
Page 1 of 17

© 2006 IBM Corporation

Lotus Expeditor 6.1 Education

®

IBM® Lotus ® Expeditor 6.1 Client for Desktop

Messaging

This presentation explains the messaging capabilities in the IBM Lotus Expeditor 6.1 
Client for Desktop.



Page 2 of 17

IBM Software Group | Lotus Expeditor 6.1 Education

© 2006 IBM CorporationMessaging2

Goals

�Understand the messaging services available in 
the IBM Lotus Expeditor 6.1 Client for Desktop

The goal of this presentation is to understand the messaging services provided by IBM 
Lotus Expeditor 6.1 Client for Desktop.



Page 3 of 17

IBM Software Group | Lotus Expeditor 6.1 Education

© 2006 IBM CorporationMessaging3

Agenda

�Key Concepts

�WebSphere® MQ Everyplace®

�MQ Telemetry Transport and Lotus Expeditor 
micro broker

�Messaging Comparison

The agenda of this presentation is to explain key concepts, 

describe the WebSphere MQ Everyplace messaging service, 

describe the MQ Telemetry Transport and Lotus Expeditor micro broker messaging 
services, 

and to compare these messaging services so you can determine which service best meets 
your requirements.



Page 4 of 17

IBM Software Group | Lotus Expeditor 6.1 Education

© 2006 IBM CorporationMessaging4

Key conceptsKey concepts

Section

Let’s start with an overview of key messaging concepts.



Page 5 of 17

IBM Software Group | Lotus Expeditor 6.1 Education

© 2006 IBM CorporationMessaging5

Messaging:
Messaging 101
� Point-to-Point

�Each message is consumed by one and only one receiver
�Queue managers handle queues that store messages

� All queue managers support synchronous messaging
� Queue managers with local queuing can also support asynchronous messaging

�Applications use a queue manager to get or put messages from or to queues
�Destination queues can be local or remote
�Messages for remote queues may hop over intermediate queues

� Publish and Subscribe
�Each message may be consumed by one or more receivers
�Subscribers express interest in messages with information on a subject
�Publishers generate messages with information on a particular subject
�Brokers act as go-betweens, receiving messages from publishers and 

delivering messages to subscribers
�Subscriptions contain records of registered interest with the Broker from 

subscribers

MQ Telemetry
Transport Micro Broker

JMS MQ Everyplace

Messaging is separated into two main categories: Point-to-point messaging, and Publish 
and Subscribe messaging.
To take full advantage of the messaging capabilities of the client platform, it is important to 
understand the differences in these two messaging types.
In Point-to-point messaging, queue managers handle queues that store messages. 
Applications communicate with a local queue manager, and get or put messages to 
queues. If a message is put to a remote queue (a queue owned by another queue 
manager), the message is transmitted over connections to the remote queue manager. In 
this way, messages can hop through one or more intermediate queue managers before 
reaching their final destination. You can configure queue managers with or without local 
queuing. All queue managers support synchronous messaging operations. A queue 
manager with local queuing also supports asynchronous message delivery. The point-to-
point messaging paradigm provides one-to-one messaging. In other words, messages are 
consumed by only one receiver, unlike publish-and-subscribe where messages are 
consumed by multiple receivers.
In Publish and Subscribe messaging the application programming model for a publish 
and subscribe messaging paradigm consists of the following:
Each message may be consumed by one or more receivers
Subscribers : Express an interest in messages containing information on a particular 
subject.
Publishers : Generate messages containing information about a particular subject. 
Messages are sent to a broker. The publish and subscribe messaging paradigm provides 
one-to-many messaging.
Brokers : Act as go-betweens, receiving messages from publishers and comparing them 
to the needs of subscribers. A message is delivered to all subscribers that have expressed 
an interest in the subject of the message.
Subscriptions : Contain records of registered interest with the Broker from a subscriber.



Page 6 of 17

IBM Software Group | Lotus Expeditor 6.1 Education

© 2006 IBM CorporationMessaging6

Messaging categories

Message
Server

Message
Queue Receiver MessageMessage Sender

Point-to-point messaging

Message
Broker

Topic

Subscriber Message

Message Publisher

Publish and subscribe messaging

Subscriber Message

Subscriber Message

JMS MQ Everyplace

MQ Telemetry
Transport Micro Broker

MQ Telemetry
Transport Micro Broker

JMS MQ Everyplace

This slide illustrates how point-to-point and publish and subscribe messaging work.  As 
you can see, the client platform provides point-to-point messaging through the Java™

Message Service (JMS) with WebSphere MQ Everyplace (MQe), and publish and 
subscribe messaging through the MQ Telemetry Transport (MQTT) and micro broker.
Let’s explore each of these messaging services in more detail.



Page 7 of 17

IBM Software Group | Lotus Expeditor 6.1 Education

© 2006 IBM CorporationMessaging7

MQ EveryplaceMQ Everyplace

Section

Next, let’s explore the capabilities provided by the MQ Everyplace messaging service.



Page 8 of 17

IBM Software Group | Lotus Expeditor 6.1 Education

© 2006 IBM CorporationMessaging8

Messaging: Point-to-point
WebSphere MQ Everyplace (MQe)
� Supports the JMS 1.1 API

�javax.jms

� WebSphere MQ Everyplace implements point-to-point messaging
�Provides a small, embeddable version of WebSphere MQ for clients

�Extends WebSphere Business Integration to clients
� Configure MQe queue manager with bridge capabilities

�Supports synchronous message delivery

�Supports asynchronous message delivery
� Provides once-only, assured delivery of transaction messages

� Supports online and offline operations via local message queues

�Secures messages via encryption, non-repudiation, authentication

�Compresses messages to reduce transmission costs

JMS MQ Everyplace

Java Message Service (JMS) is the standard Java API for messaging. It supports the two messaging 
categories: point-to-point messaging and publish and subscribe messaging. JMS is defined as part of J2EE. 
It defines a package of Java interfaces, which allows for provider-independence, but does not necessarily 
allow for provider interoperability. The JMS APIs are provided with the client platform. 

The client platform also includes a point to point JMS provider based on MQe messaging. The MQe 
classes for JMS are a set of Java classes that implement the JMS interfaces to enable JMS programs to 
access MQe systems.

WebSphere MQ Everyplace (MQe) is a member of the IBM WebSphere MQ family of business 
messaging products. It exchanges messages with various applications, providing once and once-only 
assured delivery leveraging the point to point message paradigm.

MQe provides an integrated set of security features enabling the protection of message data both when 
held locally and when being transferred. With synchronous message delivery, the application puts the 
message to MQe for delivery to the remote queue. MQe simultaneously contacts the target queue and 
delivers the message. After delivery, MQe returns immediately to the application. If the message cannot be 
delivered, the sending application receives immediate notification. MQe does not assume responsibility for 
message delivery in the synchronous case (non-assured message delivery). 

With asynchronous message delivery, the application puts the message to MQe for delivery to a remote 
queue. MQe immediately returns to the application. If the message can be delivered immediately, or moved 
to a suitable staging post, it is sent. If not, it is stored locally. Asynchronous delivery provides once and once-
only assured delivery. After the message is provided to MQe, control is returned to the application. MQe next 
takes responsibility for assured delivery of the message. Delivery occurs in the background allowing the 
application to carry on its processing. 

MQe also has the ability to exchange messages with WebSphere MQ host queue managers and brokers. 
To do this, configure a MQe queue manager with bridge capabilities. Without the bridge, a queue manager 
can communicate directly only with other MQe queue managers. However, it can communicate indirectly 
through other queue managers in the network that have bridge capabilities. 

MQe secures messages using encryption, non-repudiation, authentication, and compresses messages to 
reduce transmission costs.



Page 9 of 17

IBM Software Group | Lotus Expeditor 6.1 Education

© 2006 IBM CorporationMessaging9

MQ Everyplace topologies

(a) Standalone device

Device

(c) Device cluster

Device

Device

Gateway

(d) Complex device cluster

Device

Device

Gateway

Device

Device

Gateway

(b) Peer - peer devices

Device

Device

(e) Base messaging family 

Device

Device

Server

Client

Client

Gateway

(f) Broker Integration 

Device

Device

Server

Client

Gateway Broker

JMS MQ Everyplace

This slide shows topologies supported by WebSphere MQ Everyplace.



Page 10 of 17

IBM Software Group | Lotus Expeditor 6.1 Education

© 2006 IBM CorporationMessaging10

MQ telemetry transport and the Lotus MQ telemetry transport and the Lotus 
Expeditor micro brokerExpeditor micro broker

Section

Next, let’s cover the capabilities provided by the MQ Telemetry Transport and the micro 
broker messaging service.



Page 11 of 17

IBM Software Group | Lotus Expeditor 6.1 Education

© 2006 IBM CorporationMessaging11

Messaging: Publish and subscribe
MQ telemetry transport 
� Supports the MQttClient API
�com.ibm.mqtt.MqttClient.* (connect, disconnect, publish, subscribe, 

unsubscribe)

� Protocol
�Open protocol designed specifically for tiny devices such as sensors 

(or thermometers) and actuators (or valves)

�Optimized for communication over low bandwidth, high cost networks 

�Uses publish/subscribe messaging model 

�Supports a range of Quality of Service (QoS) for message delivery
� QoS 0 - “At most once” delivery. Delivery is not assured; acknowledgement is not 

expected.  QoS 0 is also known as fire and forget.
� QoS 1 - “At least once” delivery. Successful delivery is assured and an 

acknowledgment sent. Duplicates may be received. 

� QoS 2 – “Exactly once” delivery. Similar to QoS1 but message delivery is assured 
and there will be no duplicates i.e. once and only once.

MQ Telemetry
Transport Micro Broker

MQ Telemetry Transport (MQTT) is an open protocol designed for resource-constrained 
devices and networks, providing publish and subscribe messaging over TCP/IP. 

Clients operate in conjunction with a suitable message broker, such as the micro broker, 
WebSphere Business Integration (WBI) Message Broker, or WBI Event Broker, which are 
responsible for the syndication of messages. 

As a wire protocol, no device API is mandated; rather, the implementations expose a 
simple semantic including: connect/disconnect, publish, and subscribe/unsubscribe. 

Provision is made for assurance of message delivery using one of three levels of service; 
fire and forget, at most once, and exactly once. 

By minimizing the requirement on network bandwidth, it is practical to use MQTT in wide 
area networks, which typically have lower link speeds than wired networks. This facilitates 
not only using MQTT for the collection of data, but also for the presentation of data on 
handheld devices. 

A Java client implementation of the MQTT wire protocol is provided to simplify MQTT 
client programming. For more information, see the URL: http://www.mqtt.org.



Page 12 of 17

IBM Software Group | Lotus Expeditor 6.1 Education

© 2006 IBM CorporationMessaging12

Messaging: Publish and subscribe
micro broker 

� Small footprint, 100% Java message broker

� Supports messaging, notification and event services

� Enables lightweight messaging clients to communicate with 
each other, on one host, across a network, or with 
enterprise brokers (with bridge capabilities)

� Uses the MQ Telemetry Transport protocol over TCP/IP

� Provides a “Bridge” to transform and route messages to 
WebSphere Business Integration Message Brokers or 
WebSphere MQ

MQ Telemetry
Transport Micro Broker

The micro broker is a very small footprint, 100% Java message broker, capable of running 
in resource-constrained environments. It is suitable for embedding in applications and 
solutions that have a need for messaging, notification and event services. Micro broker 
supports the publish and subscribe messaging paradigm. It provides a messaging 
infrastructure, which enables lightweight messaging clients to communicate with each 
other, on one host or across a network, as well as with enterprise brokers through its 
bridging capabilities.

Micro broker uses the MQ Telemetry Transport (MQTT) protocol over TCP/IP and, 
optionally, uses a DB2e database to provide persistent storage of publications and state 
information.  The Micro broker also provides a “Bridge” to transform and route messages 
to WebSphere Business Integration Message Brokers or WebSphere MQ, thus enabling 
connection to an Enterprise Service Bus.



Page 13 of 17

IBM Software Group | Lotus Expeditor 6.1 Education

© 2006 IBM CorporationMessaging13

Micro broker topology

(a) standalone

Client Bridge
Micro
Broker

Client

Client

(b) Peer to Peer

Client
Micro

Broker

Client

Client

Client
Micro
Broker

Client

Client

Bridge

(c) Enterprise Connectivity

Client
micro
broker

Client

Client

WBI
Event
Broker

WebSphere
MQ

WBI
Message
Broker

MQTT

MQTT

MQ

Local

MQTT

JVM
machine

MQ Telemetry
Transport micro broker

This slide shows topologies supported by the micro broker.

Green ovals indicate JVM boundaries

Orange ovals indicate machine boundaries



Page 14 of 17

IBM Software Group | Lotus Expeditor 6.1 Education

© 2006 IBM CorporationMessaging14

Messaging comparisonMessaging comparison

Section

Finally, let’s compare these messaging services to help you determine which service best 
meets your requirements.



Page 15 of 17

IBM Software Group | Lotus Expeditor 6.1 Education

© 2006 IBM CorporationMessaging15

Messaging comparison

Fire and forget, at least once, 
and exactly once

At least once and exactly onceQOS for message 
delivery

NoYesBuilt in security

NoYesLocal & remote queues

Yes; Java and ‘c’NoSmall footprint client

MQTT standards basedMQe-specificWire protocol

Bridge to MQ and WebSphere 
Business Integration Message 
and Event Brokers

Bridge to MQe and WebSphere 
Business Integration Message 
and Event Brokers

Bridging – provides 
bridge to ESB

Java-based (platform-
independent) implementation

Java-based (platform-
independent) implementation

Implementation type

Publish and Subscribepoint-to-point (queue-based)Messaging paradigm

YesYes. point-to-point provider.JMS provider included

Micro Broker and MQTTWebSphere MQ Everyplace

MQ Telemetry
Transport micro broker

JMS MQ Everyplace

Use this table to help you decide which messaging service meets your requirements.  
However, please note that this table is not an exhaustive comparison of the two products. 
See the product documentation for more complete information about these products.



Page 16 of 17

IBM Software Group | Lotus Expeditor 6.1 Education

© 2006 IBM CorporationMessaging16

Notes

� MQe permits only a single QueueManager
to be defined per JVM.  Applications that define their own 
queue manager infrastructure cannot co-exist with other 
applications that do the same.

� Avoid non Latin 1 characters in Queue Manager/Queue 
information

� Micro broker permits only a single broker instance per JVM

� Topics are limited to ‘ASCII’ character subset of UTF8

MQ Telemetry
Transport micro broker

JMS MQ Everyplace

This slide covers some additional notes regarding messaging.

MQe permits only a single QueueManager to be defined per JVM.  Applications that define 
their own queue manager infrastructure cannot co-exist with other applications that do the 
same.

Avoid non Latin 1 characters in Queue Manager and Queue information

Micro Broker permits only a single broker instance per JVM

Topics are limited to ‘ASCII’ character subset of UTF8



Page 17 of 17

IBM Software Group | Lotus Expeditor 6.1 Education

© 2006 IBM CorporationMessaging

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

Everyplace IBM Lotus WebSphere

Java, JVM, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication.  Product data is subject to change without notice.  This document could include 
technical inaccuracies or typographical errors.  IBM may make improvements or changes in the products or programs described herein at any time without notice. Any 
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.  References in this 
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM 
operates or does business.  Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.  
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind.  THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY 
WARRANTY, EITHER EXPRESS OR IMPLIED.  IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information.   IBM products are warranted, if at all, according to the terms and 
conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which 
they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly 
available sources.  IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other 
claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights.  Inquiries regarding 
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY  10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment.  All customer examples described are presented 
as illustrations of how those customers have used IBM products and the results they may have achieved.  The actual throughput or performance that any user will 
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, 
and the workload processed.  Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the 
ratios stated here.

© Copyright International Business Machines Corporation 2006.  All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule 
Contract and IBM Corp.

17

This concludes the presentation.


