
PXJobHang.ppt

This presentation discusses how to diagnose hung Information Server 

DataStage® parallel jobs. This presentation is relevant for Information 

Server version 8.1 through version 11.3. 

Page 1 of 20



PXJobHang.ppt

The objectives of this presentation are to show how to determine whether 

a parallel job is hung, and if so, it describes the environment variables 

that need to be set and what information to collect during the hang.

Page 2 of 20



PXJobHang.ppt

If a job is hung, the DataStage Director shows that the job is running but 

the job monitor will not show any progress. First, open the DataStage 

Director, click the Tools menu, and then click New Monitor. If rows are still 

being processed, even if it is very slow, the job is not hung.

Page 3 of 20



PXJobHang.ppt

If the job appears to be hung, the next step is to check for job processes 

at the operating system level. Telnet into the Engine tier and run the ps 

command that is displayed on this slide.

The DSD.RUN process is the first process kicked off and starts the other 

related processes. The DSD.OshMonitor collects information on the row 

counts.

If no processes are seen, then most likely the job failed, but was not able 

to update the status of the job before terminating. This is not considered 

a hung job. Clear the status file from DataStage Director. Next, look for a 

core file in the project directory with a timestamp that matches the last 

entry in the job log. If no core file is found, confirm that the operating 

system is configured to generate core files. The first two technotes that 

are listed on this slide provide examples of how to get a stack trace for 

AIX and Linux. If the job failure can be reproduced, see the third link that 

is listed on the slide, which describes how to trace the job.

Page 4 of 20



After locating the DSD.RUN process, the next step is to check for osh 

processes at the operating system level using the ps command that is 

displayed on this slide. If other jobs are running on the server, it is difficult 

to distinguish the osh processes associated with the hung job. The next 

section describes how to set the environment variable 

APT_PM_SHOW_PIDS. Setting this environment variable causes the 

pids to be written to the job log. These pids can then be used to find the 

osh processes at the OS level.

If no osh processes are returned from the ps command, then the job 

ended but was not able to update the status before terminating. This is 

not considered a hung job. Clear the status file from DataStage Director. 

Next, look for a core file in the Project directory with a timestamp that 

matches the last entry in the job log and see the technotes on the 

previous slide for examples on how to get a stack trace. 

PXJobHang.ppt Page 5 of 20



Though difficult, you can find the PIDs using the monitor window. First, 

right-click and select show instances if not already checked. If running 

with a multi-node configuration file you see each of the instances. The 

example that is displayed on this slide was run with two nodes.

PXJobHang.ppt Page 6 of 20



Next, to find the PID, select the stage instance, right-click and select 

Detail. In the Stage Status dialog box, the PID is listed under User. 

Repeat this for each stage and instance. You can then use the “ps” 

command on UNIX® and Linux® to see the processes.

PXJobHang.ppt Page 7 of 20



If the failure can be reproduced, starting at version 9.1 of DataStage, 

there is a new facility to generate stack traces and capture other valuable 

information for parallel jobs. The feature can be invoked by adding the 

user-defined environment variables APT_DUMP_STACK and 

APT_DUMP_STACK_DIRECTORY. Set APT_DUMP_STACK to one to 

enable basic stack trace dump. Set APT_DUMP_STACK_DIRECTORY to 

a valid path where files will be written. If undefined or not set to a valid 

path then the dump files will default to /tmp. If the job is successful, a 

dump is not created, therefore, you can leave this set to capture a dump 

for an intermittent issue.

PXJobHang.ppt Page 8 of 20



PXJobHang.ppt

There are other reasons that leftover osh processes might be seen even 

though the job is not hung. One reason is when the DataStage Engine is 

stopped while parallel jobs are running or an Information Service 

Director™ job, at earlier releases referred to as WISD or RTI, is not 

undeployed before stopping the DataStage Engine. To prevent this, 

always check for running jobs and undeploy any Information Service 

Director jobs before stopping the DataStage engine. 

Another reason is when a parallel job is stopped from the DataStage 

Director during the startup phase. This is the phase where the conductor 

communicates with section leaders, the section leader communicates 

with players, or players communicate with players. 

In both of these cases, the leftover processes can be cleaned up.

Page 9 of 20



PXJobHang.ppt

Once it is determined that the job is hung, setting the environment 

variables that are listed on this slide and on the next couple of slides, 

provides the information needed the next time that the job hangs. 

Page 10 of 20



PXJobHang.ppt

Next, create a user-defined environment variable that is called 

DS_PXDEBUG if the job is not running in a production environment, and 

set the default value to 1 at the job level. If it is a production environment 

and there is the ability to compile a job, set DS_PXDEBUG to 1 at the job 

level as well. Avoid setting DS_PXDEBUG at the project level because it 

will greatly impact the performance of jobs and add a lot of debug 

information to all of the job logs.

Page 11 of 20



PXJobHang.ppt

Many times a hang is caused when a database client core dumps. When 

this occurs, often the database operators or connectors will sit and wait 

forever for a response from the client that will never be sent due to the 

core dump and therefore, the job hangs. Setting 

APT_NO_PM_SIGNAL_HANDLERS allows the UNIX or Linux system to 

terminate all the processes that are associated with the core dump and a 

core file is generated.

If setting APT_NO_PM_SIGNAL_HANDLERS results in a core file being 

generated, ensure that the system permits core files to be created, and 

gather a stack trace on the core file. See the technotes listed on this slide 

for examples on AIX and Linux.

Page 12 of 20



PXJobHang.ppt

Once the environment variables have been set and the hang is 

reproduced, the next step is to collect the log information. It is important 

to send the detailed job log and an export of the job design of the hanging 

job. If DS_PXDEBUG is set, tar and send the Debugging/<job_name> 

directory located under the project directory. The ISALite Basic System 

Summary can be done at any time before or after the hang.

Alternately, at Information Server version 8.5 and later, send an ISALite 

Job Log Collection. This collects all the job related information requested 

in one step and it includes additional information such as Version.xml, 

.odbc.ini, dsenv, uvconfig, DSParams, and more. It also includes a 

collection report.

Page 13 of 20



If APT_NO_PM_SIGNAL_HANDLERS is set in the job and a core file is 

produced, get a stack trace on the core file and send that along with the 

logs and job export. If the job does not end and core dump, run the ps 

command shown on this slide to capture all the system processes and 

send the output file to Support with the rest of the information collected.

PXJobHang.ppt Page 14 of 20



PXJobHang.ppt

If the job processes are hung, the call stack from each osh process in the 

job provides information on the state of the osh process at the time of the 

hang. Collecting the stack traces is critical for debugging the issue. A 

stack trace is needed for each pid listed in the job log.

There can be a large number of pids that need stack traces. A script is 

available to automate this process on AIX and Linux. The script assumes 

that all osh processes are on the same machine. 

The scripts are available for download from this IBM Education Assistant 

site.

Page 15 of 20



PXJobHang.ppt

Use pstack on Linux or Solaris and procstack on AIX. See the information 

displayed on this slide for the syntax and an example. Remember to 

include the pid in the file name.

Page 16 of 20



PXJobHang.ppt

Alternatively, a debugger can be used to capture the stack trace on each 

pid in the job log. The tool used on Linux and Solaris is gdb and on AIX it 

is dbx. Set and export the environment variables as displayed on this 

slide. Then, confirm “which osh” returns the expected location.

Page 17 of 20



PXJobHang.ppt

This slide has an example of using the debugger dbx to collect a stack 

trace and send the output to a file. It is important to use detach to exit the 

dbx command shell and not exit. The job is stopped if exit is used.

Page 18 of 20



PXJobHang.ppt

This slide displays an example of using the debugger gdb to collect a 

stack trace. Capture the output to a file with the pid as part of the file 

name, for example, gdb_pid.out. It is important to use detach before 

quitting the command shell. The job is stopped if quit is used without 

detaching first.

Page 19 of 20



PXJobHang.ppt Page 20 of 20


