
cs21econplatfeff.ppt

This presentation provides an overview of the enhancements for economics and platform 
efficiency in z/OS® V2R1 Communications Server.

Page 1 of 25



cs21econplatfeff.ppt

In previous releases, the TCP/IP fast path sockets function has a reduced path length for selected socket 
APIs that send and receive data. This provides a significant optimization for socket send() and recv() API 
calls on UNIX Callable Services or Language Environment C/C++ socket APIs. Some Request-Response 
benchmarks have shown a 20% reduction in processor cost when comparing fast path sockets with 
conventional sockets. 

This reduction is accomplished by two key optimizations. The first optimization is to take a much more 
efficient code path through the Logical File System bypass on the way to the TCP/IP Physical File System 
layer. The second optimization is to not invoke the UNIX System Services service to suspend and resume 
user threads during blocking conditions, such as waiting for data from the network. Instead, TCP/IP 
implemented its own logic for wait and post, which is Transmission Control Block mode, and its own logic for 
suspend and resume, which is Service Request Block mode. This enhancement yields the bulk of the 
savings, an estimated 15% out of the 20% savings just mentioned. 

The optimization provided by the existing fast path sockets support eliminates support for POSIX signals for 
callers blocked in socket-related waits. This is because UNIX System Services has no means of resuming 
threads that have been directly suspended by TCP/IP logic. As a result, its usefulness is confined to 
applications that have no requirement for signal support. 

Also, the fast path socket support does not allow the use of the dbx debugger for socket applications that 
exploit the fast path. These applications can be debugged by using the non-fast path support in z/OS UNIX 
and TCP/IP. 

Another limitation of the fast path socket support in previous releases is that the output from some DISPLAY 
OMVS command options does not show the correct work unit status. 

The fast path sockets support can be enabled for an entire z/OS UNIX process by using the z/OS UNIX 
environment variable _BPXK_INET_FASTPATH. Alternatively, the application can enable the fast path 
processing for a single socket by issuing Iocc#FastPath IOCTL.

Page 2 of 25



cs21econplatfeff.ppt

Here you see the processing that occurs for the enhanced fast path sockets support in 
V2R1. It does not have to be enabled and it is available to all the socket APIs, with the 
exception of the Pascal API. It performs better than the existing fast path sockets support. 

Page 3 of 25



cs21econplatfeff.ppt

The enhanced fast path sockets support exploits the new efficient UNIX Services suspend 
and resume processing. These services run as an extension of TCP/IP and so the space 
switching into OMVS address space is not done. 

Page 4 of 25



cs21econplatfeff.ppt

In previous releases, Queued Direct Input/Output Accelerator is disabled when Integrated 
IP Security is enabled, in other words, when IPCONFIG IPSECURITY is configured. The 
reason for this is that, in many cases, stack processing of inbound packets is required. 
There are, however, situations where stack processing of forwarded packets is not 
required – specifically when IP filtering is either to be performed at the target stack or not 
at all. In these cases, it would be nice if forwarded packets could realize the benefits of 
Queued Direct Input/Output Accelerator.

Page 5 of 25



cs21econplatfeff.ppt

z/OS V2R1 Communications Server provides support for coexistence of the Queued Direct 
Input/Output Accelerator and IP filtering functions. IP packets can now be accelerated 
when the forwarding stack does not need to perform IP filtering or logging of routed traffic. 
IP filtering and logging is enabled in the TCP/IP profile, the Policy Agent configuration, or 
the Defense Manager Daemon defensive filters. With this new support, sysplex distributor 
traffic is always eligible for acceleration when Queued Direct Input/Output Accelerator and 
IP Security are enabled.

This function is not supported for HiperSockets accelerator.

Because sysplex distributor traffic that is forwarded by Queued Direct Input/Output 
Accelerator is always filtered at the target rather than the distributor, sysplex distributor 
acceleration will always be enabled, regardless of the current TCP/IP filter rules at the 
distributor.

Page 6 of 25



cs21econplatfeff.ppt

IBM no longer supports the BIND 9.2.0 name server in V2R1. This support was removed 
for several reasons. One reason is that there is limited use or strategic value in running the 
BIND 9.2.0 name server on the z/OS platform versus other platforms. Resolver caching 
support, which was added in z/OS V1R11, can replace a BIND 9.2.0 name server that is 
running in caching-only mode.

Page 7 of 25



cs21econplatfeff.ppt

There are many alternative environments in which to run a name server. For example, a 
BIND name server can be run on Linux on System z or on an IBM blade in an IBM 
zEnterprise BladeCenter Extension. 

The health check shown here has been removed from V2R1. In previous versions, it 
checks whether a BIND9 DNS is in use on this system.

Page 8 of 25



cs21econplatfeff.ppt

In previous releases, the TCP retransmit and acknowledgement logic is structured such 
that, when an out-of-order data packet arrives, the receiver responds with a duplicate 
acknowledgement. This signals to the sender that out-of-order data has been received and 
a packet has possibly been lost. When the sender receives three duplicate 
acknowledgements, it assumes that data has been lost in the network and resends the 
missing packet and all the packets that were sent after the missing packet.
Sending all data, when only a small amount of data is missing, causes unnecessary 
packets to be sent. This hurts performance.

Page 9 of 25



cs21econplatfeff.ppt

RFC 2018 TCP Selective Acknowledgements defines a solution. Two new TCP header 
options are supported: selective acknowledgement permit and selective acknowledgement 
option. Selective acknowledgement permit is used to determine if both sides support 
selective acknowledgements. Selective acknowledgement option is used by the data 
receiver to tell the sender which segments of data have been received, when out-of-order 
segments are received. Selective acknowledgement option is used by the data sender to 
determine which segments to resend. Only the segments that are missing are resent. 
The RFC does not change when acknowledgement or retransmitted segments are sent. 
The acknowledgement number in the TCP header is not changed. The sender still waits for 
three duplicate acknowledgements or retransmission timeout to retransmit data.
RFC 3517 defines how a sender should use selective acknowledgement information to 
retransmit lost packets for fast retransmit. The sender will resend missing packets as long 
as there are at least three maximum segment sizes-worth of missing data beyond the 
segment being sent and only resend missing segments.

Page 10 of 25



cs21econplatfeff.ppt

Some applications would find it beneficial to be able to make a receive socket API call that 
only completes when the TCP connection is stopped. This notification would allow the 
applications to cancel any back-end processing related to that connection. 

Page 11 of 25



cs21econplatfeff.ppt

z/OS Communications Server provides a mechanism that allows an application to issue 
either a synchronous or asynchronous receive socket API call that completes only when a 
TCP connection is stopped.

A new flag MSG_CONNTERM is added on recv(), recvfrom() and recvmsg() in z/OS 
Language Environment C/C++ as shown here.

This new flag is mutually exclusive with other flag values such as MSG_OOB, 
MSG_PEEK, and MSG_WAITALL and is supported only on TCP sockets. When used, the 
length of the buffer provided on the call must be zero.

This function is also available for z/OS V1R13 Communications Server in an APAR.

Page 12 of 25



cs21econplatfeff.ppt

Many TCP/IP platforms allow for the configuration of various TCP options. For example, it 
is possible to specify how long connections remain in the TIMEWAIT state and the amount 
of time a TCP packet is retransmitted before aborting the connection. It is also possible to 
specify the number of times a TCP packet is retransmitted, the maximum number of 
keepalive packet probes sent, and whether Nagle's algorithm is globally enabled. 
In z/OS V2R1, new TCPCONFIG statement options have been added to allow the 
configuration of these options. In addition, the default values for the receive and send 
buffer sizes were changed from 16 kilobytes to 64 kilobytes. These values can be 
overridden on a per-socket basis with a setsockopt() call. Most applications will achieve 
better throughput with larger send and receive buffer sizes. 
Also, the default value for SOMAXCONN was changed from 10 to 1024. The 
SOMAXCONN statement sets a global limit on the TCP listen backlog. The backlog 
parameter on the listen() call sets the limit for the number of half-open connections that 
can wait in the backlog queue to reach the established state. If a connection request 
comes in and the backlog is full, the new connection request is typically dropped. 
Therefore, setting the backlog value too low can cause busy servers to drop many 
connections. 

Page 13 of 25



cs21econplatfeff.ppt

This slide contains the list of new parameters that can be configured on the TCPCONFIG 
statement. See the IP Configuration Reference for additional details about each parameter.

Page 14 of 25



cs21econplatfeff.ppt

The DB2 bootstrap data set approach can result in incorrect behavior if more than one 
DB2 application is active on the same stack. Because each server uses inaddr_any and 
the distributed dynamic virtual IP address port, there is no specific association of a server 
to an application-instance dynamic virtual IP address.

The client sends its initial connection request to the distributed dynamic virtual IP address 
and port. The sysplex distributor chooses a server. The selected server responds with a list 
of all available servers that are application-specific dynamic virtual IP addresses and each 
server's Workload Manager weight available. The client chooses an application-specific 
dynamic virtual IP address and sends a connection request to that dynamic virtual IP 
address and port for its transaction. But there are two listeners on the TCP/IP stack and no 
way to determine which listener created that application-specific dynamic virtual IP 
address. The TCP/IP stack might pick the wrong listener. This results in suboptimal load 
balancing. Worse, if a resynchronization port is not being used, a reconnect might get 
routed to the wrong listener. If clients are using XA protocols for transaction coordination, 
the distributed port is used for resynchronization. A resynchronization port listener is not 
used.

Page 15 of 25



cs21econplatfeff.ppt

The solution is to provide the ability to create a VIPARANGE dynamic virtual IP address 
with affinity to an address space instance that is a DB2 instance. When a connection 
request for an application-instance dynamic virtual IP address is received, if it was created 
with affinity, it is sent to the address space of the server that created it. When multiple 
listening sockets for the target port are available, then the listening socket owned by the 
address space that created the dynamic virtual IP address is found. If an address space 
with affinity is not found with a listening socket on the target port, then existing shareport
load balancing is used to route the connection to a listening socket that can accept it. That 
is bound to INADDR_ANY. This allows the dynamic virtual IP address to be used by non-
DB2 applications, such as incoming FTP connections to the member-specific dynamic 
virtual IP address. This works only when the dynamic virtual IP address is still active. 

Page 16 of 25



cs21econplatfeff.ppt

An ioctl command, either SIOCSVIPA or SIOCSVIPA6, allows an application to create or 
delete a dynamic virtual IP address on the stack where the application is running. The 
application can issue the IOCTL call by using the XL C/C++ run-time or by using the UNIX 
System Services Callable Services BPX1IOC API. A dynamic virtual IP address can be 
created by using either the DVR_DEFINE option or the DVR_DEFINE_AFFINITY option of 
the SIOCSVIPA or SIOCSVIPA6 ioctl. The DVR_DEFINE_AFFINITY option creates the 
dynamic virtual IP address with affinity to the address space that created it.

You can use the MODDVIPA utility to activate or delete a dynamic virtual IP address. This 
utility can be initiated from JCL or an OMVS script. 

For more information about the use of the SIOCSVIPA or SIOCSVIPA6 ioctl() or the 
MODDVIPA utility, see the Configuring the unique application-instance scenario section in 
the IP Configuration Guide.

When creating a new dynamic virtual IP address, the requested IP address must be within 
a subnet that has been previously specified by a VIPARANGE configuration statement in 
the PROFILE.TCPIP data set for the TCP/IP stack. 

Page 17 of 25



cs21econplatfeff.ppt

Policy-based routing allows IP routing to use additional route selectors. It is made possible 
through the use of multiple route tables. In addition to the main route table, the TCP/IP 
stack can have multiple policy-based route tables. Policy-based route tables have many of 
the same characteristics as the main route table. They can contain both static and 
dynamic routes and the static routes can be configured as both replaceable and non-
replaceable.

Policy-based routing allows an installation to separate outbound traffic for specific 
applications to specific network interfaces and first-hop routers. The separation can be 
based on security, choice of network provider, or isolation of certain applications. 

Most often there is one policy-based route table defined to be used for the traffic; but there 
can be as many as eight. Each of the policy-based route tables is searched, in the order 
defined, for a route to the destination. If any active route to the destination is found in a 
route table, the search is stopped and that route is used for the traffic. This route might be 
a host route, a subnet, network, or supernet route, or a default route. If no active route to 
the destination is found in a route table, the search continues in the next route table. If all 
policy-based route tables are searched without success, the main route table might also be 
searched, if the policy indicates that the main route table can be used as a backup.

Policy-based routing is not supported for all types of IP traffic. The support is limited to 
locally-originated TCP and UDP traffic. All forwarded traffic and all traffic using protocols 
other than TCP and UDP is not processed by policy-based routing and continues to be 
routed by using only the main routing table.

Page 18 of 25



cs21econplatfeff.ppt

The policy-based routing support that was added in V1R9 provides support for IPv4 only. 
Similar support for IPv6 is needed.

Page 19 of 25



cs21econplatfeff.ppt

IPv6 policy-based routing enables the TCP/IP stack to make IPv6 routing decisions that 
take into account criteria other than just the destination IP address. The additional criteria 
can include job name, source port, destination port, protocol type, source IP address, 
NetAccess security zone, and security label. With policy-based routing, you can define a 
policy that selects the network to be used for outbound traffic, based on the application 
that originated the traffic. 

Here are a couple of scenarios in which policy-based routing might be useful. You might 
want to favor high-bandwidth links for batch IPv6 traffic, while preferring low-latency links 
for interactive IPv6 traffic. If so, you can define a policy such that Telnet traffic can be 
routed over the low-latency links, while FTP traffic can be routed over the high-bandwidth 
links. As another example, you might want to define a policy to ensure that IPv6 traffic that 
is tagged with a security label or zone is routed to a secured network through an 
appropriate outbound interface.

IPv6 policy-based routing applies only to TCP and UDP traffic that originates at the TCP/IP 
stack. IPv6 traffic that is using protocols other than TCP and UDP and all IPv6 traffic being 
forwarded by the TCP/IP stack will always be routed using the main route table. This 
happens even when IPv6 policy-based routing is in use.

Page 20 of 25



cs21econplatfeff.ppt

Remote Direct Memory Access allows a host to access memory on a remote peer that is 
connected to the same Remote Direct Memory Access-capable Ethernet fabric. Remote 
Direct Memory Access protocols allow a host to read from or write into memory that the 
peer has allocated specifically for use by that host. 

Although interrupts are still required to alert the host that data has been received, 
significant performance improvements can be achieved by using RDMA. Some 
performance gains are achieved because the processor and operating system at the 
receiving host do not participate in the RDMA transfer. Other gains are achieved because 
the TCP stacks can use simpler processing to send data by using Remote Direct Memory 
Access.

Page 21 of 25



cs21econplatfeff.ppt

In versions before V2R1, z/OS Communications Server cannot exploit Remote Direct 
Memory Access because the necessary RDMA over Converged Ethernet hardware is not 
available on the platform. 

Page 22 of 25



cs21econplatfeff.ppt

z/OS V2R1 Communications Server exploits RDMA technology by using Shared Memory Communications 
over RDMA protocols. These protocols provide a transparent socket-based exploitation model for RDMA, 
allowing existing TCP applications to benefit without change. 

The decision to use or not use Shared Memory Communications over RDMA for a given TCP connection is 
made during TCP connection establishment. The protocols for making that determination are called 
rendezvous processing. If rendezvous processing successfully selects or creates a Shared Memory 
Communications over RDMA link, then subsequent application socket data is exchanged “out-of-band” by 
using this link. After the choice is made to use Shared Memory Communications over RDMA protocols, the 
TCP connection cannot revert to using traditional IP protocols, even if the link or RDMA over Converged 
Ethernet Express interface encounters errors later. z/OS Communications Server prevents any application 
socket data from being exchanged until the choice of Shared Memory Communications over RDMA or IP 
protocols has been made. The TCP connection stays active for control flow and connection termination 
processing, but otherwise remains idle. 

Significant performance savings are achieved by switching to “out-of-band” RDMA protocols. One advantage 
is that the TCP/IP stack does not have to break the application socket data into smaller packets to be 
transported across the IP fabric. Instead, the data is moved as larger chunks of data, up to the size of the 
remote memory buffer that was made available by the peer. z/OS Communications Server selects a buffer 
size for the peer, based on the receive buffer size specified by the local application. The RDMA over 
Converged Ethernet Express adapter is designed to guarantee delivery of the RDMA data in order to the 
peer. This means that traditional TCP-layer processing for retransmitting lost packets is not necessary with 
Shared Memory Communications over RDMA. It also means that the TCP layer does not have to exchange 
acknowledgements to verify that the data has been received properly. This greatly streamlines the TCP-layer 
processing for Shared Memory Communications over RDMA, which provides additional performance gains. 
Additional gains are achieved because the entire IP layer is bypassed in favor of a new, more streamlined 
Shared Memory Communications over RDMA processing layer.

Page 23 of 25



cs21econplatfeff.ppt

You can help improve the quality of IBM Education Assistant content by providing 
feedback.

Page 24 of 25



cs21econplatfeff.ppt Page 25 of 25


