
Managing Server is a deep-dive diagnostics provider for the Tivoli® Composite Application 
Manager for Application Diagnostics V7.1. 

You can define traps in the Managing Server to get alerts and to collect diagnostic data, 
when monitored performance data exceeds a specific threshold. 

The Resident Time, Misbehaving Transaction trap is a specialized trap that you can use to 
collect a full method level trace of a Java request that is executed on a Java 2EE 
application server. 

misbehavtranstrap.ppt Page 1 of 19



The module developer assumes that you are familiar with these concepts: 

- Traps functionality of Managing Server Visualization Engine 

- Monitoring levels L1, L2, and L3 of data collector 

- Steps to enable Method Entry Exit Byte Code Instrumentation (BCI) at the data collector 

misbehavtranstrap.ppt Page 2 of 19



When you complete this module, you can describe how the Misbehaving Transaction trap 
of Managing Server works and how to use it to collect a full (Level 3) method trace of 
requests, even if the data collector for the application server is running at monitoring Level 
1 or Level 2. 

misbehavtranstrap.ppt Page 3 of 19



This module presents these topics: 

- Concepts that are related to Misbehaving Transaction trap 

- Sequence of events that are initiated by the trap, which result in a full method trace 
collection 

- Steps for defining and activating the trap 

- How to use the Request filter in a Trap definition 

- How to use the Trap Action History window to view trap action results, such as method 
trace 

- Some common troubleshooting tips if the trap does not collect the full method trace 

- References to related documentation 

misbehavtranstrap.ppt Page 4 of 19



The main concepts for this module are as follows: 

The terms transaction and request are used interchangeably to refer to a Java request 
executed in an application server JVM. 

A transaction is said to be misbehaving when it takes longer than expected time to 
complete; this expected time is the threshold of trap definition. 

Another trap, Resident time - Completed can also be used to collect method trace for 
long running requests, but this trap collects a full Level 3 method trace only if the data 
collector is running at monitoring Level 3. This makes it impossible to capture a full method 
trace in production with Resident time - Completed trap, because in production, enabling 
the L3 monitoring level has a significant performance impact. 

You can use the Resident time - Misbehaving Transaction trap to collect a full (Level 3) 
method trace for requests even if the data collector is running at monitoring levels L1 or 
L2, which makes the Misbehaving Transaction trap a very effective tool in troubleshooting 
application performance. 

misbehavtranstrap.ppt Page 5 of 19



The sequence of events that leads up to full method trace collection by the Misbehaving 
Transaction trap are listed: 

- When request completion time exceeds the threshold of a Misbehaving 
Transaction trap, Managing Server notifies the data collector to enable Level 3 
method trace for that request.

- If the same request exceeds the trap threshold again, a method trace is collected 
for that request. 

- Since the Level 3 method trace was enabled when the trap first triggered, the 
collected method trace is a full method trace. 

- Thus a minimum of two occurrences of the trap are required to collect the method 
trace. 

- During trap activation, Deactivation settings can be specified to automatically 
deactivate the trap. 

- When the trap deactivates, Managing Server notifies the data collector to stop L3 
method trace collection for the request. 

misbehavtranstrap.ppt Page 6 of 19



A. To create the trap, select menu option Problem Determination >Trap & Alert 
Management . From the Trap and Alert Management window, select the Create Trap
option. 

B. On STEP 1 window, select Application Trap type and then Resident Time –
Misbehaving Transaction target type, and click Next . 

C. On STEP 2 window, specify the Threshold for the trap, which is time in milliseconds. 
This threshold should be set to a high enough value so that only slow response times can 
trigger the trap. 

1) The Request contains field on this window is set to * by default. The setting of * 
implies that all requests that exceed the threshold will trigger the trap. 

2) Note that the single * is the only character which is interpreted as a regular 
expression in this field. 

3) For example, if you enter /myapp/* as request filter, it will not cause the trap to 
trigger for request /myapp/hello. 

4) To capture a method trace for a specific request, use the request URI (Uniform 
Request Identifier) or a unique substring of the URI in the request filter. 

D. Click Next on STEP 2 window. 

misbehavtranstrap.ppt Page 7 of 19



On STEP 3 window of trap definition, specify actions for the trap. 

A. Select the check boxes for Alert Action and Data Action . 

B. Alert action options are Email and SNMP message . These actions send an alert 
notification when the trap triggers. 

C. The fields Condition and Time Interval under Trap Alert Settings are disabled 
for this trap. 

D. The only data action available for this trap is to collect method trace. 

E. Click the Add button to add the two actions to the trap definition and then click 
Next . 

On the STEP 4 window, enter Trap name and description , then click Save & Activate . 

misbehavtranstrap.ppt Page 8 of 19



A. On the Activate window, select the data collectors on which to activate the trap. 

B. There are three check boxes for Deactivation Settings . By default, the setting for 
Number of occurrences after which the trap will be d eactivated is set to 5. 

C. This setting results in up to four method traces which is sufficient in most cases. You 
can increase or reduce this count to collect more or fewer method traces. 

A minimum setting of 2 is required to collect the method trace because the first occurrence 
of trap is used to notify the data collector to enable L3 method trace for the request. 

misbehavtranstrap.ppt Page 9 of 19



You should know the details of what to expect when request filter is set to *. 

For this example, assume that you want the trap deactivation count to be set to 5. 

If request1 triggers the trap, Level 3 method trace is enabled for it. After the trap triggers 
five times for request1 , four method traces are collected and the trap deactivates for 
request1 . 

The Level 3 method trace is now disabled for request1 . However, the trap itself stays 
active. The Iterations Left column on the Active Traps table of Traps Overview window 
remains at 5. 

If request2 triggers the trap, then Level 3 is enabled for request2 and is then deactivated 
for request2 after five trap occurrences for request2 , and so on. 

The trap stays active indefinitely, and must be manually deactivated. 

The Managing Server keeps the occurrence count for each individual requests which 
trigger the trap and deactivates as per the settings for each individual request. 

This setting can cause Level 3 method collection for a lot of requests if the trap threshold 
is set to a low value. 

misbehavtranstrap.ppt Page 10 of 19



An alternative to the use of *, is to specify a request URI in the request filter. This 
alternative helps to reduce scope of the trap by restricting it to only those requests which 
satisfy the request filter string. 

For example, setting /ITCAM/testware in request filter causes the trap to treat 
/ITCAM/testware/method and /ITCAM/testware/stack as the same request, even though 
these two are different requests. 

The request filter string should uniquely identify a specific request. For example, setting 
the filter to string /ITCAM/testware/stack excludes the method request from this trap. 

The URI string to use in the request filter of trap definition might not be obvious because it 
does not necessarily display in the application browser link. 

You can obtain the request URI to use in the filter from application data displayed on 
Managing Server Visualization Engine windows. For example, Performance Analysis -
Request /Transaction Report , Top Reports -Top Slowest Requests , In-Flight 
Request Search, Server Activity Display all show the request URI data. 

misbehavtranstrap.ppt Page 11 of 19



The Trap Action History window displays the actions that are taken by the trap. 

This example shows results from a trap that is defined with request filter set to *. 

After first occurrence of the trap, the Action Taken column shows Enabled L3 for 
the transaction . This value indicates that data collector was notified to enable 
Level 3 method entry exit collection for the request. 

Select the Trap Name column link to display Trap Action History Properties
window, which shows the request URI in the Offending Content field. 

When the trap triggers again with identical URI, Managing Server collects a method 
trace for the request. 

Note : If the same request with different parameters exceeds trap threshold, it is 
considered an entirely different request by the Managing Server, and a notification 
to enable L3 for the transaction is sent to the data collector again. This behavior 
is specific to request filter setting of *. 

The example shows two occurrences of the trap, one with request parameter 
ttl=12&depth=1 and another with ttl=15&depth=2 . Even though both were the same 
request /ITCAM/testware/method, the Managing Server treated them as different. 

misbehavtranstrap.ppt Page 12 of 19



To view the method trace, click the Method Trace link in the Action Taken column of the 
Trap Action History window. 

The Trap Method Trace window displays. To view the full method trace, click the Flow 
View tab. 

misbehavtranstrap.ppt Page 13 of 19



On the Flow View tab, check the Delta Elapsed Time column to locate the methods that 
took most time to run. 

You can click icons for Email PDF , View PDF , and Export to File to export the method 
trace to an external file that you can send to the developers for analysis. 

With full method trace collection, the main goal of the Misbehaving Transaction trap is 
achieved. 

misbehavtranstrap.ppt Page 14 of 19



If you find that the trap collected Method Trace with only two methods, Servlet Entry and 
Servlet Exit, it might be caused by one of these reasons: 

1. Verify if the Method Entry Exit instrumentation is enabled at the data collector. 
This is a required configuration for L3 method trace collection. 

2. Verify the offending content of the Method Trace action and Enabled L3 action 
on Trap Action History window. Both should contain the URI of the same request. 

3. Inspect the Action Date/Time column of Trap Action History window to 
determine if the Enabled L3 action and Method Trace action are very close 
together in time. 

It can take some time for the data collector to enable L3 tracing for the request. If another 
occurrence of the request occurs right after the first occurrence, then full method trace 
might not be collected. Subsequent occurrences of the trap will collect full method trace 
after data collector has enabled L3 method trace collection .

misbehavtranstrap.ppt Page 15 of 19



The listed reference information is available if you need it.

misbehavtranstrap.ppt Page 16 of 19



Now that you completed this module, you can use the Resident Time, Misbehaving 
Transaction trap to use collect full method trace for slow requests. 

misbehavtranstrap.ppt Page 17 of 19



You can help improve the quality of IBM Education Assistant content by providing 
feedback.

misbehavtranstrap.ppt Page 18 of 19



misbehavtranstrap.ppt Page 19 of 19


