
cs21sec.ppt Page 1 of 26

This presentation provides an overview of the z/OS® V2R1 Communications Server 
enhancements for Security.



cs21sec.ppt Page 2 of 26

Application Transparent Transport Layer Security applies Transport Layer Security 
protection, using System SSL, to specific application traffic from within the TCP/IP stack, 
based on policies that you configure. Application Transparent Transport Layer Security 
policies specify which TCP traffic is to be protected. These policies are based on things 
such as the local and remote IP addresses and ports, whether the connections are 
inbound or outbound, the identity under which the z/OS application is running, and the time 
of day. As data passes through the stack, it is compared against the Application 
Transparent Transport Layer Security policy. If a match is found, the Transport Layer 
Security protection specified by the matching policy is applied by calling System SSL 
under the application’s identity.
Application Transparent Transport Layer Security policies are created using Configuration 
Assistant for z/OS Communications Server, which is a GUI-based tool that runs under 
z/OSMF and accessed through a browser. Configuration Assistant creates the policy files 
that are then read by the z/OS policy agent and installed into the TCP/IP stack.
In many cases, Application Transparent Transport Layer Security is completely transparent 
to the application. However, for applications that want some involvement in the state of the 
Transport Layer Security session, Application Transparent Transport Layer Security 
provides an optional application programming interface that allows for awareness, or even 
control, over the Transport Layer Security session. Some applications need to inspect 
certain aspects of the session, for example, you might want to examine the certificate of 
the Transport Layer Security partner before proceeding to use the Transport Layer 
Security connection. These are called “Application Transparent Transport Layer Security 
aware” applications. Other applications need to control when the Transport Layer Security 
handshake occurs or terminates. FTP is a good example of such an application. This is 
also possible through the Application Transparent Transport Layer Security API. These 
applications are called “Application Transparent Transport Layer Security controlling” 
applications.



cs21sec.ppt Page 3 of 26

Transport Layer Security works only over TCP connections. Application Transparent 
Transport Layer Security supports all programming languages except for Pascal. 
Application Transparent Transport Layer Security supports the full range of Transport 
Layer Security configurations. So, your z/OS application can act as a Transport Layer 
Security client or a Transport Layer Security server. And both server and client 
authentication are supported. The remote Transport Layer Security partner sees z/OS as 
an RFC-compliant Transport Layer Security implementation. And z/OS works with other 
RFC-compliant Transport Layer Security implementations. So, even from the remote 
endpoint’s perspective, Application Transparent Transport Layer Security is completely 
transparent.



cs21sec.ppt Page 4 of 26

z/OS Communications Server promotes the use of Application Transparent Transport 
Layer Security. One advantage is that Application Transparent Transport Layer Security, 
for the most part, keeps up with System SSL so exploiting products get new features with 
no development effort. System SSL has shipped some new features that Application 
Transparent Transport Layer Security needs to support. Specifically, it needs to support 
RFC 5746 renegotiation or Elliptic Curve Cryptography. Also, in z/OS V2R1, System SSL 
introduces support for Transport Layer Security V1.2 and Suite B cipher suites. 



cs21sec.ppt Page 5 of 26

The Application Transparent Transport Layer Security implementation in V2R1 supports all 
the features offered by System SSL.

This includes renegotiation. SSL connections can refresh the SSL keys on an existing SSL 
session. When a new SSL connection is started, the client can request to resume a 
previous SSL session. This is called renegotiation. Renegotiation is supported by SSL V3 
and Transport Layer Security version 1.0 and higher. RFC 5746 defines new renegotiation 
flows between the client and server. It provides a mechanism to protect peers that permit 
re-handshakes. When supported, it enables both peers to validate that the re-handshake is 
a continuation of the previous handshake. Both the client and the server must support 
RFC 5746 for renegotiation to be used. 

V2R1 also supports Elliptic Curve Cryptography, which is defined in RFCs 4492 and 5289. 
Elliptic Curve Cryptography offers equivalent security to other encryption methods, but with 
smaller key sizes. This is attractive in mobile and wireless environments. Elliptic Curve 
Cryptography-support is defined for both certificates and ciphers. Elliptic Curve 
Cryptography is supported in Transport Layer Security versions 1.0, 1.1 and 1.2. However, 
some ciphers are supported only in Transport Layer Security V1.2. Integrated 
Cryptographic Service Facility must be active to use Elliptic Curve Cryptography-support 
on z/OS. 



cs21sec.ppt Page 6 of 26

Transport Layer Security V1.2, as defined by RFC 5246, is also supported by V2R1. When 
Transport Layer Security V1.2 is enabled, SSL V2 sessions are not supported. If the 
remote partner can only use SSL V2, then the connection will fail during SSL negotiation. 
Transport Layer Security V1.2 also deprecates ciphers that are based on Data Encryption 
Standard.

V2R1 also supports Suite B cipher suites. RFC 5430 defines the cryptographic algorithms 
that can be used on a Suite B-compliant Transport Layer Security V1.2 session. Suite B 
requires that the key establishment and authentication algorithms that are used in 
Transport Layer Security V1.2 sessions be based on Elliptic Curve Cryptography and that 
the encryption algorithm be Advanced Encryption Standard Galois Counter Mode. 



cs21sec.ppt Page 7 of 26

This slide provides some background information on IP fragmentation. 

TCP/IP might have to fragment a packet to accommodate the Maximum Transmission Unit 
of a link in the network. TCP/IP can fragment the packet into two or more fragments to 
send a packet to the next node. Each fragment has its own IP header or a fragmentation 
extension header for IPv6 that indicates which IP datagram the fragment belongs to. It has 
the beginning offset, within that datagram, of the data carried in the fragment. Additional 
headers are part of the data and, with the exception of some IPv6 extension headers, can 
be fragmented. 

In IPv4, any node along the route can fragment a packet. In IPv6, fragmentation is only 
allowed at the packet origin. Thus, the Maximum Transmission Unit of the entire path must 
be known by the sender.



cs21sec.ppt Page 8 of 26

In previous versions, TCP/IP detects fragment attacks by using the length of the packet. It 
indicates that the fragment is suspicious if the first fragment is less than 88 bytes long or, 
for a fragment that is not the first fragment, if the offset is less than 88. The length of 88 
was chosen because it represents the maximum length of the IP transport headers for 
IPv4.

Using this approach, valid packets can match the criteria and result in false positives. And 
fragments that overlay previous fragments and change the data are not detected as 
attacks. Fragments that change the length of the original packet, as indicated by previous 
fragments, are also not detected. Furthermore, IPv6 fragmentation attacks are not 
detected at all. 



cs21sec.ppt Page 9 of 26

Starting in V2R1, TCP/IP does not use the fragment length to detect fragment attacks. It
indicates a fragment attack for both IPv4 and IPv6 if the current fragment overlays the data 
of a previous fragment with different data. It also indicates an attack if the current fragment 
specifies a different length for the original packet than what was specified by a previous 
fragment.



cs21sec.ppt Page 10 of 26

Defensive filtering provides a mechanism to install temporary defensive filters into a 
TCP/IP stack to block a specific traffic pattern. Defensive filters are added, updated, 
deleted and displayed with the z/OS UNIX ipsec command. Defensive filters are not 
configured in policy.

Defense Manager Daemon manages defensive filters. A single instance of Defense 
Manager Daemon runs per LPAR and can manage defensive filters for one or more 
TCP/IP stacks. Defense Manager Daemon maintains a database of currently-defined 
defensive filters to ensure that the filters are applied after an outage or restart.

To use defensive filtering, IP security must be enabled. If you do not have IP security 
enabled, you can configure a minimal “permit all” policy in the TCP/IP profile. See the 
section named “Enabling defensive filtering” in the Communication Server IP Configuration 
Guide for more information. 

Several components are involved in defensive filtering. The ipsec command is used to add 
a defensive filter manually or through automation. An ipsec -F add request is processed by 
Defense Manager Daemon. Defense Manager Daemon installs the defensive filter in the 
TCP/IP stack and saves a copy of the filter to persistent storage in the Defense Manager 
Daemon database. 

Once installed, the defensive filter is checked as part of IP filtering of inbound and 
outbound packets. If a packet matches a blocking defensive filter, the packet is discarded 
and a log message is written to syslogd, if logging is requested. Traffic Regulation 
Manager Daemon must be started for a stack to write a defensive filter log message to 
syslogd.



cs21sec.ppt Page 11 of 26

In previous releases, per-packet logging is either turned on or off. There is no way to 
request limited logging to protect against a flood of syslogd messages. For a defensive 
filter in blocking mode, logging can either be on or off. For a defensive filter in simulate 
mode, logging is always on.

The information in the messages can be helpful in understanding the type of traffic that is 
matching the defensive filters and being dropped in the case of a blocking filter. However, if 
you added the defensive filter in response to a detected attack, you do not want a flood of 
packets from the attacker to overwhelm your syslogd. 



cs21sec.ppt Page 12 of 26

Starting in z/OS V2R1 Communications Server, you can specify a limit on the number of 
defensive filter messages logged in a 5-minute interval. Each defensive filter has its own 
limit. The limit applies to defensive filter messages EZD1721I and EZD1722I that are 
written on a per-packet basis.

A limit of 0 - 9999 can be specified. A value of 0 indicates that there is no limit; a message 
is written to syslogd for each packet that matches the defensive filter. A value of 1 – 9999 
indicates the limit for this defensive filter.

If messages are suppressed during a 5-minute interval, the number of suppressed 
messages is reported at the end of the interval.



cs21sec.ppt Page 13 of 26

Logging can be limited for a defensive filter either by setting a limit for an individual filter or 
by specifying a default limit in the Defense Manager Daemon configuration file. This 
default limit applies to all defensive filters that are added to the stack. 

To set a limit for an individual filter, specify the new loglimit parameter when you add the 
defensive filter using ipsec -F add. You can also update the loglimit setting with the ipsec -
F update command.

A default limit can be set for all defensive filters that are added to a TCP/IP stack by setting 
the new DefaultLogLimit parameter on the DmStackConfig statement in the Defense 
Manager Daemon configuration file.

You can combine the two approaches by setting DefaultLogLimit in the Defense Manager 
Daemon configuration file and overriding the default for certain filters through the ipsec 
command.



cs21sec.ppt Page 14 of 26

NetAccess, or Network Access, is the Communications Server function that provides you 
the ability to control user access to networks, sub networks, and hosts. These are referred 
to as security zones. Using NetAccess, you can specify whether or not individual users 
should be permitted to access the security zones. User access to a security zone 
determines their ability to send and receive data between z/OS and the IP addresses in 
the zone.

There are three setup steps needed to control access to security zones. First, use the 
NETACCESS statement in the TCP/IP profile to define a name for each of the security 
zones. Next, in the SERVAUTH class, define a Security Access Facility resource profile for 
each zone name. Finally, for the set users that should have access to a security zone, 
provide them read access to the corresponding Security Access Facility resource profile.

You can use the NETACCESS statement to enable network access control for inbound 
traffic only, outbound traffic only, or both. The NetAccess function does not apply to traffic 
that is being routed by the stack, only to traffic that originates or terminates at the stack.



cs21sec.ppt Page 15 of 26

User access information that is learned from calls to Security Access Facility is cached. 
Once a user's access to a particular security zone has been determined, subsequent 
checks of that user's access to IP addresses in the same security zone are completed 
using the information in the cache. This caching reduces the number of calls to Security 
Access Facility. TCP/IP maintains a cache for each user whose access has been checked. 
The cache can hold the access information for up to 24 different security zones. The cache 
for a user is deleted when the last active connection is closed. It is also deleted if the 
NETACCESS statement is updated using a VARY TCPIP,,OBEYFILE command or if the 
Security Access Facility resource profiles in the SERVAUTH class are refreshed.

A log string is provided each time TCP/IP calls Security Access Facility to check a user's 
access to a resource profile. Security Access Facility includes this log string in the audit 
records that it writes. The audit record contains information like user ID, the name of the 
resource profile, and the log string provided by the stack. These Security Access Facility 
audit records are used by security auditors to audit network resources that users are 
attempting to access and network resources that are attempting to access the stack.



cs21sec.ppt Page 16 of 26

The caching performed by NetAccess restricts the information available to security 
auditors. When the cache is used, no call is made to Security Access Facility. 
Security auditors use Security Access Facility audit records to determine the network 
resources that users are attempting to access and the network resources that are 
attempting to access the stack. These audit records are written only by Security Access 
Facility when it is called. Because NetAccess caching reduces the number of NetAccess-
related audit records, it is difficult for security auditors to get a full picture of the resources 
being accessed and the resources accessing the stack.
In previous releases, the Security Access Facility audit records that are written for each 
call to check a user's access to a resource profile do not contain the IP address that the
user is attempting to access. The included information, user ID, and resource profile name 
allow a security auditor to determine which security zones are being accessed by users. 
However, a network zone can contain multiple IP addresses. Without the IP address in the 
records, the auditor cannot determine the IP addresses that are being accessed. The IP 
address information is especially important when access is not permitted to the security 
zone.



cs21sec.ppt Page 17 of 26

In V2R1, there are three new parameters on the NETACCESS configuration statement in 
the TCP/IP profile. These parameters, CACHEALL, CACHEPERMIT, and CACHESAME, 
allow you to control the level of caching that is performed by NetAccess.
All calls made to Security Access Facility for NetAccess now include the IP address that 
triggered the call. The IP address is included in the log string that is provided as a 
parameter on the Security Access Facility call. And Security Access Facility includes that 
log string in the audit record that it writes.



cs21sec.ppt Page 18 of 26

When the CACHEALL parameter is specified, the result is the same behavior as prior 
releases. The auditor can audit only the first access check made for each user to each 
security zone. This is the default behavior.

When the CACHEPERMIT parameter is specified, the auditor can audit only the first 
access check made for each user to security zones to which that user is permitted access. 
However, the auditor can audit all access checks made to security zones to which that 
user is denied access. This is important because access attempts that are not permitted 
are typically of more interest to an auditor.

When the CACHESAME parameter is specified, the auditor can, with one exception, audit 
all access checks made to all zones. This includes both zones to which the user is 
permitted and zones to which the user is denied. The one exception is for successive 
checks by a socket for the same user and the same IP address in a permitted security 
zone. Repeated audit records for the same socket user accessing the same IP address to 
which it is permitted access are not of great interest to an auditor. Providing such records 
can greatly increase the number of audit records written and can affect performance.



cs21sec.ppt Page 19 of 26

z/OS Communications Server will pace outbound traffic as needed for TCP and Enterprise 
Extender traffic. Both cases rely on existing flow-control features of the upper-layer 
protocols to achieve the pacing goals. An additional z/OS Queued Direct Input/Output
feature is called Random Early Slowdown. It allows the outbound Queued Direct 
Input/Output processing to detect outbound queue congestion and provide local feedback 
to the upper layer protocols, TCP and Enterprise Extender, thus initiating a decrease in 
transmission rates. This function applies only to Open Systems Adapter-Express Queued 
Direct Input/Output. No such features exist in Internet Control Message Protocol, UDP or 
raw IP protocols. 

The z/OS TCP/IP stack always replies to Internet Control Message Protocol timestamp 
requests. When a flood of such requests are sent to z/OS, under the right conditions, the 
stack can back up because it cannot get the responses out quickly enough. The result is a 
constrained or critical Communications Storage Manager condition. If the condition is not 
relieved in a timely fashion, a stack outage can occur. Note that this behavior can happen 
with other Internet Control Message Protocol requests that always generate a response or 
UDP requests to an application that behaves in a similar manner. One example of such 
Internet Control Message Protocol requests are echo requests.



cs21sec.ppt Page 20 of 26

Starting in V2R1, outbound Queued Direct Input/Output packets are dropped when 
Communications Storage Manager is in a constrained or critical state. This is done for all 
packet types. The support is always on and is not configurable. It affects only Open 
Systems Adapter and HiperSockets™ interfaces. A new message, IST2384E, is issued to 
indicate that packets are being discarded. 



cs21sec.ppt Page 21 of 26

FIPS stands for Federal Information Processing Standards. It is a collection of documents 
published by the federal government of the United States. FIPS 140 provides 
specifications for cryptographic modules. Cryptographic modules implement cryptographic 
algorithms and perform cryptographic key operations. Integrated Cryptographic Service 
Facility and System SSL are the two cryptographic modules on z/OS.

Internet Key Exchange Daemon, Network Security Services Daemon, Application 
Transparent Transport Layer Security, and the TCP/IP stack are the z/OS Communications 
Server components that provide FIPS-140 modes of operation. These components must 
call the certified cryptographic modules, Integrated Cryptographic Service Facility and 
System SSL, when operating in FIPS-140 mode.



cs21sec.ppt Page 22 of 26

Starting in V2R1, System SSL, when operating in FIPS-140 mode, must call Integrated 
Cryptographic Service Facility for various cryptographic operations. This change was 
made to eliminate redundancy and improve efficiency. As a result, three of the four z/OS 
Communications Server components that provide a FIPS-140 mode of operation now 
depend on Integrated Cryptographic Service Facility.

New messages have been introduced to better communicate the status of Integrated 
Cryptographic Service Facility as it relates to Internet Key Exchange Daemon, Network 
Security Services Daemon, and Application Transparent Transport Layer Security policy 
groups. Internet Key Exchange Daemon and Network Security Services Daemon running 
in FIPS-140 mode will fail to initialize if Integrated Cryptographic Service Facility is not 
active. They will initialize without Integrated Cryptographic Service Facility if they are not 
running in FIPS-140 mode. FIPS-140 Application Transparent Transport Layer Security 
policy groups are installed, but inactive in the stack, if Integrated Cryptographic Service 
Facility is not active. The new messages contain clear information about the problem and 
what you should do to resolve the problem.



cs21sec.ppt Page 23 of 26

Here are two examples of situations that cause Telnet to run out of storage. The first 
example is an application that is sending data on a session that is not paced. This allows 
the data to queue up in Telnet faster than TCP can deliver it to the client. When Telnet runs 
out of storage, it has to be recycled. The second example is a client that repeatedly sends 
a signal that causes Telnet to send a USSMSG10 screen to it. These screens back up and 
cause Telnet to run out of storage. Again, Telnet has to be recycled to relieve the situation.



cs21sec.ppt Page 24 of 26

A new Telnet parameter, MAXTCPSENDQ, is introduced in V2R1. It limits the number of 
bytes that can be queued up in Telnet for delivery to a single client. It can be specified as 
part of the Telnet Globals, TelnetParms, and ParmsGroup statements. When the limit is 
reached for a connection, the connection is terminated, thereby preventing the out-of-
storage condition. 

This support is also available in V1R13 in APAR PM73261.



cs21sec.ppt Page 25 of 26

You can help improve the quality of IBM Education Assistant content by providing 
feedback.



cs21sec.ppt Page 26 of 26


