

®

IBM Software Group

© 2009 IBM Corporation
October 25, 2012

IBM Fault Analyzer for z/OS

Program number 5655-W69

Tutorial

© 2012 IBM Corporation

This is the tutorial for IBM’s Fault Analyzer for z/OS®, one of the IBM zSeries® problem
determination tools.

FAv12s02Files.ppt Page 1 of 15

� Introduction
� Fault Analyzer overview

� Fault Analyzer files
� Fault history files
� Program side files and compiler listings

� Real-time abend processing
� Real-time fault analysis

� Using the on-line interface
� Opening a fault history file and using a view
� Getting help
� Finding and matching fault entries
� Getting information about a fault entry
� Customizing the columns displayed

Fault Analyzer tutorial

2 IBM Fault Analyzer for z/OS - V12 Tutorial © 2012 IBM Corporation

In this section you will learn about fault history files, and how side files and compiler
listings can be used by Fault Analyzer.

FAv12s02Files.ppt Page 2 of 15

�

�

�

�

Fault history files

Fault Analyzer stores abend information in a Fault History File

File type is PDSE (recommended) or PDS
� Initialized with utility program IDIUTIL

One entry is stored for each abend

Each entry includes:
� Information about the abend

� a copy of the Real-Time
Analysis report

� a "minidump" of the
application

Fault History
File

Fault Entries

Fault
Analyzer

Application
Options

FA Invocation Exit

Abend

Analysis Report Sysdebug Files,
Side Files,
or Compiler Listings

IBM Fault Analyzer for z/OS - V12 Tutorial 3 © 2012 IBM Corporation

A fault history file is a repository where Fault Analyzer stores information about abends.
There can be one or more history files on each system. They are large partitioned data
sets – PDS or PDSE libraries – and are typically set up by the installer.

Fault Analyzer stores one member, called a fault entry, for each abend that it collects. In
the entry, it stores a complete copy of the real-time analysis report and a mini-dump.

FAv12s02Files.ppt Page 3 of 15

Fault history files

� A History File can be set up to wrap around (recommended)
� Oldest entry is deleted to make room for a new one

� "Duplicate" entries can be suppressed to save space
� an abend is a duplicate if all of these are the same:

� program
� compile timestamp
� abend code

� offset

� Duplicate suppression is controlled by the age of an entry
� for example: no duplicates stored for 1 hour after the first abend

� How long does a fault entry stay in the history file ?
� It depends on:

� the size of the file (how many entries it can hold)
� application size
� how frequently applications abend

IBM Fault Analyzer for z/OS - V12 Tutorial 4 © 2012 IBM Corporation

A history file can, and should, be set up to wrap around. Then when it becomes full, the
old entries are automatically deleted to make room for new ones.

Fault Analyzer can be configured so that duplicate abends are not stored. This can be
done to save space on a fault history file. For example, a batch job abends and fault
analyzer processes it. A new fault entry is added to a fault history file, and the information
is stored there. Then, the same job is submitted again and abends again for exactly the
same reason. With duplicate suppression, Fault Analyzer does not store information for
the second abend.

To be considered a duplicate, an abend has to occur in the same program, at the same
offset in the program, with the same abend code, and the program must have the same
compile timestamp. The idea is that if you fix the first one, you have fixed them all. After
some period of time has elapsed, then fault analyzer will store one more abend if the job
fails again.

As a general recommendation, suppressing duplicates for batch jobs may not save that
much space. However, it can be a good idea to suppress duplicates in high-volume online
systems. If an application goes bad in a system like that, rapid fire abends can fill up a
fault history file in a hurry.

Eventually, a fault entry will roll off of the history file. How long it stays there depends on
the size of the history file and how often abends occur. If your abends are being deleted
too quickly, give your systems programmer a call and ask them to increase the size of the
file. If you are concerned about losing a particular fault entry, you can copy it, as you
would copy any PDS member. You will see more about copying fault entries in a later
section.

FAv12s02Files.ppt Page 4 of 15

Fault history files

� One or Multiple History Files can be used
�	 This is typically controlled by the installer / Systems Programmer

�	 Separate files are commonly used for:
� Production versus test

• So test abends will not cause production abends to roll off
� By department or application group

• For security, when program or file information is a concern

� To automatically select a Fault History File, a Fault Analyzer “Analysis
Control user exit” can be used
�	 Choose a fault history file based on job name, tran ID, user ID, and other

characteristics

�	 Typically written by the installer / Systems Programmer

IBM Fault Analyzer for z/OS - V12 Tutorial 5 © 2012 IBM Corporation

Your system can have one big history file for everything, or several history files. Some
organizations do well with only one file. However, it is typically best to separate test and
production abends, if only to prevent a large number of test abends from deleting
production entries. Some customers separate batch and online abends. And there can
even be different history files for different groups or applications. It just depends on the
complexity of your system and how often abends occur.

The installer can customize a special Fault analyzer exit to control which abends are
stored in which history files. The exit can examine the job name, program name, user id,
and other information to make it is determination.

FAv12s02Files.ppt	 Page 5 of 15

� Introduction
� Fault Analyzer overview

� Fault Analyzer files
� Fault history files
� Program side files and compiler listings

� Real-time abend processing
� Real-time fault analysis

� Using the on-line interface
� Opening a fault history file and using a view
� Getting help
� Finding and matching fault entries
� Getting information about a fault entry
� Customizing the columns displayed

Fault Analyzer tutorial

6 IBM Fault Analyzer for z/OS - V12 Tutorial © 2012 IBM Corporation

Next you will see an overview of using side files and compiler listings to provide source
level mapping, to display program statements and variable values.

FAv12s02Files.ppt Page 6 of 15

Source mapping in Fault Analyzer

� Source mapping makes abend analysis much easier !

� With a side file or compiler listing, Fault Analyzer can report:

�	 Program statements

�	 Program variable values

� Without it:
�	 Fault analyzer will report:

� Machine instructions / offsets (instead of statements)
� Storage (instead of variables)

�	 You can still manually map storage to statements and variables if you
have a compiler listing with a map

� Later sections in the training cover how to apply side files and
compiler listings

IBM Fault Analyzer for z/OS - V12 Tutorial 7 © 2012 IBM Corporation

Fault analyzer captures and reports information about program abends, whether source
information is available for the programs or not. However, if you have side files or compiler
listings, your work can be much easier because Fault Analyzer can pinpoint the abending
program statement and show the values of variables.

If side files or compiler listings are not available, Fault Analyzer still reports a lot of
detailed information, but it cannot show you source-level detail. Instead of program
statements and variables, it will show the offset of the abend, machine instructions, and
storage. Use the source mapping capability if you can, because it can save you a lot of
time.

FAv12s02Files.ppt	 Page 7 of 15

Statements and
variables

The name of the side file
or listin is re orted

If a side file or compiler listings is found
program statements and variables can be reported

Statements and
variables

g p

The name of the side file
or listing is reported

8 IBM Fault Analyzer for z/OS - V12 Tutorial © 2012 IBM Corporation

If Fault Analyzer finds a side file or compiler listing for a program, it can show program
statements and variable values. In this example, it is showing a COBOL program
statement where an abend occurred, and the values of the variables that it references.
The name of the file used to perform source mapping is reported.

FAv12s02Files.ppt Page 8 of 15

Machine instructions
and storage are
shown instead of
source statements
and variables

A source file was
not found

If a side file or compiler listing is not found
program statements and variables are not reported

Machine instructions
and storage are
shown instead of
source statements
and variables

A source file was
not found

9 IBM Fault Analyzer for z/OS - V12 Tutorial © 2012 IBM Corporation

If, on the other hand, Fault Analyzer does not find a side file or compiler listing, it still
produces a detailed report. But it cannot display program source statements and variables.
Instead, it shows machine instructions, storage, and offsets. A message is displayed
indicating that a corresponding source mapping file could not be found for the program.

FAv12s02Files.ppt Page 9 of 15

Side files and compiler listings

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

VS COBOL II

�

�

�Assembler

C and C++

OS PLI

PL/I for MVS and VM

Enterprise PLI

OS/VS COBOL

LE COBOL
(incl. Enterprise COBOL)

Sysdebug Compiler Langx Sysadata
Compiler File Listing File File

Fault Analyzer can perform source mapping using these file types:

IBM Fault Analyzer for z/OS - V12 Tutorial 10 © 2012 IBM Corporation

If someone in your organization has already set up your compile processes for Fault
analyzer, then the right files are generated for you when you compile a program. However,
if it is your responsibility to update the compile processes, then research how to set up
each compiler individually.

For the LE COBOL compilers, including Enterprise COBOL, and for recent versions of
Enterprise PLI, fault analyzer supports sysdebug files, compiler listings, and LANGX files.
For all other compiled languages shown on this list, fault analyzer supports compiler
listings and LANGX files. For assembler programs, fault analyzer supports LANGX files
and SYSADATA files.

FAv12s02Files.ppt Page 10 of 15

IBM Fault Analyzer for z/OS - V12 Tutorial 11 © 2012 IBM Corporation

Save a side file or compiler listing for Fault Analyzer

Program
Source

Link Edit Compiler

� Create a Sysdebug file
� (available in recent COBOL and PLI

compilers)

� Save the Compiler Listing
� Requires certain compiler options

� Create a langx file with the
FA IDILANGX utility
� Do this if you want to save space,

since langx files are smaller than
listings

Load
module

TEST
LOADLIB

S
Y

S
P

R
IN

T
D

D

� Update your compile processes to save side files or compiler
listings, in any of these formats:

IDILANGX

Sysdebug
file (PDS)

SYSDEBUG
DD

Compiler
Listing
(PDS)

Langx
file

(PDS)
� Create a Sysadata file (assembler)

A side file or compiler listing can be created when you compile a program. Different
compilers can create different kinds of side files. Some newer compilers produce a
sysdebug file if you specify the right compiler options. This is the best method if your
compiler supports them because they are relatively compressed in size, and they can be
used by other IBM software tools such as debug tool.

Or, you could save your compiler listing in a file. To be able to use a listing, there are
certain compiler options that have to be turned on. It is a best practice to store compiler
listings, whether you are using fault analyzer or not. A compiler listing documents how
your program was generated, and should be saved for as long as the program is in use.

If your compiler is not capable of generating sysdebug files, and your organization
chooses not to store compiler listings, there is a third option. Fault Analyzer provides a
utility program called IDILANGX that reads compiler listings and saves the needed
information in something called a LANGX side file. LANGX files are a good deal smaller
than compiler listings, but comparable in size to Sysdebug files.

For assembler programs, either save a SYSADATA file or a LANGX file.

FAv12s02Files.ppt Page 11 of 15

A promotion can be a
recom ile, co , or move

When a Load Module is
promoted, also promote
the corresponding side
file or compiler listing

Promote side files or compiler listings for PD tools

Load
module

TEST

� Keep files used for source mapping throughout the program life cycle

� Update your promotion processes to retain the files

PROGA

Promote

p py

A promotion can be a
recompile, copy, or move

PROGA

TEST

Promote

QA PROGA

Promote

PROGA QA

Promote

PROD

PROGA PROGA

PROD

LOADLIBs
Sysdebug, langx, sysadata,
compiler listing libraries

When a Load Module is
promoted, also promote
the corresponding side
file or compiler listing

IBM Fault Analyzer for z/OS - V12 Tutorial 12 © 2012 IBM Corporation

If you want to enable source mapping with production abends, your program promotion
processes should take that into account. When a program is promoted, say from test to
QA, or from QA to production, then the side file or compiler listing should be promoted
along with it.

That way, you will have source information for your production programs as well.
Typically, for any load library you have that contains an executable program, you should
have a corresponding side file or listing library.

When the load module gets promoted, the corresponding member or members in the
side file or listings libraries should also get promoted. Depending on how your promotion
processes are designed, it can be done as a recompile, a copy, or a move.

FAv12s02Files.ppt Page 12 of 15

Fault Analyzer searches for a matching side file or listing
for each module

� During real-time analysis:
�	 The file name embedded in the load module can be used

� Some compilers embed the name of the side file or listing in the load module

�	 Options can be coded in JCL using an IDIOPTS DD or other special IDI… DD
names to specify side file and listing libraries

�	 The installer can specify libraries to search in system-wide options
�	 The installer can code a special exit to provide a list of libraries to search

� During reanalysis:
�	 Side files and listings identified during real-time analysis can be used
�	 The file name embedded in the load module can be used
�	 Each user can specify libraries to search in individual reanalysis options
�	 The installer can specify libraries to search in system-wide options
�	 The installer can code a special exit to provide a list of libraries to search
�	 The user can be prompted for side file names, depending on options

� More detail is presented in later training sections:
�	 Fault Analyzer options in JCL for batch jobs
�	 Program source mapping during reanalysis

IBM Fault Analyzer for z/OS - V12 Tutorial 13 © 2012 IBM Corporation

Fault Analyzer automatically searches for matching side files or compiler listings. As it
searches for a matching file, it compares the time stamp and contents of the load module
against the time stamp and contents of the side file or listing looking for the best match.

During real-time analysis, it first examines a program's load module. Some compilers
embed the name of a SYSDEBUG file or listing in the module. If a name is embedded,
that file is checked to see if is a match. Fault Analyzer options can optionally be specified
in the application's run-time JCL to name side file and compiler libraries. The installer can
also specify libraries to be searched in Fault Analyzer's system-wide options, and a Fault
Analyzer exit can also be coded to provide the names of libraries to be searched. All of
these can be searched to find the best match.

During interactive reanalysis, if a side file or listing was identified during real-time
analysis, that file can be used. Next, the file name embedded in the load module can be
checked. Each user can code personal Fault Analyzer options to specify libraries to be
searched. After that, system-wide options are checked for libraries to search, and an exit
can be installed to provide library names. If after searching all of these, a match is not
found, the user may be prompted during interactive reanalysis to name a side file or
compiler listing for each program.

How to control source mapping is presented in more detail in later sections of this
training.

That is the end of this section, an overview of Fault Analyzer Files.

FAv12s02Files.ppt	 Page 13 of 15

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better
meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send email feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_FAv12s02Files.ppt

This module is also available in PDF format at: ../FAv12s02Files.pdf

IBM Fault Analyzer for z/OS - V12 Tutorial 14 © 2012 IBM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

FAv12s02Files.ppt Page 14 of 15

 Trademarks, copyrights, and disclaimers

IBM, the IBM logo, ibm.com, z/OS, and zSeries are trademarks or registered trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of other IBM trademarks is
available on the web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED "AS
IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT PRODUCT
PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR ANY
DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION. NOTHING
CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT OR
LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2012. All rights reserved.

IBM Fault Analyzer for z/OS - V12 Tutorial 15 © 2012 IBM Corporation

FAv12s02Files.ppt Page 15 of 15

