
DeadDS_locks.ppt

This presentation will discuss how to tell if a DataStage® lock on the local repository can 

be safely unlocked. This module is relevant for all versions of DataStage on UNIX® and 

Linux®.

Page 1 of 9



DeadDS_locks.ppt

The objectives of this presentation are to show how to list the local lock table, how to 

determine the user number of a lock that is presumed to be hung, and determine the 

associated user shared memory segment. The presentation also shows how to tell if there 

are any active processes still holding that lock.

Page 2 of 9



DeadDS_locks.ppt

Before releasing any DataStage locks, it is important to first determine if the lock still has 

active processes attached to it. Unlocking a lock with active processes still attached may 

lead to file corruption. The LIST.READU EVERY command will list out all of the local 

DataStage repository locks. This command may be run from a uvsh prompt and is not 

project specific. The output from this command displays all the local locks being held for 

the entire DataStage installation.

Page 3 of 9



DeadDS_locks.ppt

When listing the lock table to determine if a lock is stuck, it is good practice to run the 

LIST.READU EVERY command multiple times. The reason for this is that group locks 

should be short lived. As the command is run multiple times, the group locks will 

constantly change. An indication of a lock that is “stuck” is a group lock that remains after 

multiple iterations of the LIST.READU EVERY command. In this example, there is a group 

write lock stuck on address 0 of a file. This is significant because address 0 is the header 

of the file. If a lock is hung on group 0 with a WR lock, all other attempts to access this file 

will hang. This is the cause of many client hangs at start up time.

Before releasing a lock that is presumed to be hung or dead, steps must be taken to 

ensure no processes are still attached.

Page 4 of 9



DeadDS_locks.ppt

The first step in this process is to get the user number that is holding the lock in question. 

This will show up in the Userno column of the LIST.READU output. This user number is an 

internal engine user number and not related to the operating system’s user numbers. 

Once the user number is found, the next step is to convert that number to hexadecimal. 

From a uvsh prompt, the command DTX can be used to convert the decimal number, 

46048 in this example, to hex. The Windows calculator may also be used to do this 

conversion. For this example, the hex representation of the user number is B3E0.

Page 5 of 9



DeadDS_locks.ppt

The next step is to find the user’s shared memory segment. When a client connects to 

DataStage, each connection is given it’s own user shared memory segment. This is also 

referred to as the printer shared memory segment. The key for this segment is made up of 

the DataStage itag, the letter “b” indicates it is a user segment and not the main segment, 

and the hex version of the user number. In the example displayed on this slide, the user’s 

shared memory segment key is 0xadebb3e0.

Use the ipcs command to see if the user’s shared memory segment still exists. The ipcs 

commands for the different platforms are listed on this slide. Linux has a slightly different 

syntax than UNIX platforms and requires two steps to get the shared memory segment 

and the processes that are attached to it. 

Page 6 of 9



DeadDS_locks.ppt

If the shared memory segment no longer exists, it is safe to release any locks held by that 

user. If the shared memory segment still exists, the next step is to look at the column for 

NATTCH. This column shows whether any processes are still attached to the segment. If 

NATTCH is 0, then all the processes are gone and the locks and shared memory segment 

for that user are safe to release. Remove the shared memory segment first with the ipcrm 

command displayed on this slide. You must be root or the owner of the segment to remove 

it. Next, run LIST.READU EVERY again and see if the lock in question still exists. If the 

lock is still there, remove it using the uvsh command UNLOCK USER usernumber ALL. In 

this example, the NATTCH is 1 which indicates that there is still a process attached. The 

next step is to see what process is still attached to the segment.

Page 7 of 9



DeadDS_locks.ppt

The CPID is the process that created the shared memory segment. Use the ps command 

as displayed on the slide to find the process that is attached to that segment and holding 

the lock. In this case, it is the client dsapi_slave process. The LPID is the last process that 

was created by the CPID. This process may or may not still exist. Check both to get an 

idea of what is running. Once it has been determined what process is holding the lock, 

attempt to cleanly disconnect the client connection. Once the process is gone, check if the 

shared memory segment is still there. If the segment is still there and the NATTCH is 0, 

remove the shared memory segment with the ipcrm command. Once the shared memory 

segment is gone, check if the lock still exists. If the lock is still there, it is now safe to 

unlock it using the UNLOCK command on the previous slide.

Page 8 of 9



DeadDS_locks.ppt Page 9 of 9


