
Page 1 of 19

This presentation explains the Embedded Transaction Container and JNDI services

supported by IBM Lotus Expeditor Client for Desktops.

Page 2 of 19

The goal of this presentation is to understand the Embedded Transaction Container and

JNDI services supported by IBM Lotus Expeditor Client for Desktop.

Page 3 of 19

The agenda of this presentation is to explain the JNDI and Embedded Transaction

Container services.

Page 4 of 19

Let’s start with an explanation of JNDI.

Page 5 of 19

The client platform provides a simple Java object JNDI registry that enables applications

to lookup named objects (for example, EJBs and data sources).

The JNDI provider enables a local naming directory for objects running in the client

platform to communicate using standard Java naming APIs. The runtime client JNDI

implementation is very lightweight and does not support federation of other name spaces,

rather it provides a simple hierarchical name space for client applications. In most cases,

applications leveraging JNDI do not need to interact directly with JNDI Name objects and

simply use String representations of the names to be bound or located.

The JNDI provider does not persist objects or their state information across platform

restarts, so the platform administrator is responsible for binding the objects each time the

platform starts and configuring those objects as needed before binding them into the JNDI

registry. While the application itself could programmatically register the objects that it

needs each time the platform starts, the client platform provides another declarative model

for JNDI bindings. Objects that need to be bound into JNDI can be declared using Eclipse

extension points, so that when a lookup request is made for a specific object using its

JNDI name, the JNDI provider will locate the declarative definition, create the object and

return it to the client application on-demand. This “lazy” creation of objects provides for

faster platform startup and memory allocation based on actual need, rather than expected

need.

Page 6 of 19

The JNDI object factories are used by JNDI provider to create objects defined using

extension points. The defined factories are listed on this slide and the next slide.

Page 7 of 19

The JNDI object factories are used by JNDI provider to create objects defined using

extension points. The defined factories listed on this slide are continued from those listed

on the previous slide.

Page 8 of 19

Page 9 of 19

This slide describes the JNDI generic object extension point.

Page 10 of 19

While this capability is provided, it is not expected that you will create your own object

factory instance.

Page 11 of 19

Next, let’s study the Embedded Transaction Container.

Page 12 of 19

The Embedded Transaction Container (ETC) provides the ability to deploy Enterprise Java

Beans to the client platform. Before describing the details of the Embedded Transaction

Container, here is a quick review of key concepts for Enterprise JavaBeans (or EJBs).

Page 13 of 19

The Embedded Transaction Container provides tools and runtime support for local

Enterprise Java Beans. The Embedded Transaction Container supports a subset of

features in the EJB 2.0 specification as shown in this slide. The toolkit compiles and

packages an EJB into a deployable bundle, called an Embedded Transaction Application

bundle. The Embedded Transaction Application can be deployed onto any platform that is

supported by the Embedded Transaction Container.

Page 14 of 19

The Embedded Transaction Container is designed to be a light weight container, and,

therefore, does not support certain features in the EJB 2.0 specification as shown in this

slide. Keep these restrictions in mind as you develop your Embedded Transaction

Applications.

Page 15 of 19

This slide shows the Transaction Container infrastructure on the client platform, including

the plug-ins (components) installed with the client platform and a description of each of

these plug-ins.

Page 16 of 19

The Embedded Transaction Container incorporates logging and tracing for serviceability.

JSR 47 logging is used to log all messages. Runtime logging and tracing levels can be

modified by updating rcpinstall.properties. Details can be found in the guide Developing

applications for Lotus Expeditor.

Page 17 of 19

What is included in EJB packaging? One or more beans can exist in each bundle,

definitions for JNDI binding generated by tools. The bundle containing the bean is started

when bean lookup occurs.

Page 18 of 19

