
This presentation describes the support to provide affinity for application-instance DVIPAs.

cs21dvipa.ppt Page 1 of 20

A stack-managed DVIPA is one in which the activation of the DVIPA and movement of the
DVIPA is controlled by the TCP/IP stacks. A VIPADEFINE statement is configured on the
stack that will own the DVIPA. As the stack is started, the DVIPA is activated and
advertised by the owning stack. The slide contains an example of this configuration.

VIPABACKUP statements are configured on each stack that will back up the stack that
owns the DVIPA. If the owning stack gives up ownership of the DVIPA, a back up stack will
take over the DVIPA. The owning stack might give up ownership because the stack leaves
the sysplex or because the DVIPA is deactivated or deleted. The stack with highest rank
VIPABACKUP statement takes over the DVIPA becoming the new owner. In the example,
the stack with the VIPABACKUP statement with a rank of 200 will take over if the
VIPADEFINE stack gives up ownership of the DVIPA.

cs21dvipa.ppt Page 2 of 20

A distributed DVIPA is used when multiple instances of an application are concurrently
active on multiple stacks. In addition to the VIPADEFINE statement, a VIPADISTRIBUTE
statement identifies target stacks where the application is active and the application's port.

cs21dvipa.ppt Page 3 of 20

Another type of Dynamic VIPA is an application instance DVIPA. The activation and
movement of this DVIPA is controlled by the application.

A VIPARANGE statement determines the range of application instance DVIPAs that can
be activated on a stack. In the example, the VIPARANGE statement allows an application
to create DVIPAs ranging from 201.81.10.1 - 201.81.10.254 on this stack.

cs21dvipa.ppt Page 4 of 20

There are two ways to control activation.

The DVIPA can be activated when the application issues a Bind explicitly specifying the
DVIPA or it can be activated by using the BIND keyword on the Port statement. When the
application binds to the port and inaddr_any (IPv4) or the unspecified address (IPv6), the
IP address on the PORT BIND keyword is used. The DVIPA is deleted when the socket
that issued the Bind is closed.

This type of DVIPA can also be activated by using the SIOCSVIPA (IPv4) or SIOCSVIPA6
(IPv6) IOCTL command (or the MODDVIPA utility). The DVIPA is explicitly deleted using
the IOCTL or MODDVIPA utility.

cs21dvipa.ppt Page 5 of 20

When DB2 first started using DVIPAs, the BIND keyword on the PORT reservation
statement was used to bind listeners. Each application opens three listening sockets:

1) A listener bound to the distributed port and DVIPA using the BIND keyword on the PORT
reservation statement.

2) A listener bound to its application instance DVIPA and the distributed DVIPA port.

3) A listener bound to a re-sync port and an application instance DVIPA using the BIND
keyword on the PORT reservation statement. The re-sync port is used if the connection is
interrupted before the transaction completes. The client reconnects to this port to complete
the transaction.

cs21dvipa.ppt Page 6 of 20

This slide provides an example of the configuration for z/OS® DB2 exploitation of the
Application Instance DVIPA function. It shows the configuration necessary when using the
BIND keyword on the PORT reservation statement to bind listeners. The applications
DB2A and DB2B opens three listening sockets.

1) A listener bound to the distributed port and DVIPA using the BIND keyword on the PORT
reservation statement.

2) A listener bound to its application instance DVIPA and the distributed DVIPA port.

3) A listener bound to a re-sync port and an application instance DVIPA using the BIND
keyword on the PORT reservation statement. complete the transaction.

cs21dvipa.ppt Page 7 of 20

The client sends its initial connection request to the distributed DVIPA and port. The
sysplex distributor chooses a server. The server responds to the client with a list of all
available application instance servers and their weights. Based on the weight, the client
chooses a server, sending a new connection request to the application instance DVIPA for
its transaction.

On the new connection, the server responds with its re-sync port which is used if the
connection is interrupted before completing the transaction.

cs21dvipa.ppt Page 8 of 20

This did not work well for IPv6 enablement. The BIND keyword on the PORT statement
only supports a single IP address. DB2 needed to create both an IPv4 and IPv6
application specific DVIPA for the same port listener.

cs21dvipa.ppt Page 9 of 20

DB2 provided a new method for activating DVIPAs in DB2 V9. All application instance IP
addresses are specified in the DB2 Bootstrap Dataset (BSDS). Instead of using the Port
reservation Bind keyword, DB2 uses a single listener bound to the distributed DVIPA port
and inaddr_any for IPv4 or the unspecified address for IPv6. SIOCSVIPA/SIOCSVIPA6
IOCTLS are used to create and delete application instance DVIPAs as needed.

If clients are using XA protocols for transaction coordination, the distributed port is also
used for re-sync. A re-sync port is not used.

Using this method the DB2 server can be accessed with multiple DVIPAs; the distributed
DVIPA and an IPv4 or IPv6 application instance DVIPA can all be used with the same
listener.

This approach is fully exploited in DB2 V10 and is now the preferred mechanism for
configuring DVIPAs for DB2.

cs21dvipa.ppt Page 10 of 20

Here is a possible TCP/IP configuration when the DB2 Bootstrap Dataset method is used.
Note that the Port reservation Bind keyword is not used. Instead, DB2 uses a single
listener bound to the distributed DVIPA port and inaddr_any for IPv4 or the unspecified
address for IPv6.

The DB2 server can be accessed with multiple DVIPAs; the distributed DVIPA and an IPv4
or IPv6 application instance DVIPA can all be used with the same listener.

cs21dvipa.ppt Page 11 of 20

There is a problem when multiple DB2 members are active on the same TCP/IP stack.
Since there is only one server for each application using inaddr_any and the same
distributed DVIPA port. There is no way to associate a specific application instance DVIPA
with a listener.

This can result in the wrong member getting a connect request which results in sub-
optimal load balancing on the stack. A reconnect might get routed to the wrong application
if the distributed port is used for re-sync causing the transaction to fail.

cs21dvipa.ppt Page 12 of 20

In the example, the client chooses to use the application instance DVIPA 201.1.74.1. It
sends a connect request to this IP address and port 446 for its transaction. But there are
two listeners on TCP/IP stack TCPIP1. There is no way to determine which application
instance created this DVIPA.

This can result in the wrong member getting a connect request. Even worse, a transaction
failure can occur if the distributed port is used for re-sync and the wrong application is
chosen.

cs21dvipa.ppt Page 13 of 20

z/OS V2R1 Communications Server provides support to create an application instance
DVIPA with affinity to an address space. When a VIPARANGE DVIPA is created, TCP/IP
will remember the address space that created it. When a connect request is received for a
VIPARANGE DVIPA created with affinity, TCP/IP will choose the listener of the same
address space that created the DVIPA.

A new option, -a, is added to the MODDVIPA utility to create an application instance DVIPA
with affinity. The DVR-DEFINE-AFFINITY option can be used on the
SIOCSVIPA/SIOCSVIPA6 IOCTLs to create an application instance DVIPA with Affinity.

cs21dvipa.ppt Page 14 of 20

In the example, a connection request for 201.1.74.1 is routed to DB2A since the saved
DVIPA creation address space instance is the same as the DB2A listener address space
instance.

If there is no listener with the same address space instance as the DVIPA, existing
shareport load balancing is used to choose a listener.

cs21dvipa.ppt Page 15 of 20

The Netstat VIPADYN(-v) report is modified. For a VIPARANGE DVIPA, DistStat or
distribution status will no longer be displayed. In prior releases, this field was left blank for
VIPARANGE DVIPAs since these DVIPAs are never distributed. Starting in z/OS V2R1, if
a VIPARANGE DVIPA is created with an IOCTL, the display is changed to show if it was
created with Affinity to an address space.

cs21dvipa.ppt Page 16 of 20

The NMI interface that is used to retrieve information about DVIPAs is changed to use a
new flag to indicate if the DVIPA was created with Affinity to an address space.

cs21dvipa.ppt Page 17 of 20

If DB2 Version 11 with the bootstrap dataset (BSDS) is used, then an application instance
DVIPA will always be created with affinity. If there is no matching listener, then the listener
is selected using existing shareport load balancing. Creating a DVIPA with the affinity
option requires use of the IOCTL. Bind will not create a DVIPA with affinity.

cs21dvipa.ppt Page 18 of 20

You can help improve the quality of IBM Education Assistant content by providing feedback.

cs21dvipa.ppt Page 19 of 20

cs21dvipa.ppt Page 20 of 20

