
DS_operating_sys.ppt

This presentation discusses the operating system utility tracing technique called “truss”.

Page 1 of 17

DS_operating_sys.ppt

The truss utility executes the specified command and produces a trace of the system calls

it performs, the signals it receives, and the machine faults incurred. Truss can also

connect to a process that is already running. For example, you can truss the dsapi_slave

process for an established client connection by connecting truss to the dsapi_slave

process. You can also use truss to start and trace new processes such as the execution of

“dsjob”.

Page 2 of 17

DS_operating_sys.ppt

If you want to connect to an existing process, use the –p argument with the process ID of
the process you want to trace. Use the –o argument to specify the name of the output file
you want to write the trace information to. The –f argument is very important as it will
continue to trace child processes created by fork or vfork.

Page 3 of 17

DS_operating_sys.ppt

Some other useful arguments are –a, which shows the argument strings that are passed
in each exec() system call. The -e argument shows the environment strings that are
passed in each exec() system call.

An example of using truss on a dsapi_slave process with a process ID of 12345 is:

truss –fae –p 12345 –o /tmp/truss.out.

You must use truss as root or as the owner of the process. Non-root users cannot truss
another user’s processes.

Page 4 of 17

DS_operating_sys.ppt

Some examples of places where truss is useful when supporting DataStage® include

tracing odbc connection failures. It is also useful to connect truss to dsapi_slave process

to trace things such as client disconnecting, plug-ins not loading and metadata import

failing.

Truss outputs a large amount of data so you want to use it for easily reproducible issues

and not for a problem where a job aborts after 50,000 rows are processed.

Page 5 of 17

DS_operating_sys.ppt

Truss will show you things like where it is looking for libraries it needs to load, what files

are opened by the process, what other processes are executed, and more. It allows you

the ability to see what is succeeding and what is failing and what files and libraries the

process is using or searching for.

Page 6 of 17

DS_operating_sys.ppt

This slide displays some examples of other “truss like” tracing tools on other platforms.

You will want to look at the manual page to get the exact syntax for each.

Page 7 of 17

DS_operating_sys.ppt

This first example involves how you can use truss to resolve an issue where the odbc

drivers are not connecting properly. In this example, you cannot connect to a database

using odbc. You are getting an error message that the data source cannot be found. You

have verified that the data source has been added to both the $DSHOME/.odbc.ini file and

the uvodbc.config file in the project directory. You have checked the DSN in both files and

everything looks correct. In order to trace properly, the first thing you want to do is source

the dsenv file so that your environment is set up like the DataStage environment. Next, run

the demoodbc program to see if that works or fails. In this example, you find that

demoodbc gives the same error message as DataStage. Use truss to try to find the error.

Since it is saying it can’t find the data source and you know the data source is in the

.odbc.ini file that was edited, use truss to see exactly which .odbc.ini file it is looking at.

Page 8 of 17

DS_operating_sys.ppt

You are going to use truss to trace the demoodbc connection since this shows the same

error and is a simpler process and will produce less output in your trace file. To do this

type:

truss –fae –o /tmp/truss.out demoodbc MyOracle -UID scott -PWD tiger

Search the truss.out file for “odbc.ini”. This will show you the full path to the file that it

opened. You can see it is not looking at the right .odbc.ini file. You need to check the

ODBCINI environment variable in dsenv and make it point to the correct file. It should be

looking at the .odbc.ini file located in the DSEngine directory and not the one in

branded_odbc.

Page 9 of 17

DS_operating_sys.ppt

In this second example, you receive an error when trying to import plug-in metadata with

the Oracle plug-in. The error is “Unable to initialize plug-in”. Normally this error indicates

an issue with loading a library that the plug-in requires but it isn’t possible to tell from this

error message which library it is having problems with.

Page 10 of 17

DS_operating_sys.ppt

You need to attach truss to the running dsapi_slave process for the client that is receiving

the error. In this example, your were using a DataStage instance that was running on the

default port. Perform a ps –ef|grep dscs to see which dscs process is on the default port.

The process ID for dscs is 116228. Truss the child dsapi_slave process because dscs is

the parent. Do another ps –ef|grep 116228 to find the child dsapi_slave process. In this

case the process ID for the dsapi_slave process is 32596.

Page 11 of 17

DS_operating_sys.ppt

Because truss outputs a large volume of data, it is necessary to try to get as close to the

error as possible before attaching truss to the process. This will help minimize the amount

of output. Since the error occurs when you are importing metadata, bring up that screen

first and then attach the truss. The command to use is:

truss –fae –o /tmp/truss.out -p 32596

When you enter this command, you will not get a prompt back, that’s ok, let it sit. Next,

continue with your import until you see the error message.

Page 12 of 17

DS_operating_sys.ppt

Once you have received the error from the client, go back to the window where the truss is

running and type “control C”. This will exit the truss process. Once it is complete, look at

the log file.

Most of the truss file can be information that is not readable by the average user. Look for

things that can easily be read, such as what files are being opened, where do the open

files fail, where do they succeed and what error messages are produced.

Page 13 of 17

DS_operating_sys.ppt

The output displayed on this slide is what you see when you are able to successfully open

the library libc.so.1. What you see in the trace is the process going through each directory

in the library path until either the file is found or there are no more directories in the library

path and the search fails. In this case, the library is found in /usr/lib.

Page 14 of 17

DS_operating_sys.ppt

As you continue to look through the trace file, you can see that the process is looking for

the libclntsh.so library. You can see truss going through all of the directories in your library

path but it never finds the libclntsh.so library. You know that libclntsh.so is an Oracle client

library. If it is a library that you don’t know, do a “find” on your server to see where the

library is located.

Page 15 of 17

DS_operating_sys.ppt

For this example, if you look closely at the trace file, you can see that it was looking for the

library in "/opt/oracle/ora92/lib42”. You can see that there is a typing error in the library

path, it should be /opt/oracle/ora92/lib32 not 42. In this case, it is necessary to update the

dsenv file, fix the typing error in the library path, and then stop and restart the DataStage

engine.

Page 16 of 17

DS_operating_sys.ppt Page 17 of 17

