
Page 1 of 19

© 2007 IBM Corporation

®

IBM Lotus ® Expeditor Client for Desktop

Embedded transaction container and JNDI

IBM Software Group Lotus Expeditor 6.1.1 Education

This presentation explains the Embedded Transaction Container and JNDI services
supported by IBM Lotus Expeditor Client for Desktops.

Page 2 of 19

© 2007 IBM CorporationEmbedded transaction container and JNDI2

IBM Software Group Lotus Expeditor 6.1.1 Education

Goal

�Understand the embedded transaction container
and Java™ naming and directory interface (JNDI)
services provided by IBM Lotus Expeditor Client for
Desktop

The goal of this presentation is to understand the Embedded Transaction Container and
JNDI services supported by IBM Lotus Expeditor Client for Desktop.

Page 3 of 19

© 2007 IBM CorporationEmbedded transaction container and JNDI3

IBM Software Group Lotus Expeditor 6.1.1 Education

Agenda

� JNDI

�Embedded transaction container

The agenda of this presentation is to explain the JNDI and Embedded Transaction
Container services.

Page 4 of 19

© 2007 IBM CorporationEmbedded transaction container and JNDI4

IBM Software Group Lotus Expeditor 6.1.1 Education

JNDIJNDI

Section

Let’s start with an explanation of JNDI.

Page 5 of 19

© 2007 IBM CorporationEmbedded transaction container and JNDI5

IBM Software Group Lotus Expeditor 6.1.1 Education

Java naming and directory interface

� Supports the JNDI API (J2SE 1.4)
�javax.naming (access naming services)

�javax.naming.spi (plug-in naming services)

� Delivers a lightweight JNDI provider
�Simple hierarchical name space for client applications

�No federation of other name spaces
�Objects registered by JNDI name in JNDI registry

� for example, java:comp/env/jdbc/dsname

�Declarative JNDI dynamically adds and removes objects from registry
� Implemented as Eclipse extension point

� Enables faster platform startup time by “lazy” creation of objects on demand

�Does not persist objects or state information across client platform restarts

� Enables applications to look up named objects (for example, EJBs and
data sources)

JNDI

JNDI Provider

The client platform provides a simple Java object JNDI registry that enables applications
to lookup named objects (for example, EJBs and data sources).

The JNDI provider enables a local naming directory for objects running in the client
platform to communicate using standard Java naming APIs. The runtime client JNDI
implementation is very lightweight and does not support federation of other name spaces,
rather it provides a simple hierarchical name space for client applications. In most cases,
applications leveraging JNDI do not need to interact directly with JNDI Name objects and
simply use String representations of the names to be bound or located.

The JNDI provider does not persist objects or their state information across platform
restarts, so the platform administrator is responsible for binding the objects each time the
platform starts and configuring those objects as needed before binding them into the JNDI
registry. While the application itself could programmatically register the objects that it
needs each time the platform starts, the client platform provides another declarative model
for JNDI bindings. Objects that need to be bound into JNDI can be declared using Eclipse
extension points, so that when a lookup request is made for a specific object using its
JNDI name, the JNDI provider will locate the declarative definition, create the object and
return it to the client application on-demand. This “lazy” creation of objects provides for
faster platform startup and memory allocation based on actual need, rather than expected
need.

Page 6 of 19

© 2007 IBM CorporationEmbedded transaction container and JNDI6

IBM Software Group Lotus Expeditor 6.1.1 Education

JNDI object factories

� Used by JNDI provider
� to create objects defined by extension points

� Defined factories
�com.ibm.pvc.jndi.provider.java.GenericObjectFactory

– Creates objects of any type

– Calls methods on objects

�com.ibm.pvc.txncontainer.EJBObjectFactory
– Creates EJB objects

�com.ibm.pvc.txncontainer.TxnDataSourceObjectFactory
– Creates special type of data source for transaction container managed transactions

�com.ibm.rcp.ws.objectfactory.WSObjectFactory
– Provides a pre-initialized instance of Web services client stub for Apache Axis

JNDI

JNDI Provider

The JNDI object factories are used by JNDI provider to create objects defined using
extension points. The defined factories are listed on this slide and the next slide.

Page 7 of 19

© 2007 IBM CorporationEmbedded transaction container and JNDI7

IBM Software Group Lotus Expeditor 6.1.1 Education

JNDI object factories (continued)

� Defined factories (continued from previous slide)

�com.ibm.rcp.ws.objectfactory.WSObjectFactory
– Provides a pre-initialized instance of Web services client stub for Apache Axis

�com.ibm.msg.client.JMSConnectionFactory
– Binds JMS administered objects to the Expeditor JNDI repository

�com.ibm.rcp.datatbase.core.ManagedDatasourceObjectFactory
– Declares a managed datasource to the database infrastructure

�Com.ibm.msg.client.JMSTopicFactory
– Allows additional topic properties to be specified

�Com.ibm.msg.client.JMSQueueFactory
– Allows additional topic properties to be specified

JNDI

JNDI Provider

The JNDI object factories are used by JNDI provider to create objects defined using
extension points. The defined factories listed on this slide are continued from those listed
on the previous slide.

Page 8 of 19

© 2007 IBM CorporationEmbedded transaction container and JNDI8

IBM Software Group Lotus Expeditor 6.1.1 Education

JNDI binding extension point

� com.ibm.pvc.jndi.provider.java.binding
�Defines an object that can be located using JNDI
�References an object factory that knows how to create the object

�Extension registry searched on lookup request

<extension point="com.ibm.pvc.jndi.provider.java.bi nding">
<binding

jndi-name="java:comp/env/jdbc/dsname“
objectFactory-

id="com.ibm.pvc.jndi.provider.java.genericobjectfac tory">
</binding>

</extension>

JNDI

JNDI Provider

Page 9 of 19

© 2007 IBM CorporationEmbedded transaction container and JNDI9

IBM Software Group Lotus Expeditor 6.1.1 Education

JNDI generic object extension point

� com.ibm.pvc.jndi.provider.java.genericobject
�Defines how to create object

� object class
� methods with parameters to call on object

�Used for general data source objects

<extension point="com.ibm.pvc.jndi.provider.java.ge nericobject">
<object jndi-name="java:comp/env/jdbc/dsname“

class="com.ibm.db2e.DB2eDataSource">
<method name="setUrl">

<method-parameter type="String" value="jdbc:db2e:oe db“/>
</method>

</object>
</extension>

JNDI

JNDI Provider

This slide describes the JNDI generic object extension point.

Page 10 of 19

© 2007 IBM CorporationEmbedded transaction container and JNDI10

IBM Software Group Lotus Expeditor 6.1.1 Education

JNDI object factory extension point

� com.ibm.pvc.jndi.provider.java.objectfactory
�Defines an object factory that can be used to create objects
�New object factory needed

� for specialized object type

� genericobjectfactory does not suffice

<extension point="com.ibm.pvc.jndi.provider.java.obj ectfactory">
<objectfactory id="com.ibm.pvc.txncontainer.EJBObjec tFactory“

class="com.ibm.pvc.txncontainer.EJBObjectFactory">
</objectfactory>

</extension>

JNDI

JNDI Provider

While this capability is provided, it is not expected that you will create your own object
factory instance.

Page 11 of 19

© 2007 IBM CorporationEmbedded transaction container and JNDI11

IBM Software Group Lotus Expeditor 6.1.1 Education

Embedded transaction containerEmbedded transaction container

Section

Next, let’s study the Embedded Transaction Container.

Page 12 of 19

© 2007 IBM CorporationEmbedded transaction container and JNDI12

IBM Software Group Lotus Expeditor 6.1.1 Education

Embedded transaction applications
Enterprise Java Bean (EJB) 101
� Types of EJBs

�Session – Performs a task for a client (for example, add or remove a book
from a shopping cart)

�Entity – Represents a business object (for example, order) that exists in
persistent storage (for example, database)

�Message-driven – Acts as a listener for the JMS API, processing messages
asynchronously

� State management modes for session beans
�Stateful session beans – Maintains state for duration of client-bean session
�Stateless session beans – Does not maintain state

� Persistence for entity beans
�Bean-managed persistence (BMP) – Entity bean contains code to access

persistent store (for example, database)
�Container-managed persistence (CMP) – Enterprise bean container

automatically generates the necessary storage access calls based on bean’s
deployment descriptor

EJB 2.0 subset

Transaction
Container

The Embedded Transaction Container (ETC) provides the ability to deploy Enterprise Java
Beans to the client platform. Before describing the details of the Embedded Transaction
Container, here is a quick review of key concepts for Enterprise JavaBeans (or EJBs).

Page 13 of 19

© 2007 IBM CorporationEmbedded transaction container and JNDI13

IBM Software Group Lotus Expeditor 6.1.1 Education

Embedded transaction applications
Embedded transaction container (ETC)
� Supports this subset of the EJB 2.0 specification:
�Remote and Local Homes for local EJBs
�Stateless Session Beans
�Entity Beans, both BMP and CMP at both the EJB 1.1 and EJB 2.0

specification levels (local homes, use of abstract persistence schema)
�Container-managed transactions
�Entity bean tool CMP support for container managed field types that

implement java.io.Serializable.
�CMP supports DB2e 9.1.1 and Derby™ 10.2
�JDBC data source support
�JNDI support
�Container-managed Relationships

� Toolkit compiles an EJB into a deployable embedded
transaction application bundle

EJB 2.0 subset

Transaction
Container

The Embedded Transaction Container provides tools and runtime support for local
Enterprise Java Beans. The Embedded Transaction Container supports a subset of
features in the EJB 2.0 specification as shown in this slide. The toolkit compiles and
packages an EJB into a deployable bundle, called an Embedded Transaction Application
bundle. The Embedded Transaction Application can be deployed onto any platform that is
supported by the Embedded Transaction Container.

Page 14 of 19

© 2007 IBM CorporationEmbedded transaction container and JNDI14

IBM Software Group Lotus Expeditor 6.1.1 Education

Embedded transaction applications
ETC (continued)
� Does not support these features of the EJB 2.0

specification:
�Stateful sessions beans
�Pass-by-copy semantics for mutable serializable objects when

running in a single address space
�For EJB 1.1, the embedded transaction container does not persist

references to an EJB’s remote or remote home interfaces
� This capability is not required for EJB 2.0

�Message-driven beans
�Java security support
�EJB query language
�Home methods
�Bean-managed transactions

EJB 2.0 subset

Transaction
Container

The Embedded Transaction Container is designed to be a light weight container, and,
therefore, does not support certain features in the EJB 2.0 specification as shown in this
slide. Keep these restrictions in mind as you develop your Embedded Transaction
Applications.

Page 15 of 19

© 2007 IBM CorporationEmbedded transaction container and JNDI15

IBM Software Group Lotus Expeditor 6.1.1 Education

Transaction container infrastructure

Fully compliant J2SE JDBC interfacecom.ibm.pvc.txncontainer.jclmax

JSR 169 JDBC interface (for device)com.ibm.pvc.txncontainer.j2se

Transaction Container Implementationcom.ibm.pvc.txncontainer

Common classes shared between
runtime and tools

com.ibm.pvc.txncontainer.common

JTA APIscom.ibm.pvc.jta

EJB APIscom.ibm.pvc.ejb

DescriptionPlug-in ID

EJB 2.0 subset

Transaction
Container

com.ibm.pvc.ejb com.ibm.pvc.jta

com.ibm.pvc.txncontainer.j2se

or

com.ibm.pvc.txncontatiner.jclmax

com.ibm.pvc.txncontainer.common

com.ibm.pvc.txncontainer

This slide shows the Transaction Container infrastructure on the client platform, including
the plug-ins (components) installed with the client platform and a description of each of
these plug-ins.

Page 16 of 19

© 2007 IBM CorporationEmbedded transaction container and JNDI16

IBM Software Group Lotus Expeditor 6.1.1 Education

Transaction container serviceability

� The embedded transaction container leverages
JSR 47 logging to log all messages

� JSR 47 logging is the Expeditor platform runtime
logging framework
�Default settings

� Logging turned on, default level is INFO

� Tracing turned off

�Runtime logging and tracing levels can be modified
by updating rcpinstall.properties

EJB 2.0 subset

Transaction
Container

The Embedded Transaction Container incorporates logging and tracing for serviceability.
JSR 47 logging is used to log all messages. Runtime logging and tracing levels can be
modified by updating rcpinstall.properties. Details can be found in the guide Developing
applications for Lotus Expeditor.

Page 17 of 19

© 2007 IBM CorporationEmbedded transaction container and JNDI17

IBM Software Group Lotus Expeditor 6.1.1 Education

EJB packaging

�One or more beans exist in each bundle

�Definitions for JNDI binding generated by tools

�Bundle containing bean is started when bean
lookup occurs

EJB 2.0 subset

Transaction
Container

What is included in EJB packaging? One or more beans can exist in each bundle,
definitions for JNDI binding generated by tools. The bundle containing the bean is started
when bean lookup occurs.

Page 18 of 19

© 2007 IBM CorporationEmbedded transaction container and JNDI18

IBM Software Group Lotus Expeditor 6.1.1 Education

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject= Feedback about xpdv6.1.1_access_services_etc.ppt

You can help improve the quality of IBM Education Assistant content by providing
feedback.

Page 19 of 19

© 2007 IBM CorporationEmbedded transaction container and JNDI

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM Lotus

EJB, J2SE, Java, JDBC, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY
WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and
conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which
they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly
available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

© Copyright International Business Machines Corporation 2007. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

IBM Software Group Lotus Expeditor 6.1.1 Education

