
IntroMessaging.ppt

This is the “Introduction to Messaging” training presentation from IBM Initiate®.

Page 1 of 30



IntroMessaging.ppt

This training presentation begins with a brief overview of the different applications offered 

by the IBM Master Data Service Message Broker Suite. You will get a high level 

description of how the different IBM Initiate messaging applications communicate with 

other applications. Next, you are shown the purpose and are provided an example of how 

the .pos, .dat, and .toc files are used. The training then covers reject thresholds and 

regular server maintenance. Finally, frequently asked questions are discussed.

Page 2 of 30



IntroMessaging.ppt

There are five messaging applications to choose from in the IBM Initiate Master Data 

Service Message Broker Suite. There is the Inbound Broker, the Outbound Broker, the 

HL7 Query Adapter or Query Broker, the Mapping Message Manager or Mapping Broker, 

and the Routing Message Manager or Routing Broker. 

The Inbound Broker and Outbound Broker applications both have two separate processes 

that handle the message-based transactions. The Inbound Broker has a Message Reader 

service and an Inbound Message Manager service. 

The Outbound Broker consists of an outbound message manager process and a message 

sender process.

There are more details on these broker applications later in this presentation. 

Page 3 of 30



IntroMessaging.ppt

As just previously mentioned, the Inbound Broker has a Message Reader and an Inbound 

Message Manager component. There are some important points about each of these 

components.

The message flow diagram displayed at the bottom of this slide, depicts an inbound 

message as it flows into and is received by the Message Reader. The Message Reader is 

configured to listen for inbound messages on a TCP/IP stream. It can be configured to 

accept HL7, XML, fixed-format, and delimited message types. It stores the inbound 

messages in data files. These data files are treated as a queue and the files are typically 

named “input .dat”. 

Next, the Inbound Message Manager uses the messages that were stored in the input 

queue by the Message Reader. It processes and modifies these messages into a 

message event interaction and then uses this to make the appropriate API call to send the 

message to the IBM Initiate Master Data Engine. The message is then copied by the 

Inbound Message Manager into a success or reject file queue based on the positive or 

negative response from the engine.

Depending on the message event interaction, the IBM Initiate Master Data Engine makes 

the appropriate changes in the IBM Initiate database. For a list of the possible message 

event types, see the documentation available through the IBM Support Portal.

Page 4 of 30



IntroMessaging.ppt

On the outbound side, there are two Outbound Broker components; the Outbound 

Message Manager and the Message Sender.

In the message flow diagram displayed on this slide, you see the initial component is the 

Outbound Message Manager. The left arrow represents the periodic polls to the IBM 

Initiate Master Data Engine Database. If new events are detected, the data is sent to the 

Message Manager to be processed. The trigger events for the Outbound Message 

Manager are: “Has Shadow”, “PreMerge”, and an “EID Add” or “EID Update”. 

When a trigger event is found, the Outbound Message Manager builds a customer-specific 

message. The construction of the message is based on the broker configuration file. The 

message is written in data files placed in an outbound queue. 

Next, the Outbound Message Sender picks up the messages from the outbound queue 

and sends them to an external source system by way of a TCP/IP connection.

Page 5 of 30



IntroMessaging.ppt

HL7 stands for “Health Level Seven” and is a standard messaging protocol primarily used 

in the healthcare industry. The HL7 Query Adapter, also called the “Query Broker”, is a 

special read-only message application typically used by healthcare customers. It was 

developed to provide a way for customer applications to query the IBM Initiate system by 

way of HL7 messages. The HL7 Query Adapter listens for inbound HL7 message requests 

being sent to a specific port by way of a TCP/IP connection. 

The message flow diagram displayed on this slide begins with the HL7 Query Adapter 

receiving an HL7 message request. Since this application is read-only, the request is 

either a MemGet or MemSearch interaction. The interaction request is then sent to the 

IBM Initiate Master Data Engine. The requested data is then retrieved by the engine and 

synchronously sent back to the HL7 Query Adapter. Then, the information is formatted by 

the HL7 Query Adapter and sent back to the originating system as a HL7 response 

message on the same socket connection the request message was received from.

It is important to note that the round trip interaction is performed on the same socket 

connection.

Page 6 of 30



IntroMessaging.ppt

The next broker application in line is the Mapping Message Manager which is also referred 

to as the “Mapping Broker”.

The Mapping Broker reads messages from an input queue, requests data from the hub, 

and then writes to an outbound message queue. A Mapping Broker instance is used for 

two basic purposes: retrieving information and searching for information. This information 

is then added to the incoming message and propagated to a downstream source system 

by way of the Outbound Broker.

An example of a practical application of the Mapping Broker is when a Mapping Broker is 

used to examine the inbound input files sent in from one source system for address 

updates. The Mapping Broker then forwards the address update to a downstream source 

system. The Mapping Broker is triggered by the inbound message queue. When you 

install a Mapping Broker, you normally do not just use that application by itself. Typically, 

you have an Inbound Message Manager that is also processing the same inbound 

messages in parallel and sending them to the IBM Initiate Master Data Engine. Each time 

a message comes in, you can trigger the Mapping Message Manager to pull data from the 

IBM Initiate Master Data Engine using a MemGet or MemSearch interaction. Then, write 

this data from the engine into a data file for the outbound queue. 

Basically, if you want to send messages to another source system based on an inbound 

message from another system, the Mapping Message Manager may be the solution you 

are looking for.

Page 7 of 30



IntroMessaging.ppt

The Routing Message Manager, also called the “Routing Broker”, allows you to take 

messages from one queue and duplicate them into other queues based on the information 

within the message and it’s configuration file.

An example of how the Routing Broker is used is when you need to send an outbound 

message to multiple source systems based on the source of the records being updated. 

This example is used to illustrate the message flow diagram displayed on this slide. The 

Routing Message Manager takes messages out of the outbound message queue and 

then, based on it’s configuration, copies this message to the appropriate outbound 

message queue or queues. Then, each of the outbound queues uses their own message 

sender to send the messages to their source system.

Page 8 of 30



IntroMessaging.ppt

Now the focus will shift to talking about the mechanism behind the inbound and outbound message process. 
The next slides describe the file naming conventions, purposes of the files, and how the position and table of 
contents files are used. The table displayed on this slide, lists the file naming conventions used for the 
default broker configurations and a brief description of these files.

The first three files, “input*.dat”, “success*.dat”, and “reject*.dat” are all data files. The asterisk is a place 
holder for the date-time stamp of when the file was created in a real system.

The input .dat file is basically the input queue. This file contains messages that were received by the 
Message Reader from the source system.

The success .dat contains the messages that were copied from the input .dat file after being successfully 
processed by the Inbound Broker. Alternatively, the reject .dat file contains messages that were rejected by 
the Inbound Broker. It is important to note that the messages in all the .dat files are exactly the same as they 
were received by the Message Reader.

Ideally, you do not want to have any rejected messages. However, if you do find messages being rejected, 
look at the Broker log files to determine why a message was rejected. If there is no detail of any error related 
to the rejection in the broker log file, look at the engine log file as the message can be rejected by the 
Inbound Broker or the Engine.

The .mlg or .log files are created by every component. The first part of the file name corresponds to the type 
of component and date-time stamp of when that file was created. 

The next files are the position files. All of the components use position files except HL7 Query Adapter. The 
position files keep track of what file and line position in the file an individual component was last working on. 
This allows the broker components to stay synchronized.

The last files in this table, are the input.toc, success.toc, and reject.toc. These are the table of contents files. 
These files contain a list of directories that point to the .dat file they represent. They are updated each time a 
new .dat file is created. Just like the position files, the HL7 Query Adapter is the only messaging component 
that does not use a table of content file.

Now that you are familiar with the different file types used by the brokers, you are now ready to jump into 
how they are used.

Page 9 of 30



IntroMessaging.ppt

The next five slides illustrate how messages are processed using the files mentioned in 

the previous slide. The first files examined are the position files or “.pos” files. The position 

files have two sets of files; one set operates on the input queue and the other is used for 

the result queue. The input-read.pos and input-proc.pos are used for tracking the input 

queue position. The success-proc.pos and reject-proc.pos files are used for the result 

queues. Each file is composed of a single line with three numbers separated by two 

colons.

The first numeric is a count of files and is represented by a string of “F”s. Specifically, it is 

the line number in the .toc file, which in turn points to the .dat file. Essentially, it is the file it 

was last working on.

The second numeric is a count of messages and is represented by the string of “N”s. This 

is the last message count in the file “F” that was processed within the current .dat file.

The last numeric is a running total of messages processed and is represented by the 

string of “T”s.

Page 10 of 30



IntroMessaging.ppt

The table of contents file, or .toc file, enumerates all the .dat files for an input or output 

queue. With the help of the .pos file it keeps track of which files have already been created 

and processed, and which .dat files are currently being written to. When a new .dat file is 

created, its full path and file name is added to the end of the appropriate .toc file. 

Be careful with the .pos and .toc files. If the files become corrupted, moved, deleted, or 

destroyed, the message component will not know which message to process next and will 

stop processing messages altogether. 

Page 11 of 30



IntroMessaging.ppt

The next example goes though, step by step, how a message reader updates the .pos and 

.toc files. This is a typical inbound example. There is currently no .toc or .pos file and the 

message reader is turned on at 9:00 AM on Monday May 3rd for the very first time. The 

input.toc file and the input-read.pos files are created. The .toc file is initially blank and the 

.pos contains all zeros.

Page 12 of 30



IntroMessaging.ppt

The first HL7 formatted message is received on Monday May 3rd at 12:00 PM. The 

message reader now creates the input .dat file and adds the message to the end of the 

file. 

The path to the input .dat file is then added to the end of the .toc file. Within the input-

read.pos file, the first number is incremented from a zero to a one in reference to the 

position of the .dat file in the .toc. Next, the second number, in the .pos file, is incremented 

from a zero to a one in reference to the message number in the .dat file. The last number 

is incremented from a zero to a one, since one message has been received.

Page 13 of 30



IntroMessaging.ppt

Another HL7 formatted message is received on Monday May 3rd at 11:59 PM just before 

the end of the day. Since it is the same day since the last time the message reader 

created an input .dat file, it does not create a new .dat file. Since there was no new .dat file 

created, there is no need to update the input.toc file or the first number in the input-

read.pos file. The message is added to the end of the .dat file and the second number in 

the .pos file is incremented from a one to a two indicating that there are two messages in 

the .dat file. The last number in the .pos file is also incremented to maintain a running 

total.

Page 14 of 30



IntroMessaging.ppt

Two minutes after the last message was received two more HL7 messages are received. 

It is now a new day, Tuesday May 4th, and since it is a new day, a new input .dat file is 

created.

Because of the new .dat file creation, the path to the new file is added to the end of the 

input.toc file, the first numeric in the .pos file is incremented from a one to a two and the 

second number is reset back to zeros. The two messages are added to the end of the new 

.dat file, and the second numeric in the .pos is incremented by two. The last number in the 

.pos file is incremented by two (changes from a two to a four).

Page 15 of 30



IntroMessaging.ppt

Later, on Tuesday May 4th, six more HL7 messages are received. It is the same day so no 

.dat file is created and no change is made to the first value in the .pos file. The six 

messages are added to the end of the existing .dat file from May 4th. The six is added to 

the second number in the .pos file making it eight. The last number in the .pos file is 

incremented by six and is now at ten.

Page 16 of 30



IntroMessaging.ppt

The next two HL7 messages are received on Wednesday, May 5th. Since it is a new day, a 

new .dat file is created. The two messages are added to the end of the .dat file and the 

second position in the .pos file is reset back to a zeros then incremented by two. A new 

.dat file was created so the path to the new file is added to the end of the .toc file and the 

first number in the .pos file is incremented by one to a three. The last number in the .pos 

file is incremented by two and is now 12.

Page 17 of 30



IntroMessaging.ppt

On this slide, you see how the Inbound Broker processes the inbound messages. On the next slide, you see 
the other part of the Inbound Broker where it deals with successful and rejected messages.

This will hopefully make it easier for you to understand how the messages in the Message Reader are 
consumed by the Inbound Broker and keeps this separate from the part that determines if a message is 
successful or not.

The first thing to do is turn on the Inbound Broker. Since it is going to process the files that were used as in 
the example of the Message Reader on the previous slide, the Inbound Broker is going to have to catch up. 
Look at the input.toc file and you see there are three .dat files in the .toc. If you open the first .dat file, you 
see it has two messages. The second .dat file has eight messages and the last .dat file has two messages. 

Now when the Inbound Broker begins processing, it reads the first message from the first .dat file in the .toc. 
It then creates the input-proc.pos file and increments the three counters. The numbers are 1, 1, and 1. So 
this is the first .dat file in the .toc file being read, the first message in that .dat file, and, the first message 
processed by the Message Manager. 

Next, the second message from the .dat file created on Monday May 3rd is processed. The new .pos file 
becomes 1, 2, and 2. This is still the first .dat file in the .toc. It is the second message in the .dat file and the 
second message to be processed.

The “end of file” is reached and there are no more files to process in the first .dat file so the Inbound Broker 
moves onto the second .dat file in the .toc. It then reads in the first message created on Tuesday May 4th

from the .dat file. The .pos file is updated to 2, 1, and 3. This is the second .dat file in the .toc, the first 
message in the .dat file, and the 3rd message in total to be processed. The Inbound Broker then continues 
processing the .dat file just like it did the first .dat file. It keeps going until it reaches the “end of file” in the 
second .dat file.

Next, the last .dat file from Wednesday May 5th is read and the 2 messages are processed. The .pos file is 
now 3, 2, and 12. This is the 3rd .dat file in the .toc, the 2nd message in .dat file, and 12 message have been 
processed. 

After the Inbound Broker has finished finish processing the last message in the .dat file you can see that the 
input-proc.pos file now matches the input-read.pos file. When the first two, left most, numbers of the input-
proc.pos file equal the corresponding numbers in the input-read.pos file the Inbound Broker knows he has 
“caught up” to the Message Reader. 

As you can see, the first two corresponding values in each file now match so you know all of the messages in 
the Message Reader have been processed by the Inbound Broker.

Page 18 of 30



IntroMessaging.ppt

This example is a continuation from the example used in part one of the previous slide. 

The next four slides describe the part of the Inbound Broker where it deals with successful 

and rejected messages. The “success” and “reject” queues work in much the same way 

the input queue does. They both have positioning (.pos) and table of contents (.toc) files.

In this example three assumptions are made. The first assumption is that all eight of the 

messages on Tuesday, May 4th were rejected. These messages may have been rejected 

for any number of reasons including missing a required data field like a social security 

number, but for this demonstration the reason is not important.

The second assumption is that the Inbound Broker is started at 12:00 PM on Wednesday, 

May 5th after all of the messages have been stored in the input queue by the Message 

Reader.

The third assumption is that this is the first time any messages have been processed by 

this Inbound Broker.

This example is started by processing the first message from Monday, May 3rd. The first 

action creates the input-proc.pos file and all three values are incremented as described in 

the previous slide to 1, 1, and 1. The message is determined to be successful at 12:00 

PM. Therefore, the success-proc.pos, reject-proc.pos, success_20100505_1200.dat, 

success.toc, and reject.toc files are created.

Next, the same exact message that was read by the Message Reader is copied to the end 

of the success .dat file. The full path to the success .dat file is then appended to the end of 

the success.toc file and the values in the success-proc.pos are updated to 1, 1, and 1. 

Page 19 of 30



(Note the full path has been truncated in this example due to space 

constraints).

IntroMessaging.ppt Page 19 of 30



IntroMessaging.ppt

The second message from Monday is now processed and is successful. The second and 

third numeric in the input-proc.pos are incremented by one and the new values are 1, 2, 

and 2. The message is copied to the end of the existing success .dat file and one is added 

to the last two numerics in the success-proc.pos file. The new values are 1, 2, and 2.

Now the time changes to 12:01 PM and the first message from Tuesday, May 4th is 

processed. The input-proc.pos file is updated to 2, 1, and 3. This message fails and is 

rejected. This causes the reject_20100505_1201.dat file to be created, this same 

message from input .dat file is copied into the reject .dat file. The path to the reject .dat file 

is added to the end of the reject.toc, and all three values in reject-proc.pos are 

incremented by one to 1, 1, and 1.

Page 20 of 30



IntroMessaging.ppt

The second message from Tuesday is now processed and is rejected. The second and 

third values in input-proc.pos are incremented by one and the new values are 2, 2, and 4. 

The message is copied to the end of the existing reject .dat file and one is added to the 

last two values in the reject-proc.pos file. The new rejected values are 1, 2, and 2.

Since you are probably starting to get the idea of how this works, the presentation will 

jump to the end of processing all the remaining messages. There are six messages left 

over from Tuesday that are rejected and two from Wednesday that are processed 

successfully. The six messages from Tuesday are added to the end of the current reject 

.dat file. The two messages from Wednesday are added to the end of the existing success 

.dat file. The input-proc.pos file is now 3, 2, and 12 and matches the input-read.pos. The 

reject-proc.pos is updated with the six remaining messages from Tuesday and the final 

values are 1, 8, and 8. The last two digits for the success-proc.pos have been 

incremented by two and the final numbers are now 1, 4, and 4.

Page 21 of 30



IntroMessaging.ppt

Now look at the last values in the success-proc.pos file and the reject-proc.pos file (the 

right most numeric value). Notice that if you add these numbers together, they equal the 

last number in the input-proc.pos file. The total number of successful messages plus the 

total number of rejected messages equals the total number of input messages. This 

eludes to the fact that all messages received by the Reader must end up in either the 

success queue or reject queue.

This concludes the detailed discussion of how the .dat, .pos, and .toc files are used when 

messages are processed through the message queues. 

Page 22 of 30



IntroMessaging.ppt

The next topic discussed is the reject threshold. The reject threshold was created to 

prevent a large amount of bad data from being processed and to signal that there is a 

problem with the data coming in. This saves processing time and having to fix a large 

amount of messages that get rejected. It is configurable by way of the master 

configuration file (typically named services.ini or madman.ini).

It is used to determine how many consecutive failures are allowed by the Inbound Broker 

before it is automatically shutdown or how many messages cannot be sent by the 

Message Sender before it is shutdown. If a message is successful, the reject threshold 

counter is reset to zero.

Page 23 of 30



IntroMessaging.ppt

For example, if the reject threshold for the Inbound Broker is set to 20, and 20 consecutive 

messages are rejected, the process is shut down automatically. If 19 consecutive 

messages are rejected and the next message is successfully processed, the process will 

not shut down as the threshold counter is reset on the 20th successful message.

When you reach the reject threshold, there is an ERROR or FATAL message recorded in 

the broker log. Look at the examples from a Message Sender log and Inbound Broker. You 

can see the reject threshold for the Message Sender was configured for 20 and the 

Inbound Broker had its value set to a reject threshold of 50.

Page 24 of 30



IntroMessaging.ppt

The details on regular system maintenance best practices are covered in another 

presentation. Therefore, this slide only touches on some specifics related to the IBM 

Initiate Master Data Service Message Broker Suite.

Depending on your specific configuration with all of the messages being passed through 

all of the different brokers, any interruption in the message processing can become a 

critical issue for your business if you are not performing regular maintenance. 

All of the log files and the files used by the message Brokers suite require free disk space 

to function. The amount of space these files use on your system will grow over time. If you 

do not periodically cleanup these files, you will eventually run out of disk space. If you run 

out of disk space, all of your message processing will come to a halt. Running out of disc 

space can cause some unusual behavior such as zero byte, corrupt or partially written 

files. All of which will keep the messaging applications from restarting, even after you have 

freed up space. The messaging applications will shutdown with FATAL assert errors. If this 

happens, contact the IBM Initiate Support group for assistance.

When performing maintenance, be careful when deleting, moving, or restoring files being 

used by the message brokers. Deleting or overwriting any of the files that are actively 

being used can cause unexpected consequences and prevent you from restarting the 

application. 

Page 25 of 30



IntroMessaging.ppt

The next three slides display some of the most commonly asked questions.

The first question is, what if you see a fatal error in your Message Reader logfile, which 

mentions a failed assertion, and cannot start the application. How do you start the 

application?

The answer is that this indicates either that the .pos or .toc files are desynched, or a file 

that the applications are trying to read from or write to is corrupt or does not exist. You will 

not be able to restart the application until the file-based ‘positioning system’ is repaired. To 

fix this, look at the .pos files, the .toc files, and the files contained in the toc. Count through 

the messages in the last-referenced .dat file, and make sure that the counters are showing 

the appropriate values. This error can also occur with the Inbound Message Manager.

Page 26 of 30



IntroMessaging.ppt

What if your hard drive is filling up with log files and .dat files. How should you go about 

archiving or deleting them?

The answer is to develop a monthly plan for archiving and deleting files. Start with the idea 

that it is probably okay to archive and or delete files which have a timestamp older than a 

month. But do not, for example, delete all .dat files on the last day of each month since the 

files for that last day of the month can still be in use. Be aware of how fast your inbound 

messages are arriving versus how fast they are being processed. If you delete a file out 

from “under” a component, that component will error out. In very large businesses or 

during high transaction times, the Message Manager may ‘lag’ several hours behind the 

Message Reader. Do not collect months and months worth of log files and .dat files unless 

you see a real business need to do so.

Page 27 of 30



IntroMessaging.ppt

The next question involves the Message Sender. Say your Message Sender keeps 

shutting down after a ‘reject threshold’ is met, with errors. How do you stop this?

The solution to this is typically pretty simple. Your target upstream system is down or 

unreachable and the Message Sender cannot connect to it to send messages. Bring that 

external system back up or diagnose the network to determine why the other system is 

unreachable. Start the Message Sender once the other server is up and the connection 

has been restored.

Page 28 of 30



IntroMessaging.ppt

For additional information and details about the IBM Initiate Master Data Service Message 

Broker Suite, view the documentation on the IBM Support Portal website for the version 

you are using. This slide displays links to the current versions of the documentation. 

Page 29 of 30



IntroMessaging.ppt Page 30 of 30


