

 –

®

IBM Software Group Enterprise Networking Solutions
z/OS® V1R11 Communications Server

z/OS Communications Server Development, Raleigh, North Carolina

© Copyright International Business Machines Corporation 2009. All rights reserved.

Resolver DNS cache

This presentation describes enhancements to the z/OS Resolver to cache DNS
responses. This is one of the enhancements in z/OS V1R11 Communications Server for
scalability, performance, constraint relief, and acceleration. This theme is a major area of
enhancements in z/OS V1R11 Communications Server.

resolver.ppt Page 1 of 16

 –

IBM Software Group Enterprise Networking Solutions

Existing resolver logic always contacts name server

� No memory in resolver of output from previous requests

� Specified DNS name servers contacted on each request

Resolver

2,6

Name Server
(10.1.1.2)

Name Server
(10.1.1.1)

query for
host.raleigh.ibm.com

Query

3,7

NSINTERADDR 10.1.1.1
NSINTERADDR 10.1.1.2

TCPIP.DATA

z/OS LPAR

1,5
Answer

4,8

© Copyright International Business Machines Corporation 2009. All rights reserved. Page 2

z/OS Resolver processing handles each API request for translation independently. Before
V1R11, that meant the results from one request were never used to satisfy later requests,
because the results of the first request were never saved. This resulted in queries
continually being sent to the name servers specified in the TCPIP.DATA dataset.

Steps one through four in this diagram provide an example of this processing. An
application delivers a request to translate the host name host.raleigh.ibm.com into an IP
address. The resolver forwards the request to the first DNS name server specified in the
list of name servers in the TCPIP.DATA dataset. When the response arrives from the
name server, the resolver provides the response data to the application. If the first DNS
name server does not respond in time, the resolver forwards the request to the second
name server in the list.

What happens when another application, or even the same application, sends a second
request to translate host.raleigh.ibm.com? The same sequence of actions occurs, as
indicated by steps five through eight. If the first DNS name server does not respond in
time to this second request, the resolver again forwards the request to the second name
server in the list. If only a limited set of resources can be targets for resolution requests,
this repetitive processing can become very costly.

resolver.ppt Page 2 of 16

 –

IBM Software Group Enterprise Networking Solutions

Caching-only name server provided some relief

� Each request directed to local caching-only name server, which retains
the information

� Still requires building a DNS request for each resolution attempt

Resolver

2,8

Name Server
(10.1.1.2)

Name Server
(10.1.1.1)

query for
host.raleigh.ibm.com

Query

3

NSINTERADDR 127.0.0.1

TCPIP.DATA

z/OS LPAR

1,7

Answer

6,10
Caching-only
name server

Query

Answer

45,9

© Copyright International Business Machines Corporation 2009. All rights reserved. Page 3

One alternative that provided some improvement was configuring a caching-only name
server. Consider the same sequence from the previous slide, but this time with a caching-
only name server defined on the z/OS LPAR. Now, in step two, the z/OS resolver forwards
the request to the local name server, and the name server communicates with other name
servers to translate the host name. The caching-only name server, when it receives the
response in step four, first caches the information, and then returns the response to the
resolver. The resolver then forwards the response to the requesting application in step six.

Steps seven through ten show the changed processing for a subsequent request for the
same resource. When the next request to translate this same host name is received, the
resolver again forwards the request to the caching-only name server, as shown in step
eight. This time, however, the caching-only name server does not communicate with other
name servers, but instead returns the cached data to the resolver. You can see that this
reduces the network flows significantly, but it still requires repeated communication with
some name server to obtain the cached information.

resolver.ppt Page 3 of 16

 –

IBM Software Group Enterprise Networking Solutions

z/OS V1R11 introduces resolver caching

� Resolver cache queried for each request

� Communication with name server only if cache information not available

Resolver

2

Name Server
(10.1.1.2)

Name Server
(10.1.1.1)

query for
host.raleigh.ibm.com

Query

3

NSINTERADDR 10.1.1.1
NSINTERADDR 10.1.1.2

TCPIP.DATA

z/OS LPAR

1,5
Answer

4,6

Cache

© Copyright International Business Machines Corporation 2009. All rights reserved. Page 4

z/OS V1R11 provides the capability for the resolver to now cache information from the
name servers, bypassing the need for a caching-only name server. This diagram shows
the same query and answer sequence, but this time with the resolver providing the cache
functions.

As before, steps one through four require the resolver to build and send a query to the
name server in order to retrieve the information about host.raleigh.ibm.com initially. As
part of step four, however, the resolver now saves the information into the local resolver
cache. When the second request for the host name translation is received, the resolver
queries the local cache for data about the host name. In this example, the information is
there, and is still valid, so the resolver returns the response data immediately to the
application. No query or answer sequence to a name server is required for this second
request, providing significant savings in time and processing.

resolver.ppt Page 4 of 16

 –

IBM Software Group Enterprise Networking Solutions

© Copyright International Business Machines Corporation 2009. All rights reserved. Page 5

Setup Topology overview Throughput CPU

1 100

4.1 81

7.7 58

Resolver DNS cache benefits
� The performance benefits of local name caching depend on

– Amount of calls to the resolver in general

• Examples are client application workload, Web services workload, and services that
do reverse resolution of client IP address

– Amount of repetitive resolutions of the same host names or addresses

• The more repetitive resolutions, the more cache hits

– The time-to-live (TTL) values that are returned by the name server

• TTL values of zero cannot be cached

Application Resolver Authoritative DNS

Application Resolver Authoritative DNS Local caching DNS

Application Resolver Authoritative DNS

Cache

Cache

No caching

Caching-only DNS

Resolver caching

Note: The performance measurements discussed in this presentation are preliminary z/OS V1R11 Communications Server numbers and were collected using a dedicated system
environment. The results obtained in other configurations or operating system environments might vary

Caching of name server replies is especially beneficial for environments that generate a
high rate of resolver calls, where a high percentage of those calls are repetitive
resolutions, and the DNS information does not change very frequently.

Before z/OS V1R11, the only way to provide name serving performance benefits was to
configure and run a local name server in caching-only mode. With z/OS V1R11, name
server caching is built into the z/OS system resolver.

Some preliminary performance testing of resolver caching has been completed. For the
resolver performance runs, all calls were Gethostbyname invocations. One thousand
different host names were used for the test, and repetitive resolver calls for those host
names were performed. The first query for a particular name obtained information from an
external Linux® DNS server, and those results were cached by the z/OS resolver. All
subsequent lookups were resolved by the resolver cache. The preliminary performance
results shown in the chart indicate that resolver caching provides significant performance
improvements. Resolver caching resulted in higher throughput, and less processor use,
than the same sequence when caching was done by a locally defined caching-only name
server.

resolver.ppt Page 5 of 16

 –

IBM Software Group Enterprise Networking Solutions

Configuring resolver caching … it’s all optional!!

� Resolver caching started automatically

– Turn off using NOCACHE statement

� Use CACHESIZE to adjust maximum storage limits

– If modifying limit, select value that is 50% larger than anticipated needs

� Use MAXTTL to adjust maximum entry retention time value

F RESOLVER,DISPLAY

EZZ9298I DEFAULTTCPIPDATA - None
EZZ9298I GLOBALTCPIPDATA - SYS1.TCPPARMS(TCPDATA)
EZZ9298I DEFAULTIPNODES - USER1.ETC.IPNODES
EZZ9298I GLOBALIPNODES - None
EZZ9304I COMMONSEARCH
EZZ9304I CACHE
EZZ9298I CACHESIZE - 200M
EZZ9298I MAXTTL – 214748364
EZZ9293I DISPLAY COMMAND PROCESSED

CACHESIZE
defaults to

200M of storage,
about 80K entries

MAXTTL
defaults to

name server
supplied value

© Copyright International Business Machines Corporation 2009. All rights reserved. Page 6

You do not have to make any configuration changes to use the Resolver DNS Cache
function. It is started by default when the resolver is activated.

There are two additional optional configuration statements you can use to tailor the
caching function. The first statement is CACHESIZE, which specifies the maximum
amount of storage that can be used by the resolver to maintain cache information. The
default is 200 megabytes of storage, which translates into roughly 80,000 cache entries, or
approximately 400 entries per one megabyte of storage. If you choose to modify the value
of CACHESIZE, first estimate the number of entries that you expect to have in the cache.
After converting that number to a value in megabytes, add an additional 50% to the size to
allow for more efficient resolver use of storage.

The second configuration statement is MAXTTL, which specifies the maximum duration of
time, in seconds, that a cache entry can remain usable. The default is the largest value
that can be returned by a DNS name server.

You can display the current resolver setup values at any time using the MODIFY
RESOLVER,DISPLAY command, as shown here.

You can, if you so choose, disable the function using the NOCACHE statement. Caching
can be disabled either on a system-wide basis or only for a subset of users on your
system.

resolver.ppt Page 6 of 16

 –

IBM Software Group Enterprise Networking Solutions

What is and is not cached?

Resolver

(1) DNS A, AAAA,
and PTR records
(2) Negative Cache
information

(1) Low-level API
invocation data
(2) Name Server
timeouts
(3) Local host data

No more than
20% of cache is
ever used for
negative entries

Organized by DNS
name server that
supplied the
response data

Storage
obtained
as needed

© Copyright International Business Machines Corporation 2009. All rights reserved. Page 7

The resolver does not cache all DNS name server response data. Only information
obtained using Getaddrinfo, Gethostbyname, Getnameinfo, or Gethostbyaddr resolver API
calls is saved. This includes both DNS queries that return valid response data and DNS
queries that return “negative cache” responses. “Negative cache” responses are
responses that definitively indicate that the target resource does not exist. DNS
information obtained using other resolver API calls is not saved, nor is information saved
that is obtained from local host files. Also, the resolver does not save any information
regarding name server time-out conditions.

The resolver only allocates storage for entries on an “as-needed” basis, and only 20% of
the maximum storage available (as specified by CACHESIZE) can be used for saving
“negative cache” information. This limits the resolver’s exposure to “denial of service”
attacks that might be designed to fill the cache with unusual entries.

The information is organized according to the IP address of the DNS name server that
provided the cache information. The next two slides elaborate on this topic.

resolver.ppt Page 7 of 16

 –

IBM Software Group Enterprise Networking Solutions

Example of different entries cached on a name server basis

TCPIP.DATA
Dataset specifies:
NSINTERADDR 10.6.6.6

Test Application Production Application

Resolver

Test TCP
Stack

Production
TCP Stack

Getaddrinfo
(af_inet, host.ibm.com)

TCPIP.DATA
Dataset specifies:
NSINTERADDR 10.3.3.3

DNS @10.3.3.3 DNS @10.6.6.6

host.ibm.com A 10.45.5.5

Test DNS returns
IP address=10.45.5.5

Getaddrinfo
(af_inet, host.ibm.com)

host.ibm.com A 10.145.5.5

Production DNS returns
IP address=10.145.5.5

z/OS Communications Server

Result: Two cache records
are created by resolver!!

© Copyright International Business Machines Corporation 2009. All rights reserved. Page 8

Consider an installation that has two applications: a test application and a production
application. The two applications have different TCPIP.DATA datasets. Within the
TCPIP.DATA dataset is the NSINTERADDR list of name servers to be used for the
application. Each application has a different name server defined as the primary name
server to be queried.

Assume that each application issues a resolver API call for the same resource, which in
this example is a Getaddrinfo API call to resolve “host.ibm.com”. As indicated by the
NSINTERADDR values, the resolver directs the requests to different name servers. In
order to segregate the test environment from the production environment, the test name
server returns a different IP address for “host.ibm.com” than the production name server
returns. When caching the responses, the resolver creates two different cache records.
Each cache record is associated with the IP address of the name server providing the
information. This is true even if the two name servers provided the exact same response
information. This allows the resolver, on subsequent requests for “host.ibm.com”, to return
the correct resource information based on the name servers to be contacted to process
the request.

resolver.ppt Page 8 of 16

 –

IBM Software Group Enterprise Networking Solutions

Re-use of cache entries, different data for same host name

TCPIP.DATA
Dataset specifies:
NSINTERADDR 10.7.7.7
NSINTERADDR 10.6.6.6

Test Application Production Application

Resolver

Resolver
Cache
Data

Getaddrinfo
(af_inet, host.ibm.com)

TCPIP.DATA
Dataset specifies:
NSINTERADDR 10.6.6.6
NSINTERADDR 10.3.3.3

Getaddrinfo
(af_inet, host.ibm.com)

z/OS Communications Server

Result: Resolver returns “10.145.5.5” to both applications!!

DNS IP address=10.6.6.6
host.ibm.com=10.145.5.5

DNS IP address=10.3.3.3
host.ibm.com=10.45.5.5

© Copyright International Business Machines Corporation 2009. All rights reserved. Page 9

Continuing with the previous example, what happens if the application TCPIP.DATA
datasets are modified to include different NSINTERADDR statements? In the case of the
test application, the IP address of the production name server has been inserted at the
front of the list. In the case of the production application, an IP address of a new name
server has been inserted as the first address. How does this affect what is returned?

When caching is active, before contacting any DNS name server, the resolver first checks
the contents of the cache database. For the test application request, the resolver starts by
examining the set of cache information provided by the first DNS name server in the list,
which is now the production name server. Since there is information cached from this
name server about the target resource, that information is used. This means that the test
application is now given 10.145.5.5, instead of the address 10.45.5.5 that had been
returned previously. This illustrates the importance of the order of the name servers in the
NSINTERADDR list.

What if the production application issued the request? In this case, the resolver first
examines the set of cached DNS information provided by the newly defined name server,
but there is no information from that name server in the cache. As part of the same
resolver cache query, the set of cached DNS information provided by the production name
server is examined next. There is cached information from this name server, so that cache
data is used. This is an example of how the entire list of name servers is examined for
cached information before any searches to any name servers are attempted.

resolver.ppt Page 9 of 16

 –

IBM Software Group Enterprise Networking Solutions

Using the cached information

� No change to the resolver API’s

� Data saved independent of API used to acquire
cache entry

– Data cached by Getaddrinfo can be retrieved
using Gethostbyname, and vice versa

– Data cached by Getnameinfo can be retrieved
using Gethostbyaddr, and vice versa

– Usable by both EBCDIC and ASCII applications

� No “round robin” algorithm applied to cached
data before delivery to application

– Sorted by Getaddrinfo automatically

– SORTLIST directive applies to IPv4
addresses

© Copyright International Business Machines Corporation 2009. All rights reserved. Page 10

The resolver caching function does not impact the data that is presented to the application
across the resolver APIs. The same control block structures are used for returning the
information. Applications invoking the resolver should not detect any difference between
data supplied from the cache and data that had to be retrieved from a name server.

Furthermore, the cache function is designed to allow resource information to be re-used
by compatible API calls. For instance, if Getaddrinfo is used to obtain IPv4 addresses for a
host name, that same cached information can be retrieved later using Gethostbyname.
The same capability exists for Getnameinfo and Gethostbyaddr calls in terms of host
names obtained from an IPv4 address. IPv6 processing is only available using Getaddrinfo
and Getnameinfo, so IPv6 information cannot be shared in this manner. In addition, the
resolver translates the cache information from EBCDIC to ASCII, or vice versa, so cached
information is available using either protocol.

One function not provided by resolver caching is the ability to return the cached IP
addresses in a different, or “round robin”, order than they were received from the name
server. The resolver returns the addresses in the same order all the time. It should be
noted that Getaddrinfo processing sorts the list of addresses already, eliminating some
advantages of a round robin approach. Similarly, if you have SORTLIST definition
statements coded, the list of addresses are re-ordered into a more predictable pattern.

resolver.ppt Page 10 of 16

 –

IBM Software Group Enterprise Networking Solutions

Displaying cache entry data (Netstat RESCache/-q report)

� Display information about the resolver cache

– Statistical information (use the SUMMARY modifier)

– Detailed entry information (use the DETAIL modifier)

� Options to influence amount of information displayed

– Display statistical information on name server basis
using DNS modifier

– Display all entry information provided by a specific
DNS name server using the DNSAddr/-Q filter

– Display all DNS A or AAAA entries associated with a
specific host name using the HOSTName/-H filter

– Display all DNS PTR entries associated with a IP
address using the IPAddr/-I filter

– Display some or all negative cache entries using the
NEGative modifier

MVS Operator
Command, TSO,
and z/OS UNIX®

RACF
Controls
available

© Copyright International Business Machines Corporation 2009. All rights reserved. Page 11

A new Netstat report, RESCACHE, is available for displaying information regarding the
resolver cache. Two main types of information can be displayed: statistical information,
and actual resource information. The next slides show sample displays of both types of
cache information.

The Netstat RESCACHE report is available in the TSO, z/OS UNIX, and MVS operator
command environments. The RESCACHE report is no different from other Netstat reports
in terms of RACF® requirements.

You can specify additional modifiers or filters to influence the amount of cache data that is
displayed. For statistical information, you can add the DNS modifier to have the overall
statistics broken into statistical information on a name server IP address basis. You have
even more filtering options when displaying detailed resource information. You can filter
the information by the IP address of the name server that provided the information. You
can filter the information so that only entries related to a specific host name value, or
specific IP address value, are displayed. You can display only negative cache information,
either all entries or subsets of entries based on name server IP address, host name value,
or IP address value.

resolver.ppt Page 11 of 16

 –

IBM Software Group Enterprise Networking Solutions

Displaying cache statistics (Netstat RESCache/-q SUMmary)

� Display overall (and per name server) statistical information about the
cache

Storage Usage:
Maximum: 10M

Current: 143K MaxUsed: 1M

Cache Usage:
Total Number of entries: 64

Non-NX entries: 44
A: 20 AAAA: 13 PTR: 11

NX entries: 20
A: 9 AAAA: 2 PTR: 9

Queries: 112 Hits: 34
SuccessRatio: 30%

DNS address: 19.52.206.22
Total Number of entries: 54

Non-NX entries: 39
A: 18 AAAA: 11 PTR: 10

NX entries: 15
A: 7 AAAA: 2 PTR: 6

References: 77 Hits: 21

Storage values: CACHESIZE
encoding plus current and

high-water mark values

Percentage
of queries
satisfied by
information
in the cache

Number of entries
in cache, grouped
by negative (NX)
entries and other
(Non-NX) entries

IP address
of the name
server
providing
cache data

© Copyright International Business Machines Corporation 2009. All rights reserved. Page 12

This is an example of a partial Netstat report showing cache statistical information.

Three components of storage usage information are displayed. One is the maximum
amount of storage permitted, or CACHESIZE. Another is the current amount of storage in
use. The last value is the maximum amount of storage the resolver has used for caching
since the resolver was started.

Cache usage statistics include the total number of entries in the cache and the volume of
cache activity. The number of entries is differentiated between negative cache entries and
non-negative cache entries. Within each of these main categories, the number of DNS A,
AAAA, and PTR records is indicated. These same subsets of entries are displayed for
individual name servers.

The number of resolver cache requests and how often usable data was returned by the
cache gives you a sense of the efficiency of your cache operations. Note that a single
resolver API call can generate multiple cache queries. For instance, a Getaddrinfo request
for both IPv6 and IPv4 addresses generates two cache queries. On an individual name
server level, the “References” value indicates the number of times the set of cache
information provided by this name server was examined. Typically, the sum of the name
server “References” values is greater than the total number of cache queries, since
multiple sets of name server information can be examined as part of one cache query.

resolver.ppt Page 12 of 16

 –

IBM Software Group Enterprise Networking Solutions

Displaying cache entry data (NETSTAT RESCache/-q DETAIL)

HostName to IPAddress translation

HostName: HOSTNAME5.TCP.RALEIGH.IBM.COM

DNS IPAddress: 19.52.206.22
DNS Record Type: T_A
Canonical Name: hostname55.pok.ibm.com
Cache Time: 10/27/2008 19:06:36
Expired Time: 10/27/2008 20:09:37
Hits: 15
IPAddress: 29.236.231.65

29.236.231.88

IPAddress to HostName translation

IPAddress: 152.12.39.164

DNS IPAddress: 19.52.206.22
DNS Record Type: T_PTR
Cache Time: 10/27/2008 19:05:59
Expired Time: 10/27/2008 20:05:59
Hits: 1
HostName: ***NA***

� Display detailed information about entries in cache

DNS that
provided

entry

Up to 35
addresses

saved

Applicable
DNS A and AAAA
records displayed

first, then DNS
PTR records

Negative
Cache
entry

Report includes
only unexpired

entries

Entry
re-usage

Entry identified
by lookup key
(host name or
IP address)

© Copyright International Business Machines Corporation 2009. All rights reserved. Page 13

This is a partial example of a Netstat report showing detailed cache entry information. The
reports are formatted such that DNS A and AAAA records are displayed as one group,
and DNS PTR records are displayed as a second group. Negative cache entries can
appear in either group, in any order.

For each record, the cache entry key, or the target resource that was searched for, is the
first line of the entry. After that, the two types of entries are very similar. The IP address of
the DNS name server that supplied this particular information is displayed, allowing you to
see which values were provided by which name servers. In the case of DNS A and AAAA
record entries, the host name used to create the record might really be an alias or
nickname for the official name of the resource. For that reason, the display includes the
official, or canonical, name, regardless of whether the names match or not. There is no
canonical name concept for DNS PTR records.

Two time values are displayed: one is the time and the date of cache entry creation. The
other is the time and date when the entry expires, based on the name server supplied TTL
or the MAXTTL setting. The Netstat RESCACHE report includes only resources that are in
the cache which do not represent expired information. The number of times this entry has
been re-used is displayed as the “Hits” value. Finally, for DNS A and AAAA entries, up to
35 IP addresses provided by the specified name server for the host name value are
displayed. For DNS PTR entries, the one host name associated with the input IP address
(either IPv4 or IPv6) is included.

resolver.ppt Page 13 of 16

 –

IBM Software Group Enterprise Networking Solutions

Wildcard capabilities for HOSTName/-H filter

� Standard wildcard characters (*, ?) supported

� Implicit wildcarding supported as well

– Similar to how resolver performs host name searches by appending
possible domain names to input host name value

– HOSTNAME charlie is EQUIVALENT to HOSTNAME charlie.*

– HOSTNAME charlie* is NOT EQUIVALENT to HOSTNAME
charlie.*

– HOSTNAME charlie. returns ONLY the information for resource
charlie

© Copyright International Business Machines Corporation 2009. All rights reserved. Page 14

As discussed previously, you can use the HOSTNAME filter to display all the cache
entries created due to translation of a specific host name. HOSTNAME is not a new filter
on the Netstat command, but some new capabilities were added when using HOSTNAME
on the Netstat RESCACHE report. In particular, the standard wildcard characters asterisk
and question mark can be used on the HOSTNAME filter for the RESCACHE report.

In addition to the standard wildcards, the value specified as the HOSTNAME filter is
treated by the resolver as an “implicit wildcard” value. For example, if you specify charlie
as the value for the HOSTNAME filter, it is treated as if you had specified charlie.* as the
value. In both cases, host names like charlie.ibm.com and charlie.raleigh.ibm.com are
displayed in the report, in addition to just the host name charlie. However, if you specify
charlie* as the filter, that is not the same as if you had specified charlie.* as the filterv. In
this case, host names such as charlie01.ibm.com match the first specification (charlie*),
but not the second value (charlie.*).

If you place a period at the end of the host name value, that instructs the resolver to return
information only for that name, without any trailing domain name information. Thus, in this
final example, only records associated with the name charlie are displayed. You might still
see multiple records in the output, if multiple name servers had provided information about
charlie .

resolver.ppt Page 14 of 16

 –

IBM Software Group Enterprise Networking Solutions

Managing the cache storage

� Entries remain valid for time-to-live (TTL) value duration

� Resolver periodically deletes expired entries

– Intervals can range from 30 seconds to 10 minutes

– More aggressive as storage usage grows

F RESOLVER,FLUSH,ALL

EZZ9305I 200 CACHE ENTRIES DELETED
EZZ9293I FLUSH COMMAND PROCESSED

� Operator can manually delete the entire cache contents as well

EZZ9307E RESOLVER CACHE STORAGE IS DEPLETED
Issued
when
cache is
98% full

© Copyright International Business Machines Corporation 2009. All rights reserved. Page 15

The resolver does not maintain the name server response information indefinitely. The
name server provides a “time-to-live” (TTL) value for the resource, which indicates how
long the information can be considered to be accurate. The resolver uses this TTL value to
define an expiration time for the cache record. After this expiration time, the resolver no
longer uses the information to satisfy application requests. You can set an upper limit on
the TTL value using the MAXTTL configuration statement, as previously discussed.

Even though the resolver no longer uses the information, the record is not immediately
deleted when the expiration time is reached. The resolver deletes the record as part of
periodic cleanup processing. This periodic cleanup of the cache can occur anywhere in a
range from 30 seconds to 10 minutes, based on the amount of storage currently being
used to hold cache data. If the percentage of the maximum cache storage, as defined by
CACHESIZE, reaches 98% capacity, the operator is alerted. Additional cache entries are
created as needed until 99% of the cache maximum is reached. No new cache entries are
created when capacity is 99% or higher.

A new FLUSH,ALL option on the MODIFY RESOLVER command is available for deleting
all records from the resolver cache. The operator can use this command in response to
the new cache depleted message as one pro-active way to handle the storage situation.

resolver.ppt Page 15 of 16

 –

IBM Software Group Enterprise Networking Solutions

© Copyright International Business Machines Corporation 2009. All rights reserved. Page 16

Trademarks, copyrights, and disclaimers
IBM, the IBM logo, ibm.com, and the following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

RACF z/OS

If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of other IBM
trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any statements regarding IBM's future direction
and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or services does not imply
that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program Product in this
document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be
used instead.

THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products
are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License
Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other claims related
to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2009. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

resolver.ppt Page 16 of 16

