connection to the system

the command-line interface will automatically download the correct version of the

command-line interface required. When this occurs, you will get an informational message

indicating the version retrieved. These versioned directories do accumulate over time as

they never get automatically deleted.

The bin directory is the directory you need to start the command-line interface interpreter

from. Avoid starting the interpreter from any other directory.

There is a “logs” directory which contains a log file to help with diagnostics of failed

commands. There also is a “samples” directory that contains many sample scripts for

some common functions using the command-line interface.

Page 7 of 37

IPASv1_CommandLineInterface.ppt

This section covers the various modes you can interact with the command-line interface

and the general syntax of the commands and data.

Page 8 of 37

IPASv1_CommandLineInterface.ppt

As stated earlier, there are three different modes in which you can interact with the

command-line interface, interactive mode, single command mode and batch mode. All

three modes minimally require the host, user ID and password.

Interactive mode requires you to start the interpreter first, which is done when the host,

user and password are provided as parameters to the “pure” command. Once the

interpreter has started, you are free to enter commands interactively. The interactive mode

supports command history and a subset of Emacs editor commands. The Emacs bindings

come from JLine which is part of Jython, which supports only control-key bindings. Typing

“exit” will allow you to exit from interactive mode. .

Single command mode allows you to run a single command provided with the –c

parameter. Batch mode allows you to pass in a Python or Jython script and any

associated script arguments with the –f parameter.

All three operational modes require the host name or IP address of the PureApplication

System, and a valid user ID and password on that system. However, if you provide the

password on the command, it becomes exposed. Therefore, good practice is to not

provide the password on the command itself. When not provided, you will then get a

message indicating an “invalid user name or password was provided”, and you will

subsequently be presented with a password prompt. At the password prompt, you can

then enter the password in a non-display mode and it is not displayed in your command

window.

Page 9 of 37

IPASv1_CommandLineInterface.ppt

The command-line interface uses the Jython syntax to construct the commands, which uses the Jython “dot”
operator. One always starts a command with either the keyword “deployer” or the keyword “admin”, followed
by the dot operator, and then followed by an object type. The next couple of slides will discuss object types in
more detail. For now, they are the typical objects within the PureApplication System, such as patterns, virtual
applications, databases, users, groups, and so on.

For most object types, if you enter the command at this point with nothing following the object type, all
instances of that object type are displayed. An example of this type of object is the environmentprofiles
object.

For some object types, you are required to follow the object type with a command method, otherwise an error
is generated. An example of this type of object is the environmentprofileclouds object. Typically these
command methods are Java methods, and each object type has it’s unique set of methods. As seen on
these slides, the help command can help you determine the valid methods for the object type. The command
method can require additional arguments, or it can require additional data, provided either instream or from a
file.

Most of the data passed to and from commands is in the Python dictionary format, which is similar to JSON.
If you are not familiar with the Python dictionary format, then keep a few things in mind when constructing or
browsing your dictionary objects. (1) The entire set of dictionary objects are enclosed in square brackets (“[“
and “]”). (2) Each object is enclosed in the curly brackets (“{“ and “}”), and multiple objects are separated by a
comma. (3) Each object has one or more name-value pairs called object members. Both the name and value
are contained individually within quotation marks and separated by a colon. Each name-value pair is
separated by a comma.

Dictionary formatted data can be specified directly on the command-line or placed in a file with the file
location being passed to the command. Data can also be exchanged with some commands in some of the
other Python data formats, such as the list, string or number formats.

Page 10 of 37

IPASv1_CommandLineInterface.ppt

At one level, commands are categorized as workload commands or system commands. At

another level, they are also categorized as “resource commands” versus “utility

commands”. Utility commands are discussed later in this presentation. Resource

commands are discussed here first.

The command-line interface uses these two terms for the resource commands. (1) A

“resource collection” correlates to a collection of like objects, such as the collection of all

system patterns or the collection of all users. (2) A “resource” correlates to an individual

object and all it’s properties within a resource collection. For example, all the combined

properties of a specific user is a resource. These two terms are valid for all workload

console commands and many (but not all) system console commands. Some system

console commands are “utility commands” without the concept of resources or resource

collections.

There is a further distinction between a resource and a resource collection. A resource has

both properties and methods. The properties correlate to the dictionary name-value pairs

for the fields within a resource. The methods correlate to “actions” taken against the

resource. A resource collection only has methods, which are actions against the resource

collection as a whole. It is not possible for a resource collection to have individual

properties. Also keep in mind that all command results or command intermediate results

from nested commands can be a resource, a resource collection, or one or more

properties.

Page 11 of 37

IPASv1_CommandLineInterface.ppt

This slide is providing examples of what a display of a resource collection versus a

resource looks like. Note that when displaying a resource collection, it will have the square

brackets around the entire result, while the display of a resource will have the curly

brackets around the result.

A common mistake made, especially when nesting commands, is to not realize whether

the full or intermediate result is a resource or a resource collection, and thus attempt to

use the wrong method against the result.

Page 12 of 37

IPASv1_CommandLineInterface.ppt

The next three slides provide information about the help facilities in the command-line

interface.

When doing the “help deployer” command, as seen in the first bullet in the slide, all

associated workload resource objects available to the command-line interface are listed.

Similarly, when doing the “help admin” command, as seen in the second bullet, all

associated system resource objects and utilities available are listed.

When reviewing these lists, you will see that some of the object types come in singular

and plural pairs, such as part and parts, or computenode and computenodes. These are

the “resource commands” discussed in the last couple of slides. Note that this singular

and plural forms of these resource commands are for the help function only. The actual

resource command will always use the plural form for the object.

All the other objects that only come in one form are for the utility commands. These

objects have no concept of resources and resource collections. All utility commands are

system console commands, each with their own unique format. “Date and time”, “snmp”

and “dns” are examples of utility commands.

Page 13 of 37

IPASv1_CommandLineInterface.ppt

While the information center has doc for all commands, every command also has online

help information. This slide shows help information for the three types of commands,

namely a resource command, a resource collection command, and a utility command.

The first bullet is an example of a help command for a resource command. It lists the

command’s available methods and properties.

The second bullet is an example of a help command for a resource collection command.

Note that it only lists methods, since there are no properties associated with a resource

collection.

The third bullet is an example for a utility command. Note that there are no methods or

properties for this particular utility command, but this can vary by utility command.

When reviewing the lists of the command’s methods, note that there are two types of

methods – those with two underscores around them, and those without the underscores.

Those without underscores typically correspond to actions you will see in the

administrative console, such as clone, delete, deploy, refresh, and so on. The ones with

the underscores around them are typically methods to help you with your scripting, and do

not correspond to anything you can do in the administrative console. For example, the

“contains” method will return a true or false Boolean value depending on whether a value

is “contained” within the object.

Page 14 of 37

IPASv1_CommandLineInterface.ppt

Further details about methods and properties can be obtained with interactive help

commands. Three examples are shown in this slide.

The first help command is for the resource collection called “applications”, and it’s method

called “contains”.

The second is for the resource called “application”, and it’s method called “download”.

The third is for the resource called “application” and it’s property called “access_rights”.

The fourth comment is again noting that a resource collection has no properties.

Page 15 of 37

IPASv1_CommandLineInterface.ppt

This section provides various examples of commands that will further demonstrate many

of the features of the command-line interface.

Page 16 of 37

IPASv1_CommandLineInterface.ppt

As stated on a previous slide, all resource related commands use the plural form of the

object. For example, as seen on all commands on this slide, “groups” must be used

instead of “group”. Depending on the command, the command results can be one of three

things, a resource collection, a resource, or a property.

The first command on the slide displays the entire resource collection of "groups" on the

system, in Python dictionary format. Note the square brackets around the result, indicating

the result is a resource collection. In this example there are two groups, named

“Everyone” and “Auditor group”. The second command on the slide displays one particular

instance of the "groups" resource collection, using an index. Indexes start with “0”,

therefore this command with the index of “1” displays the second instance. Note the curly

brackets around the result, indicating this result is a resource. The third command on the

slide with the index value of “2” fails because there is no third instance. The fourth

command on the slide is displaying the name property of the first instance of the "groups"

resource collection. Note that the prefix of “u” for the property value indicates the result is

uni-code. This prefix can be ignored as any conversion required between code sets is

handled by Jython and is transparent to the user. The fifth command on the slide is

displaying the name property of the second instance of the "groups" resource collection.

Note that indexes can change “on the fly” if resources are added or deleted from a

resource collection. Therefore use them with caution. Additionally IBM does not support

any specific ordering of objects within a resource collection with the use of indexes.

Therefore, do not rely on indexes to provide objects in any specific order.

Page 17 of 37

IPASv1_CommandLineInterface.ppt

There typically are two types of properties associated with a resource. .

Some resource properties are attributes with actual values. For example, on this slide, the

first two properties in the Auditor Group object displayed are called “created” and

“description”, and are attributes with values.

Other properties are nested objects, which have complex values that are not directly

displayed. Most nested objects are a reference to another resource or resource collection

that this resource has relationships with. For example, on this slide, the properties called

“owner”, “roles”, and “users” are nested objects, and thus reflect this resource’s

relationships with those other resources or resource collections.

The next slide will show how to display the “users” nested object seen on this slide.

Page 18 of 37

IPASv1_CommandLineInterface.ppt

This slide demonstrates some commands that make use of nested objects and nested

commands.

The first command is invoked against the second instance of the groups object that was

seen on the previous slide, and is displaying the nested object called “users”. The result is

a resource collection of all the users that are in this particular group. In this case, there is

only one user in the group, called Auditor.

Note that this command result also has a nested object property called “groups”. This

nested object can now be displayed with a nested command, as shown in the second

command above. The result is a resource collection that shows the “auditor id” user is

contained in two different groups, namely the everyone group and the auditor group.

One can do this type of command nesting indefinitely within a command.

Page 19 of 37

IPASv1_CommandLineInterface.ppt

This slide shows a simple assignment of a value to a resource attribute. The first

command is displaying the current “description” attribute of the first instance of the

“groups” resource collection, in order to show it’s original value. The second command is

then modifying that value of the “description” attribute just displayed. The third command

is displaying it again to prove the change was made.

The change is immediately reflected in the administrative console by pulling up this group

or by refreshing the screen if you are already displaying the group.

Page 20 of 37

IPASv1_CommandLineInterface.ppt

The next set of slides discuss the use of Python variables, and will describe some of the

variations of how variables are handled in the command-line interface when they are used

to represent attributes, resources or resource collections. This slide describes the first

case, the assignment of a resource attribute to a variable.

The first set of three commands is assigning a resource attribute to a variable. The three

commands are (1) assigning the “description” attribute to a Python variable called

MyGroupDescription, (2) displaying the variable, and (3) displaying the original server-side

attribute. Both displays show the same values.

The second set of three commands is modifying the original server-side attribute, and

displaying the result from both the server-side and the local variable perspective. Note that

updating the server-side resource attribute did not update the variable.

The third set of three commands is modifying the local variable, and displaying the result

from both the server-side and the local variable perspective. Note that updating the local

variable did not update the server-side resource attribute.

What is demonstrated here is that when the assignment of a resource attribute to a

variable is made, there is no further relationship between the variable and the original

attribute in the resource. This is expected with the typical definition of a Python variable

being a reserved memory location to store a value.

Page 21 of 37

IPASv1_CommandLineInterface.ppt

This slide describes the assignment of a resource to a variable.

The first set of two commands is assigning an entire resource to a Python variable called

MyGroup, and displaying the variable. The display of the variable MyGroup does show

that it represents the entire resource.

The second set of three commands is modifying the original server-side attribute, and

displaying the result from both the server-side and the local variable perspective. Note that

updating the server-side resource attribute did not update the variable.

The third set of three commands is modifying the local variable, and displaying the result

from both the server-side and the local variable perspective. Note that updating the local

variable did also update the server-side resource attribute, which is not what you saw on

the previous slide. The next slide explains why there is this difference.

Page 22 of 37

IPASv1_CommandLineInterface.ppt

This difference of behavior for the updates of variables on the previous slide is explained

as follows. When a resource is assigned to a variable, the command-line interface will do

two things. (1) It uses the variable as a reference to the actual server-side resource, as

opposed to storing the contents of the resource in a separate memory location. (2) When

a resource object is first accessed from the command-line interface, it’s attributes are

cached locally. If updates are made to the resource, the cache is refreshed.

Therefore, when the variable attribute is updated, the variable references the physical

server-side resource, and that attribute is updated and the local cache is updated. This

results in both the variable attribute and the server-side attribute having the same value.

However, when the server-side resource attribute is updated, only the local cache is

updated, and thus displaying the variable attribute will not show the updated value. To see

the updated value, the variable needs to be manually refreshed with the refresh method.

Page 23 of 37

IPASv1_CommandLineInterface.ppt

The next two slides describe the assignment of a resource collection to a variable.

The set of two commands shown on this slide are assigning an entire resource collection

to a Python variable called MyGroups, and then displaying the variable, which shows that

the variable does represent the entire resource collection.

The next slide continues with this example.

Page 24 of 37

IPASv1_CommandLineInterface.ppt

The second set of three commands is modifying the original server-side attribute, and

displaying the result from both the server-side and the local variable perspective. Note that

updating the server-side resource attribute did also update the variable.

The third set of three commands is modifying the local variable, and displaying the result

from both the server-side and the local variable perspective. Note that updating the local

variable did also update the server-side resource attribute. These results for a resource

collection assignment are again different from what was seen for an attribute assignment

and a resource assignment on the previous slides.

This difference is explained as follows. Similar to a resource assignment to a variable, for

a resource collection assignment to a variable, the command-line interface uses the

variable as a reference to the actual server-side resource collection. However, the

difference here from what you saw with a resource assignment is that, for a resource

collection, the command-line interface does not cache the attributes locally. This is

because resource collections do not have attributes, only resources do. Therefore, in this

scenario with a resource collection, it doesn’t matter whether you update the attribute

through the variable or through the server-side resource collection, you are updating the

same physical entity on the server.

Page 25 of 37

IPASv1_CommandLineInterface.ppt

This slide summarizes the three scenarios of variable assignments and updates seen in

the past five slides.

For the assignment of a resource attribute to a local variable, updates to the variable and

to the server-side resource attribute are isolated from each other.

For the assignment of a resource to a local variable, updates to the server-side resource is

isolated from the variable until a refresh is done to the variable. Conversely, updates to the

variable are not isolated from the server-side resource.

For the assignment of a resource collection to a local variable, updates to either the

variable or the server-side resource collection are not isolated from each other.

Page 26 of 37

IPASv1_CommandLineInterface.ppt

This slide demonstrates a deployment of a virtual application pattern to an environment
profile with the use of the deploy command method. In the first command, the virtual
application pattern resource collection is indexed to access the seventeenth one, hence
the index of sixteen. The index value was determined by previously displaying all the
application patterns and manually looking for it. Again, use caution with indexes, as they
can quickly change.

The deploy method requires two parameters, namely the deployed application name and
the environment profile. The deployed application name is free-form text within quotation
marks. In this example, the environment profile name is resolved by nesting a command
within a command to derive an argument result. Here, the first instance of the
environmentprofiles resource collection intermediate result is used as the environment
profile name. The result of the deploy command displays the resulting “virtual application”
resource as opposed to the “application pattern” resource that was deployed.

The second command is displaying the status of the deploy. Here you first need to find out
what index your deploying virtual application correlates to, and use that index in the
command. In this case it was the first one, thus requiring an index of zero. However, if you
or anyone else subsequently initiates a second deploy, the index will most likely change,
so use caution with indexes.

The third and fourth examples on this slide demonstrate some alternatives to using
indexes to access a particular resource within a resource collection. The third command is
using the get command method with the “id” property of the resource. Note that the get
method does not require the data to be in dictionary format; instead it uses a “key”. Keys
are not available for every object type. The fourth command is using the list method to find
resources within a resource collection that have a property (or multiple properties) of a
specific value, in dictionary format. Here, the property is the deployment_name and the
value is “Test Deploy”.

Page 27 of 37

IPASv1_CommandLineInterface.ppt

This slide provides examples of commands for various actions that you can typically do

from the administrative console.

Example 1 is cloning a virtual application pattern with a particular application ID.

Example 2 is displaying the metadata for a plug-in with a particular plug-in name.

Example 3 is accepting the license for a pattern type.

Example 4 is listing all virtual images that have the text “Portal” embedded in the name

property.

Example 5 is terminating a deployed virtual application with a particular deployment ID.

Example 6 is giving a particular user access to a deployed virtual application.

Example 7 is listing all application patterns with an application type of “service”.

Example 8 is displaying all deployed database instances.

Note in example 7 that, to the command-line interface, database patterns, shared services

patterns, and web application patterns are three types of a virtual application pattern.

Similarly, in example 8, all deployed databases, shared services, and web applications are

three types of a virtual application instance. These are further examples of there not

always being a 1-to-1 correlation between what the administrative console provides versus

the command-line interface.

Page 28 of 37

IPASv1_CommandLineInterface.ppt

For objects that have the create method to create a new resource within a resource

collection, one can use either the wizard class or the manual input format.

The first command on this slide shows the wizard format, where you are prompted for the

value of each property individually. If you need to break out of the wizard without creating

the object, use the exclamation mark.

The second and third commands show the manual input formats. In the second example,

the data is provided in Python dictionary format as part of the command itself. In the third

example, the data is provided in Python dictionary format within an input file.

Page 29 of 37

IPASv1_CommandLineInterface.ppt

For web application patterns, there are options in the administration console that allow you

to export and import that type of pattern. However, for database patterns and virtual

system patterns, you need to do the pattern exports and imports with the command-line

interface. This slide provides the commands for exporting a virtual system pattern, to be

run in batch mode.

Virtual system patterns are composed of script packages, add-ons and images. By default,

the export command will only download all script packages. There is an option to also

download all add-ons and images. There is also an option to filter the script packages,

add-ons and images to be downloaded.

The first command in the slide is exporting a virtual system pattern in interactive mode

using the “exportPattern” script. Information is also provided in the slide on the parameters

to download all add-ons and images, and to filter the components to be downloaded.

The second command is importing the previously exported virtual system pattern, using

the “importPatterns” script.

Page 30 of 37

IPASv1_CommandLineInterface.ppt

This slide provides the commands for exporting a web application pattern, to be run in

interactive mode.

The first command is exporting a database pattern.

The second command is importing the previously exported database pattern.

Page 31 of 37

IPASv1_CommandLineInterface.ppt

This slide gives some examples of workload related troubleshooting commands.

The first command provides a full set of workload troubleshooting logs. If a destination file

is not provided, the logs are downloaded to the directory you run the CLI from.

The second command displays the last twenty lines of the error log.

The third command is run in command mode, and will write the last one thousand lines of

the trace file to a file on your workstation.

Page 32 of 37

IPASv1_CommandLineInterface.ppt

This slide is giving some basic examples of system console commands.

The first command is listing all LEDS with a severity of “error”.

The second command is listing all events with a category of “alert”.

The third command is listing the trace settings for the component called Authorize.

The fourth command is displaying information about the latest collection set of system

logs.

The fifth command is displaying the statistics for one of the two storage devices.

The sixth command is displaying all compute nodes that are in a failed state.

Page 33 of 37

IPASv1_CommandLineInterface.ppt

This slide summarizes some common things that can cause problems that are difficult to

resolve until you understand the issue.

The first topic relates to Python using the backslash character as an escape character,

therefore if a backslash is used in the wrong place and interpreted as an escape

character, you can get unpredictable errors. Therefore only use forward slashes.

The second topic relates to Python’s JLine support, which is limited on Windows, but does

work quite well on Linux. Therefore if you are using Windows, you might have some

challenges, especially with long multi-line commands.

The third topic is a reminder that all command methods must be invoked with a set of

parentheses, even when there are no arguments.

The fourth topic relates to Python’s usage of references to objects whenever a command

method is invoked. Python will insert that reference to the object as the first argument in

the method. Therefore, even if you do not supply any arguments to the method, there is

one hidden argument being passed. Therefore the number of arguments passed is always

one greater then what you provide. This can cause confusion with some error messages

that indicate the method is expecting one more argument then you yourself are providing.

Page 34 of 37

IPASv1_CommandLineInterface.ppt

In summary.

There are three ways to interact with the PureApplication System. They are the

administrative console, REST APIs and the command-line interface. The focus in this

presentation is on the command-line interface.

Getting a command-line interface environment working is a matter of a simple download

from the PureApplication System welcome page and extracting the archive file to your

workstation.

The command-line interface can be run in three modes, namely in interactive, command

and batch modes.

The commands are divided into workload commands and system commands. On another

level, they are divided into resource command and utility commands.

If you are looking to script and automate PureApplication System tasks, the command-line

interface is a great option. There are numerous samples in the tool’s download directory to

get you started and to help you understand how to script your tasks.

This presentation went through a very small subset of the available commands and

syntax, but hopefully it demonstrated to you how robust and flexible the command-line

interface package is.

Page 35 of 37

IPASv1_CommandLineInterface.ppt

This slide provides some links to further doc about Jython and Python.

Page 36 of 37

IPASv1_CommandLineInterface.ppt Page 37 of 37

