
1

CICS® Transaction Server for z/OS® V3.1

© 2007 IBM Corporation

Enhanced Inter-program Data Transfer

(also known as “Big COMMAREAs”)

Part 1 – Introduction and Concepts

This presentation describes the capabilities of the Enhanced Inter-program Data
Transfer function introduced in CICS Transaction Server 3.1. This function will
allow programs and transactions to exchange more than 32K of data when
using a LINK, XCTL, START or RETURN TRANSID command.

While not technically correct, to facilitate the understanding of this capability you
might think of this capability as being equivalent to “Big COMMAREAs”.

2

CICS Transaction Server V3.1

© 2007 IBM Corporation2

Agenda

� The 32k COMMAREA “problem”

� The “solution”

– Channels and Containers

� Application programming interface

– EXEC CICS

– Java™

� Migration

– Global and task related user exits

– User replaceable modules

– Applications

� Monitoring and statistics

This presentation will discuss the problems that are encountered by programs
encountering the 32K COMMAREA limitation, techniques that have been used
to circumvent the 32K limitation and then will discuss the CICS solution to the
problem.

The CICS solution uses Channels and Containers to eliminate the problem.
Channels are sets of Containers. Containers are name blocks of data that hold
information to be passed between programs and transaction.

The CICS Application Programming Interface changes for both EXEC CICS
commands and JCICS classes will be examined.

The effects of Channels and Containers on Global User Exits, Task Related
User Exits and User Replaceable Modules will be described.

An example of how to migrate existing applications from their use of
COMMAREAs to Channels and Containers will be presented.

3

CICS Transaction Server V3.1

© 2007 IBM Corporation3

The “Problem”

� A 32k COMMAREA limitation exists for:
– Program to program communication

• In a single CICS region
– LINK
– XCTL

• Across CICS regions
– Distributed Program Link

– Task to task communication
• In a single CICS region and across CICS regions

– START with data
– RETURN

The 32K COMMAREA limitation has existed since command level program was
introduced in 1975. The COMMAREA size restriction is applicable to both LINK
and XCTL commands in a single region as while as applying to COMMAREAs
used by programs participating in a Distributed Program Link (DPL) between
two CICS regions.

The 32K limitation also effects the exchange of data between multiple CICS
tasks. Data can be passed between two tasks by the use of the EXEC CICS
START TRANSID FROM command. The data area specified by the FROM
option is limited to a maximum size of 32K.

CICS transaction involved in a pseudo-conversational sequence can exchange
data through the use of the EXEC CICS RETURN TRANSID COMMAREA
command. The returned COMMAREA is subject to 32K size restriction.

The 32K COMMAREA restriction is also applicable to the External CICS
Interface (EXCI) and the External Call Interface (ECI) used by the CICS
Transaction Gateway and the CICS Universal Clients. The solution described in
this presentation does not apply to this set of restrictions.

4

CICS Transaction Server V3.1

© 2007 IBM Corporation4

The “Problem”…

� Techniques for circumventing the 32k limit

– Passing addresses of large storage areas

• Single region solution

– Placing data in Temporary Storage

– Placing data in WebSphere® MQ

– Using Business Transaction Services (BTS)

CICS programmers have developed a number of techniques for circumventing
the 32K COMMAREA restriction both within a single CICS region and
between multiple CICS regions.

Some of these techniques involve:

Passing the address of a large storage area in the COMMAREA. By using the
FLENGTH option of the GETMAIN command a storage area larger than 32K
can be acquired. This solution, while simple, will only work in a single CICS
address space. A region affinity between the two programs or transactions will
be created.

Passing the name of a temporary storage queue in the COMMAREA. By placing
the data in temporary storage more than 32K of data can be passed between
programs or tasks. If the temporary storage queue is placed in a Temporary
Storage Owning Region or the Coupling Facility the data can be accessible
across multiple CICS regions.

Pass the name of WebSphere MQSeries queue in the COMMAREA. By placing
the data in WMQ queues and only passing the queue name a larger amount of
data can be passed between the communicating programs or tasks.

5

CICS Transaction Server V3.1

© 2007 IBM Corporation5

The “Solution”

� Is not a multi-megabyte COMMAREA

– Larger COMMAREA sizes would exacerbate current problems

• Data structure complexity
– For example Overloaded copybooks

• Efficient transmission
• Code page conversions

– DFHCNV mechanism is not easy

• Object code compatibility
– What about EIBCALEN?

At first glance, it would seem that a reasonable solution to this problem would
be to make the COMMAREA length greater than 32K and all problems would be
resolved. While such an implementation would ease the 32K restriction it would
not resolve all the “problems” that exist in exchanging data today and would
exacerbate some of the problem areas.

The current copy books used in the exchange of data today tend to be
overloaded. That is, the structures are redefined a number of times depending
on whether the copybook is passing input, output or error information. This
leads to confusion on exactly when the fields are valid.

The current overload COMMAREA structure does not lend itself to being
efficiently transmitted between CICS regions. The COMMAREA structure size
must account for the maximum size of the data that could be returned. By
addressing the COMMAREA structure directly, CICS cannot determine if you
have changed the data contents. CICS must always return the full COMMAREA
structure from a DPL even if nothing has been changed.

The current COMMAREA structure does not allow for easily separating binary
and character data. The channel construct offers an easy way to get character
data returned in the code page your application program requires.

Merely changing the COMMAREA length to a full word length could result in the
loss of object and source code compatibility for existing CICS programs. How
would a program know if EIBCALEN was valid or whether to check a new EIB

6

CICS Transaction Server V3.1

© 2007 IBM Corporation6

The “Solution”…

� Container

– Named block of data designed for passing information between programs
• “Named” COMMAREAs

– No CICS enforced size limitation
• Channels are stored above the line but below the bar

– Multiple containers can be passed between programs

� Channel

– A group of Containers
• No limit on the number of Containers in a Channel

– Non-persistent
• Non-recoverable resource

– Specified on LINK, XCTL, START and RETURN commands
• Only one channel can be passed

The solution to the 32K COMMAREA problem is to implement new constructs
which solve the previously mentioned problems. CICS Transaction Server 3.1
has done this by implementing Channels and Containers. Channels and
COMMAREAs are mutually exclusive. That is, you may use one technique or
the other for passing data but not both.

A Container is a named block of data that can be passed to a subsequent
program or transaction. It may be easiest to think of a container as a “named
COMMAREA”. There is no CICS enforced limit on the physical size of a single
container. You are only limited by the available user storage in the CICS
address space. Later, in terms of “best practices”, reasons will be provided for
limiting the use of a single container and using multiple containers.

A Channel is a set of containers that can be passed to another program or
transaction. A channel is analogous to a parameter list.

Channels and containers are only visible to the programs that create them and
to the programs they are passed to. When these programs terminate, CICS will
automatically destroy the containers and storage they occupy.

7

CICS Transaction Server V3.1

© 2007 IBM Corporation7

The “Solution”…

Container_One

Container_Two

Container_Three

Channel_A

Here is a visual representation of a channel consisting of three containers. Both
the channel and container are accessed by use of their name. In this example,
the channel is named “Channel_A” and the containers are named
“Container_One”, “Container_Two” and “Container_Three”.

8

CICS Transaction Server V3.1

© 2007 IBM Corporation8

Typical Scenarios for using Channels

� One program / One channel

� One channel / Multiple programs

– The Channel is the interface to a Component

Program A

EXEC CICS LINK PROGRAM(‘PROGRAMB’)
CHANNEL(‘EMPLOYEE_INFO’)

Program B

Program A

EXEC CICS LINK PROGRAM(‘PROGRAMB’)
CHANNEL(‘EMPLOYEE_INFO’)

Program CProgram B

EXEC CICS LINK PROGRAM(‘PROGRAMC’)
CHANNEL(‘EMPLOYEE_INFO’)

Employee Inquiry component

Here are several examples on how you might employ a channel in your
application program flow.

The simplest technique is to use one channel and its collection of containers to
invoke one program. The channel name will be specified on the EXEC CICS
LINK command and the target application program will always know exactly
what channel it will be passed.

Another technique would be for the first program to create a channel and some
containers. This program could then LINK to another program passing the
channel along. Subsequent programs could use the same channel, with the
same of different containers, for their exchange of data. In this example there is
only one copy of the data maintained.

9

CICS Transaction Server V3.1

© 2007 IBM Corporation9

Typical Scenarios for using Channels…

� One program / Multiple channels

Program A

EXEC CICS LINK PROGRAM(‘PROGRAMB’)
CHANNEL(‘EMPLOYEE_INFO’)

EXEC CICS LINK PROGRAM(‘PROGRAMC’)
CHANNEL(‘PAYROLL_INFO’)

Program B

Program C

Program A

EXEC CICS LINK PROGRAM(‘PROGRAMC’)
CHANNEL(‘EMPLOYEE_INFO’)

Program C

Program B

EXEC CICS LINK PROGRAM(‘PROGRAMC’)
CHANNEL(‘PAYROLL_INFO’)

Here are further examples on how you might employ a channel in your
application program flow.

Program A links to two programs, B and C. One option is to use a separate
channel to invoke the two different programs. The same container names could
be used in two channels.

In the second case, program C is a server program that can process requests
from a number of different clients. Depending on the request type a different
channel is used to pass the collection of containers from the client to program C.
Program C can use the EXEC CICS ASSIGN command to determine which
channel is present when it is called.

10

CICS Transaction Server V3.1

© 2007 IBM Corporation10

Typical Scenarios for using Channels…

� One program / Multiple channels

Program A

EXEC CICS LINK PROGRAM(‘PROGRAMC’)
CHANNEL(‘PUBLIC_INFO’)

Program C

Program B

EXEC CICS LINK PROGRAM(‘PROGRAMC’)
CHANNEL(‘PRIVATE_INFO’)

Program A

EXEC CICS LINK PROGRAM(‘PROGRAMC’)
CHANNEL(‘EMPLOYEE_VER1’)

Program C

Program B

EXEC CICS LINK PROGRAM(‘PROGRAMC’)
CHANNEL(‘EMPLOYEE_VER2’)

Here are further examples on how you might employ a channel in your
application program flow.

Program C is a server program that can process requests from a number of
different clients. In the first example, there is a new version of data structure in a
container. Program C could be enhanced to see which version of the container
structure needs to be processes. As time permits, the calling programs can be
enhanced to use the new version on the container structure.

In the second case, program C normally will handle public requests from calling
programs. A private data structure is used for special administrative programs.
A different channel or container could be used to implement this “private
protocol”.

11

CICS Transaction Server V3.1

© 2007 IBM Corporation11

Channels

� The current channel

– The channel, if any, passed to the program by:

• LINK or XCTL

• START or RETURN

– Does not change during the life of the program

• The program may create other channels

– Default for EXEC CICS commands that do not explicitly
specify a channel name

A program’s current channel is the channel, is any, that is passed to the
program. The current channel is set by the calling program or transaction by
issuing a transfer of control command with the channel parameter. The transfer
of control commands that can utilize a channel are LINK, XCTL, START and
RETURN.

While a called program can create new channels for passing information to
other called programs its current channel does not change.

If a channel is not explicitly specified, the current channel is used as a default
value for the CHANNEL (channel-name) parameter on EXEC CICS commands.

12

CICS Transaction Server V3.1

© 2007 IBM Corporation12

Channels…

Program E

EXEC CICS RETURN

Current Channel: MANAGER_INFO

Program D

EXEC CICS LINK PROGRAM(‘PROGRAME’)
CHANNEL(‘MANAGER_INFO’)

Current Channel: none

Program A

EXEC CICS LINK PROGRAM(‘PROGRAMB’)
CHANNEL(‘EMPLOYEE_INFO’)

Current Channel: none

Program C

EXEC CICS LINK PROGRAM(‘PROGRAMD’)

Current Channel: EMPLOYEE_INFO

Program B

EXEC CICS LINK PROGRAM(‘PROGRAMC’)
CHANNEL(‘EMPLOYEE_INFO’)

Current Channel: EMPLOYEE_INFO

This is an example of the program flow inside of an executing transaction. The
programs link to each other passing information through the use of a channel.
You will see that the initial program in the transaction, program A, does not have
a current channel. This is because the transaction was not invoked by use of a
RETURN TRANSID CHANNEL or by a START TRANSID CHANNEL command.

Program A must explicitly specify the channel name in all channel commands
that it invokes.

Program A then invokes program B with an LINK command with a channel
specified. Program B has a current channel of EMPLOYEE_INFO. Program B
then invokes program C passing along the EMPLOYEE_INFO channel.
Program C will have a current channel of EMPLOYEE_INFO.

Program C then proceeds to LINK to program D but does not specify a channel
(perhaps it continues to use a COMMAREA). Thus, program D does not have a
current channel.

Finally, program D invokes program E with a LINK command and specifies a
channel. Program E will have a current channel of MANAGER_INFO.

13

CICS Transaction Server V3.1

© 2007 IBM Corporation13

Channels…

� Channel scope
– Application programs from which the channel can be accessed

• Applications can only access the current channel
– CICS may create read-only containers

• Programs can create new channels
– For use in program transfer to a different program

– When no program in the link stack can access a channel it is
deleted
• Occurs at EXEC CICS RETURN or XCTL

The scope of a channel is which applications can access this channel.
Remember that the channel and its associated containers are only available to
some of the programs in an executing transaction. The scope describes where
the channel and its container data can be accessed.

An application program can only access its current channel and any new
channels that it creates.
CICS itself will use channels and containers and has the capability to create
read-only containers within a channel. You will find read-only containers used in
the new CICS Web Services function.

The other important thing to note about channel scope is that it controls when
the channel will be deleted by CICS. When a channel goes out of scope, that is,
no application program has the ability to access this channel, it is deleted. CICS
will check to see if it can delete a channel at the time an EXEC CICS RETURN
or XCTL command is issued.

14

CICS Transaction Server V3.1

© 2007 IBM Corporation14

Channels…

Program E

EXEC CICS RETURN

Current Channel: MANAGER_INFO

Program D

EXEC CICS LINK PROGRAM(‘PROGRAME’)
CHANNEL(‘MANAGER_INFO’)

Current Channel: none

Program A

EXEC CICS LINK PROGRAM(‘PROGRAMB’)
CHANNEL(‘EMPLOYEE_INFO’)

Current Channel: none

Program C

EXEC CICS LINK PROGRAM(‘PROGRAMD’)

Current Channel: EMPLOYEE_INFO

Program B

EXEC CICS LINK PROGRAM(‘PROGRAMC’)
CHANNEL(‘EMPLOYEE_INFO’)

Current Channel: EMPLOYEE_INFO

Scope of Channel EMPLOYEE_INFO

Scope of Channel MANAGER_INFO

This is an example of channel scope. This is the same example provided for
determining the current channel of a program. The channel scope is indicated
by the two overlay boxes.

The channel, EMPLOYEE_INFO, is created by program A and passed to
subsequent programs B and C. This channel is not passed on the LINK to
program D so the scope of the EMPLOYEE_INFO channel is programs A, B
and C. When program A issues and EXEC CICS return, CICS will then delete
the channel (assuming it is not used in a pseudo conversational sequence).

The channel, MANAGER_INFO, is created by program D and used to exchange
information with program E. The scope of the channel is program D and E.
When program D issues a RETURN command the MANAGER_INFO channel
will go out of scope and be destroyed.

15

CICS Transaction Server V3.1

© 2007 IBM Corporation15

Channels…

Program A

EXEC CICS LINK PROGRAM(‘PROGRAMB’)
CHANNEL(‘EMPLOYEE_INFO’)

Program B

EXEC CICS LINK PROGRAM(‘PROGRAMC’)
CHANNEL(‘MANAGER_INFO’)

EXEC CICS XCTL PROGRAM(‘PROGRAMD’)
CHANNEL(‘PAYROLL_INFO’)

Current Channel: EMPLOYEE_INFO

Program C

EXEC CICS RETURN

Current Channel: MANAGER_INFO Program E

EXEC CICS RETURN

Current Channel: PAYROLL_INFO

Program D

EXEC CICS LINK PROGRAM(‘PROGRAME’)
CHANNEL(‘PAYROLL_INFO’)

EXEC CICS RETURN

Current Channel: PAYROLL_INFO

X
This is an example of channel scope. In this sequence of program LINKs and
XCTLs the boxes will show the channel scope and where the channels will be
deleted.

16

CICS Transaction Server V3.1

© 2007 IBM Corporation16

Channels…

� Lifetime

– Creation

• A channel is created by naming it on a command
– EXEC CICS PUT CONTAINER CHANNEL
– EXEC CICS MOVE CONTAINER TOCHANNEL

– EXEC CICS LINK PROGRAM CHANNEL
– EXEC CICS XCTL PROGRAM CHANNEL
– EXEC CICS RETURN TRANSID CHANNEL
– EXEC CICS START TRANSID CHANNEL

– Deletion

• A channel is deleted when it goes out of scope to any program in
the linkage stack

A channel is created by naming it on an EXEC CICS command. The program
will usually place data in the channel by using a PUT CONTAINER command.
The PUT CONTAINER command will not only create the channel but create a
named container associated with the channel.

A channel will be deleted when it goes out of scope to the programs in the
linkage stack. When no application program is able to access the channel it will
be destroyed.

17

CICS Transaction Server V3.1

© 2007 IBM Corporation17

Channels…

� “Best” practices for performance and reduced complex ity

– Use separate containers for input and output

– Use a dedicated container for error information

– Use separate containers for each structure

– Use separate containers for different data types

• For example Character data and binary data

– Use separate containers for “read only” versus read/write data

– Use separate containers for large amounts of data

– Define the channel and container names in a copybook

It is possible to use a channel with a single container to replace your existing
COMMAREA usage. While this may seem the simplest way to move from
COMMAREAs to Channels and Containers it is not a good practice to do this.
Since you are taking the time to change your application programs to exploit this
new function you should implement the “best practices” for channels and
containers.

Use separate containers for input and output. This will allow you to simplify your
copybook structure and make your programs easier to understand. When using
channels with DPL, small amounts of data will be transferred between the CICS
regions. Only the changed containers need to be returned to the calling CICS
region when a DPL is complete.

Use separate containers for read-only data versus read-write data. This will also
improve the transmission efficiency between CICS regions.

Use a separate, dedicated container for error information. This will lead to
clearer documentation of the error information and improved transmission
efficiency between CICS regions as the error container only needs to be sent if
present. When checking for an error container it is more efficient to issue a GET
CONTAINER command and received a NOTFOUND condition than it is to
initiate a browse of the containers in the channel.

Use a separate container for each structure in the copybook. Consider defining
the names of the channel and the containers used in that channel in a

18

CICS Transaction Server V3.1

© 2007 IBM Corporation18

Channels…

� EXEC CICS ASSIGN CHANNEL

– CHANNEL (data-area)

• returns the 16 character name of the program’s current
channel, if one exists; otherwise returns blanks.

– Used to discover the channel passed to a program

You may use the EXEC CICS ASSIGN command to determine what channel, if
any, was passed to your program. This is useful if your program can be invoked
by a number of different clients all of whom can pass your program a different
channel.

The EXEC CICS ASSIGN CHANNEL command will return the 16 character
name of the program’s current channel if one exists. If no current channel exists
blanks will be returned.

19

CICS Transaction Server V3.1

© 2007 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

CICS WebSphere

Java, Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

© Copyright International Business Machines Corporation 2007. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

