
1

CICS® Transaction Server for z/OS® V3.1

© 2007 IBM Corporation

Enhanced Inter-program Data Transfer

(also known as “Big COMMAREAs”)

Part 2 – CICS commands and examples

This presentation describes the capabilities provided by the Enhanced Inter-
program Data Transfer function introduced in CICS Transaction Server 3.1. This
function will allow programs and transactions to exchange more than 32K of
data when using a LINK, XCTL, START or RETURN TRANSID command.

While not technically correct, to help you understand this capability you might
think of it as being equivalent to “Big COMMAREAs”.

2

CICS Transaction Server V3.1

© 2007 IBM Corporation2

Agenda

� The 32k COMMAREA “problem”

� The “solution”

– Channels and Containers

� Application programming interface

– EXEC CICS

– Java™

� Migration

– Global and task related user exits

– User replaceable modules

– Applications

� Monitoring and statistics

This presentation will discuss the problems that are encountered by programs
encountering the 32K COMMAREA limitation, techniques that have been used
to circumvent the 32K limitation and then will discuss the CICS solution to the
problem.

The CICS solution uses Channels and Containers to eliminate the problem.
Channels are sets of Containers. Containers are name blocks of data that hold
information to be passed between programs and transaction.

The CICS Application Programming Interface changes for both EXEC CICS
commands and JCICS classes will be examined.

The effects of Channels and Containers on Global User Exits, Task Related
User Exits and User Replaceable Modules will be described.

An example of how to migrate existing applications from their use of
COMMAREAs to Channels and Containers will be presented.

3

CICS Transaction Server V3.1

© 2007 IBM Corporation3

Containers

� Constructing and using a channel
– EXEC CICS PUT CONTAINER CHANNEL

• Creates a channel and places data into a container within the channel
– EXEC CICS GET CONTAINER CHANNEL

• Retrieve the container data passed to the called program

– EXEC CICS LINK PROGRAM CHANNEL
• Links to the program, on a local or remote system, passing the channel and container

data
– EXEC CICS START TRANSID CHANNEL

• Starts a task, on a local or remote system, copying the named channel and container
data and passing it to the started task

– EXEC CICS RETURN TRANSID CHANNEL
• Returns control to CICS, passing the channel and container data to the next

transaction id

To create a channel, if it doesn’t exist, and to place container data within the
channel you will use an EXEC CICS PUT CONTAINER CHANNEL command.

To link or transfer control to another program passing a channel and its
associated containers you will use an EXEC CICS LINK PROGRAM CHANNEL
or EXEC CICS XCTL PROGRAM CHANNEL command. Remember that you
may pass a channel or COMMAREA to a program but not both.

To start a new transaction and pass channel data to the new task you will use
an EXEC CICS START TRANSID CHANNEL command. In the case of the
START command the channel data is copied from the original channel and
passed to the started transaction. At this point there are two separate copies of
the channel data. If your starting program continues to make changes to the
original container data in the channel it will not be reflected in the copy given to
the started task.

To begin or continue a pseudo-conversational task you will use an EXEC CICS
RETURN TRANSID CHANNEL command. This command is only valid at the
highest logical level, that is, a program that is returning control to CICS.

To retrieve data passed to your program you will use an EXEC CICS GET
CONTAINER CHANNEL command.

4

CICS Transaction Server V3.1

© 2007 IBM Corporation4

Containers…
� EXEC CICS PUT

– CONTAINER (data-value)
• Specifies the name (1-16 characters) of the container in which data is to be placed. Do

not use names beginning with DFH,
– CHANNEL (data-value)

• Optional. Specifies the name of the channel that owns the container. If the channel
name is not specified the current channel is used.

– FROM (data-area)
• Specifies the data area from where the data to be saved is read.

– FLENGTH (data-value)
• Specifies the length of the data area to be saved.

– FROMCCSID (data-value)
• Specifies the current Coded Character Set of the character data to be put into the

container. Defaults to the CCSID of the local CICS region.
– DATATYPE (CVDA)

• BIT
– Default value. Bit data. The data in the container cannot be converted.

• CHAR
– Character data. The data is in the code page specified by FROMCCSID and will be converted to an

internal CICS code page.

The format and options of the EXEC CICS PUT CONTAINER command.

5

CICS Transaction Server V3.1

© 2007 IBM Corporation5

Containers…
� EXEC CICS GET

– CONTAINER (data-value)
• Specifies the name (1-16 characters) of the container in which data is to be placed. Do

not use names beginning with DFH,
– CHANNEL (data-value)

• Optional. Specifies the name of the channel that owns the container. If the channel
name is not specified the current channel is used.

– INTO (data-area)
• Specifies the data area into which the retrieved data is to be placed.

– FLENGTH (data-value)
• Specifies the length of the data area to be read.

– INTOCCSID (data-value)
• Specifies the current Coded Character Set into which the character data is to be

converted. Defaults to the CCSID of the local CICS region.
– NODATA

• Specifies the only the length of the data in the container is to be returned. The length
returned will take into account the INTOCCSID.

– SET (ptr-ref)
• Specifies a data area in which the address of the retrieved data is returned

The format and options of the EXEC CICS GET CONTAINER command.

If you use the SET (ptr-ref) parameter the data area returned will be valid until:

A subsequent GET CONTAINER command is issued for the same container in
the same channel by any program that can access the channel or until the
channel goes out of scope.

The container is deleted by a DELETE CONTAINER command.

The container is moved by a MOVE CONTAINER command

This is CICS managed storage – do NOT issue a FREEMAIN against the
storage area.

Should you need to ensure the data is kept, move the data to your own
application storage.

6

CICS Transaction Server V3.1

© 2007 IBM Corporation6

Containers…

� EXEC CICS MOVE
– CONTAINER (data-value)

• Specifies the name (1-16 characters) of the source container that is
to be moved.

– CHANNEL (data-value)
• Optional. Specifies the name of the channel that owns the source

container. If the channel name is not specified the current channel is
used.

– TOCHANNEL (data-value)
• Specifies the name of the channel that will own the target container

– AS (data-value)
• Specifies the name of the target container

The format and options of the EXEC CICS MOVE CONTAINER command.

7

CICS Transaction Server V3.1

© 2007 IBM Corporation7

Containers…

� EXEC CICS DELETE

– CONTAINER (data-value)

• Specifies the name (1-16 characters) of the container that is
to be deleted.

– CHANNEL (data-value)

• Optional. Specifies the name of the channel that owns the
container. If the channel name is not specified the current
channel is used.

The format and options of the EXEC CICS DELETE CONTAINER command.

8

CICS Transaction Server V3.1

© 2007 IBM Corporation8

Containers…

� Discovering what containers have been passed

– Examples:

• Output containers
• Error Containers

� EXEC CICS Commands

– STARTBROWSE CONTAINER

• CHANNEL option added

– GETNEXT CONTAINER (data-area)

– ENDBROWSE CONTAINER

When your application program may be passed a channel with a varying
number of containers it may use the container browse commands to determine
all the containers present in the channel. If your program is only attempting to
determine if a specific container has been passed, such as an error container, it
is more efficient to issue a GET CONTAINER command against the single
container name (for example ERROR).

The CICS commands comprising the browse interface for containers are
STARTBROWSE CONTAINER, GETNEXT CONTAINER and ENDBROWSE
CONTAINER.

The order in which the containers are returned is not guaranteed.

9

CICS Transaction Server V3.1

© 2007 IBM Corporation9

COBOL Calling Program Example
IDENTIFICATION DIVISION.
PROGRAM-ID. CLIENT1.

WORKING-STORAGE SECTION.

COPY INQINTC
* copybook INQINTC
* Channel name
* 01 INQUIRY-CHANNEL PIC X(16) VALUE ’inqcustrec’.

* Container names
* 01 CUSTOMER-NO PIC X(16) VALUE ’custno’.
* 01 BRANCH-NO PIC X(16) VALUE ’branchno’.
* 01 CUSTOMER-RECORD PIC X(16) VALUE ’custrec’.

* Define the data fields used by the program
* 01 CUSTNO PIC X(8).
* 01 BRANCHNO PIC X(5).
* 01 CREC.
* 02 CUSTNAME PIC X(80).
* 02 CUSTADDR1 PIC X(80).
* 02 CUSTADDR2 PIC X(80).
* 02 CUSTADDR3 PIC X(80).

A sample COBOL program using channels and containers,

10

CICS Transaction Server V3.1

© 2007 IBM Corporation10

COBOL Calling Program Example…
PROCEDURE DIVISION.

MAIN-PROCESSING SECTION.

* ... Create CUSTNO and BRANCHNO

* ... Create Channel and Container data

EXEC CICS PUT CONTAINER(CUSTOMER-NO) CHANNEL(INQUIRY-CHANNEL) FROM(CUSTNO)
FLENGTH(LENGTH OF CUSTNO) END-EXEC

EXEC CICS PUT CONTAINER(BRANCH-NO) CHANNEL(INQUIRY-CHANNEL) FROM(BRANCHNO)
FLENGTH(LENGTH OF BRANCHNO)END-EXEC

EXEC CICS LINK PROGRAM(’SERVER1’) CHANNEL(INQUIRY-CHANNEL) END-EXEC

EXEC CICS GET CONTAINER(CUSTOMER-RECORD) CHANNEL(INQUIRY-CHANNEL) INTO(CREC)
END-EXEC

* ...Process customer record

EXEC CICS RETURN END-EXEC

EXIT.

A sample COBOL program using channels and containers,

11

CICS Transaction Server V3.1

© 2007 IBM Corporation11

COBOL Server Program Example
IDENTIFICATION DIVISION.
PROGRAM-ID. SERVER1.

WORKING-STORAGE SECTION.

COPY INQINTC
* copybook INQINTC

* Channel name
* 01 INQUIRY-CHANNEL PIC X(16) VALUE ’inqcustrec’.

* Container names
* 01 CUSTOMER-NO PIC X(16) VALUE ’custno’.
* 01 BRANCH-NO PIC X(16) VALUE ’branchno’.
* 01 CUSTOMER-RECORD PIC X(16) VALUE ’custrec’.

* Define the data fields used by the program
* 01 CUSTNO PIC X(8).
* 01 BRANCHNO PIC X(5).
* 01 CREC.
* 02 CUSTNAME PIC X(80).
* 02 CUSTADDR1 PIC X(80).
* 02 CUSTADDR2 PIC X(80).
* 02 CUSTADDR3 PIC X(80).

A sample COBOL program using channels and containers,

12

CICS Transaction Server V3.1

© 2007 IBM Corporation12

COBOL Server Program Example…
PROCEDURE DIVISION.
MAIN-PROCESSING SECTION.

EXEC CICS GET CONTAINER(CUSTOMER-NO) INTO(CUSTNO)END-EXEC

EXEC CICS GET CONTAINER(BRANCH-NO) INTO(BRANCHNO)END-EXEC

... USE CUSTNO AND BRANCHNO TO FIND CREC IN A DATAB ASE

EXEC CICS PUT CONTAINER(CUSTOMER-RECORD) FROM(CREC) FLENGTH(LENGTH OF CREC)
END-EXEC

EXEC CICS RETURNEND-EXEC

EXIT.

A sample COBOL program using channels and containers,

13

CICS Transaction Server V3.1

© 2007 IBM Corporation13

Java Programming

� JCICS calls are provided to support Java programs

– com.ibm.cics.server.Channel

– com.ibm.cics.server.Container

– com.ibm.cics.server.ContainerIterator

There are three new classes to support channels and containers in the Java
programming language.

A Channel class used to create new containers in a channel.

A Container class used to place data in a container.

A ContainerInterator class used to browse the current channel.

14

CICS Transaction Server V3.1

© 2007 IBM Corporation14

Java Programming…

� Creating a new channel

• Create a channel using the createChannel method of the task
class

Task t = Task.getTask();

Channel custData = t.createChannel("Customer_Data");

An example of creating a new channel using the ChannelFactory class.

15

CICS Transaction Server V3.1

© 2007 IBM Corporation15

Java Programming…

� Creating a new container
• Create the container using the createContainer method of the Channel class

Container custRec = custData.createContainer("Customer_Record");

� Putting data into the container
• Use the Container.put() method

• Data can be added as a byte array or string

String custNo = "00054321";

byte[] custRecIn = custNo.getBytes();
custRec.put(custRecIn);

• Or

custRec.put("00054321");

An example of creating a new container and placing data in the newly created
container.

16

CICS Transaction Server V3.1

© 2007 IBM Corporation16

Java Programming…

� Passing a channel to another program
• Use the link() and xctl() methods of the Program class

programX.link(custData);

programY.xctl(custData);

� Passing a channel to another task
• Use the issue method of the StartRequest class

StartRequest.issue(custData);

• Use the setNextChannel() method of the TerminalPrincipalFacility
class:

terminalPF.setNextChannel(custData);

An example of passing a channel to another program or another task.

17

CICS Transaction Server V3.1

© 2007 IBM Corporation17

Java Programming…

� Receiving the current channel

• Use the getCurrentChannel() method of the Task class

Task t = Task.getTask();

Channel custData = t.getCurrentChannel();

Container custRec = custData.getContainer("Customer_Record");

� Getting data from a container

• Use the Container.get() method to read the data in a container
into a byte array:

byte[] custInfo = custRec.get();

An example of getting the current channel and retrieving data from a container
within the channel.

18

CICS Transaction Server V3.1

© 2007 IBM Corporation18

Java Programming…

� Browsing the current channel

• Use the ContainerIterator object

Task t = Task.getTask();

ContainerIterator ci = t.containerIterator();

While (ci.hasNext()) {

Container custRec = ci.next();

// Process the container... }

An example of determining what containers are present in a channel using the
ContainerIterator class.

19

CICS Transaction Server V3.1

© 2007 IBM Corporation19

Java Programming Example

import com.ibm.cics.server.*;
public class Payroll {
...
// create the payroll_2005 channel
Task t = Task.getTask();
Channel payroll_2005 = t.createChannel("payroll-200 5");

// create the employee container Container employee =
payroll_2005.createContainer("employee");

// put the employee name into the container
employee.put("John Doe");

// create the wage container Container wage =
payroll_2005.createContainer("wage");

// put the wage into the container
wage.put("2000");

A sample program using channels and containers written in Java.

20

CICS Transaction Server V3.1

© 2007 IBM Corporation20

Java Programming Example…

// Link to the PAYROLL program, passing the payroll _2005 channel
Program p = new Program();
p.setName("PAYR");
p.link(payroll_2005);

// Get the status container which has been returned
Container status = payroll_2005.getContainer("statu s");

// Get the status information
byte[] payrollStatus = status.get(); ... }

A sample program using channels and containers written in Java.

21

CICS Transaction Server V3.1

© 2007 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

CICS

Java, Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

© Copyright International Business Machines Corporation 2007. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

