MQSeries™ Integrator Agent for CICS® Transaction
Server

Tutorial and "Techniques

Version 1 Release 1 Modiﬁcation 1

<|lI!

SC34-6087-00

MQSeries™ Integrator Agent for CICS® Transaction
Server

Tutorial and "Techniques

Version 1 Release 1 Modiﬁcation 1

<|lI!

SC34-6087-00

Note: Before using this information and the product it supports, read the information in mnhsﬁlun_pa.gelﬂ

First edition March 29th, 2002

This edition applies to version 1 release 1 modification 1 of MQSeries Integrator Agent for CICS Transaction Server
(product number 5655-F25) and to all subsequent releases and modifications until otherwise indicated in new
editions.

IBM welcomes your comments. You can make comments on this information via e-mail at lidecf@hurslev.ibm cond.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2001. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

mailto:idrcf@hursley.ibm.com

Contents

FiguresV
TablesIX
About MQSI Agent for CICS Xxi
The objectives of this tutorialxiv
Who should use this tutorialxiv
Related informationXxv

Chapter 1. Guidelines for building

adapters T |
Requirements analysis and des1gr1 con51derat10ns o1
Requirements analysis . .1
Design considerations .2
Application interface. . .2
Determining the critical data structures in the
server application. .4
Building adapters. A
Deploying adapters . . . A
High level control flow of a CICS busmess
transaction at run time7
Chapter 2. Tutorial overview 9
About the business transaction that you will model .9
Accessing the files to perform the tutorials 10
Assumptions . . . e (0]
Tutorial directory structure S B |
Accessing a completed workspace B]
Chapter 3. Build an adapter that
supports a DPL interface. 15
Designing an adapter15
Addressing a businessneed16
Accessing the DPL tutorial files. 22
Configuring the Specification files for a DPL
interface23
Creating an adapter that supports a DPL 1nterface 26
Deploying an adapter 59
Check to see that the adapter comprled in CICS .. 62
Defining the adapter resources to CICS 62
Chapter 4. Build an adapter that
supports an MQ interface. 65
Designing an adapter65
Addressing a businessneed66
Identify the components of the run time
environment . . . B 4
Accessing the MQ tut0r1a1 flles o A
Configuring the Spec1f1cat10n files for an MQ
interface . . . &S |

© Copyright IBM Corp. 2001

Creating an adapter that supports an MQ interface 76

Deploying an adapter . . . (14
Check to see that the adapter comprled in CICS 110
Defining the adapter resources to CICS. 110

Chapter 5. Build an adapter that

supports a FEPI interface 111
Designing an adapter.111
Addressing a businessneed 112
About the adapter you will design 112
Identify the components of the run time
environment. . . P I
Accessing the FEPI tutorral frles B O 1
Configuring the Specification Files 116
Creating an adapter that supports a CICS FEPI
interfaceo 120
Import Message Sets o ... 120
Create the subflows for the FEPI adapter R K 74
Create the Navigator microflow 197
Deploying an adapter 225
Check to see that the adapter comprled in CICS 228
Defining the adapter resources to CICS. 228
Chapter 6. Validating the adapters .. 231
How the Simulator works 231
Preparing to use the Simulator 232
Running the Simulator to validate the adapters ..232

Appendix. Example procedure for
defining adapter resources to CICS. . 239

Defining DPL adapter resources to CICS 239
Check to see that the adapter compiled in CICS 239
Defining the adapter resources to CICS. . . . 242

Defining MQ adapter resources to CICS 246
Check to see that the adapter compiled in CICS 246
Defining the adapter resources to CICS. . . . 249

Defining FEPI adapter resources to CICS 254
Check to see that the adapter compiled in CICS 254

Defining the adapter resources to CICS. 257
Running the CEDA transaction257

Notices263

Trademarks264

Glossary267

Index273

iii

iV MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Figures

N =

IS

®

10.
11.

12.

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

25.
26.

27.

28.

29.
30.

31.
32.
33.
34.
35.

36.
37.
38.
39.
40.

41.

Adapter Builder Components. . . oLoLoxi
Process for using MQSI Agent for CICS xiii
Accessing the MQSI Agent for CICS
documentation XV
Analyze information before you begln modehng 1
Supported interface methods3
Deploying the adapter from the builder to the
0S5/390 server7

Tutorial installation for default settlngs (part 1) 11
Tutorial installation for default settings (part 2) 12
Components that make up the DPL adapter
you will build.17
Tutorial run time env1ronrnent for DPL adapter 22
Directory structure for locating specification

files for the DPL interface. 24
Initial panel of the MQSI Agent for CICS

Adapter Builder27
Import a message set (source 1nformat10n) 28
Import a message set (group level).29
Import a message set (group level).30
Create a TU_D_TRX transaction. . . . 32
Add messages to the TU_D_TRX transactron 33
Messages Sets view . . . 33

Creating a Decision type for the DPL Adapter 35
Editing the In Terminal on the Decision type 36
Editing the Out Terminal on the Decision type 37

Code for the Good Terminal38
Creating a TU_D_DCUST Command type 39
Creating a TU_D_CUST_CTX Data Context

type40
Creating a TUDPLOl Mlcroflow Type ..o 4
Dragging an Input Terminal on to the

Microflow Definition pane . . .42
Configuring the TU_D_RAW Input Termlnal

node properties43
Configuring the OUT_OK Output Terrmnal
properties . . .)
Nodes for the DPL adapter . . 46
Connecting the TU_D_RAW Input Termlnal

and TU_D_DCUST Command node47
The TUDPLO1 microflow48
Mapping for Maplnode50
Mapping for Map2node51
Mapping for Map2 node 52

Mapping for Map3 node (TU_D_ CUST CTX
and TU_D_RTN_OK messages to OUT_OK

message)53
Mapping for Map4 node e L
Mapping for MapSnode55
Mapping for Map6node56
Creating an CICS MQAdapter57
Messages Sets folder showing checked out
message and newly created message58
Specifying pathname for copybook generation
output58

© Copyright IBM Corp. 2001

42.

43.
44.
45.

46.

47.

48.

49.

50.
51.

52.
53.
54.
55.
56.
57.
58.
59.
60.

61.
62.

63.

64.
65.

66.
67.
68.
69.
70.

71.
72.
73.
74.
75.

76.

Specifying pathname for adapter code
generation output

Specifying the target host

Logon to the host .
Sub-process dialog 1nd1cat1ng status of the
deploy process

Tutorial run time envrronment for MQ adapter
(DFHMABPS). .

Components that make up the MQ adapter
you will build.

Directory structure for locatlng spec1f1catlon
files for the MQ interface .

Initial panel of the MQSI Agent for CICS
Adapter Builder . . .
Import a message set (source 1nformat10n)
COBOL Language Message Importer — group
level panel . .

Import a message set (group level)

Create a TU_M_TRX transaction

Add messages to the TU_M_TRX transactlon
Messages Sets view .

Editing the In Terminal on the Dec1s1on type
Editing the Out Terminal on the Decision type
Code for the Good Terminal . . .
Creating a TU_M_DCUST Command type
Creating a TU_M_CUST_CTX Data Context
type . . R
Creating a TUMQOl Mlcroﬂow Type .o
Configuring the TU_M_RAW Input Terminal
node properties .

Configuring the OUT_OK Output Termlnal
properties . . o
Nodes for the DPL adapter .
Connecting the TU_M_RAW Input Termlnal
and TU_M_DCUST Command node .

The TUMQO1 microflow .

Mapping for Mapl node .

Mapping for Map2 node .

Mapping for Map2 node.

Mapping for Map3 node (TU_M CUST CTX
and TU_M_RTN_OK messages to OUT_OK
message) . . o
Mapping for Map4 node

Mapping for Map5 node.

Mapping for Map6 node.

Creating a CICS MQAdapter

Messages Sets folder showing checked out
message and newly created message This
screen capture contains a Messages Sets
folder showing a checked out message,
indicating by an associated key symbol, and
newly created message, indicated by a yellow
star symbol. .

Specifying pathname for copybook generatlon
output .

. 59
. 60
. 61

. 62

. 67

. 68

. 74

. 76

78

.79
. 80
. 82

83

. 83

85
86

. 87

88

. 89
. 90

.92

. 93
. 94

. 95
. 96
. 98
.99

. 100

. 101
. 102
. 103
. 104
. 105

. 106

. 106

77.

78.
79.
80.

81.

82.

83.

84.
85.
86.
87.
88.

89.
90.
91.
92.
93.
94.
95.

96.
97.
98.

99.
100.
101.

102.
103.
104.
105.

106.

107.
108.
109.
110.
111.

112.

113.

114.
115.
116.
117.

118.
119.
120.
121.
122.

vi

Specifying pathname for adapter code
generation output . . .
Specifying the target host

Logon to the host . .

Sub-process dialog indicating status of the
deploy process .

Tutorial run time env1ronment for FEPI
adapter .

Directory structure for locatmg spec1f1catlon
files for the FEPI interface .

Initial panel of the MQSI Agent for CICS
Adapter Builder.

Import a message set (source 1nformat10n)
Import a message set (group level)

Import a message set (group level)

Add the CICS_SAMPLES message set

Add messages to the CICS_SAMPLES
message set . R

Create the 3270 message set .

3270 Screen Importer in emulation mode
CICS logon screen . . .
Capturing the CICS logon screen .

Element Qualifiers for the CICS logon screen
CICS Signon Complete screen .

’Screen recognition data cannot be
determined’ information message .
Customizing the element qualifier

Customer Information screen .
Requesting a customer record display on the
Customer Information screen

Customer record display .

Add an existing transaction .

Add messages to the
TU_F_SAMPLE_PARSER folder

Message Sets view .

Creating a TU_F PARSER Command type
Creating a TU_F_PARSER Microflow Type
Configuring the Input RAW Input Terminal
node properties .

Connecting the Input RAW Input Termmal
node and the TU_F_PARSER Command node.
TU_F_PARSER . .

Mapping for Map1 node.

Mapping for Map2 node.

Creating an CICS MQAdapter .

Messages Sets folder showing checked out
message and newly created message.
Specifying pathname for copybook generation
output . .
Specifying pathname for adapter Code
generation output .

Creating a TU_F_SIGNON Command type
Creating a TU_F_ CMAV Command type
Creating a TU_F_SIGNON Microflow Type
Configuring the Input RAW Input Terminal
node properties . . o
TU_F_SIGNON .

Valid Values dialog

Mapping for Map1l node.

Mapping for Map2 node.

Mapping for Map3 node.

. 107
. 108
. 109
. 109
. 115
. 117

121

122

. 123
. 124

125

. 126
. 127

128

. 129
. 129

130

. 131

. 131
. 132
. 133

. 133
. 134
. 135

. 136
. 137

139
140

. 142

143

. 144
. 145
. 146
. 147
. 148
. 149

. 150

151
152
153

. 155
. 157
. 158
. 159
. 160
. 161

123.
124.

125.
126.
127.

128.
129.
130.

131.
132.
133.
134.
135.
136.
137.

138.
139.

140.
141.
142.
143.
144.
145.
146.

147.
148.

149.
150.
151.
152.
153.

154.
155.
156.

157.
158.
159.

160.
161.

162.

163.
164.

165.

166.
167.
168.
169.

Creating an CICS MQAdapter . .
Specifying pathname for adapter code
generation output .

Creating a TU_F_CUST Command type
Editing the In Terminal on the Decision type
Editing the Out Terminal on the Decision
type. . .

Code for the REC NOT FND Termmal
Creating a TU_F_INQ Microflow Type
Configuring the Input RAW Input Terminal
node properties . . o
TU_F_INQ .

Mapping for Mapl node .

Mapping for Map2 node.

Mapping for Map3 node.

Mapping for Map4 node.

Creating an CICS MQAdapter .
Specifying pathname for adapter code
generation output .

Creating a TU_F_SGNOFF Mlcroﬂow Type
Configuring the Input REPLY Input Terminal
node properties . o
TU_F_SGNOFF .

Mapping for Map1l node.

Mapping for Map2 node.

Mapping for Map3 node.

Mapping for Map4 node.

Creating an CICS MQAdapter .
Specifying pathname for adapter code
generation output .

Creating a TU_F_RESET Mlcroﬂow Type
Configuring the Input CUST SCR Input
Terminal node properties . .
TU_F_RESET Microflow .

Mapping for Mapl node.

Mapping for Map2 node.

Creating an CICS MQAdapter . .
Specifying pathname for adapter code
generation output .

Creating a TU_F_NAV M1croﬂow Type
Editing the In Terminal on the Decision type
Editing the Out Terminal on the Decision
type. . .

Code for the SIGNON Term1na1 .
Editing the In Terminal on the Decision type
Editing the Out Terminal on the
TU_F_GOOD_SIGNON Decision type
Code for the GOOD_SIGNON Terminal
Editing the In Terminal on the
TU_F_SIGNOFF Decision type .

Editing the Out Terminal on the
TU_F_SIGNOFF Decision type. .

Code for the SIGNOFF Terminal .
Creating a TU_D_HOLD_REPLY Data
Context type. .

Configuring the Input RAW Input Termlnal
node properties . . oo
TU_F_NAV . .

Mapping for Map1 node

Mapping for Map2 node.

Mapping for Map2 node.

MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

. 162

. 163

164
165

. 166

167
168

. 169
. 171
. 173
. 174
. 175
. 176
. 177

. 178

179

. 180
. 182
. 183
. 185
. 186
. 187
. 188

. 189

190

. 191
. 193
. 194
. 195
. 196

. 197

198
199

. 200
. 201

202

. 203

204

. 205

. 206
. 207

. 208

. 209
. 215
. 216
. 217
. 218

170.

171.

172.
173.
174.
175.
176.

177.
178.
179.

180.
181.

182.
183.

184.
185.
186.

187.
188.
189.

Mapping for Map3 node
(SYS_FEPI_OVERRIDES message). .
Mapping for Map3 node (TU_F_REPLY
message to TU_F_REPLY message)
Mapping for Map4 node. .
Mapping for Map5 node.

Mapping for Map6 node .

Creating an CICS MQAdapter . .
Specifying pathname for adapter code
generation output . o
Specifying the target host

Logon to the host .

Sub-process dialog 1nd1cat1ng status of the

deploy process .

Request processing using the 51mu1ator
Flow of an adapter being run from the
Simulator . ..

Simulator transaction .

Simulator request initiation screen — In1t1al

appearance
Simulator Syrnbohc Mapprng Utrhty
Updated symbolic mapping utility screen

Simulator request initiation screen — Sending

the request

Simulator symbolic mapplng ut1hty screen

TSO/E logon screen .

List of completed job notrflcatlons sent to
0S/390 server (for active user id) via the
deploy process .

. 219

. 220
. 221
. 222
. 223
. 224

. 225
. 226
. 227

. 227

232

. 233
. 234

. 234
. 236

237

. 237

238

. 239

. 240

190.
191.

192.
193.

194.
195.
196.
197.

198.
199.

200.
201.
202.
203.

204.
205.

ISPF Primary Option Menu . .
Spool Display and Search Facility Held
Output Display screen o
JES2 Job Log .

Error Message Summary report sectron of the

JES2 JOB LOG .
TSO/E logon screen

List of completed job not1f1cat10ns sent to

0S/390 server (for active user id) via the
deploy process . .

ISPF Primary Option Menu

Spool Display and Search Facrhty Held
Output Display screen . .
JES2 Job Log .

Error Message Summary report sectlon of the

JES2 JOB LOG .
TSO/E logon screen

List of completed job notrflcatlons sent to the

0S/390 server (for active user id) via the
deploy process . .

ISPF Primary Option Menu

Spool Display and Search Facility Held
Output Display screen .o
JES2 Job Log .

Error Message Summary report sectlon of the

JES2 JOB LOG .

Figures

. 240

. 241

. 241

. 242
. 247

. 247
. 248

. 248

. 249

. 249

. 254

. 255
. 255

. 256

. 256

. 257

vii

Vviii MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Tables

11.

12.

13.

14.

15.

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

26.
27.

28.
29.

30.

31.

DPL Adapter programs

Component roles in the adapter that supports
a DPL interface

Files to be used in the DPL tutor1a1

Files in the C:\<mgiac_base>\cics directory
Keyword values used for DPL Interaction
Specification file .

Keyword values used for DPL Mlcroﬂow
Connector Resource file .
Messages to add to the workspace .

Code for the Out Terminal actions for the
TU_D_RTN_OK Decision type .

DCUST Command property values
TU_D_CUST_CTX Data Context property
values .

Mapping fields for Mapl node (TU D RAW
message to TU_D_BE_C_IN message) .
Mapping fields for Map2 node
(TU_D_BE_C_OUT message to
TU_D_CUST_REC message) .

Mapping fields for Map2 node
(TU_D_BE_C_OUT message to TU_D_DEC
message) o
Mapping flelds for Map3 node
(TU_D_CUST_REC message to OUT_OK
message) . e
Mapping fields for Map3 node
(TU_D_RTN_OK message to OUT_OK
message) .

Mapping fields for Map4 node (TU D DEC
message to TU_D_OUT_ERR message)
Mapping fields for Map5 node (TU_D_DEC
message to TU_D_OUT_ERR message) .
Mapping fields for Map6 node (TU_D_DEC
message to TU_D_OUT_ERR message)
Values for the Define Transactions screen
MQ Adapter programs.

Component roles in the adapter that supports
an MQ interface .

Files to be used in the MQ tutorlal

Files in the C:\<mgqiac_base>\cics directory
Keyword values used for MQ Interaction
Specification file .

Keyword values used for MQ MlCI’OﬂOW
Connector Resource file .
Messages to add to the workspace .

Code for the Out Terminal actions for the
TU_M_RTN_OK Decision type .

DCUST Command property values
TU_M_CUST_CTX Data Context property
values .

Mapping fields for Mapl node (TU M RAW
message to TU_M_BE_C_IN message).
Mapping fields for Map2 node
(TU_M_BE_C_OUT message to
TU_M_CUST_REC message) .

© Copyright IBM Corp. 2001

.17

.18
.22

23

. 24

. 25
. 30

. 38
. 39

. 40

. 49

. 50

. 51

. 52

. 52

. 53

. 54

. 55

62

. 67

. 69
.72

73

. 74

.75
. 80

. 87
. 88

. 89

. 97

. 98

32.

33.

34.

35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.

48.

49.

50.

51.
52.

53.
54.

55.

56.

57.

58.
59.

Mapping fields for Map2 node
(TU_M_BE_C_OUT message to TU_M_DEC
message) . Ce
Mapping fields for Map3 node
(TU_M_CUST_REC message to OUT_OK
message) . . .o
Mapping fields for Map3 node
(TU_M_RTN_OK message to OUT_OK
message) . .

Mapping fields for Map4 node (TU M DEC
message to TU_M_OUT_ERR message) .
Mapping fields for Map5 node (TU_M_DEC
message to TU_M_OUT_ERR message) .
Mapping fields for Map6 node (TU_M_DEC
message to TU_M_OUT_ERR message) .
Values for the Define Transactions screen
MQ Adapter programs .

Files in the C:\<mgiac_| base>\c1cs d1rectory
Files in the C:\<mgiac_base>\cics directory
Keyword values used for base Navigator
Microflow Connector Resource file
Keyword values used for a FEPI Connector
Resource file .

Program and transaction IDs Values used for
the FEPI microflows

Messages to add to the workspace .
TU_F_PARSER Command property values
Mapping fields for Mapl node (TU_F_RAW
message to CICSPARSER_request message)
Mapping fields for Map2 node
(TU_F_SIGNON_SCR _screen message to
TU_F_DEC message)o
Mapping fields for Map3 node
(TU_F_CUST_SCR_screen message to
TU_F_DEC message)
Mapping fields for Map4 node
(TU_F_COMP_SCR_screen message to
TU_F_DEC message) . . .

Mapping fields for Map5 node (UNKNOWN
message to TU_F_DEC message) . .
TU_F_SIGNON Command property Values
TU_F_CMAV Command property values
Mapping fields for Mapl node
(SYS_LU_LOGON message to
TU_F_SIGNON_SCR_request message) .
Mapping fields for Map2 node
(TU_F_COMP_SCR_screen message to
CICSMACRO_request message) .
Mapping fields for Map3 node (Unknown
message to TU_F_REPLY message)
Mapping fields for Map4 node (TU_F CMAV
message to Output REPLY message) .
TU_F_CUST Command property values
Mapping fields for Map1 node (TU_F_RAW
message to TU_F_CUST_SCR request
message) . .o .

. 98

. 100

. 100

. 101

. 102

. 103

110

. 114

115
116

. 118

. 119

. 120
. 124

139

. 145

. 145

. 146

. 146

. 146

150
151

. 158

. 160

. 161

. 16l

164

. 172

ix

60.

61.

62.

63.

64.

65.

66.

Mapping fields for Map2 node (Unknown
message to TU_F_REPLY message)

Mapping fields for Map3 node (TU_F RAW

message to TU_F_REPLY message)
Mapping fields for Map4 node
(TU_F_CUST_SCR_screen message to
TU_F_REPLY message)

Mapping fields for Map1 node (TU F REPLY

message to TU_F_CUST_SCR_request
message) .

Mapping fields for Map2 node (Unknown
message to CICSMACRO_request message)

Mapping fields for Map3 node (TU_F_REPLY

message to TU_F_REPLY message)

Mapping fields for Map4 node (TU_F REPLY

message to TU_F_REPLY message)

. 173

. 174

. 175

. 183

. 184

. 185

. 186

67.

68.
69.
70.
71.
72.
73.

74.
75.

Mapping fields for Mapl node
(TU_F_CUST_SCR_screen message to
TU_F_CUST_SCR_request message) .
Mapping fields for Map2 node (Unknown
message to TU_F_REPLY message)

Code for the Out Terminal actions for the
TU_F_SCR_ID Decision type .
Summary of connections used in the
TU_F_NAV microflow

Mapping fields for Map6 node (Unknown

message to TU_F_REPLY message)

Values for the Define Transactions screen
Values for the Define Transactions screen
Values for the Define Transactions screen
Values for the Define Transactions screen

X MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

. 194

. 195

. 201

. 213

. 222

228
243
251
258

About MQSI Agent for CICS

COBOL
Record
Descriptions

structured
data types

\/\
3270 Screens

Host on
Demand

¥/\

Use of the MQSeries Integrator Agent for CICS Transaction Server (also know here
as MQSI Agent for CICS) can be separated into two phases: a build time phase and
a run time phase.

Build time is defined generically as the development period when a process or
object is defined, modeled or modified electronically. The MQSI Agent for CICS
component that is used at build time is called the Adapter Builder.

MQSeries Integrator Agent for CICS
Transaction Server Adapter Builder

control center

importers

>

3270
Screen

* Import, modify
and create
messages.

e Compose
adapter model.

* Control import

\\and generation.

e COBOL

P COpPybOOKS —

\f

COBOL o

.

»Source cod >

7 Send to 0S/390

server for compilation

generator

=
message
repository

Y

Figure 1. Adapter Builder Components

The Adapter Builder provides a graphical environment for modeling adapters. Its
intuitive visual interface enables users to model adapters to be used for host-based
transaction processing. In the MQSI Agent for CICS paradigm, an adapter is the
output of the Adapter Builder. Adapters are modeled, defined and generated using
the Adapter Builder. As output from the builder, an adapter consists of COBOL
(source and copybooks) and JCL.

After a user creates an adapter, it is moved from the builder in the Windows/NT
environment, to an OS/390 server, where it is compiled as a BTS application. A
BTS application is a CICS application that uses the CICS business transaction
services APL

Run time is defined generically as the time period in which the process or object
created at build time becomes operational. In the MQSeries Integrator Agent for
CICS Transaction Server paradigm, run time is when the adapter is invoked by a
controlling application, and as a result, performs the business transaction
processing that was modeled at build time.

© Copyright IBM Corp. 2001 xi

About MQSI Agent for CICS

There is no user interface for the run time component. However, that is not to say
that user’s do not interact with MQSeries Integrator Agent for CICS Transaction
Server at run time. In order for the adapters to execute at run time, persons
familiar with CICS and BTS will need to prepare the run time environment, by
defining required resources. Run time users may also need to investigate errors
that may occur during run time processing.

See Eigure 2 on page xiiil for an illustration of the sequence of steps that a user
would go through to build, deploy and run an adapter using MQSI Agent for
CICS.

Xii MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

About MQSI Agent for CICS

Modeling, generating and deploying Deployed adapter

Windows NT CICS for 0S/390

. PARENT
builder

D»D»B(:%@

Navigation Manager

CHILD
Navigators
. modeling business DFHROOT PARENT
Modeling transactions
microflows

v

”‘;,”i,i%;;;g;t’g,s%’g" CHILD CHILD CHILD
4 MQSeries
cics FEPI
(2] (DPL) But
importers generator Asdervter MQ;::IGS
apter
Message d and i i
Repository ;aneﬁa,;e Vi Buider Programs
definitions
70 cosoL ,
%ggglfrset?&?tgl%% data type definitions ‘ e source code gﬁ”ge??g compile
for adapter
Legacy CICS/IMS applications
Existing CICS transactions
o Controlling Building an adapter
application 1. Use builder to model a microflow
representing the required adapter behavior.
|
reqL‘lest 2. Generate COBOL source code for
interface microflow.
° L) CICS for 05/390 3. Transport the COBOL source code to
DPL stub [+~ reads Props an 0S/390 server for compilation.
File
BTS l Define and run
process
Executing an adapter
P . . . o
ARENT 4. Controlling application initiates model
Navigation Manager execution (adapter request processing)
S at run time.
Server Navigators 5. The DPL MQSI Agent for CICS Stub program
Adapter DFHROOT | 5 \RENT uses information in the request message to:
Programs
¢— j a. Read the Propetrties file
CHILD CHILD CHILD .
; b. Define the BTS process
cics MQSeries FEPI P
(OPL) i c. Write containers and run the BTS process
MQSeries 4 ’ p
CI(I:%(IIE.ICNK (et d. Initiate the programmatic functions
A (adapter request processing) that
enable the business transaction to be

rocessed.
v ‘v ¢ FEPI p

Existing PUT GET

CICS Q Q 3270
Applications

Data

Custom MQSeries-| ’ ‘ °

Program enabled | L i
application; Legacy
,,,,,,,,,,,,,,,,,,,,] system

Figure 2. Process for using MQSI Agent for CICS

About MQSI Agent for CICS ~ xiii

About MQSI Agent for CICS

The objectives of this tutorial

The objective of this tutorial is to instruct users on the logic and steps of using
MQSeries Integrator Agent for CICS Transaction Server.

By modeling a business transaction and by generating and deploying the modeled
adapter to an OS/390 server, you will gain an understanding of how to use this
product in your environment to meet your business needs.

By following the information and instructions in the tutorials you should be able
to:

* Understand the general guidelines for using the MQSI Agent for CICS Adapter
Builder.

* Import application definitions with 3270 screens and COBOL structured data
type definitions.

The MQSI Agent for CICS Adapter Builder contains two importers that enable
you to import an application’s interface into the Adapter Builder in the form of
messages and associated components. These components become the building
blocks used in adapter modeling.

* Create workspaces to define adapter flow logic for the three types of adapters
that run on the OS/390 server.

MQSI Agent for CICS provides three specialized adapter types that can be used
in microflow modeling:

— FEPI Adapter - A composed component that describes the rules for
sequencing a 3270 screen dialog. It models screen navigation and corresponds
to the FEPI server adapter functionality in the server run time.

— DPL Adapter - A composed component that describes a micro-controlflow
with a CICS transaction via a Distributed Program Link. It corresponds to the
DPL server adapter functionality in the server run time.

— MQSeries Adapter - A composed component that describes a
micro-controlflow with an MQSeries enabled application. It corresponds to
the MQSeries server adapter functionality in the server run time.

* Create and generate the COBOL source code. This source code contains the
adapter flow logic as well as static server run time information.

* Understand the different mechanisms for deploying the adapter to the OS/390
server.

* Understand the run time processing involved in executing each of the three
adapters that you created and generated.

* Validate and test the adapters that you create in the tutorial.

“ . : ”

See for general information on the
adapters that you will build from this tutorial and for information on the exercises
that you will perform in this tutorial.

Who should use this tutorial

The information in this tutorial is primarily intended for people who want to
become familiar with the builder component of MQSeries Integrator Agent for
CICS Transaction Server. However, to gain the full benefits of the tutorial, which
includes deploying the adapters to CICS and using the Simulator program to
validate the adapters, the individual who participate in these tutorials should work
with their site’s CICS administrator and OS/390 specialist to make sure that the
adapters can be deployed, defined and tested in a run time environment.

Xiv MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

About MQSI Agent for CICS

A CICS systems personnel and or OS/390 specialists that has access to CICS
regions at your site will need to define adapter resources to CICS and to customize
the build time templates.

An example of how adapter resources could be defined to CICS is included in
‘Example procedure for defining adapter resources to CICS” on page 23d. The
information in this appendix should only be used as a reference, as CICS
environments and the procedures used to define resources to CICS will vary from
site to site.

Related information

If you have not had any exposure to the Adapter Builder component of the
MQSeries Integrator Agent for CICS Transaction Server product, you should read
the MQSeries Integrator Agent for CICS Transaction Server Using the Control Center.
This book contains information on the concepts of the MQSeries Integrator Agent
for CICS Adapter Builder.

For reference information on the run time components, you should read the
MQSeries Integrator Agent for CICS Transaction Server Run Time User’s Guide.

See the MQSeries Integrator Agent for CICS website at

: i i i for information on the MQSI
Agent for CICS product, including a fact sheet, product overview and the latest
SupportPac information.

You can access these documents from the Start menu:

,'E.. 1Bk MOASI Agent for CICS g ‘;t" Bk MOAS| Agent for CICS

IBM Perzonal Communications * [S IR il =g =

Figure 3. Accessing the MQSI Agent for CICS documentation

About MQSI Agent for CICS XV

http://www.ibm.com/software/ts/cics/mqiac/

About MQSI Agent for CICS

XVi MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Chapter 1. Guidelines for building adapters

This chapter describes the guidelines for building adapters using the MQSI Agent
for CICS Adapter Builder. It contains information about the general steps that
should be undertaken to develop and build a CICS Adapter that integrates a server
application.

Detailed information and keystroke-by-keystroke instructions for most of these
steps can be found in tutorials in other chapters in this document.

Requirements analysis and design considerations

Before you begin to use the MQSI Agent for CICS Adapter Builder you should
spend some time analyzing the business objectives that the adapter will address
and then spend some time considering how you will design the adapter.

Requirements analysis

It is essential that you understand your objectives and the environment in which
you will be working. Therefore, before you begin to model an adapter using the
MQSI Agent for CICS Adapter Builder, you should spend some time analyzing the
requirements of the business transaction(s) that you will model. Requirements
analysis involves performing the following tasks:

* Obtaining an understanding of the business objective of the transaction
* Knowing the programming, environmental and system resources to be used by
the adapter

An understanding of the requirements and of the business objective will facilitate
your design efforts and will make more efficient use of the adapter builder.

N

Data flow Data structures

Business objective Systems accessed

Analysis = more effective use of Adapter Builder

Figure 4. Analyze information before you begin modeling

Here are some points to consider in requirements analysis:

* What business transaction do you need to model and what resources will be
required?

© Copyright IBM Corp. 2001 1

Guidelines for building adapters
* Identify back-end host information (system, method - DPL, MQ or FEPI, data
structures).

* Where are you getting data from (source) and where is the data going to
(destination)

Remember, the time that you spend in the requirements analysis phase will prove
invaluable later.

Design considerations

After you have a solid understanding of the adapter requirements, you enter the
design phase. You do not design an adapter using MQSI Agent for CICS Adapter
Builder. Designing an adapter takes place after requirements analysis and prior to
using the MQSI Agent for CICS Adapter Builder to build the adapter.

In your design phase:
¢ Determine the number of flows required to fulfill the transaction

* Determine how data moves through your run time environment, the flow of the
adapter

e Determine if there is any commonality that you may wish to reuse in other
adapters

* Determine data structures that are used as input and output interfaces for
application data.

* Determine or identify naming conventions, including host back-end, host user,
and client.

* Identify items you wish to make decisions on (for example, add, change or
delete actions).

¢ Identify COBOL copybooks you will be importing.

Note: The copybook generate removes underscores from the file namesF and
only uses the first eight characters of the filename to generate the new
copybook name. Therefore, you may need to rename some file structures

where naming conflicts can arise. See [’Accessing a completed workspace”]

Application interface

The server applications that are to be integrated using MQSI Agent for CICS need
to be analyzed to determine their available interfaces. MQSI Agent for CICS
supports three different interface methods. The three interface methods are:

* CICS Distributed Program Link (DPL)
* MQSeries messaging (MQ)
* 3270 datastreams using Front End Programming Interface (FEPI)

See Eigure 5 on page 3 for an illustration of the interface methods supported by
MQSI Agent for CICS.

2 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Guidelines for building adapters

0OS/390 Server

S Server
interface X X
methods Application 1
FEPI
Controlling Server
Application Adapter DPL |Application 2
MQ
Server
Application 3

Figure 5. Supported interface methods

Multiple applications using differing interface methods can be incorporated in one
model. Consideration can be given to adding one of these interfaces to server
applications that currently do not support any of the three. However, subflows are
allowed only in the FEPI interface.

Run time environment variables

Before you begin to model an adapter, you need to find out some information
about your run time environment. This run time environment information is used
in the Integration Specification file (.ispec) and/or Connector Resource file (.rsc) to
provide mappings to the run time properties file (DFHMAMPF) and other
generated adapter programs.

The following text describes the required information for each adapter type and
indicates, in parentheses, the associated specification file symbolic. For detailed
discussion on how to use specification files, see the MQSeries Integrator Agent for
CICS Transaction Server Using the Control Center manual.

Specification file information for the DPL interface: For applications that are
accessed via DPL, determine the following information:

1. Name of the application program that is "linked to” (MAT_LINKNAME)

2. If required, the Transaction ID under which "linked to” program will execute
(MAT_LINKTRAN)

3. The CICS region where the "linked to” program is defined (MAT_SYSID)

4. Maximum length that can be sent or returned in the link (generally, the
commarea length) (MAT_MAXCALEN)

5. Whether resources should be committed (SyncOnReturn) when the DPL Link is
completed (MAT_SYNCONRETURN)

Specification file information for the MQ interface: For applications that are
accessed via MQ, determine the following information:

Chapter 1. Guidelines for building adapters 3

Guidelines for building adapters

1. Name of the queue that the server application monitors
(MAT_REQUEST_QNAME)

2. Name of the queue where the server application should put the reply
(MAT_REPLY_QUEUE)

3. Name of the MQManager that owns the queue for the reply
(MAT_REPLY_QMGR)

4. Maximum length of the reply that can be sent to or returned by the server
application (MAT_MAXOUTMSGLEN)

5. The amount of time in seconds the reply MQManager should wait for a reply
(MAT_WAIT_INTERVAL)

6. The MQ message Type (request, reply, or datagram) (MAT_MQMSGTYPE)

Specification file information for the FEPI interface: For applications that are
accessed via FEPI, determine the following information:

1. Name of the defined FEPI Pool from which the terminal session is to be
allocated (MAT_POOL)

2. Name of the defined FEPI Target that identifies the region where the
transaction will be run (MAT_TARGET)

3. The length of time, in seconds, to wait for a response screen after a screen has
been sent (MAT_TIMEOUT)

4. Whether a User ID and PassTicket will be generated for Logon by the server
(MAT_USELUPASS)

Determining the critical data structures in the server
application

As part of your preparation for creating an adapter, you will need to analyze the
server applications to determine their critical data structures. Critical data structures
provide the input and output interfaces, and intermediate holding areas for
important application data. In COBOL applications, these structures are often "01
Levels” in the program. Sometimes, however, they are lower level or subordinate
items. For applications that are accessed via FEP], all screens should also be
considered critical data structures. Screens are handled via a special 3270 Importer
described later in this section.

Once you have identified the critical data structures (other than screens), you can
"import” them into the builder using the COBOL Importer. The COBOL Importer
can only access code that resides on a workstation, so you will need to ftp the
critical data structures from the host to a workstation directory. Often the original,
unchanged COBOL source code and/or copybooks can be used as input to the
COBOL Importer. In some cases, the original code may need to be edited slightly
to comply with COBOL Importer requirements. While importing may require some
editing of existing COBOL code, it is nearly always less work than the alternative
method of manually entering data structures.

After it is imported, a data structure exists in the Control Center as a message. The
message name is the same as the 01 Level that was imported with the exception
that hyphens (-) have been replaced with underscores (_). Whether imported or
entered manually, all messages used in an adapter must be generated to a COBOL
copybook before it can be deployed to the runtime. The generated copybook will
look slightly different than the original import but will be syntactically equivalent.

4 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Guidelines for building adapters

An import operation creates a name for the copybook by taking the first eight
letters or numbers (hyphens are discarded) of the 01 Level and adding a ".cpy”
suffix.

For example, the following data structure,

01 EMP-DATA-RECORD.
05 EMP-DATA-OF-BIRTH PIC 9(8) VALUE ZERO.
etc.

creates a message name of EMP_DATA_RECORD and a copybook name
EMPDATAR.cpy. The need for more desirable message and copybook names is
another reason that you might want to edit the original COBOL code prior to
importing a data structure.

CAUTION:
Verify that the file name of the 8-character copybook is unique before you begin
to work on your adapter.

For all applications, one request data structure and potentially multiple reply data
structures are generally identified as critical data structures. The request data
structure is similar to the "Start Data” that is passed to the application when a
CICS transaction is started. It often contains file key information, such as account
number or customer name. Reply data structures contain the data retrieved by the
server application. Flow routing and decision making in the builder support the
use of multiple reply data formats. If the server application uses a separate data
structure to hold or return error information, then that structure should be
considered critical as well.

Intermediate data areas should also be considered for import in the builder. For
instance, areas that temporarily hold accessed data or are used to "build up” data
accumulated via multiple operations are likely to be critical data structures. If it
can not be determined whether a data structure is needed or not, it is best to delay
its import until the need is established.

For DPL applications, the data structure(s) that define the Commarea of the DPL
"linked to” program is a critical data structure. Often different data structures are
used to map the "passed” data and the "returned” data to and from the link. At the
time of import, the data structure that maps the "passed” data should be
designated as a "request” message by selecting the appropriate radio button on the
import dialog. The data structure that maps the "returned” data should be
designated as a "response” message.

Sometimes the "returned” data can be moved to alternative data structures
depending on a field in the "returned” data. These alternative data structures can
be designated as "undefined” at import time. All data structures that are required
to map the data should be deemed critical data structures.

For MQ applications, all data structures that map the user data portion of the MQ
messages should be considered critical. Similar to DPL applications, data structures
that map "PUT"” data should be imported as "request” messages. Structures that
map "GET" data should be imported as "response” messages.

For FEPI applications, screens constitute the critical data structures. Both screens
that contain data to be "scraped” and all preliminary screens in the dialog should

Chapter 1. Guidelines for building adapters 5

Guidelines for building adapters

be imported using the 3270 Importer in the Control Center. In addition to the
application screens, any screens that accomplish system functions such as Logon
should also be imported.

Similar to data structures imported with the COBOL Importer, screens imported
with the 3270 Importer exist in the builder as messages.

Building adapters

The general procedure for developing an adapter is as follows:

1. If you have not done so during the run time installation, customize the build
time JCL templates to reflect your local OS/390 server environment:

¢ DFHMAXC]J (Compile JCL)
« DFHMAXPU (DFHMAMPF properties file update)

* DEXMAXO04 (OS/390 server account, IP address and DSN qualifier and
deploy information).

See the MQSeries Integrator Agent for CICS Transaction Server Run Time User’s
Guide for considerations on customizing the build time templates.

2. Setup the required Interaction Specification and Connector Resource
specification files.

See the MQSeries Integrator Agent for CICS Transaction Server Using the Control
Center manual for a discussion and examples of the use of the Specification
files.

3. Import or create messages (data definitions).
Messages can be imported via the:
¢ 3270 Screen Importer
e COBOL Importer

To create or modify messages manually:

e Create a new message set

* Create elements

* Create types

* Create messages

* Build transactions

Compose a microflow.

Perform data mapping (data transformations).

Associate the microflow with an adapter

Generate adapter code (COBOL source code, COBOL copybooks, and JCL).
Move adapter source files to an OS/390 system and compile and test. See

¢Deploying adapters’] If you are satisfied with the adapter that you built, put

it into production.

© N o gk

Deploying adapters

After you generate an adapter and associated copybooks, you must deploy the
adapter code to test it before you put it into production. When the generated
adapter is deployed to the OS/390 server, the adapter code is compiled. You
should check that the adapter code compiled successfully.

6 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Guidelines for building adapters

You will need to define resources to CICS each time a new adapter is deployed.
CICS needs to know which resources to use, what their properties are and how
they interact with other resources.

To define resources to CICS you must:
¢ Submit JCL to run the Properties File Update job.

Note: This is can be done automatically when you generate the adapter from
the MQSI Agent for CICS Adapter Builder, or you can submit the JCL
(DFHMAMPU) manually. DFHMAMPU run the Properties File Update
job (DFHMAMUP)

* Run the CEDA transaction to define the programs, transaction IDs and files used
by your adapter to CICS.

@ depicts how the adapter and associated files are deployed into the run
time environment.

Windows NT 0S/390 Server

builder

T

modeling business
transactions

Server run time

Modeling
microflows

Compiler

flow components,
primitives and
predicates

Store

generator

JES Partitioned

data set

FTP /v

Send:

Templates of
run time
erver programs|

Message
Repository

Definitions N
in XML generator Visual Age

program Generator

v

- Source code
- JCL (Compile / Properties File Update)
read generate - Copybooks

Figure 6. Deploying the adapter from the builder to the OS/390 server

See the section on deploying a new adapter to the run time environment in the
Run Time User’s Guide for information on how to define adapter resources to
CICS and for information on running the Properties File Update Job
(DFHMAMPU).

High level control flow of a CICS business transaction at run time

When the CICS adapter is moved to the run time environment, it exists as a
process (BTS application) that is organized hierarchically. Data exchange is done
through data-containers, named areas of storage, associated with a particular
process or activity, and maintained by BTS. See CICS Business Transaction Services
for information about CICS business transaction services (BTS)

The high level control flow of a typical CICS BTS business transaction is as
follows:

1. A CICS transaction makes an initial request to start a process.

Chapter 1. Guidelines for building adapters 7

Guidelines for building adapters

2.

CICS BTS initiates a process instance - control activity. In MQSI Agent for CICS,
this control activity is the Navigator.

The top level program associated with the control activity, using the CICS BTS
API, creates a child activity or several child activities. In MQSI Agent for CICS,
these child activities are the FEPI subflows, DPL adapters or MQ adapters.

It provides the child activity with some input data (by placing the data in a
data-container associated with the child), and requests CICS to start the child
activity. If, as is often the case, the child activity is to run asynchronously with
the control activity, the control activity returns.

The control activity (Navigator) is re-invoked when one of its child activities
(FEPI subflow, DPL adapter or MQ adapter) completes. The control activity
(Navigator) determines which event caused it to be re-invoked, that is, the
completion of the activity that it started earlier. It retrieves, from the completed
activity’s output data-container, any return data that the completed activity has
placed there.

Steps 3 and 4 are repeated until all the child activities that make up the CICS
business transaction have completed.

The control activity then terminates.

8 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Chapter 2. Tutorial overview

If you have not had any exposure to the Adapter Builder component of the
MQSeries Integrator Agent for CICS Transaction Server product, you should read
the MQSeries Integrator Agent for CICS Transaction Server Using the Control Center.
This book contains information on the concepts of the MQSeries Integrator Agent
for CICS Adapter Builder.

The MQSI Agent for CICS Tutorial and Techniques manual contains three separate
tutorials that provide you with hands-on experience in modeling business
transactions and with instructions on how to deploy the modeled transactions as
adapters to a run time environment. An adapter is the output of the MQSeries
Integrator Agent for CICS Adapter Builder. It consists of COBOL source code that
is compiled and run in a CICS environment on an OS/390 server. The adapter
implements a business transaction.

In order to deploy the adapters that you build from this tutorial, make sure that
the MQSI Agent for CICS run time is installed and that your site has completed
the installation verification procedure (IVP) as documented in the MQSeries
Integrator Agent for CICS Transaction Server Run Time User’s Guide.

The MQSI Agent for CICS Tutorial and Techniques manual also explains how to test
and validate the adapters by providing instructions on:

* Defining adapter resources to CICS

* Invoking the adapter so that it can perform the business transaction(s) that you
modeled. This is done through a supplied Simulator program.

The tutorials provide instructions on modeling adapters for each of the interface
methods (DPL, MQ and FEPI) supported by the MQSeries Integrator Agent for
CICS Transaction Server product.

About the business transaction that you will model

The business transaction to be modeled is the same in each tutorial. The
transaction is a request for information on a customer. The customer information
exists on a back-end system that can be accessed by any of the supported
interfaces.

A group of programs and jobs that were provided and used during the IVP
(Installation Verification Procedure) will simulate the back-end transactions in this
tutorial.

* DFHMABP4, the back-end DPL customer information maintenance program
* DFHMABPS, the back-end MQ customer information maintenance program
* DFHMABP1, the back-end 3270 customer information maintenance program

Note: Modeling the FEPI interface requires capturing screens from the back-end
system.

For instructions on modeling the adapter types supported by MQSI Agent for
CICS, see

“ : : 77

© Copyright IBM Corp. 2001

Tutorial overview

“ . : ”

Accessing the files to perform the tutorials

The files that you need to perform the tutorials are packaged on the Adapter
Builder CD and were put on your system during the Adapter Builder installation
procedure.

At the beginning of each of the tutorials there is information on how to access the
tutorial files.

" . . . ”

e See for information on how to get
to the files needed for the Building an adapter that supports a DPL interface
tutorial.

” B . . 173

* See for information on how to get
to the files needed for the Building an adapter that supports a MQ interface
tutorial.

” . . . 77

* See for information on how to get
to the files needed for the Building an adapter that supports a FEPI interface
tutorial.

Assumptions

For each of the tutorials contained in MQSI Agent for CICS Tutorial And Techniques,
the following is assumed:

e Version 1, release 1, modification 1 of MQSeries Integrator Agent for CICS
Transaction Server has been installed. This includes both the builder component
and the run time component.

* Object Rexx installed for deployment.

* The MQSI Agent for CICS run time installation verification procedure (IVP) has
been completed.

* Users will have access (direct access, or indirect access through a CICS
administrator) to the CICS region to which adapters will be deployed.

* Users will have access (an account and password) to the OS/390 server on
which the adapters will run.

* Users will have access to CICS and OS/390 subject matter experts to help
customize JCL templates and to help define adapter resources to CICS.

* That one person at a time will be performing the steps to design, create and
deploy the adapter. If multiple persons will perform the tutorial at the same
time and if the adapters created will be deployed in the same CICS region, the
tutorial participants must make sure that the program names and transaction ids
assigned to the generated adapter programs are unique.

Please refer to the product installation sections contained in the MQSI Agent for
CICS builder and run time documentation for complete setup and configuration,
including information on the IVP programs that will be used for validating the
adapters built using these tutorials.

If there will be multiple tutorial participants deploying adapters to the same CICS
region, each participant is responsible for managing the tutorial prefixes and
specifications files so as to avoid transaction identifier and program name
collisions in CICS.

10 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Tutorial overview

Tutorial directory structure

The install wizard on the tutorial setup.exe allows you to pick the directory
structure to house the required tutorial files. At installation, you are also allowed
to pick and choose which of the three tutorials to install, the default indicating you

want to install all 3 tutorials.

EFigure 4 and [Eigure 8 on page 17 illustrate the complete tutorial installation that

adheres to the default settings.

c\

maqiac

Key:
Tc prefix = messages from completed workspace

Tu prefix = for updates need to complete tutorials

\tutorials
——Readme.txt
——\cia7at00.pdf

\DPL

\Tcdpl_rd.cbl
\Tudpl_rd.cbl
\Tcdbecin.cpy
\Tcdbeou.cpy
\Tcdcustr.cpy
\Tcddec.cpy
\Tcdouter.cpy
\Tcdoutok.cpy
\Tcdraw.cpy
\TCDNAV1.cbl
\TCDPL1.cbl

\FEPI

\Tc_f rds.cbl

\Tu_f_rds.cbl

\Docdec.cpy
\Docdraw.cpy

\Docreply.cpy
\Tcfcomps.cpy

\Tcfcusts.cpy
\Tcfsigno.cpy
\TCFINQ.cbl
\TCDNAV.cbl
\TCFPRSER.cbl
\TCFRESET.cbl
\TCFSGOFF.cbl
\TCFSGON.cbl

Figure 7. Tutorial installation for default settings (part 1)

\TC_DPL_WS.zip

\TC_FEPI_WS.zip

(Tutorial documentation)

(Complete workspace)

(Import file)

(Import file for tutorial - previously
imported messages)

(Generated copybooks)

(Generated adapter)

(Complete workspace)

(Import file)

(Import file for tutorial - previously
imported messages)

(Generated copybook)

(Generated adapters)

\TCSFSGON.chl

11

Chapter 2. Tutorial overview

Tutorial overview

c:\

mgqiac

l7\tutorials
\MQ

\TC_MQ_WS.zip

\Tc_m_rds.cbl
\Tu_m_rds.cbl

\Tcmbecin.cpy
\Tcmbeou.cpy
\Tcmcustr.cpy
\Tcmdec.cpy
\Tcmouter.cpy
\Tcmoutok.cpy
\Tcmraw.cpy
\TCMNAV1.cbl
\TCMQO1G.cbl
\TCMQO1P.cbl

program files
\Ibm mqgseries integrator agent for cics

\cics

\Tc_d_dpl1.ispec
\Tc_d_dpl1.rsc
\Tc_d_nav1.rsc
\Tu_d_dpl1.ispec
\Tu_d_dpl1.rsc
\Tu_d_nav1i.rsc

\Tc_f_INQfepi.rsc
\Tc_f_NAV.rsc
\Tc_f_PRSERfepi.rsc
\Tc_f RESETfepi.rscl
\Tc_f SGOFFfepi.rsc
\Tc_f_SGONfepi.rsc

\Tu_f_INQfepi.rsc
\Tu_f NAV.rsc
\Tu_f_PRSERfepi.rsc
\Tu_f RESETfepi.rscl
\Tu_f_SGOFFfepi.rsc
\Tu_f_SGONfepi.rsc
\Tc_m_mq1.ispec
\Tc_m_mq1.rsc
\Tc_m_nav1.rsc
\Tu_m_maq1.ispec
\Tu_m_mq1.rsc
\Tu_m_nav1.rsc

Key:
Tc prefix = messages from completed workspace
Tu prefix = for updates need to complete tutorials

Figure 8. Tutorial installation for default settings (part 2)

Accessing a completed workspace

For each of the tutorials there is a .zip file that contains a sample of a completed
workspace. This completed workspace is provided so that you can compare the

12 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

(Complete workspace)
(Import file)

(Import file for tutorial)
(Generated copybook)

(Generated adapter)

(Specification files)

\Tc_f_fepiinteraction.ispec

\Tu_f fepiinteraction.ispec

Tutorial overview

workspace you build with one that has been proven valid. All the messages in the
sample workspace are prefixed with TC. If you intend to import the completed
workspace contained in .zip files for comparison with the tutorial workspace you
create, then please prefix the message sets and messages you create with a
different prefix (for example, TU) to avoid item duplication in your repository.

To view the provided workspace for any of the tutorials, you must first import the

completed workspace into the Builder tool by performing the following steps:

1. Go to File > Import Workspace in the builder tool to bring up the Select a File
to Import window

2. Find the <mgiac_tutorials>\ directory. Double-click on the zip file (for example
TC_DPL_WS.zip).

Next you will need to specify a name for the workspace you are importing.
Specify a name of your choice (preferably a related name). Notice that the File
Name has an .xml extension.

3. Choose Open Workspace, and select the .xml file you created on the previous
step.

Now, you will be able to view, and/or modify the workspace

4. To make modifications, once you open the newly renamed workspace, you
must check-out individual components. For example, if you want to make
changes to the microflow, right-click on the microflow name, and select
Check-Out).

5. You will have to modify the following;:

¢ .ispec and .rsc files to point to your CICS environment.
Note: If you installed the tutorial to a location other than

C:\<mgqiac_tutorials>, you must point to the location that you
installed to when you generate the messages and adapters.

Chapter 2. Tutorial overview 13

Tutorial overview

14 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Chapter 3. Build an adapter that supports a DPL interface
Before you begin this tutorial, read IChapter 2, “Tutorial overview” on page d. The

Tutorial Overview section contains important information on the business
transaction to be modeled, as well as information on the tutorial’s file structure.
The Tutorial Overview also lists the assumed environment requirements that must
be adhered to in order to build and deploy the adapter.

G

From this tutorial, you will learn how to use the MQSI Agent for CICS Adapter Builder
tool to model and generate code for an adapter that supports a DPL interface.

You will model an adapter that has the functionality to access an existing CICS program

via a Distributed Program Link (DPL). See I“Ahout the adapter you will design” orl

for a description of the adapter that you will model.

If you have not had any exposure to the Adapter Builder component of the
MQSeries Integrator Agent for CICS Transaction Server product, you should read
the MQSeries Integrator Agent for CICS Transaction Server Using the Control Center.
This book contains information on the concepts of the MQSeries Integrator Agent
for CICS Adapter Builder.

This tutorial provides instructions on:

After completing this tutorial you should be able to:

* Identify required Host based information you need to gather and use.
* Import COBOL copybooks and create message sets.

* Create workspaces to define adapter flow logic.

* Create and generate a COBOL adapter.

* Deploy and test the generated COBOL adapter.

Before you begin this tutorial you should read Chapter 2 “Tutorial overview” od

. The Tutorial overview provides important information on the tutorial files,
the tutorial directory structure and how to avoid naming conflicts when you create
message sets and messages.

Designing an adapter

”

As was discussed in ERequirements analysis and design considerations” on page 1,
before you start to use the MQSI Agent for CICS Adapter Builder, you would
spend some time analyzing the business need that the adapter will address and
then spend some time considering how you will design the adapter.

© Copyright IBM Corp. 2001 15

Build an adapter that supports a DPL interface

When you finish with requirements analysis and design considerations, you should
have a sound understanding of how your adapter will behave at run time in order
to manage and fulfill a business transaction.

To help you gain a frame of reference for what you will create in this tutorial, you
should understand the following:

* The business need to be addressed
¢ The messages in and out structure
* The CICS resources required

Addressing a business need

An adapter should address a particular business need. In this tutorial, the business
need is to provide a controlling application with an interface to a back-end
environment for the purpose of accessing an existing CICS application (named
DFHMABP4) that performs a customer inquiry.

In this tutorial, the adapter that you build will provide the interface to the
back-end environment by way of a Distributed Program Link (DPL).

Note: For the purpose of this tutorial, the back-end environment that you will be
accessing is the same back-end environment that was installed and used by
the run time installation verification procedure (IVP). For information on the
programs used by the IVP (including DFHMABP4), see the chapter on
performing post installation tasks in the MQSI Agent for CICS Run Time
User’s Guide.

About the adapter you will design

The adapters that you build using the MQSI Agent for CICS Adapter Builder are
visual models of business transactions. They are intended to map out the activities
that comprise the entire business transaction, from invocation to completion.

The adapter that you build contains the instructions, logic and code that enable it
to run on an OS/390 server, this includes an interface methodology for accessing
information on back-end systems. In this tutorial the business transaction on which
you will base your adapter is a customer inquiry request and the interface method
used is a distributed program link (DPL) interface.

In this tutorial you will learn how to design and build an adapter (as displayed in

Eigure 9 on page 17) that when deployed will perform the following functions:

* Accept the structure TU_D_RAW from the Simulator (in this tutorial the
Simulator functions as the controlling application). TU_D_RAW is the input
record description from the controlling application. See Input Terminal in

* Map individual fields from TU_ D RAW to expected and required DPL program
Commarea format. See Mapl in

* Execute the DPL link to the CICS application DFHMABP4 via the TU_D_DCUST
command node.

* After the completion of the DPL link function, map response message from DPL
program to store any customer demographic information that is supplied by the
backend CICS application (DFHMABP4) in the data context area named

TU_D_CUST_CTX. See Map? in Eigure 9 on page 17

» Use a decision node to determine the success or failure of the DPL link to the
CICS application DFHMABP4. Map the output message (TU_D_OUT_OK or
TU_D_OUT_ERR) to be returned to the Simulator and exit.

16 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a DPL interface

Before building the adapter, you will need to:
* Define the CICS transaction IDs for the adapter programs that are generated.

Note: As with any CICS application, the program names, transaction IDs, and
CICS region, must adhere to your local site standards and your local site’s

naming conventions.
For the purpose of this tutorial, the following programs will be generated.

Table 1. DPL Adapter programs

Program type Program name Transaction ID
Navigator TUDNAV1 TUDN
DPL adapter TUDPL1 TUD1

* Determine the DPL program that is invoked, as mentioned previously this is the
existing CICS application named DFHMABP4. The request and response
messages utilized are TU_BE_C_IN and TU_BE_C_OUT respectively.

* Determine the CICS region where the adapter programs will execute.

¢ Determine the CICS region where the DPL program will execute to access the
back-end system.

When completed, the flow of components that make up your model will look like
the following:

Data context Output terminal

in @Dum s :_n:)m

TU,D_CUST CTX OUT 0K

Mhlap<d

Input terminal command Decision .
l = Output terminal
a1 flap2 T
E D—Bj—_::_F} B—L B ﬂff 2 in
ot in out in

TU O RAW TU D DCUST TU_D_RTM ; QUT_ERR
haps

Figure 9. Components that make up the DPL adapter you will build

As stated previously, the business function that you will be modelling will enable a
controlling application to invoke an existing CICS Application to retrieve customer
data (from a back end application) on behalf of the controlling application.

To better understand the role that each component plays in your model of the

business transaction, see [able 2 on page 18.

Chapter 3. Build an adapter that supports a DPL interface 17

Build an adapter that supports a DPL interface

Use this table in conjunction with Figure 9 on page 17

Table 2. Component roles in the adapter that supports a DPL interface

data types that are input
to a microflow.

The term primitive
indicates that inputs and
outputs are visible to the
user but their internals
are not visible.

TU_D_RAW contains the
record description from
the controlling
application.

Component | Name Definition Role / implementation
Input TU_D_RAW A primitive component | The purpose of this component
Terminal that is used to represent |within the context of modeling

the transaction is to provide an
entry point for the controlling
application to the Navigator

To implement this data
transformation in your model,
you will connect TU_D_RAW
to the command node
TU_D_DCUST by way of a
control connection. A control
connection provides the
sequence relationship between
two nodes in a microflow.

On the Map node that sits on
the control connection wire
between TU_D_RAW and
TU_D_DCUST, you will
program the data
transformation — in this case
this means you will move the
Customer Number provided
by the Controlling application
and specify the desired action
to be performed by the
existing CICS application
DFHMABP4.

By hard coding an I in the
CUST_ACTION field, you are
directing the CICS application
DFHMABP4 to perform an
inquiry on the customer record
that correlates to the customer
number.

18 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a DPL interface

Table 2. Component roles in the adapter that supports a DPL interface (continued)

Component | Name Definition Role / implementation
Command |TU_D_DCUST A simple component that | The purpose within the context
is used to represent of modeling the transaction is
application APIs that to create a DPL Command
you import into the type, which will allow the
builder. microflow to perform the DPL

Link to the server-side

The term simple indicates | DFEHMABP4 program.
the component does not

consist of other The adapter will generate a
components. COBOL program for every
DPL command node. The
program that is generated is
the vehicle that allows the
Navigator to interact with the
existing CICS application
DFHMABP4.

On the map node that sits on
the control connection wire
between TU_D_DCUST and
TU_D_RTN_OK, you will
provide code that moves the
output data (via a data control
connection) provided by
DFHMABP4 to a data context
node named
TU_D_CUST_CTX. The data
context node holds data for
future use.

You will also provide
instructions on the map node
that moves the DFHMABP4
return code information to the
decision node named
TU_D_RTN_OK. Based on the
return code provided, the
decision node makes
determination on the success
or failure of the existing CICS
application DFHMABP4.

Chapter 3. Build an adapter that supports a DPL interface 19

Build an adapter that supports a DPL interface

Table 2. Component roles in the adapter that supports a DPL interface (continued)

Component

Name

Definition

Role / implementation

Decision

TU_D_RTN_OK

A composed component
that is used to test a
condition for true or
false, to resolve the
control flow path.

The term composed
indicates the component
consist of other
components that are
connected by control
flow connectors.

In your model of the business
transaction, the Decision node
will be used to evaluate the
message indicator (Good,
Warning or Error) upon return
from the existing CICS
application DFHMABP4.

The Decision node will test the
return code information that it
receives from DFHMABP4.
Based on the results of the test,
the flow of the transaction will
proceed in one of 4 ways
(good, warning, error or

default (unknown)) as
indicated in

On the 3 map nodes that sit on
the control connection wires
between TU_D_RTN_OK and
the OUT_ERR output terminal
node, you will provide
instructions that move the
appropriate error information
(depending on the error). This
error information will be
returned to the controlling
application via the Output
terminal.

On the map node that sits on
the control connection wire
between the TU_D_RTN_OK
decision node and the
OUT_OK output terminal
node, you will provide the
instructions that move the
customer demographic
information (stored in
TU_D_CUST_TRX data context
node) along with the
successful response
information. This information
will be returned to the
controlling application via the
Output terminal.

20 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a DPL interface

Table 2. Component roles in the adapter that supports a DPL interface (continued)

Component

Name

Definition

Role / implementation

Data
Context

TU_D_CUST_TRX

A simple component that
is used to store data for
later access via a data
connection.

You will need to create a Data
Context type to store customer
information.

In the model, this Data
Context Node is used to store
the contents of the customer
demographic information
fields populated by the CICS
application DFHMABP4. This
data will then be provided to
the controlling application or
discarded once the Navigator
determines the success or
failure of the DPL link.

Output

OUT_OK

Output

OUT_ERR

A primitive component
that is used to represent
data types that are
output from a microflow.

The purpose of this component
within the context of modeling
the business transaction is to
provide an exit point for the
controlling application from
the Navigator.

In this model, the controlling
application has been designed
to receive 2 different types of
reply messages. A successful
reply and an error reply.

After some analysis, we determine that the host environment for the deployed
adapter will look like [Eigure 10 on page 29. In this host environment, the generated
adapter programs, TUDNAV1 and TUDPLI1 execute in CICS region QASI. The
DPL Server Adapter accesses the back-end program DFHMABP4.

Note: In the following figure, DFHMABP4 resides in the same CICS region. It is
also plausible, that the back-end program could reside outside of the CICS
region, as illustrated by the dotted line.

Chapter 3. Build an adapter that supports a DPL interface 21

Build an adapter that supports a DPL interface

0S/390 Host

CICS Region 1: QAS1

TRANID: TUDN

TUNAV1
NN

Navigator

TRANID: TUD1

N N

DPL Server Adapter

Back End

DPL Program

Generated Adapter Programs

DFHMAMPF

Run Time
Properties
File

CICS DPL Program to Access
Back End Data

Back End System

Figure 10. Tutorial run time environment for DPL adapter

Accessing the DPL tutorial files

The files you will need in order to build and

deploy an adapter that supports a

DPL interface are located in two directories as follows:

¢ C:\<mgqiac_tutorials>\dpl
* C:\<mgqiac_base>\cics

In the C:\<mgqiac_tutorials>\dpl directory you will find the following files:

Table 3. Files to be used in the DPL tutorial

File name Description Use
TUDPL_RDS.cbl COBOL record Used as import for messages.
description. Contains the message structures.

TC_DPL_WS.zip
DPL adapter.

Completed workspace for

A completed workspace that you
import and use as the basis for the
workspace used to create the DPL
adapter. See

7

for information on using the
contents of this file

*.cpy files Generated copybooks

The generated copybooks for the
DPL adapter.

22 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a DPL interface
In the C:\<mgqiac_base>\cics directory you will find the following files:

Table 4. Files in the C:\<mgiac_base>\cics directory

File name Description Use
tu_d_dpll.ispec Interaction specification | Assigns adapter name, DPL
file (tutorial version) command type, CICS TransID,

server side program, maximum
Commarea length and

SYNCONRETURN value.
tu_d_dpll.rsc Connector resource file Identifies CICS server region
(tutorial version) where server side program resides.
tu_d_navl.rsc Connector resource file Specifies synchronous rollback,
(tutorial version) Navigator type, COBOL program

name for the DPL adapter and the
CICS TransID.

Note: There is also a version of the Specification files prefixed with tc_d_ that are used for
the completed workspace supplied in the TC_DPL_WS.zip file.

Configuring the Specification files for a DPL interface

G

In this section you will learn how to configure the physical properties of the DPL
adapter. These properties represent the XML definitions that are sent to the Properties
file on the host at deployment time.

For information on the Properties file, see the MQSI Agent for CICS run time
documentation.

Specification files are XML-format files that provide specific values to certain
components created in MQSI Agent for CICS. An Interaction Specification file
provides unique values for the component to which it is assigned. A Connector
Resource file provides more general values for the component.

Some of the information in the Interaction Specification file and Connector
Resource file maps to a run time properties file, DFHMAMPEF. Other information in
the Interaction Specification file is incorporated in generated Command and
Navigator programs. The DFHMAMPEF file stores data that is needed to run the
generated adapter code programs on the host.

The DPL adapter requires specification files for its Command type and its

Microflow type. The specification files for this tutorial are located in the
<mqiac_base>/cics directory.

Chapter 3. Build an adapter that supports a DPL interface 23

Build an adapter that supports a DPL interface

c:\ program files
\Ibm mgseries integrator agent for cics

\cics

—\Tc_d_dpl1.ispec (Specification files)
—\Tc_d_dpl1.rsc

———\Tc_d_nav1.rsc

—\Tu_d_dpl1.ispec

\Tu_d_dpl1.rsc

——\Tu_d_nav1.rsc

Figure 11. Directory structure for locating specification files for the DPL interface

You must configure the settings in the specification files used for the tutorial. The
DPL Command type uses a Connector Resource file and an Interaction
Specification file. In the Connector Resource file (tu_d_dp11l.rsc), the MAT_SYSID
variable is used to specify the name of the CICS server region where the server
side program resides. In the example, the MAT_SYSID variable has a value of
QASL. You can modify this to correspond to the CICS server region you are using.

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE AttributeGroup SYSTEM "mgsi.dtd">
<Attribute xmi.label="MAT_SYSID" type="" xmi.uuid="" valueMandatory="false"
value="QAS1" encoded="false"/>
</AttributeGroup>

The Interaction Specification file for the DPL Command type used in the tutorial is
tu_d dpll.ispec.

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE AttributeGroup SYSTEM "mgsi.dtd">
<AttributeGroup xmi.label="Interaction Specification">
<Attribute xmi.label="MAT_CMDTYPE" type="MAT DPL MAT_MQ MAT_FEPI" xmi.uuid=""
valueMandatory="true" value="MAT_DPL" encoded="false"/>
<Attribute xmi.label="MAT_PROGID" type="" xmi.uuid="" valueMandatory="false"
value="TUDPL1" encoded="false"/>
<Attribute xmi.label="MAT_TRANID" type="" xmi.uuid="" valueMandatory="false"
value="TUD1" encoded="false"/>
<Attribute xmi.label="MAT_LINKNAME" type="" xmi.uuid="" valueMandatory="false"
value="DFHMABP4" encoded="false"/>
<Attribute xmi.label="MAT_LINKTRAN" type="" xmi.uuid="" valueMandatory="false"
value="" encoded="false"/>
<Attribute xmi.label="MAT_MAXCALEN" type="" xmi.uuid="" valueMandatory="false"
value="401" encoded="false"/>
<Attribute xmi.label="MAT_SYNCONRETURN" type="" xmi.uuid="" valueMandatory="false"
value="N" encoded="false"/>
</AttributeGroup>

Table 5. Keyword values used for DPL Interaction Specification file

Keyword Symbolic Description / Use Example Value
MAT_CMDTYPE Identifies the type of command MAT_DPL
MAT_PROGID The name of the COBOL program TUDPL1
generated for the DPL command.

MAT_TRANID The CICS TransID for the server TUD1
command program generated on the
server.

MAT_LINKNAME The server side program to which a | DFHMABP4
DPL-type command will link.

24 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a DPL interface

Table 5. Keyword values used for DPL Interaction Specification file (continued)

length for the MAT_LINKNAME
program (maximum 24576).

Keyword Symbolic Description / Use Example Value
MAT_LINKTRAN The server side Transaction ID Blank (indicates
parameter (TRANSID) to specify on | TRANSID will not be
the DPL Link. used on the DPL Link)
MAT_MAXCALEN Specifies the maximum Commarea 401

MAT_SYNCONRETURN | Specifies whether the N
SYNCONRETURN parameter is
included on the DPL Link Y or N
(default).

The Resource Connection file for the DPL Microflow type used in the tutorial is
tu_d_navl.rsc.

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE AttributeGroup SYSTEM "mgsi.dtd">
<AttributeGroup xmi.label="Connector Resource">
<Attribute xmi.label="MAT_REQTYPE" type="" xmi.uuid="" valueMandatory="false"
value="0" encoded="false"/>
<Attribute xmi.label="MAT_NAVTYPE" type="" xmi.uuid="" valueMandatory="false"
value="R" encoded="false"/>
<Attribute xmi.label="MAT_PROGID" type="" xmi.uuid="" valueMandatory="false"
value="TUDNAV1" encoded="false"/>
<Attribute xmi.label="MAT_TRANID" type="" xmi.uuid="" valueMandatory="false"
value="TUDN" encoded="false"/>
</AttributeGroup>

Table 6. Keyword values used for DPL Microflow Connector Resource file

Keyword Symbolic Description / Use Example Value

MAT_REQTYPE Specifies whether the request is run 0
on the server in asynchronous,
synchronous or synchronous rollback
mode 0 (asynchronous) 1
(synchronous) 2 (synchronous
rollback)

MAT_NAVTYPE Specifies whether the Microflow Type R
is a base Navigator (R) or a FEPI
Navigator (F)

MAT_PROGID The name of the COBOL program TUDNAV1
generated for the DPL microflow.

MAT_TRANID The CICS TransID for the server TUDN
command program generated on the
server.

—

You just..

PN

Chapter 3. Build an adapter that supports a DPL interface

25

Build an adapter that supports a DPL interface

You have just configured the tu_d_dp11.ispec file and the tu_d_navl.rsc file. You are
ready to create the adapter that supports a DPL interface.

Creating an adapter that supports a DPL interface

G

In this section you will learn how to use the adapter builder to create the model of the
business transaction.

Specifically, you will learn how to import the necessary COBOL record descriptions and
system interfaces for the DPL adapter. These are stored in the logical message model in
the Adapter Builder for use in the DPL microflow.

Follow these instructions to begin the process of building an adapter that supports

a DPL interface:

__ Step 1. Start the builder and create a new workspace.
To start the builder, go to the Start > Programs > IBM MQSI Agent
for CICS >IBM MQSI Agent for CICS. This will launch the tool as
shown below, in IEi
You should begin the tutorial with a new workspace. A workspace is a
view of what you can work with at one time. A workspace is displayed
as the graphical space in the builder where you will build the adapter
to support the DPL interface.

From the File pull-down menu, select New Workspace.

26 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

ﬁi MO51 Agent for CICS Adapter Builder - untitled

File Edit ¥iew Message Sets Help

Build an adapter that supports a DPL interface

]

[} @

N

Message Sets] Adapters l

Me |

[Me..| O w Properies O

B Message Sets

il |

v

| - |

Figure 12. Initial panel of the MQSI Agent for CICS Adapter Builder

___ Step 2.

__ Step 3.

Name your tutorial workspace and save it to the repository.

From the File pull-down menu, select Save Workspace. Enter a name
for the workspace, such as TU_DPL_WS, and click Save.

Note: Be sure to use under_scores and not dashes ”-"
workspace.

when naming the

Import a message set.

A message set is a collection of structured XML-based data types that
are stored in the message repository.

When you import a message set, what you are really doing is bringing
in the COBOL structured data type definitions from existing CICS
transactions on the host system, into the Adapter Builder’s control
center. The imported data type definitions contain the record
descriptions of the messages.

The control center utilizes the message set as an interface between the
adapter builder tool and the business transaction to be modelled.

Note: You cannot import the COBOL structured data type definitions
directly from CICS. You must first FTP the structured data type
definitions from the host to a workstation. You can then import
the message set from the workstation.

After importing a message, you can modify and store it.

Note: It is much easier to import a COBOL structured data type
definition than it is to build the message set. If there is no record
description, create one with a text editor and import it.

a. Right click on the Message Sets folder, select Import to New
Message Set > COBOL.

Chapter 3. Build an adapter that supports a DPL interface 27

Build an adapter that supports a DPL interface

ﬁi Cobol Language Mezzage Importer

Source Information Panel

Flease select the COBOL source file.

Message Set Mame ITU_D_MEESAGE_SET

Source File [ygiaciTutorials\DF Ltadpl_rd.chl . Browse

e

[Create Copyhook Compound Type Only

Mext == Cancel | Help |

Figure 13. Import a message set (source information)

On the COBOL Language Message Importer dialog (Source
Information Panel), enter the Message Set Name (in the tutorial,
TU_D_MESSAGE_SET) and the directory path where you installed
the tutorial (<mgqiac_tutorials>\dpl) and the name and location of
the copybook from which you will be importing the message set
(<mgqiac_tutorials>\dpl\tudpl_rd.cbl).

For the purposes of this tutorial, leave the Create Copybook
Compound Type Only box unchecked. This box is an option that
controls how copybooks can be imported.

Click Next.

b. On the COBOL Language Message Importer dialog (Group Level
Panel), select the message to import:

28 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a DPL interface

r:i Cobol Language Meszage Importer E3

—Group Lewvel Panel

Flease select the COBOL Group Level to irmpaort.

TU_ D RAW

TU_D_DEC

TU_D_0OUT_0OkK " Reguest
TU_D_OUT_ERR

TU_D_CUBT_REC ' RESDUHSE
TU_D_BE_C_IM

TU_D_BE_C_0OUT

0r, specify a non-Level 01 Graup

Wiew COBOL File ‘

== Back HEst== Finish Cancel | Help |

Figure 14. Import a message set (group level)

The radio button selections are as follows:

Request
Use if the message is going to be used as an input message
in a transaction.

Response
Use if the message is going to be used as an output
message in a transaction.

Undefined
Can be used for messages that are not used in a transaction.

For this tutorial, select TU_D_RAW and select the Undefined
message type radio button. Click Finish to complete the import.

c. Right click on the newly created TU_D_MESSAGE_SET folder and
select Import to Message Set > COBOL. On the COBOL Language
Message Importer dialog (Source Information Panel), enter the
directory path where the Source Files for the copybooks are located

(see [Eigure 13 on page 28). Click Next.

d. On the COBOL Language Message Importer dialog (Group Level
Panel), select the message to import (for the tutorial, select
TU_D_DEC) and select the Undefined message type radio button.
Click Finish to complete the import.

Chapter 3. Build an adapter that supports a DPL interface 29

Build an adapter that supports a DPL interface

ﬁi Cobol Language Mezzage Importer

—Group Level Fanel

Please selectthe COBOL Group Level to impaort,

TL_D_RAW |

TU_D_0OUT_0K
TU_D_OUT_ERR
TU_D_CUST_REC
TU_D_BE_C_IM
TU_D_BE_C_OUT

0r, specify a non-Level 01 Group

= Reqguest

" Response

Wiew COBOL File

== Back [gsiti== | Einigh I Cancel | Help |

Figure 15. Import a message set (group level)

e. Click Next to return to the COBOL Language Message Importer
dialog (Group Level Panel).

f. Repeat the procedure in step d until all of the following messages
(with the specified message types) are imported as follows:

Table 7. Messages to add to the workspace

Message Message Type Purpose
TU_D_RAW Undefined Input message used by the
navigator to receive
information from the
controlling application.
TU_D_DEC Undefined Decision node message

used by the navigator to
determine how to flow
logically within the flow.
This message provides a
series of fields, the context
of which are evaluated by
the Navigator to control
logical flow.

30 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a DPL interface

Table 7. Messages to add to the workspace (continued)

Message

Message Type

Purpose

TU_D_OUT_OK

Undefined

The output message used
by the Navigator to
provide customer
demographic information
to the controlling
application in the event
that the customer inquiry
request was executed
successfully.

TU_D_OUT_ERR

Undefined

Error output message
used by the Navigator to
provide error information
to the controlling
application in the event
that the customer inquiry
request was not executed
successfully due to the
fact that the customer
inquiry failed.

TU_D_CUST_REC

Undefined

Customer record layout
utilized by the navigator
to store customer
demographic information
supplied by the existing
CICS application
DFHMABPA4.

TU_D_BE_C_IN

Request

DPL Commarea Input
message used to supply
the existing CICS
application DFHMABP4
with the information that
it requires to execute

properly.

TU_D_BE_C_OUT

Response

DPL Commarea output
message used to receive
customer demographic
information as provided
by the existing CICS
application DFHMABP4.

g. When you have completed importing the COBOL structured data

type definitions listed in [able 7 on page 30, click Cancel to return
to the workspace.

o=

You just..

P

Chapter 3. Build an adapter that supports a DPL interface 31

Build an adapter that supports a DPL interface

You just completed importing the COBOL structured data type definitions needed to
model the DPL adapter. These data type definitions now reside as messages in the
Control Center of the Adapter Builder.

___Step 4. Create Transactions.

A transaction represents the message and data flowing to and from the
back-end DPL program to be accessed by the adapter. In order to create
a DPL command node, you need to associate the command node with
a transaction. The messages associated with the transaction are defined
as Input and Output representing the expected format of the input
message (and identified as input terminal in the node) and the
expected format of the output message (and identified as the output
terminal in the node).

a. Create a transaction for the customer information. Right click on the
Transaction folder. Select Create > Transaction. On the Create a new
Transaction dialog, enter TU_D_TRX in the Name field and
TU_D_TRX_ID in the Identifier field. Click Finish.

ﬁi Create a new Transaction

Name: [TU_D_TRx

Transaction | Adaptersl C Languagel COBOL Languagel Java| Histnw| Descriptinn|

[dentifier _D_TR¥_ID
Suspended fram Lse o d

Finish I Cancel Help

Figure 16. Create a TU_D_TRX transaction

b. Add messages to the TU_D_TRX transaction. Right click on the
TU_D_TRX transaction and select Add > Message. On the Add an
Existing Message dialog (the messages exist in the message set,
from when you imported them) select the TU_D_BE_C_IN and
TU_D_BE_C_OUT messages (press the CTRL key and highlight
both messages) and click Finish.

32 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a DPL interface

[:i MQ51 Agent for CICS Adapter Builder - TU_DPL_W5 xml
File Edit ¥iew Messade Sets Help

0 S @B e

Message Sets] Adapters]

b | | message | M 1w [| Pronarties | m]
) Message Sets r:i Add an existing Message . B an
2 B TU_D_MESSAGE_SET —

------ % Categories

- | Element Qualifiers ;I

(@ Elements

------ == Element Lengths
[+ Messages
- &3 Transactions

E TU D _BE IT(TU_D_BE_C_OUT)

B TU_D_CUST_REC (TU_D_CUST_REC)
B TU_D_DEC (TU_D_DEC)

B TU_D_OUT_ERR {TU_D_OUT_ERR)
B TU_D_OUT_0K{TU_D_DUT_0k)

Bl TU_D_RAW (TU_D_RAW

Finish I Cancel Help |

]

Figure 17. Add messages to the TU_D_TRX transaction

At this point, after adding messages to transactions the Message
Sets view will appear as shown in

[':i MO51 Agent for CICS Adapter Builder - TU_DPL_WS5_xml M= E3
File Edit View Selected Help ;

D) = &) % 8

hessage Sets]Adapters]

M| | Messages.. | O w4 | Properties | |

) Message Sets
=B TU_D_MESSAGE_SET
------ | Categories

- | Element Qualifiers
B Elements

- Elemnent Lengths
Messages

Eliﬂ Transactions
E!----_@l TU_D_TRX

il |

v |

Figure 18. Messages Sets view

Chapter 3. Build an adapter that supports a DPL interface 33

Build an adapter that supports a DPL interface

Save your workspace by selecting File > Save Workspace from the
menubar.

==

You just..

PN

You just created the DPL transaction and associated the input and output messages to
the transaction.

You are now ready to create the component types. In this next step, you will associate
the command component type with the transaction that you just created.

__ Step 5. Create the component types for use in the microflow

A component type represents a template that can be used as a building
block in modeling the microflow.

When you complete the tasks in this step, you will have all the
necessary component types required to model the adapter’s
functionality. The component types will display in the Adapter Tree
View. From the Adapter Tree view you will be able to drag a
component type onto the Microflow Definition pane and begin the
process of constructing the flow.

This step is made up of the following tasks:

* Create a Decision Type

* Create a Command Type

* Create a Data Context Type

* Create a Microflow Type

See the section Composing microflows in the MQSI Agent for CICS Using
the Control Center documentation for descriptions of the component

types.
a. Create a Decision Type.

A decision type is necessary to test a condition for true or false, to
resolve the control flow path.

You will use this type to create a Decision node for the microflow.

The Decision node will be used to evaluate the message indicator

(Good, Warning or Error) upon return from the DPL program,

(DFHMABP4) and it will decide how processing will continue.

1) Click on the Adapters tab to switch to the Adapters view.

2) Create the TU_D_RTN_OK Decision type that will be used to
determine whether the data returned from the back-end host is
valid. Right click on the Decision Types folder and select Create

> Decision Type. Enter TU_D_RTN_OK in the Name field and
click Finish.

34 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a DPL interface

ﬁi Create a new Decizion Type]

BT O RTR_ Ok

ConditionExpression | Description

Qut Terminal | =

Cancel Help

Figure 19. Creating a Decision type for the DPL Adapter

3) Associate a message set and message with the In Terminal on
the TU_D_RTN_OK Decision type.

Right click on the TU_D_RTN_OK Decision type under the
Decision Types folder and select Decision Branch.

Make sure the In Terminal tab is selected. Using the drop down
menus, select TU_D_MESSAGE_SET for the Message Sets field

and TU_D_DEC for the Message field.

Chapter 3. Build an adapter that supports a DPL interface

35

Build an adapter that supports a DPL interface

Ei Edit TU_D_RTH_OFK Decision Branches

In Terminal | it Terminal

Hew name [IERGE]

Message Set |[TU_D_MESSAGE_SET -1

Message TJ D DEC

Froperties

8] Cancel Help

Figure 20. Editing the In Terminal on the Decision type

4) Create Out Terminals for the Good, Warning, and Error
decisions.
The TU_D_RTN_OK Decision type will determine which of
these actions to take based on the MSG_IND_D field in the
decision message (TU_D_DEC).

a) Make sure the Out Terminal tab is selected. Click Out
Terminal in the terminal list box and click Rename. Enter
Good in the New name field and click Finish.

b) Enter Warning in the Name field and click Add.
¢) Enter Error in the Name field and click Add. Click OK.

36 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a DPL interface

ﬁi Edit TU_D_HTM_DOFK Decizion Branches
In Terminal Qut Terminal
Hame Al
oo
Warning
Error EEmarme:..
default
Delete
E—-’ | % | Eroperies
QK Cancel Help

Figure 21. Editing the Out Terminal on the Decision type

5) Create conditional expressions in simple SQL

Right click on the TU_D_RTN_OK Decision type and select
Properties on the pop up menu. Make sure the
ConditionExpression tab is selected and the Good tab is
selected.

Click in the Good test condition input area and press
CTRL-SHIFT to display a list of available message fields (these
fields are from the TU_D_DEC message that we associated with
the TU_D_RTN_OK Decision type). Select the MSG_IND_D field
to add this to the Input area of the ConditionExpression tab.

Chapter 3. Build an adapter that supports a DPL interface ~ 37

Build an adapter that supports a DPL interface

E§ TU_D_RTN_OK

ConditionExpression | Description |

Good | wiarning | Error |

MiG_IND D = 'G

]

Cancel | Ay | Help

Figure 22. Code for the Good Terminal

You should add the code shown in w for the Good
terminal test condition. The letter ‘G’ for the MSG_IND_D field
is based on the message indicator action codes that are defined
for the decision message (TU_D_DEC).

6) In a similar manner, add the test condition code for the
remaining terminals: Warning and Error. When finished, click

OK.

Table 8. Code for the Out Terminal actions for the TU_D_RTN_OK Decision type

Terminal

Code

Description

Good

MSG_IND_D ='G’

G - Good - request processed

Warning

MSG_IND_D ="A’

A - Application warning (e.g. 'Record Not Found”)

Error

MSG_IND_D = "E’

E - System error (e.g. 'File Closed’)

b. Create a DPL Command Type.

A command type is a simple adapter component which, depending
on how its properties are set, can be used to represent a server
adapter program (DPL, MQ) or FEPI command (3270 screen

interaction).

In this step you need to create a DPL Command type which will
allow the microflow to perform the DPL Link to the server-side

DFHMABP4 program.

1) Create the TU_D_DCUST Command type for the DPL

Command.

a) Right click on the Command Types folder and select Create
> Command Type. Enter TU_D_DCUST in the Name field.

38 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a DPL interface

b) Using the drop down menus, set the following field
property values:

Table 9. DCUST Command property values

Field Value
Message Set TU_D_MESSAGE_SET
Transaction TU_D_TRX_ID
Connector Resource tu_d_dpll.rsc
Interaction Specification tu_d_dpll.ispec
r:i Create a new Command Type E4
P

Name: TU_D_DCUST

Cornmand Type | CnnnecturResnurcel Interaction Specification Descriptinnl

Message Set [TU_D_MESSAGE_SET =
Transaction [TU_D_TRX_ID =]
Connector Resource Itu_d_de Nl ;|
Interaction Specification [tu_d_dnl1.ispec =l
In Terminal fTU_D_BE_C_IN

ot Terminal rTu 0 BE C_OUT

Finish I Cancel Help

Figure 23. Creating a TU_D_DCUST Command type

Click Finish to apply the property values.
C. Create a Data Context Type.

A data context type is a simple adapter component that is used to
store data for later access through a data flow.

In this step you will need to create a Data Context type to store
customer information. This data can be accessed later from a
connector data flow.

This Data Context Node is used to store the contents of the
customer demographic information fields populated by the CICS
application DFHMABP4. This data will then be provided to the
controlling application or discarded, once the Navigator (TUNAV1)
determines the success or failure of the DPL link.

1) Create the TU_D_CUST_CTX Data Context type.

Chapter 3. Build an adapter that supports a DPL interface 39

Build an adapter that supports a DPL interface

a) Right click on the Data Context Types folder and select
Create > Data Context Type. Enter TU_D_CUST_CTX in the
Name field.

b) Using the drop down menus, set the following field
property values:

Table 10. TU_D_CUST_CTX Data Context property values

Field Value

Scope

Local

Message Sets

TU_D_MESSAGE_SET

Message

TU_D_CUST_REC

ﬁi Create a new Data Context Type

Mame: [TU_D_CUST_CTX

Data Context Tyvpe | Description

Scope

Message

Message Set [TU_D_MESSAGE_SET

In Terminal JTU_D_CUST_REC
Qut Terminal JTU_D_CUST_REC

[Lacal

Ll Led <

[TU_D_CUST_REC

Finish Cancel Help

Figure 24. Creating a TU_D_CUST_CTX Data Context type

d.

Click Finish to apply the property values.
Create a microflow type.
A microflow type is a collection of adapter components that models
all or part of the message processing. In your adapter, this is the
Navigator that calls the transaction and is responsible for
controlling adapter request processing and managing states during
the microflow processing.
A navigator invokes server adapter programs.
In this step you will create a microflow that will model the
processing of the customer data request.
1) Right click on the Microflow Types folder and select Create >
Microflow Type.

2) Enter TUDPLO1 in the Name field.

40 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a DPL interface

3) Use the drop down menu in the Connector Resource field to
select tu_d_navl.rsc as the Connector Resource file and then
click Finish.

Ei Create a new Microflow Type

Mame: [TUDFLOY

Micraflowe Type | Connector Resource | Description
Connector Resource |tu_d_nav1.rsc ;l

‘ Finish I Cancel Help

Figure 25. Creating a TUDPLO1 Microflow Type

4) Save your workspace by selecting File > Save Workspace from

the menubar.

You just..

PN

You just created all of the component types that you will need to model your adapter.

__ Step 6. Model the adapter
In this step you will perform a set of tasks to model the adapter.

When you model an adapter you are indicating how the adapter will
function at run time. Within the context of the business flow, the
adapter model is of the navigation of the server application with the
back end systems. The adapter represents the behavior you need to
access data from the existing back end applications.

Within the builder, the model of the adapter is represented as a
microflow, a sequence of nodes and connections. The microflow models
the processing of a message as it passes from the input of the adapter
to the output of the adapter.

Chapter 3. Build an adapter that supports a DPL interface 41

Build an adapter that supports a DPL interface

This step is made up of the following tasks:
* Adding microflow nodes
¢ Connecting the microflow nodes
* Defining the mappings
a. Add the microflow nodes .
In this taski gou will drag all the component types that you created

in step , onto the Microflow Definition pane. When you
drag a component type onto the Microflow Definition pane, it is
instantiated and referred to as a microflow node. A single component
type can be used to create one or more microflow nodes (instances)
as part of the same microflow.

1) Add the Input Terminal node

An Input Terminal serves as an entry point for the microflow.
The Input Terminal can make a connection to any terminal that
resides within the microflow.

a) Drag the node on to the Microflow Definition pane.

In the Microflow Types folder, select the TUDPLO1
microflow you created.

Note: To model your adapter in the workspace (Microflow
Definition pane), you must make sure the microflow
is selected in the Microflow Types folder.

Drag an Input Terminal type from the Adapter Tree View to
the Microflow Definition pane.

Left click and hold on the Input Terminal to drag it to the
Microflow Definition pane:

Message Sets ﬂdamerﬁl

| Adapters | O | m | TUDPLOT |

o] CIGE MGAdapters
E|_| Microflow Types

L a-;}:-; LIDPLO1

=] Command Types

(AL |

=] Data Context Types
- Gy TU_D_CUST_CTX
-] Decision Types

...... _| lteration Types
[a g : |Drag and drop on to the definition pane
...... F Input Terminal

------ #) Cutput Terminal

Figure 26. Dragging an Input Terminal on to the Microflow Definition pane

b) Rename the node

42 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

c)

F§ TU_D_RAW

TU_D_FAWY | Descriptian |

Build an adapter that supports a DPL interface

Right click on the Input Terminal located in the definition
pane and select Rename. Rename the Input Terminal node
to TU_D_RAW and click Finish.

Set the properties for the node

Right click on the Input Terminal and select Properties.
Make sure the TU_D_RAW tab is selected. From the drop
down menus, select TU_D_MESSAGE_SET in the Message
Set field and select TU_D_RAW in the Message field. Click
OK.

Messane Set
Message

|TU_D_MESSP-.G E_SET

=]
[TU_D_RAw =

n]% Cancel ey | Help |

Figure 27. Configuring the TU_D_RAW Input Terminal node properties

2) Add the Command node

3)

a)

b)

Drag the node on to the Microflow Definition pane
From the Command Types folder in the Adapter Tree View,
select a TU_D_DCUST Command type.

Left click and hold on the TU_D_DCUST Command type to
drag it to the Microflow Definition pane. Place the node to
the right of the TU_D_RAW Input Terminal node.

Rename the node
Right click on the TU_D_DCUST1 Command node and

select Rename. Modify TU_D_DCUST1 in the New name
field to the name TU_D_DCUST and click Finish.

Add the Decision node

a)

b)

Drag the node on to the Microflow Definition pane

Drag a TU_D_RTN_OK Decision type from the Adapter Tree
View to the Microflow Definition pane. Place the node to the
right of the TU_D_DCUST Command node.

Rename the node

Chapter 3. Build an adapter that supports a DPL interface 43

Build an adapter that supports a DPL interface

Right click on the TU_D_RTN_OKI1 Decision node and select
Rename. Modify TU_D_RTN_OKI1 in the New name field to
the name TU_D_RTN_OK and click Finish.

4) Add the Data context node
a) Drag the node on to the Microflow Definition pane
Drag a TU_D_CUST_CTX Data Context type from the
Adapter Tree View to the workspace. Place the node above
the TU_D_RTN_OK Decision node.
b) Rename the node
Right click on the TU_D_CUST_CTX1 Data Context node
and select Rename. Modify TU_D_CUST_CTX1 in the New
name field to the name TU _D_CUST_CTX and click Finish.
5) Add the Output terminal node
An Output Terminal serves as an exit point for the microflow.
The Output Terminal can receive connections only. It can never
start a connection. A microflow can have multiple Output
Terminals (as in the DPL example). A developer must design the
controlling application to recognize the possible reply messages
provided by multiple Output Terminals.
a) Drag the node on to the Microflow Definition pane
Drag an Output Terminal type from the Adapter Tree View
to the workspace and place the node to the right of the
TU_D_CUST_CTX Data Context node.
b) Rename the node
Rename the Output Terminal node to OUT_OK.
c) Flip the node
Right click on the OUT_OK and select Flip node
d) Set the properties for the node
Right click on the OUT_OK node and select Properties.
Make sure the OUT_OK tab is selected. From the drop down

menus, select TU_D_MESSAGE_SET in the Message Set field
and select TU_D_OUT_OK in the Message field. Click OK

44 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a DPL interface

E§ OUT_OK
DUT_DI’{l Descriptinnl
Message Set [TU_D_MESSAGE_SET =]
Message [TU_D_OUT_OK =l
(8] Cancel SRRy | Help |

Figure 28. Configuring the OUT_OK Output Terminal properties

6) Add the Error Output terminal node
a) Drag the node on to the Microflow Definition pane

Drag an Output Terminal type from the Adapter Tree View
to the workspace and place the node to the right of the
TU_D_RTN_OK node.

b) Rename the node

Rename the Output Terminal node to OUT_ERR.
c) Flip the node

Right click on the OUT_ERR and select Flip node
d) Set the properties for the node

Right click on the Output Terminal and select Properties.
Make sure the OUT_ERR tab is selected. From the drop
down menus, select TU_D_MESSAGE_SET in the Message
Sets field and select TU_D_OUT_ERR in the Messages field.
Click OK.

7) Save your workspace by selecting File > Save Workspace from
the menubar.

Your Microflow Definition panel should look something like this:

Chapter 3. Build an adapter that supports a DPL interface 45

Build an adapter that supports a DPL interface

[:i MO51 Agent for CICS Adapter Builder - TU_DPL_WS xml [_ [T X]
File Edit Wiew Microflow Definition Help 2 -

)% e

Message Sets AdamErSl

| | Adapters | O || m TUDPLO | Microflow Definition

]
-] CICE Matdapters -]
Microflow Types

4]) =
Command Tvpes DD s
g TU_D_DCUST
I %ﬁ oot Tes TU_D_CUST_CTX OUT_OK
JDecisiEnﬂDE!S)
B TU_D_RTN_OK

-1 lteration T FTee
émzrsmn YPEs D ofcdle Dg D

X Input Terminal
- &) Output Terminal TU_D_RAW TU_D DCUST TU_D_RTN_OK QUT_ERR

(18]

55
| 1l | :

v |

o

Figure 29. Nodes for the DPL adapter

b. Connect the microflow nodes.

In this task you will connect the microflow nodes that are on the
Microflow Definition pane so as to define the flow of processing.
You will do this by creating connections. A connection is a wire that
connects an output terminal of one microflow node to the input
terminal of another. There are two types of connections (control
connection and data connection). For a detailed description of the
different types of connections, see the section on composing
microflows in the MQSeries Integrator Agent for CICS Transaction
Server Using the Control Center book.

1) Right click on the TU_D_RAW Input Terminal node and select
Connect > Out. Move the connection line to the TU_D_DCUST
Command node and left click. This adds a control connection
and a map (Map1 node) between the two nodes.

A control connection provides a sequential relationship
between 2 nodes in a microflow.

46 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a DPL interface

map hode

TU D R&W TU D DCUST

Figure 30. Connecting the TU_D_RAW Input Terminal and TU_D_DCUST Command node .

2)

3)

4)

5)

6)

7)

8)

9)

Add a control connection from the out terminal on the
TU_D_DCUST Command node to the TU_D_RTN_OK
Decision node. This auto-adds a Map2 node on the control
connection line.

Add a Map node (Map3) between the TU_D_RTN_OK
Decision node and the OUT_OK Output Terminal node. To
create a Map node, drag a Map type from the Adapters Tree
View (left panel) to the Microflow Definition panel (right
panel).

Add a control connection from the first out terminal (labeled
Good) on the TU_D_RTN_OK Decision node to the Map3 node
and from the Map3 node to the OUT_OK Output Terminal
node.

Add a series of three Map nodes (Map 4-Map 6) between the
TU_D_RTN_OK Decision node and the OUT_ERR node.

Note: See Figure 31 on page 4§ to see the placement of the four

Map nodes (Map 3-Map 6). The Map node labels are for
annotation only and will not appear in your workspace.

Add control connections from the second out terminal (labeled
Warning) on the TU_D_RTN_OK Decision node to the Map4
node and from the Map4 node to the OUT_ERR Output
Terminal node.

Add control connections from the third out terminal (labeled
Error) on the TU_D_RTN_OK Decision node to the Map5 node
and from the Map5 node to the OUT_ERR Output Terminal
node.

Add control connections from the fourth out terminal (labeled
default) on the TU_D_RTN_OK node to the Map6 node and
from the Map6 node to the OUT_ERR Output Terminal node.

Add a data connection from the Map2 node to the
TU_D_CUST_CTX Data Context node and from the out
terminal of the TU_D_CUST_CTX node to the Map3 node.

Chapter 3. Build an adapter that supports a DPL interface 47

Build an adapter that supports a DPL interface

Refer to [Figure 31 to see all of the node connections in the
microflow.

File Edit Wiew Microflow Defintion Help

Ei MOQ5] Agent for CICS Adapter Builder - TU_DPL_WS. xml

—[ol|

Message Sets Adapteral

x

T | aga.. | O | wa

| TUDPLOT | Microflaw Definition | m|

-] CICE MOAdapters
<] Microfow Types
Lo TUDPLOT

-] Command Types
+-I_] Data Context Type
#-_] Decision Types
-] Iteration Types
- Input Terminal
-2 Output Terminal

Al
I e |

@B—Eﬂ—;ﬁ} B—E

TU D RAW TU D _DCUST

E Map3

_CUST CTX

TU
Wlapd

@ MapSm

TU_D_RTP?% .

Map6

Map1 Wap2

OUT_ERR

NS

| |

Figure 31. The TUDPLO1 microflow

10) Save your workspace by selecting File > Save Workspace from
the menubar.

Map your adapter.

You are now ready to map your adapter. The act of mapping refers to

the modeling of data transformation via a Map node, between an

output terminal on one node and an input terminal on another

node. Data transformation can include a variety of functions:

* Associating a field in one message with a field in another
message.

* String mapping such as specifying pad characters.

» Date mapping, such as converting a date in one format to a date
in another format.

* DPutting literal data into a message.

* Adding custom code to perform other data transformation
functions.

1) Perform the mapping for the Mapl node as listed in [Cable 11 od

m and shown in [Figure 32 on page 5(0. This map passes the

customer number and inquire action indicator ‘I’ to the DPL
program DFHMABP4.

48 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

a)

b)

c)

Build an adapter that supports a DPL interface

Right click on the Map1 node (the Map node that appears
between the TU_D_RAW and TU_D_DCUST nodes) and
select Properties. Click the DataMappingExpression tab.

Left click on the CUST_NO field under the TU D RAW
message (view input message on right of panel) and drag
the mouse cursor to the CUST_DATA _I field under the
TU_D_BE_C_IN message (view output message on left of
panel). This will create a mapping between the two fields

(see [Lable 11 and Figure 32 on page 50).

The second mapping ('I' to CUST_ACTIONLI) is a literal

mapping. To perform a literal mapping, display the Map

node’s properties and make sure the

DataMappingExpression tab is selected.

i. Right click on the destination field for the literal (the
CUST_ACTIONL_I field in the TU_D_DCUST Output
Message) and select Add element. This will create a
mapping that is labeled LITERAL on the input field.

ii. Double click on LITERAL field and rename it to '’
(quotes must be used). Click OK.

d) Click OK when the mappings are completed.
Table 11. Mapping fields for Mapl node (TU_D_RAW message to TU_D BE_C_IN
message)
Input Field Output Field Description
CUST_DATA CUST_DATA_I Used to pass customer data through the flow

T

CUST_ACTION_I Type of action — Inquiry

Chapter 3. Build an adapter that supports a DPL interface 49

Build an adapter that supports a DPL interface

Ei Mapl

ETHY DataMappingE}{pressinnl Description |

nput Messages
TU_D_RAWI

Message TU_D_RAWY

Dutput Messages
TU_D_DCUSTl

Message TU_D_BE_C_IN

|»

Bl TU_D_RAw
LB CUST_NO

B TU_D_BE_C_IM
] cusT_DATA_
B CUST_MSG_I
] CUST_ACTION_|

Input

Qutput

TU_D_RAW.CUST_MO

TU_D_DCUST.CUST_DATA_I

h b 4

TU_D_DCUST..CUST_ACTION_I

-

’TI Cancel | Al |

Help |

Figure 32. Mapping for Mapl node

2) Perform the mapping for the Map2 node as listed in Table 19
and m The mappings are shown in w
bn page 51 an [Eigure 34 on page 51.

This map passes the customer data from the DPL program

DFHMABP4 (Back-end DPL Customer Information Maintenance
test transaction) to the TU_D_RTN_OK Decision node. Click OK
when the mappings are completed.

Table 12. Mapping fields for Map2 node (TU_D_BE_C_OUT message to TU_D_CUST_REC

message)

Input Field

Output Field

Description

CUST_DATA_R TU_D_CUST_REC

Store customer data received from the
back-end system in a data context

50 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a DPL interface

Ed Map2]
Map2 DataMappingExpression | Description |
Input Messages Output Messages =
TU_D_DCUST | TU_D_CUST_CT¢ | Tu_D_RTN_OK|
Message TU_D_BE_C_0QOUT Message TU_D_CUST_REC
B TU_D_BE_c_ouT B TU_D_CUST_REC =
~EBovst_patar |l - [l cusT_NO_C
i-[F] CUST_MSG_R_Overlay -] MAMEFULL_C
BeoustacTioNr]l El STREET_C
------ B arv_c
------ Bl STATE_C
------ Ear_c
&-[E] PHONE_C
------ E] MARRIED_C

------ E] EMP_cITY C B
...... El FMP_STATE ¢ i
Input Cutput
TU_D_DCUST. .CUST_DATA_R $ TU_D_CUST CTH.TU_D_CUST_REC

0] 4 I Cancel | Apply Help

Figure 33. Mapping for Map2 node

Note: To perform the mapping in [[able 13, you will have to
select the TU_D_RTN_OK tab in the Output Messages
section of the Map2 node. You may have to expand the
TU_D_BE_C_OUT and the TU_D_DEC records to access
the underlying fields for mapping.

Table 13. Mapping fields for Map2 node (TU_D_BE_C_OUT message to TU_D_DEC
message)

Input Field Output Field Description
CUST_MSG_TXT_R |MSG_D Message ID number
CUST_MSG_IND_R | MSG_IND_D Output message
CUST_ACTION_R | ACTION_D Requested action

Chapter 3. Build an adapter that supports a DPL interface 51

Build an adapter that supports a DPL interface

B Map2 Ea
Map2 DataMappingExpression | Description |
Input Messages Cutput Messages =
TU_D_DCUST' TU_D_CUST CT¢ T
Meszage T D BE ©_OUT Message T D DEC
B Tu_D_BE_C_ouT B Tu_D_DEC =
-5 CUST_DATA_R -[E] ACTION_D
7-[E] CUST_MSG_R_Overlay -[Z] SIGNOFF_YN_D
...[g CUST_ACTION_R --[Z] FLOW_MSG_D
--[Z] MSG_D
El MSG_IND_D
-.[Z] CUST_IN_D
-[E] ACCT_IN_D
5] ACCT_1_D
--[Z] ACCT_2_D
--[E] ACCT_3_D | |
--[E] ACCT_4_D
-[E] ACCT_8_D
=l ACCT TYPE N hd

Input Cutput
TU_D _DCUST.CUST_MSG_THT_R TU_D_RTH_OK. MSG_D
TU_D DCUST.CUST _MSG_IND_R TU_D_RTH_OK. MSG_IND_D
TU_D_DCUST. CUST_ACTION_R TU_D_RTH_OK. ACTION_D

v v v

-

kK I Cancel | Ay | Help |

Figure 34. Mapping for Map2 node

3) Perform the mapping for Map3 node as listed in [Cable 14 and

[able 19 and shown in Eigure 35 an page 53. This map passes

customer data and good response messages to the DPL Good
response Output Terminal (OUT_OK). Click OK when the
mappings are completed.

Table 14. Mapping fields for Map3 node (TU_D_CUST_REC message to OUT_OK

message)

Input Field Output Field Description
CUST_NO_C CUST_NO_O Customer ID number
NAMEFULL_C CUST_NAME_O Customer name
PHONE_C CUST_PHONE_O Customer phone number
EMPLOYER_C CUST_EMPLOYER_O | Customer employer

Table 15. Mapping fields for Map3 node (TU_D_RTN_OK message to OUT_OK message)

Input Field Output Field Description
MSG_D MSG_O Message ID number
MSG_IND_D IND_O Output OK message
"Cust Action OK’ FLOW_MSG_O Response message for customer action

Note: The MSG_O and IND_O output fields can be located by
expanding the MSG_GRP_O element. Click on the + sign.

52 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

:i Map3

Build an adapter that supports a DPL interface

Map3 DataMappingExpressinnl Descriptignl

Input Messages

lessage TU_D_CUST_REC

TU D CUST CTH | TU_D_RTN_OK]

OUT_OKl

Message TU_D_OUT_OkK

Cutput Messages

B Tu_D_cuUsT_REC
------ El cuUsT_NO..
B NAMEFULL_C

| v

B TU_D_0oUuT_oK
=[5 MSG_GRP_O

------ B cusT_namE_o
B-E cUST_PHOME...

------ B cusT_EMPLOYER...
------ El accT_NO_0

------ El ACCT_TYPE_O

------ El AcCT_BaL_O

Input

Cutput

TU_D_CUST_CTH.CUST_MNO_C

OUT_QKLCUST_MNO_O

TU_D_CUST_CTH. NAMEFULL_C

OUT_OK..CUST_MAME_O

TU_D_CUST_CTH. FHOME_C

OUT_OK.CUST_PHONE_O

TU_D_CUST_CTH.EMPLOYER_C

OUT_OK.CUST_EMPLOYER_O

TU_D_RTN_OK.MSG_IND_D

OUT_0QKLIND_0O

TU_D_RTM_OK.MEG_D

OUT_OK.MSG_0

'Cust Action OK'

h bk Ak Ak Ak Jb 2k 4

OUT_OKLFLOW_MSG_O

[ox |

Cancel Afply Help

Figure 35. Mapping for Map3 node (TU_D_CUST_CTX and TU_D_RTN_OK messages to

OUT_OK message)

4) Perform the mapping for Map4 node as listed in [Cable 1d and

shown in [Ei

. This map passes warning

response messages to the DPL Error response Output Terminal
(OUT_ERR). Click OK when the mappings are completed.

Table 16. Mapping fields for Map4 node (TU_D_DEC message to TU_D_OUT_ERR

message)

Input Field Output Field Description
MSG_D MSG_E Error indicator
MSG_IND_D IND_E Output Error Message
‘Cust. Warning’ FLOW_MSG_E Warning message text

Chapter 3. Build an adapter that supports a DPL interface

53

Build an adapter that supports a DPL interface

!’:.i Map4
Mapd DataMappingExpression | Descriptinnl
Input Messages Cutput Messages 1=
TU_D_RTH_OK | OUT_ERR |
mMessage TU_D_DEC Message TU_D_OUT_ERR
B TU_D_DEC || B Tu_D_ouT_ERR
------ B acTion_p E-E] MSG_GRP_E
------] SIGNOFF_YN_D - EmscE
------ Sl FLow_MSG_D . [E IND_E
------ = msc_D & FLOW_MSG_E
------ B msG_iND_D
------ El cust_n_D
------ Bl accT_N_D
------ El acct_1.D
------ El acct_2 D (I
------ B acct_3 D
------ El acct_4. D
...... E| ACCT 5 D -

Input Cutput
TU_D_RTH_OK.MSG_IND_D $ OUT_ERR.IND_E
TU_D_RTH_OK.MSG_D » OUT_ERR.MSG_E
'Cust. Warning' $ OUT_ERR.FLOW MSG_E I

-

0l I Cancel | ARl | Help |

Figure 36. Mapping for Map4 node

5) Perform the mapping for Map5 node as listed in fable 12 and
shown in Ei . This map passes error response
messages to the DPL Error response Output Terminal
(OUT_ERR). Click OK when the mappings are completed.

Table 17. Mapping fields for Map5 node (TU_D_DEC message to TU_D_OUT_ERR

message)

Input Field Output Field Description
MSG_D MSG_E Error indicator
MSG_IND_D IND_E Output Error Message
"Cust. Error’ FLOW_MSG_E Error message text

54 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

E.§ Map5

Build an adapter that supports a DPL interface

Maps DataMappingE}{pressionl Descriptinnl

[irnput Messages

Cutput Messages

|»

TU_D_RTN_OK | OUT_ERR |

Meszsage TU_D_DEC Message TU_D OUT_ERR
B Tu_D_DEC ~|||B Tu_D_ouT_ERR

------ E AcTION_D =5 MSG_GRP_E

------ [SIGNOFF_YN_D o B mss_E

------ E| FLOW_MSG_D - B mo_E

------ B mse_p “E FLOW_MSG_E

------ B mse_nD_D

------ El CusT_IN_D

------ El ACCT_IN_D

------ El accT_1_D

------ El acct_2 D

------ El AccT_3.D —

------ El accT_a_D

------ El accT_5_D —
L =l an~r mome o

Input Cutput

TU_D_RTH_OK.MSG_D

OUT_ERR.MSG_E

TU_D_RTH_OK.MSG_IND_D

" 3

OUT_ERR.IND_E

‘Cust, Errar’

2

OUT_ERR.FLOW_MSG_E

-

[o |

Cancel | Arily |

Help |

Figure 37. Mapping for Map5 node

6) Perform the mapping for Map6 node as listed in fCable 19 and

shown in [Ei

messages to the DPL Error response Output Terminal

. This map passes error response

(OUT_ERR).
Table 18. Mapping fields for Map6 node (TU_D_DEC message to TU_D_OUT_ERR
message)
Input Field Output Field Description
MSG_D MSG_E Error indicator
MSG_IND_D IND_E Output Error Message
'Cust. Action not defined’ FLOW_MSG_E Error message text

Chapter 3. Build an adapter that supports a DPL interface

55

Build an adapter that supports a DPL interface

Ei LTI

Mapg DataMappingExpression | Descriptignl

Input Messages

Cutput Messanes

|»

TU D RTH_OK | OUT_ERR |

Message TU_D_DEC Message TU_D_CUT_ERR
B Tu_D_DEC 2||||B Tv_p_ouT_ERR

------ S AcTION_D =-[E] MSG_GRP_E

------ [SIGNOFF_YN_D - B wmsc_E

------ E| FLOW _MSG_D . B mo_E

------ E m3c_D L] FLOW_MSG_E

------ El msG_IND_D

------ E| CUST_IN_D

------ S| AcCT_IN_D

------ El ACCT_1_D

------ E accT_2 D (I

...... E ACCT_3.D

------ El ACCT_4_D

------ E AcCT_5_D -

Input Catput

TU_D_RTM_OK.MSG_D

¥ OUT_ERR.MSG_E

TU_D_RTN_OK.MSG_IND_D

% OUT_ERR..IND_E

‘Cust. Action nat defined’

% OUT_ERR..FLOWY _MSG_E

-

[o]'¢ I Cancel Afagaly | Help |

Figure 38. Mapping for Map6 node

o=

You just..

P

You just completed the modelling stage in the process of building your adapter.

In your model, you have coded the instructions on how the adapter is supposed to
behave at run time. You are now ready to create the adapter.

__ Step 7. Assign the model to a CICS MQAdapter.

In this step you will associate the microflow (the model that you just
completed), with a CICS MQAdapter.

The CICS MQAdapter provides the actual implementation of the
adapter request processing.

The adapter will enable the controlling application by invoking
TUDNAV1 and TUDPLI1 to access the back-end DPL Program
(DFHMABP4) to retrieve customer information.

a. Right click on the CICS MQAdapter Collection folder and select
Create > CICS MQAdapter

b. On the Create a new CICS MQAdapter dialog, enter TUDPLAD for
the Name and use the drop down menu to select TUDPLO1 for the

56 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a DPL interface

Microflow Type. Leave the Proxy Client Connector Resource and
Proxy Client Interaction Specification fields blank. Click Finish.

Ei Create a new CICS MOAdapter Ed
LT
Name: [TUDPLAD
CICS Masdapter | Description
Microflowe Type |TUDF'LD1 |
Prowy Client Connector Resource | ;|
Prowxy Client Interaction Specification | Ll
Finish I Cancel Help

Figure 39. Creating an CICS MQAdapter

You have completed the microflow and setup your adapter.

Save your workspace by selecting File > Save Workspace from the
menubar.

__ Step 8. Generate the adapter

Now you are ready to generate your adapter. The adapter code files
will be generated in the output directory that you specify.

Adapter code generation is a two-step process:

a. Generate copybooks from message definitions (in Message Sets
view).

b. Generate the adapter run time code from the modeled microflow
(in Adapters view).

* Generate the Copybooks.

You will generate to COBOL copybooks for the following messages:

TU_D_RAW
TU_D_DEC
TU_D_OUT_OK
TU_D_OUT_ERR
TU_D_CUST_REC
TU_D_BE_C_IN
TU_D_BE_C_OUT

Chapter 3. Build an adapter that supports a DPL interface = 57

Build an adapter that supports a DPL interface

Note: All must be generated to the same directory.

Note: To generate a copybook for a message, the message must be
checked out or newly created.

E-C3Messages
: %‘I TUM BE C_IN E Message Checked Out Symbol

EI TUM_BE C_OUT "i_ New Message Symbol

Figure 40. Messages Sets folder showing checked out message and newly created message

To generate copybooks, make sure that you are in the Message Sets
view and then, follow this procedure:

a. Make sure the list of messages is visible under the Messages
folder for the TU_D_MESSAGE_SET. To view the messages, click
on the + sign in front of the Messages folder to display the list of
messages.

b. Right click on the message for which you want to generate a
copybook (for example, TU_D_RAW) and select Generate >
COBOL.

c. Enter the output destination in the Path field and click Finish.
CAUTION:

The copybook generate removes underscores from the message
names and only uses the first eight characters of the filename
to generate the new copybook name. Be aware of potential
naming conflicts.

ﬁi Cobol Language Message Generator]

—Destination Panel

Path |CamMgiaciTutorials\DPL Browse |

==)l HEst == Finish Cancel | Help |

Figure 41. Specifying pathname for copybook generation output

58 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a DPL interface

d. Repeat the process to generate copybooks for the remaining
messages in the list.

* Generate adapter Code.

To generate adapter code, make sure that you are in the Adapters
view and then, follow this procedure:

Note: You must generate the adapter code in the same directory
where you generated the copybooks.

a. Right click on TUDPLAD adapter (listed under the CICS
MQAdapters folder) and select Generate > Generate COBOL
Adapter. Enter the output destination in the PATH field (the
example uses C:\Mgiac\Tutorials\DPL). Click Finish.

The generated adapter code will be output to the destination
path directory.

Ei Cobol Language Adapter Generator

—Destination Panel

Path |caMgiaciTutarials\DPL Browse |

Finish I Cancel | Help |

Figure 42. Specifying pathname for adapter code generation output

== Bk [Est ==

Deploying an adapter

G

In the following section you will learn how to deploy the adapter that you created. The
deploy operation sends the copybooks, source code, JCL and the configuration
parameters for each microflow that you generated, to the host system, for source code
configuration, object code build and parameter update operations.

Chapter 3. Build an adapter that supports a DPL interface 59

Build an adapter that supports a DPL interface

You will need an account and password to the OS/390 environment that will host
the adapter you are deploying.

Make sure that you have customized the build time JCL templates to your site

standards. See LBuilding adapters” onpage d for information on the JCL you need

to customize.

You must have Object REXX installed on the workstation for FTP deployment
processing.

To deploy an adapter, make sure that you are in the Adapters view and then,

follow this procedure:

1. Right click on TUDPLAD adapter (listed under the CICS MQAdapters folder)
and select Generate > Deploy COBOL Adapter. Click the Define Settings radio
button and enter the following information:
¢ IP Address — IP Address - The host system IP address (for example,

9.89.7.114)

* High Level Qualifier — The high level qualifier for the partition data set
(PDS)

Note: The tutorial uses QAS.MIAC as the high level qualifier.
* Account — The account under which JCL submits a job for compilation.

Note: If you wish to save these settings for reuse, then click Save. You will be
prompted to specify an output location and filename to store the setting
information. The next time you deploy adapter code you can click the
Use Pre-defined Settings radio button and enter the saved filename.

Click Next.

Ei Cobol Language Adapter Deployment B2

~Target Host Panel

" Usze Pre-defined Settings

File Mame | BrowEe |

% Define Settings Save

IP Address [2.39.7.114

High Level Qualifier IQAS.MIAC

Account JQASHPM

== Back: | Mext == I Finisti Cancel | Help |

Figure 43. Specifying the target host

2. On the User Identification panel enter your user ID and password. Click
Finish.

60 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a DPL interface

The generated adapter code, copybooks, and JCL (Compile / Properties File
Update) files will be moved to the OS/390 server.

Ei Cobol Language Adapter Deployment

~User Identification Panel

Userld [aasmPm

Password Iwﬂrﬂrﬂm

== Back | [HExt == I Finish Cancel | Help |

Figure 44. Logon to the host

3. The Sub-process dialog appears and provides a status of the deploy process as it
happens. When the deploy is complete the generated adapter code, copybooks,
and JCL (Compile / Properties File Update) files will be moved to the OS/390
server.

Note: You should scroll through the output listing in the Sub-process dialog
window to see if any errors occurred.

Chapter 3. Build an adapter that supports a DPL interface 61

Build an adapter that supports a DPL interface

Ei Sub-process spawned ¥]

Sub-pracess complete

ﬂ Sub-pracess complete =

i] —

ﬂ efkprep CikpiactTutorials\DPLTUDPLAD prp

ﬂ erased file © CiMgiaciTutorials\DPLITMPYERBRT FS3D JCP

ﬂ erased file ;. CAMgiac Tutarials\DF LTMPTLIDMAYT JCP

ﬂ erased T'Ie CIru1t:||acITuturlaISIDF'LITMF'ITUDNAW CHL -
h|

e ' ||—\.|—\.|I|-|-|.u—\.|-|-|n—\.|—\.| PR

ik | Eancel |

Figure 45. Sub-process dialog indicating status of the deploy process

4. Select OK to close the dialog.

The adapter now resides on the OS/390 server and is ready to be tested. See

Chapter 6, “Validating the adapters” on page 231 for instructions on how to test the
adapter.

Check to see that the adapter compiled in CICS

After you have deployed the adapter to the OS/390 server, you need to make sure
that it compiled with no errors. Consult with your CICS systems administrator for
assistance with this procedure.

Defining the adapter resources to CICS

If you do not have access to CICS at your site, you will need to ask your CICS
administrator to perform the necessary CEDA and CEMT functions. You will need
to provide the CICS administrator with the following information as it relates to
the adapter that you deployed:

* Program names
* Group name
* Transaction Identifiers

For the DPL adapter, the following values apply:

Table 19. Values for the Define Transactions screen

Program Group Transid
TUNAV1 MIACUSER TUDN
TUDPL1 MIACUSER TUD1

A CICS administrator needs to define the adapter resources to CICS each time a
new adapter is deployed. CICS needs to know which resources to use, what their
properties are and how they interact with other resources.

62 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a DPL interface

To define resources to CICS, the CICS administrator must:
* Run the CEDA transaction to define programs and any files to CICS.
* Submit JCL to run the Properties File Update job.

This is necessary only if you did not automatically submit JCL using the
builder’s generator facility.

If you were not allowed to submit JCL automatically, you can manually submit
JCL (DFHMAMPU) to run the Properties File Update job (DFHMAMUP). See
the MQSI Agent for CICS Run Time User’s Guide for information on the
Properties file update JCL (DFHMAMPU).

The CICS administrator must NEWCOPY any server adapter programs that were
modified.

For an example of defining CICS resources to CICS, See l/Example procedure fod

”

Chapter 3. Build an adapter that supports a DPL interface 63

64 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Chapter 4. Build an adapter that supports an MQ interface
Before you begin this tutorial, read IChapter 2, “Tutorial overview” on page d. The

Tutorial Overview section contains important information on the business
transaction to be modeled, as well as information on the tutorial’s file structure.
The Tutorial Overview also lists the assumed environment requirements that must
be adhered to in order to build and deploy the adapter.

G

From this tutorial, you will learn how to use the MQSI Agent for CICS Adapter Builder
tool to model and generate code for an adapter that supports an MQ interface.

You will model an adapter that has the functionality to access an existing CICS program

via an MQ Interface. See ‘/Ahout the adapter that you will design” an page 6dfor a

description of the adapter that you will model.

If you have not had any exposure to the Adapter Builder component of the
MQSeries Integrator Agent for CICS Transaction Server product, you should read
the MQSeries Integrator Agent for CICS Transaction Server Using the Control Center.
This book contains information on the concepts of the MQSeries Integrator Agent
for CICS Adapter Builder.

This tutorial consists of:

After completing this tutorial you should be able to:

* Identify required Host based information you need to gather and use.
* Import COBOL copybooks into a workspace and create message sets.
* Create workspaces to define adapter flow logic.

* Create and generate a COBOL adapter.

* Deploy and test the generated COBOL adapter.

Before you begin this tutorial you should read Chapter 2 “Tutorial overview” od

. The Tutorial overview provides important information on the tutorial files,
the tutorial directory structure and how to avoid naming conflicts when you create
message sets and messages.

Designing an adapter

”

As was discussed in ERequirements analysis and design considerations” on page 1,
before you start to use the MQSI Agent for CICS Adapter Builder, you would
spend some time analyzing the business need that the adapter will address and
then spend some time considering how you will design the adapter.

© Copyright IBM Corp. 2001 65

Build an adapter that supports an MQ interface

When you finish with requirements analysis and design considerations, you should
have a sound understanding of how your adapter will behave at run time in order
to manage and fulfill a business transaction.

To help you gain a frame of reference for what you will create in this tutorial, you
should understand the following:

¢ The business need to be addressed
¢ The messages in and out structure
* The CICS resources required

Addressing a business need

An adapter should address a particular business need. In this tutorial, the business
need is to provide a controlling application with an interface to a back-end
environment for the purpose of accessing an existing CICS application (named
DFHMABP6) that performs a customer inquiry.

In this tutorial you will be accessing the same back-end environment that was
installed and used by the run time installation verification procedure (IVP). For
information on the programs used by the IVP, see the chapter on performing post
installation tasks in the MQSI Agent for CICS Run Time User’s Guide.

Note: For the purpose of this tutorial, the back-end environment that you will be
accessing is the same back-end environment that was installed and used by
the run time installation verification procedure (IVP). For information on the
programs used by the IVP (including DFHMABPS6), see the chapter on
performing post installation tasks in the MQSI Agent for CICS Run Time
User’s Guide.

About the adapter that you will design

The adapters that you build using the MQSI Agent for CICS Adapter Builder are
visual models of business transactions. They are intended to map out the activities
that comprise the entire business transaction, from invocation to completion.

The adapter that you build contains the instructions, logic and code that enable it
to run on an OS/390 server, this includes an interface methodology for accessing
information on back-end systems. In this tutorial the business transaction on which
you will base your adapter is a customer inquiry request and the interface method
used is an MQ interface.

Your adapter design will include instructions on accessing a back-end application
to retrieve customer information and will include instructions on where to put the
information so that it can be returned to the controlling application.

In this tutorial you will learn how to design and build an adapter that when
deployed will perform the following functions:

1. Accept the structure TU_M_RAW from the Simulator. TU_M_RAW is the input
record description from the controlling application.

2. Map individual fields from TU_M_RAW to the expected and required back-end
program commarea format.

3. After completion of the MQ Put function, map response message from MQ Get
program.

4. Determine success - map output message (OUT_OK or OUT_ERR) to be
returned to the Simulator and exit.

66 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Identify the components of the run time environment
Before building the adapter we need to:

¢ Define the CICS transaction IDs for the adapter programs that are generated.

Note: As with any CICS application, the program names, transaction IDs, and
CICS region must adhere to your local site standards and your local sites

naming conventions.

Table 20. MQ Adapter programs

Build an adapter that supports an MQ interface

Program type Program name Transaction ID
Navigator TUMNAV1 TUMN
MQ Adapter — Put TUMQO1P TUMP
MQAdapter — Get TUMQO1G TUMG

* Determine the program that is invoked, as mentioned previously this is the

existing CICS application named DFHMABP6. The request and response

messages utilized are TU_M_BE_C_IN and TU_M_BE_C_OUT respectively.

* Determine the CICS region where the adapter programs will execute.

* Determine the MQ request and reply queues utilized for access to the back-end

system.

After some analysis, we determine that a

will involve the sequence documented in
generated MQ Adapter programs, TUMNAV1, TUMQO1P and TUMQO1G execute

Eigure 44

dapter execution on the host environment
. In this host environment, the

in CICS region QAS1. DFHMABP6 acts as the back-end program. In this scenario it
executes in the same CICS region (QASI).

Trigger
Monitor
4 Application

CICS Region QAST
J Maseries Queue Monoger‘
2 Trigger message
start—p TUMQOTP | pur=
—l Retrieve
Request M
queue 4 Initiation queue
) 3
7 MQSeries
Synch | Response start
TUMNAV1 point | Manager
start
6
DFHMABP6
8 Reply
Message
— % 1umMQo1G ‘—\M
Reply fo
queue
MQSeries
Dispatch
Manager

Figure 46. Tutorial run time environment for MQ adapter (DFHMABPS6).

Chapter 4. Build an adapter that supports an MQ interface

67

Build an adapter that supports an MQ interface

1.

9.

A customer inquiry business request invokes TUMNAV1, which in turn invokes
the Put program (TUMQO1P) to put the request message in the Request Queue
on the host.

Note: The request queue’s characteristics (that is, whether it is a
first-in-first-out queue, and so on) and its message priority scheme are
controlled by the configuration of the MQSeries licensed software.

The MQSeries Queue Manager generates a trigger event, causing a trigger
message to be placed on the initiation queue associated with the Request
Queue. The trigger message contains information from the associated MQSeries
process definition object.

The trigger monitor application retrieves the trigger message from the initiation
queue.
The trigger monitor application starts the MQSeries Response Manager.

Note: It is also possible to start the MQSeries Response Manager as a long
running process instead of having it started by a trigger, but this may
result in slower performance.

The MQSeries Response Manager opens the Request Queue and retrieves the
message.

The MQSeries Response Manager starts the DFHMABP6 program, passing to it
the User Data from the message.

After successfully starting the DFHMABP6 program, the MQSeries Response
Manager issues a sync point, enabling the message to be deleted from the
request queue.

DFHMABP6 Puts to the reply queue, invoking the Get adapter program
(TUMQO1G) that gets the message from the reply queue.

TUMNAV1 sends the reply back.

When completed, the flow of components that make up your model will look like
the following:

I]ata+cuntext Qutput terminal
In out MEI
oo o
TU M _CUST CTX QUT OK

Input terminal command e & M 4 -

l Map 1 l Map 2 l /f //ﬂ‘ = Mﬁgutput tErminaI
PH Map b 5
—— B ulhal B =" e B out = In
@ Ot In Dnm In \J B\\ r{___,>
TU_M_RAY TU M DCUST TU_M_RTN_OK™.m~" OUT_ERR
Map &

Figure 47. Components that make up the MQ adapter you will build

68 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports an MQ interface

To better understand the role that each component plays in your model of the

business transaction, see

Use this table in conjunction with Figure 47 on page 64

Table 21. Component roles in the adapter that supports an MQ interface

data types that are input
to a microflow.

The term primitive
indicates that inputs and
outputs are visible to the
user but their internals
are not visible.

TU_M_RAW contains
the record description
from the controlling
application.

Component | Name Definition Role / implementation
Input TU_M_RAW A primitive component | The purpose of this component
Terminal that is used to represent |within the context of modeling

the transaction is to provide an
entry point for the controlling
application to the Navigator

To implement this data
transformation in your model,
you will connect TU_M_RAW
to the command node
TU_M_DCUST by way of a
control connection. A control
connection provides the
sequence relationship between
two nodes in a microflow.

On the Map node that sits on
the control connection wire
between TU_M_RAW and
TU_M_DCUST, you will
program the data
transformation — in this case
this means you will move the
Customer Number provided
by the Controlling application
and specify the desired action
to be performed by the
existing CICS application
DFHMABP6.

By hard coding an I in the
CUST_ACTION field, you are
directing the CICS application
DFHMABP6 to perform an
inquiry on the customer record
that correlates to the customer
number.

Chapter 4. Build an adapter that supports an MQ interface 69

Build an adapter that supports an MQ interface

Table 21. Component roles in the adapter that supports an MQ interface (continued)

Component

Name

Definition

Role / implementation

Command

TU_M_DCUST

A simple component that
is used to represent
application APIs that
you import into the
builder.

The term simple indicates
the component does not
consist of other
components.

The purpose within the context
of modeling the transaction is
to create an MQ Command
type, which will allow the
microflow to initiate the
execution of the server-side
DFHMABP6 program.

The adapter will generate 2
COBOL programs (a GET and
a PUT) for every MQ
command node. The programs
that are generated are the
vehicle that allows the
Navigator to interact with the
existing CICS application
DFHMABP6.

On the map node that sits on
the control connection wire
between TU_M_DCUST and
TU_M_RTN_OK, you will
provide code that moves the
output data (via a data control
connection) provided by
DFHMABP6 to a data context
node named
TU_M_CUST_CTX. The data
context node holds data for
future use.

You will also provide
instructions on the map node
that moves the DFHMABP6
return code information to the
decision node named
TU_M_RTN_OK. Based on the
return code provided, the
decision node makes
determination on the success
or failure of the existing CICS
application DFHMABP6.

70 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports an MQ interface

Table 21. Component roles in the adapter that supports an MQ interface (continued)

Component | Name Definition Role / implementation
Decision TU_M_RTN_OK | A composed component |In your model of the business
that is used to test a transaction, the Decision node
condition for true or will be used to evaluate the
false, to resolve the message indicator (Good,
control flow path. Warning or Error) upon return
from the existing CICS
The term composed application DFHMABP6.
indicates the component
consist of other The Decision node will test the
components that are return code information that it
connected by control receives from DFHMABP6.
flow connectors. Based on the results of the test,

the flow of the transaction will
proceed in one of 4 ways
(good, warning, error or

default (unknown)) as
indicated in

On the 3 map nodes that sit on
the control connection wires
between TU_M_RTN_OK and
the OUT_ERR output terminal
node, you will provide
instructions that move the
appropriate error information
(depending on the error). This
error information will be
returned to the controlling
application via the Output
terminal.

On the map node that sits on
the control connection wire
between the TU_M_RTN_OK
decision node and the
OUT_OK output terminal
node, you will provide the
instructions that move the
customer demographic
information (stored in
TU_M_CUST_TRX data
context node) along with the
successful response
information. This information
will be returned to the
controlling application via the
Output terminal.

Chapter 4. Build an adapter that supports an MQ interface 71

Build an adapter that supports an MQ interface

Table 21. Component roles in the adapter that supports an MQ interface (continued)

Component | Name Definition Role / implementation
Data TU_M_CUST_TRX| A simple component that | You will need to create a Data
Context is used to store data for |Context type to store customer
later access via a data information.
connection.

In the model, this Data
Context Node is used to store
the contents of the customer
demographic information
fields populated by the CICS
application DFHMABP6. This
data will then be provided to
the controlling application or
discarded once the Navigator
determines the success or
failure of the MQ Adapters.

Output OUT_OK A primitive component | The purpose of this component
that is used to represent |within the context of modeling
data types that are the business transaction is to

output from a microflow. | provide an exit point for the
controlling application from
the Navigator.

Output OUT_ERR
In this model, the controlling

application has been designed
to receive 2 different types of
reply messages. A successful
reply and an error reply.

Accessing the MQ tutorial files

The files you will need in order to build and deploy an adapter that supports an
MQ interface are located in two directories as follows:

¢ C:\<mgiac_tutorials>\mq
* C:\<mgiac_base>\cics

In the C:\<mgqiac_tutorials>mq directory you will find the following files:

Table 22. Files to be used in the MQ tutorial

File name Description Use

TU_M_RDS.cbl COBOL record Used as import for messages.
description. Contains message structures.

TC_MQ_WS.zip Completed workspace for | A completed workspace that you
the MQ adapter. import and use as the basis for the

workspace used to create the MQ
adapter. See

”

for information on using the
contents of this file

.cpy Generated copybooks The generated copybooks for the
MQ adapter

72 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports an MQ interface
In the C:\<mgqiac_base>\cics directory you will find the following files:

Table 23. Files in the C:\<mgiac_base>\cics directory

File name Description Use
tu_m_mql.ispec Interaction specification Assigns MQ command type,
file (tutorial version) COBOL generated program name,
and CICS TransID.
tu_m_mql.rsc Connector resource file Specifies the MQ message
(tutorial version) maximum length, MQ message

type, Queue Manager name, MQ
Request Queue name, MQ Reply
Queue name and wait interval.

tu_m_navl.rsc Connector resource file Specifies synchronous rollback,
(tutorial version) Navigator type, COBOL program
name for the MQ adapter and the
CICS TransID.

Note: There is also a version of the Specification files prefixed with tc_m_ that are used for
the completed workspace supplied in the TC_MQ_WS.zip file.

Configuring the Specification files for an MQ interface

G

In this section you will learn how to configure the physical properties of MQ adapter.
These properties represent the XML definitions that are sent to the Properties file on the
host at deployment time.

For information on the Properties file, see the MQSI Agent for CICS run time
documentation.

Specification files are XML-format files that provide specific values to certain
components created in MQSI Agent for CICS. An Interaction Specification file
provides unique values for the component to which it is assigned. A Connector
Resource file provides more general values for the component.

Some of the information in the Interaction Specification file and Connector
Resource file maps to a run time properties file, DFHMAMPE. Other information in
the Interaction Specification file is incorporated in generated Command and
Navigator programs. The DFHMAMPF file stores data that is needed to run the
generated adapter code programs on the host.

The MQ adapter requires specification files for its Command type and its

Microflow type. The specification files are located in the <mgiac_base>/cics
directory.

Chapter 4. Build an adapter that supports an MQ interface 73

Build an adapter that supports an MQ interface

c:\ program files
\Ibm mqseries integrator agent for cics

\cics

————\Tc_m_mq1.ispec (Specification files)
—\Tc_m_mq1.rsc

———\Tc_m_nav1.rsc
—\Tu_m_mq1.ispec

\Tu_m_mq1.rsc

—\Tu_m_nav1.rsc

Figure 48. Directory structure for locating specification files for the MQ interface

You must configure the settings in the specification files used for the tutorial. The
MQ Command type uses a Connector Resource file and an Interaction Specification
file. In the Connector Resource file (tu_m_mql.rsc), you need to define the
tu_m_navl.rsc file.

The Interaction Specification file for the MQ Command type used in the tutorial is
tu_m_mql.ispec.

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE AttributeGroup SYSTEM "mgsi.dtd">
<AttributeGroup xmi.label="Interaction Specification">
<Attribute xmi.label="MAT_CMDTYPE" type="MAT DPL MAT_MQ MAT_FEPI" xmi.uuid=""
valueMandatory="true" value="MAT_MQ" encoded="false"/>
<Attribute xmi.label="MAT_PROGID" type="" xmi.uuid="" valueMandatory="false"
value="TUMQO1" encoded="false"/>
<Attribute xmi.label="MAT_TRANID" type="" xmi.uuid="" valueMandatory="false"
value="TUM" encoded="false"/>
</AttributeGroup>

Table 24. Keyword values used for MQ Interaction Specification file

Keyword Symbolic Description / Use Example Value
MAT_CMDTYPE Identifies the type of command MAT_MQ
MAT_PROGID The name of the COBOL program TUMQO1

generated for the MQ command.
MAT_TRANID The CICS TransID for the server TUM
command program generated on the
server. TUM (generated as
TUMP and TUMG)

Note: Two sets of programs (Put and Get) and TransIDs are generated for the MQ
interface adapter. For MQ type commands, TransIDs are truncated to the first three
characters and a "P” or "G” is appended for the transaction id of the generated Put and Get
programs, respectively. For MQ type Commands, Program IDs are truncated to the first
seven characters and a "P" or "G" will be appended for the Program ID of the generated
Put and Get programs, respectively.

There are instances where only a Put program is generated, for example, when no reply is
required. This scenario is controlled by the MAT_MQMSGTYPE field in the Resource
Connection file. A value of 8 in MAT_MQMSGTYPE field indicates that the message does
not require a reply.

The Resource Connection file for the MQ Microflow type used in the tutorial is
tu_m mqgl.rsc.

74 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports an MQ interface

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE AttributeGroup SYSTEM "mgsi.dtd">
<AttributeGroup xmi.label="Connector Resource">

<Attribute xmi.label="MAT_REQUEST_QNAME" type="" xmi.uuid="" valueMandatory="false"
value="QAS1.SAMP.CMAY.REQUEST.QUEUE" encoded="false"/>

<Attribute xmi.label="MAT_REPLY_QNAME" type="" xmi.uuid="" valueMandatory="false"
value="QAS1.SAMP.CMAY.REPLY.QUEUE" encoded="false"/>

<Attribute xmi.label="MAT_REPLY_QMGR" type="" xmi.uuid="" valueMandatory="false"
value="""" encoded="false"/>

<Attribute xmi.label="MAT_MAXOUTMSGLEN" type="" xmi.uuid="" valueMandatory="false"
value="401" encoded="false"/>

<Attribute xmi.label="MAT_WAIT_INTERVAL" type="" xmi.uuid="" valueMandatory="false"
value=""030"" encoded="false"/>

<Attribute xmi.label="MAT_MQMSGTYPE" type="" xmi.uuid="" valueMandatory="false"
value=""1"" encoded="false"/>

</AttributeGroup>

Table 25. Keyword values used for MQ Microflow Connector Resource file

Keyword Symbolic

Description / Use Example Value

MAT_REQUEST_QNAME

The request queue definition identifies the | QAS1.SAMP.CMAY.REQUEST.QUEUE
queue on which the server adapter will put
the request message for an MQ back-end
transaction.

MAT_REPLY_QNAME

The reply to queue definition identifies the |QAS1.SAMP.CMAY.REPLY.QUEUE
queue from which the server adapter will
get a reply message from the back-end
transaction.

MAT_REPLY_QMGR

This is the name of the queue manager to | Blank value indicates the use of the
which the MQSI Agent for CICS run time default Queue Manager.
should send reply messages.

MAT_MAXOUTMSGLEN

Specifies the maximum length of the MQ 401
message placed on MAT_REPLY_QNAME.

MAT_WAIT_INTERVAL

This is a 3 byte field that indicates the 030
approximate time, expressed in seconds,
that the MQGET call waits for a suitable
message to arrive.

MAT_MQMSGTYPE

Indicates the MQ message type of the 1 (Put followed by a waited Get)
defined request. The value is placed in the
MQMD Message Descriptor structure field
MsgType on the MQPUT1 call.

S—

You just..

P

You have just completed the steps necessary to configure the Properties file. You are
ready to create the adapter that supports an MQ interface.

Now that you have configured the specification files,

Chapter 4. Build an adapter that supports an MQ interface 75

Build an adapter that supports an MQ interface

Creating an adapter that supports an MQ interface

G

In this section you will learn how to use the adapter builder to create the model of the
business transaction.

Specifically, you will learn how to import the necessary COBOL record descriptions and
system interfaces for the MQ adapter. These are stored in the logical message model in
the Adapter Builder for use in the microflow.

Follow these instructions to begin the process of building an adapter that supports
an MQ interface:
__ Step 1. Start the builder and create a new workspace.

To start the builder, go to the Start > Programs > IBM MQSI Agent
for CICS >IBM MQSI Agent for CICS. This will launch the tool as
shown below, in

You should begin the tutorial with a new workspace. A workspace is a
view of what you can work with at one time. A workspace is displayed
as the graphical space in the builder where you will build the adapter
to support the MQ interface.

From the File pull-down menu, select New Workspace.

Ei MOS1 Agent for CICS Adapter Builder - untitled H=] E3
File Edit %iew WMessage Sets Help i

S

Message Sets l Adapters l

M| [Me. | O w Properies O
| Message Sets

gl |

| | o

Figure 49. Initial panel of the MQSI Agent for CICS Adapter Builder

__Step 2. Name your tutorial workspace and save it to the repository.

76 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

__ Step 3.

Build an adapter that supports an MQ interface

You should begin the tutorial with a new workspace. Select File > New
Workspace. From the File pull-down menu, select Save Workspace.
Enter a name for the workspace, such as TU_MQ_WS, and click Save.
Note: Be sure to use under_scores and not dashes "-"
workspace.

when naming the

Import a message set.

A message set is a collection of structured XML-based data types that
are stored in the message repository.

When you import a message set, what you are really doing is bringing
in the COBOL structured data type definitions from existing CICS
transactions on the host system, into the Adapter Builder’s control
center. The imported data type definitions contain the record
descriptions of the messages. The control center utilizes the message set
as an interface between the adapter builder tool and the business
transaction to be modelled.

Note: You cannot import the COBOL structured data type definitions
directly from CICS. You must first FTP the structured data type
definitions from the host to a workstation. You can then import
the message set from the workstation.

After importing a message, you can modify and store it.

Note: It is much easier to import a COBOL structured data type
definition than it is to build the message set. If there is no record
description, create one with a text editor and import it.

a. Right click on the Message Sets folder, select Import to New
Message Set > COBOL. .
On the COBOL Language Message Importer dialog (Source
Information Panel), enter the Message Set Name (in the tutorial,
TU_M_MESSAGE_SET) and the directory path where the Source
Files for the copybooks are located (<mgiac_tutorials>\mq).

Chapter 4. Build an adapter that supports an MQ interface 77

Build an adapter that supports an MQ interface

Ei Cobol Language Message Importer

Saource Information Fanel

Please select the COBOL source file.

Message Set Mame ITLJ_M_MESSAGE_SET

Source File e mgiaciTutorial siM@ttu_m_rds.chl . Browse

[Create Copybook Compound Type Qnly

et == Cancel | Help |

Figure 50. Import a message set (source information)

For the purposes of this tutorial, leave the Create Copybook
Compound Type Only box unchecked. This box is an option that
controls how copybooks can be imported.

Click Next to go to the Group Level Panel.

The radio button selections are as follows:

Request
Use if the message is going to be used as an input message
in a transaction.

Response
Use if the message is going to be used as an output
message in a transaction.

Undefined
Can be used for messages that are not used in a transaction.

b. On the COBOL Language Message Importer dialog (Group Level
Panel), select the message to import (for the tutorial, select
TU_M_RAW) and select the Undefined message type radio button.
Click Finish to complete the import.

78 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports an MQ interface

ﬂi Cobol Language Meszage Importer E

—Group Level Panel

Please selectthe COBOL Group Level to itmpor.

T M_OUT Ok ™ Reguest
TU M_OUT_ERR
TU_M_CUST REC Response

TU_M_BE_C_IN

TL_M_BE_C_0OUT & Lndefined

Or, specify a non-Level 01 Group

Wiew COBOL File

== Back st == Finish Cancel | Help |

Figure 51. COBOL Language Message Importer — group level panel

c. Right click on the newly created TU_M_MESSAGE_SET folder and
select Import to Message Set > COBOL. On the COBOL Language
Message Importer dialog (Source Information Panel), enter the
directory path where the Source Files for the copybooks are located

(see [Eigure 50 on page 78). Click Next.

d. On the COBOL Language Message Importer dialog (Group Level
Panel), select the message to import (for the tutorial, select
TU_M_DEC) and select the Undefined message type radio button.

Chapter 4. Build an adapter that supports an MQ interface 79

Build an adapter that supports an MQ interface

ﬁi Cobol Language Meszage Importer

—Group Level Panel

Flease selectthe COBOL Group Level to impaort.

TLI_h_R20 |

TL_M_OUT_OK
TU_M_OUT_ERR
TU_M_CLUST_REC
TU_M_BE_C_IM
TU_M_BE_C_0OUT

0r, specify a non-Level 01 Group

" Reguest

" Response

Wiewy COBOL File

== Back

[Hext== Finizh

Cancel | Help |

Figure 52. Import a message set (group level)

e. Click Finish to complete the import.

f. Click Next to go back to the Group level panel. Repeat the import
procedure until the remaining messages (with the specified message
types) are imported:

Table 26. Messages to add to the workspace

Message Message Type Purpose
TU_M_RAW Undefined Input message used by the
navigator to receive
information from the
controlling application.
TU_M_DEC Undefined Decision node message

used by the navigator to
determine how to flow
logically within the flow.
This message provides a
series of fields, the context
of which are evaluated by
the Navigator to control
logical flow.

80 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports an MQ interface

Table 26. Messages to add to the workspace (continued)

Message

Message Type

Purpose

TU_M_OUT_OK

Undefined

The output message used
by the Navigator to
provide customer
demographic information
to the controlling
application in the event
that the customer inquiry
request was executed
successfully.

TU_M_OUT_ERR

Undefined

Error output message
used by the Navigator to
provide error information
to the controlling
application in the event
that the customer inquiry
request was not executed
successfully, due to the
fact that the customer
inquiry failed.

TU_M_CUST_REC

Undefined

Customer record layout
utilized by the navigator
to store customer
demographic information
supplied by the existing
CICS application
DFHMABPé6.

TU_M_BE_C_IN

Request

Commarea Input message
used to supply the
existing CICS application
DFHMABP6 with the
information that it
requires to execute

properly.

TU_M_BE_C_OUT

Response

Commarea output
message used to receive
customer demographic
information as provided
by the existing CICS
application DFHMABP6.

g. When you have completed importing the COBOL structured data

type definitions listed in [lahle 26 an page 80, click Cancel to return

to the workspace.

o=

You just..

P

Chapter 4. Build an adapter that supports an MQ interface ~ 81

Build an adapter that supports an MQ interface

You just completed importing the COBOL structured data type definitions needed to
model the MQ adapter. These data type definitions now reside as messages in the
Control Center of the Adapter Builder.

__ Step 4.

= =
[‘i Create a new Transaction | x|

Create Transactions.

A transaction represents the message and data flowing to and from the
back-end MQ program to be accessed by the adapter. In order to create
an MQ command node, you need to associate the command node with
a transaction. The messages associated with the transaction are defined
as Input and Output representing the expected format of the input
message (and identified as input terminal in the node) and the
expected format of the output message (and identified as the output
terminal in the node).

a. Create a transaction for the customer information. Right click on the
Transaction folder. Select Create > Transaction. On the Create a new
Transaction dialog, enter TU_M_TRX in the Name field and
TU_M_TRX_ID in the Identifier field. Click Finish.

Hame: [TU_M_TR3

Transaction | Adapters | C Language | COBOL Languagel Javal Hismrfl Description

ldentifier

Suzpended from Lise [;|

U_M_TR¥_ID

Finish I Cancel Help

Figure 53. Create a TU_M_TRX transaction

b. Add messages to the TU_M_TRX transaction. Right click on the
TU_M_TRX transaction and select Add > Message. Messages allow
for input and output from the transaction. On the Add an Existing
Message dialog, select the TU_M_BE_C_IN and TU_M_BE_C_OUT
messages (press the CTRL key and highlight both messages) and
click Finish

82 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports an MQ interface

[1 MAS5I1 Agent for CICS Adapter Builder - TU_MO_W5 xml

File Edit ¥iew Messaoe Sets Help

DS E B

o’

Message Sets IAdapterS |

Ma | | Messages. | O | » | | Propetties | =l
_EI has_l_sjg; SljltESSSP\C hi Add an existing Message _
- Categaries
- Ed| Elament Qu
- | Elements
= LU = TU_M_BE C_IN (TU_M_BE_C_IN)

IZ—ZI----'_| Messages

Bl TU_M BE C_OUT (TU_M_BE_C_0U
Bl TU_M_CUST_REC (TU_M_CUST, _REC)
B TU_M_DEC TU_M_DEC)

Bl TU_M_OUT_ERR (TU_M_QOUT_ERR)
Bl TU_M_OUT_OK (TU_M_OUT_0K)

Bl TU_M_RAW (TLM_RA

IZ—II_| Transactlun

& ’WI Cancel Help |
_| Types
-] Elarment val 1) i
4] | =

Figure 54. Add messages to the TU_M_TRX transaction

At this point, after adding messages to transactions the Message
Sets view will appear as shown in w Save your workspace
by selecting File > Save Workspace from the menubar.

EA MQSI Agent for CICS Adapter Builder - TU_MO_WS5_xml - [O] x]
s} =,
DS W e
Message Sets IAdapterS |
bd | | Message .. | O w | | Properties | =
| Message Sets TU_M_TRX | Adapters| ¢ Language | cOBOL Language | Java| History | Description |
=Bl TU_M_MESSAGE_SETE | 130 irer TU_M_TRA_ID
s Categories -
|E3| Element Qualifiers Suspended fram Use o |
Elements
= Element Lengths
| essages
- B TU_M_RAW
=-E9 Transactions
B TU_M_BE_C_oUT
=B TU_M_BE_C_IN
...... 1 Types
------ A Element Valid Values
Al | » Apply
Y| | -

Figure 55. Messages Sets view

Chapter 4. Build an adapter that supports an MQ interface 83

Build an adapter that supports an MQ interface

E—

You just..

PN

You just created the MQ transaction and associated the input and output messages to
the transaction.

You are now ready to create the component types. In this next step, you will associate
the command component type with the transaction that you just created.

__ Step 5. Create the component types for use in the microflow

A component type represents a template that can be used as a building
block in modeling the microflow.

When you complete the tasks in this step, you will have all the
necessary component types required to model the adapter’s
functionality. The component types will display in the Adapter Tree
View. From the Adapter Tree view you will be able to drag a
component type onto the Microflow Definition pane and begin the
process of constructing the flow.

This step is made of the following tasks:
* Create a Decision Type

* Create a Command Type

* Create a Data Context Type

* Create a Microflow Type

See the section Composing microflows in the MQSI Agent for CICS
Using the Control Center documentation for descriptions of the
component types.

a. Create a Decision Type.

A decision type is necessary to test a condition for true or false, to
resolve the control flow path.

You will use this type to create a Decision node for the microflow.
The Decision node will be used to evaluate the message indicator
(Good, Warning or Error) upon return from the program,
DFHMABPS6, and it will decide how processing will continue.

Click on the Adapters tab to switch to the Adapters view.

1) Create the TU_M_RTN_OK Decision type that will be used to
determine whether the data returned from the back-end host is
valid. Right click on the Decision Types folder and select Create
> Decision Type. Enter TU_M_RTN_OK in the Name field and
click Finish.

2) Associate a message set and message with the In Terminal on
the TU_M_RTN_OK Decision type. Right click on the
TU_M_RTN_OK Decision type under the Decision Types folder
and select Decision Branch. Make sure the In Terminal tab is
selected. Using the drop down menus, select
TU_M_MESSAGE_SET for the Message Sets field and
TU_M_DEC for the Messages field. Click OK.

84 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports an MQ interface

ﬂi Edit TU_M_RTH_OK Decision Branches

In Terrminal | Qut Terminal |

Mew narme |[REEEE]

Message Set [TU_M_MESSAGE_SET =l

Message |TU_M_DEC =l
Fropeties

Cancel Help

Figure 56. Editing the In Terminal on the Decision type

3) Create Out Terminals for the Good, Warning, and Error
decisions. The TU_M_RTN_OK Decision type will determine
which of these actions to take based on the MSG_IND_D field
in the decision message (TU_M_DEC).

a) Right click on the TU_M_RTN_OK Decision type under the
Decision Types folder and select Decision Branch. Make
sure the Out Terminal tab is selected. Click Out Terminal in
the terminal list box and click Rename. Enter Good in the
New name field and click Finish.

b) Enter Warning in the Name field and click Add.
c) Enter Error in the Name field and click Add. Click OK.

Chapter 4. Build an adapter that supports an MQ interface 85

Build an adapter that supports an MQ interface

ﬁi Edit TU_M_RTH_OK Decizion Branches
In Terminal Qut Terminal |
Marme Aol
Good
YWarning
Errar FEename...
fefault
[elete
= | =1 | Properties
] Cancel Help

Figure 57. Editing the Out Terminal on the Decision type

4) Right click on the TU_M_RTN_OK Decision type and select

Properties on the pop up menu. Make sure the
ConditionExpression tab is selected and the Good tab is
selected. Click in the Good test condition input area and press
CTRL-SHIFT to display a list of available message fields (these
fields are from the TU_M_DEC message that we associated with
the TU_M_RTN_OK Decision type). Select the MSG_IND_D
field to add this to the ConditionExpression area.

You should add the code shown in Eigure 58 an page 87 for the

Good terminal test condition. The letter ‘G’ for the MSG_IND_D
field is based on the message indicator action codes that are
defined for the decision message (TU_M_DEC). This screen
capture shows code entered in the Good Condition Expression
tab for the TU_M_RTN_OK Decision type.

86 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports an MQ interface

E§ TU_M_RTN_OK []

ConditionExpression | Descriptinnl

Good | warning | Error|
MSG_IND D = 'G'

Ok I Cancel Apply | Help |

Figure 58. Code for the Good Terminal

5) In a similar manner, add the test condition code for the
remaining terminals: Warning and Error. When finished, click

OK.
Table 27. Code for the Out Terminal actions for the TU_M_RTN_OK Decision type
Terminal Code Description
Good MSG_IND_D = "G’ G - Good - request processed
Warning MSG_IND_D ="A’ A - Application warning (e.g. ‘Record Not Found’)
Error MSG_IND_D = "E’ E - System error (e.g. ‘File Closed”)

b. Create an MQ Command Type.

A command type is a simple adapter component which, depending
on how its properties are set, can be used to represent a server

adapter program (DPL, MQ) or FEPI command (3270 screen
interaction).

In this step, you will need to create an MQ Command type that

will allow the microflow to perform the 'PUT’ that will trigger the
server-side DFHMABP6 program.

1) Create the TU_M_DCUST Command type for the DPL
Command.

Chapter 4. Build an adapter that supports an MQ interface ~ 87

Build an adapter that supports an MQ interface

a) Right click on the Command Types folder and select Create
> Command Type. Enter TU_M_DCUST in the Name field.

b) Using the drop down menus, set the following field
property values:

Table 28. DCUST Command property values

Field Value
Message Set TU_M_MESSAGE_SET
Transaction TU_M_TRX_ID
Connector Resource tu_m_mql.rsc
Interaction Specification tu_m_mql.ispec

ﬂi Create a new Command Type <]
T

Hame: [TU_M_DCUST

Cornmand Type | CnnnectnrResnurcel Interaction Specification | Description

Message Set |TU_M_MESSAGE_SET [
Transaction |TU_m_TR¥_ID =
Connector Resource |t|_|_m_mq1 s _'|
Interaction Specification tu_m_mgl.ispec

In Terminal ITU_W_BE_C_IM

Cut Terminal ITU_hi_BE_C:_ouT

Finish I Cancel Help

Figure 59. Creating a TU_M_DCUST Command type

Click Finish to apply the property values.
C. Create a Data Context Type.

A data context type is a simple adapter component that is used to
store data for later access through a data flow.

In this step, you will need to create a Data Context type to store
customer information. This data can be accessed later from a
connector data flow.

1) Create the TU_M_CUST_CTX Data Context type.

a) Right click on the Data Context Types folder and select
Create > Data Context Type. Enter TU_M_CUST_CTX in the
Name field.

88 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports an MQ interface

b) Using the drop down menus, set the following field
property values:

Table 29. TU_M_CUST_CTX Data Context property values

Field Value
Scope Local
Message Sets TU_M_MESSAGE_SET
Messages TU_M_CUST_REC
Ei Create a new Data Context Type E4

Hame: [TU_h_CUST_CTH
Data Context Type | Descriptinnl

Scope [Cocal =
Message Set [TU_M_MESSAGE_SET [~
Message [Tu_m_cusT_REC =
In Terminal [TU_M_CUST_REC

Out Terminal [TU_M_CUST_REC

Finish I Cancel Help

Figure 60. Creating a TU_M_CUST_CTX Data Context type

Click Finish to apply the property values.
d. Create a microflow type

A microflow type is a collection of adapter components that models
all or part of the message processing. In your adapter, this is the
Navigator that calls the transaction and is responsible for
controlling adapter request processing and managing states during
the microflow processing.

A navigator invokes server adapter programs.

In this step you will create a microflow that will model the
processing of the customer data request.

1) Right click on the Microflow Types folder and select Create >
Microflow Type.

2) Enter TUMQO1 in the Name field.

Chapter 4. Build an adapter that supports an MQ interface ~ 89

Build an adapter that supports an MQ interface

3) Use the drop down menu in the Connector Resource field to
select tu_m_navl.rsc as the Connector Resource file and then
click Finish.

Ei Create a new Microflow Type X]

Name: [TUMG0

Microflow Type | Connector Resource | Description

Connector Resource tu_rm_nawl rsc

‘ Finish I Cancel Help

Figure 61. Creating a TUMQO1 Microflow Type

4) Save your workspace by selecting File > Save Workspace from

the menubar.

You just..

PN

You just created all of the component types that you will need to model your adapter.

__ Step 6. Model the adapter.

In this step you will perform a set of tasks to model the adapter. When
you model an adapter you are specifying how the adapter will function
at run time. Within the context of the business flow, the adapter model
is of the navigation of the server application with the back end
systems. The adapter represents the behavior you need to access data
from the existing back end applications.

Within the builder, the model of the adapter is represented as a
microflow, a sequence of nodes and connections. The microflow models
the processing of a message as it passes from the input of the adapter
to the output of the adapter.

90 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports an MQ interface

This step is made of the following tasks:

* Adding microflow nodes

* Connecting the microflow nodes

* Defining the mappings

a. Add the microflow nodes

step

In this task: éou will drag the component types that you created in

, onto the Microflow Definition pane. When you

drag a component type onto the Microflow Definition pane, it is
instantiated and referred to as a microflow node. A single component
type can be used to create one or more microflow nodes (instances)
as part of the same microflow.

1) Add the Input Terminal node

An Input Terminal serves as an entry point for the microflow.
The Input Terminal can make a connection to any terminal that
resides within the microflow.

a)

b)

c)

Drag the node on to the Microflow Definition pane.

In the Microflow Types folder, select the TUMQO01 microflow
you created.

Note: To model your adapter in the workspace (Microflow
Definition pane), you must make sure the microflow
is selected in the Microflow Types folder.

Drag an Input Terminal type from the Adapter Tree View to
the Microflow Definition pane

Left click and hold on the Input Terminal to drag it to the
Microflow Definition pane.

Rename the node

Right click on the Input Terminal and select Rename.
Rename the Input Terminal node to TU_M_RAW and click
Finish.

Set the properties for the node

Right click on the Input Terminal and select Properties.
From the drop down menus, select TU_M_MESSAGE_SET in
the Message Sets field and select TU_M_RAW in the
Messages field. Click OK.

Chapter 4. Build an adapter that supports an MQ interface 91

Build an adapter that supports an MQ interface

Bl TU_M_RAW
TU_M_RAWY | Deacriptinnl
Message Set [TU_M_MESSAGE_SET =

Messane

T |._.| _ r|.|1 _ F.' |'I;I'|I|.|I.I|.I

] Cancel Apply | Help |

Figure 62. Configuring the TU_M_RAW Input Terminal node properties

2) Add the Command node

a) Drag the node on to the Microflow Definition pane

From the Command Types folder in the Adapter Tree View,
select a TU_M_DCUST Command type.

Left click and hold on the TU_M_DCUST Command type to
drag it to the Microflow Definition pane. Place the node to
the right of the TU_M_RAW Input Terminal node.

b) Rename the node
Right click on the TU_M_DCUST1 Command node and

select Rename. Modify TU_M_DCUST1 in the New name
field to the name TU_M_DCUST and click Finish.

3) Add the Decision node

a) Drag the node on to the Microflow Definition pane

Drag a TU_M_RTN_OK Decision type from the Adapter
Tree View to the workspace. Place the node to the right of
the TU_M_DCUST Command node.

b) Rename the node
Right click on the TU_M_RTN_OK1 Decision node and

select Rename. Modify TU_M_RTN_OK1 in the New name
field to the name TU_M_RTN_OK and click Finish.

4) Add the Data context node

a) Drag the node on to the Microflow Definition pane

Drag a TU_M_CUST_CTX Data Context type from the
Adapter Tree View to the workspace. Place the node above
the TU_M_RTN_OK Decision node.

b) Rename the node
Right click on the TU_M_CUST_CTX1 Data Context node

and select Rename. Modify TU_M_CUST_CTX1 in the New
name field to the name TU_M_CUST_CTX and click Finish.

5) Add the Output terminal node

92 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports an MQ interface

An Output Terminal serves as an exit point for the microflow.
The Output Terminal can receive connections only. It can never
start a connection. A microflow can have multiple Output
Terminals (as in the MQ example). A developer must design the
controlling application to recognize the possible reply messages
provided by multiple Output Terminals.

a)

b)

c)

d)

Drag the node on to the Microflow Definition pane

Drag an Output Terminal type from the Adapter Tree View
to the workspace and place the node to the right of the
TU_M_CUST _CTX node

Rename the node

Rename the Output Terminal node to OUT_OK. Click Finish
Flip the node

Right click on the OUT_OK and select Flip node

Set the properties for the node

Right click on the OUT_OK node and select Properties.
From the drop down menus, select TU_M_MESSAGE_SET

in the Message Sets field and select TU_M_OUT_OK in the
Messages field. Click OK

E§ OUT_OK
CIUT_C'Kl Deacriptinnl
Message Set [TU_M_MESSAGE_SET =l
Message [TU_M_OUT_OK =

Cancel il | Help |

Figure 63. Configuring the OUT_OK Output Terminal properties

6) Add the Error Output terminal node

a)

b)

c)

d)

Drag the node on to the Microflow Definition pane

Drag an Output Terminal type from the Adapter Tree View
to the workspace and place the node to the right of the
TU_M_RTN_OK node.

Rename the node

Rename the Output Terminal node to OUT_ERR.
Flip the node

Right click on the OUT_ERR and select Flip node
Set the properties for the node

Chapter 4. Build an adapter that supports an MQ interface 93

Build an adapter that supports an MQ interface

Right click on the OUT_ERR Output Terminal and select
Properties. From the drop down menus, select
TU_M_MESSAGE_SET in the Message Sets field and select
TU_M_OUT_ERR in the Messages field. Click OK
7) Save your workspace by selecting File > Save Workspace from
the menubar.

Your Microflow Definition panel should look something like this:

[:i MA51 Agent for CICS Adapter Builder - TU_MO_W5_xml M=

File Edit ‘iew Microflow Definition Help _

Q) =3

9 e

Meszane Sets Adaptersl

t | ad. | O

M | TUMG01 | Micraflow Definition |

(3 Map

] .Ite ration Types D [=1 FD/JJ) (=Y D% D

L o

DD p

TU_M_CUST_CTX QUT_OK

@K Input Terminal TU b RAWY TU W DCUST TU_M_RTH_OkK OUT_ERR

.2 Cutput Termin: - T - -

4 =
[=l | _’|_I

i

Figure 64. Nodes for the DPL adapter

b. Connect the microflow nodes

In this task you will connect the microflow nodes that are on the
Microflow Definition pane. You will do this by creating connections.
A connection is a wire that connects an output terminal of one
microflow node to the input terminal of another. There are two
types of connections (control connection and data connection). For a
detailed description of the different types of connections, see the
section on composing microflows in the MQSeries Integrator Agent
for CICS Transaction Server Using the Control Center book.

1) Right click on the TU_M_RAW Input Terminal node and select
Connect > Out. Move the connection line to the
TU_M_DCUST Command node and left click. This adds a
control connection and a map (Map1 node) between the two
nodes.

A control connection provides a sequential relationship
between 2 nodes in a microflow.

94 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

r:i MA5!1 Agent for CICS Adapter Builder - T_.. =] [E3

File Edit Wiew Microfow Definiion Help .

Build an adapter that supports an MQ interface

LIRS

7 F

Wessage Sets Adamerﬁl

MO TUMQOT | Microflow Definiti.. | 0

O

=

TU M_DCUST

| “ |

Figure 65. Connecting the TU_M_RAW Input Terminal and TU_M_DCUST Command node

2)

3)

4)

5)

6)

7)

Add a control connection from the out terminal on the
TU_M_DCUST Command node to the TU M_RTN_OK
Decision node. This auto-adds a Map node (Map2) on the
control connection line.

Add a Map node (Map3) between the TU_M_RTN_OK
Decision node and the OUT_OK Output Terminal node. To
create a Map node, drag a Map type from the Adapters Tree
View (left panel) to the Microflow Definition panel (right
panel).

Add a control connection from the first out terminal (labeled
Good) on the TU_M_RTN_OK Decision node to the Map3
node and from the Map3 node to the OUT_OK Output
Terminal node.

Add a series of three Map nodes (Map 4-Map 6) between the
TU_M_RTN_OK Decision node and the OUT_ERR Output
Terminal node.

Note: See Eigure 66 on page 94 to see the placement of the four

Map nodes (Map 3-Map 6). The Map node labels are for
annotation only and will not appear in your workspace.

Add control connections from the second out terminal (labeled
Warning) on the TU_M_RTN_OK Decision node to the Map4
node and from the Map4 node to the OUT_ERR Output
Terminal node.

Add control connections from the third out terminal (labeled
Error) on the TU_M_RTN_OK Decision node to the Map5 node
and from the Map5 node to the OUT_ERR Output Terminal
node.

Chapter 4. Build an adapter that supports an MQ interface 95

Build an adapter that supports an MQ interface

Ei MQ5I1 Agent for CICS Adapter Builder - TU_MO_WS _xml
File Edit View Microflow Definition

8) Add control connections from the fourth out terminal (labeled
default) on the TU_M_RTN_OK Decision node to the Map6
node and from the Map6 node to the OUT_ERR Output
Terminal node.

Add a data connection from the Map2 node to the
TU_M_CUST _CTX Data Context node and from the out
terminal of the TU_M_CUST CTX Data Context node to the
Map3 node. Refer to to see all of the node
connections in the microflow.

9)

I[=] B3

Help

Dx L)

IR

Messane Sets AdEDtEFSN

b3l

I =

M4

TUMGOT | Micronow Definition |

#_1 CICE MOAdant
E_I Microflow Type

----_| Command Typ
s TU_M_DC
=[] Data Context T
C LB TU_M_CUSE
=[] Decision Type
C B TU M _RT
L] Heration Types
L7 Map

(¥ Input Terminal
= output Termin

J1 I—

2) 1

DUT QK
Mop 4

Mop 5

CUST_CT.
Map 1 Map 2
T

TU_M_RAW TU_M_DCUST TU_M_ RTN 0K QUT_ERR

l\/Iop 6

o1

v |

-

Figure 66. The TUMQO1 microflow

10) Save your workspace by selecting File > Save Workspace from
the menubar.
C. Map your adapter

You are now ready to map your adapter. The act of mapping refers to

the modeling of data transformation via a Map node, between an

output terminal on one node and an input terminal on another

node. Data transformation can include a variety of functions:

* Associating a field in one message with a field in another
message.

* String mapping such as specifying pad characters.

* Date mapping, such as converting a date in one format to a date
in another format.

96 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports an MQ interface

 DPutting literal data into a message.

* Adding custom code to perform other data transformation

functions.

1) Perform the mapping for the Map1l node as listed in Table 2d

and shown in [Eigure 67 on page 98, This map passes the
customer number and inquire action indicator 'I" to the MQ
program DFHMABP6.

Right click on the Map1 node (the Map node that appears
between the TU_M_RAW and TU_M_DCUST nodes) and select
Properties. Click the DataMappingExpression tab.

Left click on the CUST_NO field under the TU M_RAW
message (view input message on right of panel) and drag the
mouse cursor to the CUST_DATA_I field under the
TU_M_BE_C_IN message (view output message on left of
panel). This will create a mapping between the two fields (see
[Cable 3d and Eigure 67 on page 9d).

The second mapping ('I' to CUST_ACTIONLI) is a literal
mapping. To perform a literal mapping, display the Map node’s
properties and make sure the DataMappingExpression tab is
selected. Right click on the destination field for the literal (the
CUST_ACTIONL_I field in the TU_M_DCUST Output Message)
and select Add element. This will create a mapping that is
labeled LITERAL on the input field. Double click on LITERAL
field and rename it to 'I’ (quotes must be used). Click OK.

Table 30. Mapping fields for Map1 node (TU_M_RAW message to TU_M_BE_C_IN

message)
Input Field Output Field Description
CUST_DATA CUST_DATA_I Used to pass customer data through the flow

rIr

CUST_ACTIONL_I Type of action — Inquiry

Chapter 4. Build an adapter that supports an MQ interface 97

Build an adapter that supports an MQ interface

B Map1 [x]
Map1 DataMappingE}{pressinnl Descriptinnl
lrput Messages Cutput Messages |
TU_M_RAW | TU_M_DCUST |
Message TL_M_RAW Message TU_M_BE_C_IM
B TU_M_RAw B TU_M_BE_C_IM
~[E cUsT_MO ~[E cusT_DaTA_|
-5 CUST_MSG_|
B CUET_ACTITN
Input Dutput
TU_M_RAW.CUST MO $ TU_M_DCUST.CUST_DATA_
[b TU_M_DCUST.CUST_ACTI...
0]'4 I Cancel Appaly | Helg |

Figure 67. Mapping for Mapl node

2) Perform the mapping for the Map2 nodes as listed in [Cable 31

and

Mable 34 and as shown in Figure 68 on page 99 and

. This map passes the customer data from

the MQ program DFHMABP6 to the TU_M_RTN_OK Decision

node.

Table 31. Mapping fields for Map2 node (TU_M_BE_C_OUT message to

TU_M_CUST_REC message)

Input Field Output Field

Description

CUST_DATA_R TU_M_CUST_REC

Store customer data received from the
back-end system in a data context

Table 32. Mapping fields for Map2 node (TU_M_BE_C_OUT message to TU_M_DEC

message)

Input Field Output Field Description
CUST_MSG_TXT_R |MSG_D Message ID number
CUST_MSG_IND_R |MSG_IND_D Output message
CUST_ACTION_R |ACTION_D Requested action

98 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports an MQ interface

Fi Map2
Map2 DataMappingExprassion | Description |
Input Messages Output Messages o
TU_M_DCUST | TU_M_CUST_CTX | TU_M_RTN_0K|
hessage TU_M_BE_C_OUT essage TU_M_CUST_REC |
B Tu_m_BE_C_ouT B TU_M_CUST_REC -
‘[cusT_DATA_ R --[E] CUST_NO_C
B CUST_MSG_R_Overlay (#-[E] MAMEFULL_C
i../S| CUST_ACTION_R -.[S] STREET_C
|E| CITY_C
--[5] STATE_C
E| ZIP_C
#-{E PHONE_C
.[Z] MARRIED_C
-[Z] SPOUSE_NAME_C
-[E] EMPLOYER_C
--[E] EMP_ADDRESS_C
--[E] EMP_CITY_C
..[Z] FMD STATE ll
Input Output
TU_M_DCUST CUST_DATA R B TU_M_CUST_CTH.TU_M_CUST_REC

-

Qs I Cancel Anply | Help |

Figure 68. Mapping for Map2 node

Note: CUST_MSG_R can be located by expanding the
CUST_MSG_R_OVERLAY and the CUST_MSG_TXT_R
and CUST_MSG_IND_R fields can be located by
expanding CUST_MSG_GRP_R. Click on the + sign to
expand.

Chapter 4. Build an adapter that supports an MQ interface 99

Build an adapter that supports an MQ interface

EiMap2
Map2 DataMappingExpression | Descriptionl
Input Messages Output Messages -
TC_M_DCUST' TC_M_CUST_CTH TC_M_RTN_OK'
Message TC_M_BE_C_OUT Message TC_M_DEC
@,TCMBECOUT |_:,‘[Tc M_DEC =
------- S cusT_DATA_R -[E acTION_D
E| E CUST_MSG_R_Overlay -.[E] SIGNOFF_YN_D
-] CUST_MSG_R ..[E| FLOW_MSG_D
& E| CUST_MSG_GRP_R -5 MSG_D
-5 CUST_MSG_TXT_R -] MSG_IND_D
: “..[F] CUST_MSG_IND_R -[E CUST_IN_D
------- ..[5] CUST_ACTION_R -[E] ACCT_IN_D
--[E accT_1_D
B acct_2 D
B acct_3p =
B acct_4 D
B acct_s_p
__IEI ACCT TYDE N i
Input OUmUT
TC_M_DCUST.CUST_MSG_THT_R % TC_M_RTN_OK.MSG_D
TC_M_DCUST.CUST_MSG_IND_R ¥ TC_M_RTN_OK.MSG_IND_D
TC_M_DCUST.CUST_ACTION_R $ TC_M_RTH_OK ACTION_D

The resource TCWQO1 is not checked out.

0]+ I Cancel | Ll | Help |

Figure 69. Mapping for Map2 node

3) Perform the mapping for Map3 node as listed in [able 23 and
and shown in Eigure 70 an page 101. This map passes
customer data and good response messages to the MQ Good
response Output Terminal (OUT_OK).

Table 33. Mapping fields for Map3 node (TU_M_CUST_REC message to OUT_OK

message)

Input Field Output Field Description
CUST_NO_C CUST_NO_O Customer ID number
NAMEFULL_C CUST_NAME_O Customer name
PHONE_C CUST_PHONE_O Customer phone number
EMPLOYER_C CUST_EMPLOYER_O | Customer employer

Table 34. Mapping fields for Map3 node (TU_M_RTN_OK message to OUT_OK message)

Input Field Output Field Description
MSG_D MSG_O Message ID number
MSG_IND_D IND_O Output OK message
"Cust Action OK’ FLOW_MSG_O Response message for customer action

Note: The MSG_O and IND_O output fields can be located by
expanding the MSG_GRP_O element. Click on the + sign.

100 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports an MQ interface

¥ Map3
Map3 DataMappingExpressiunl Descriptinnl

Input Messages Output Messages =
TU_M_GUST_CTH | TU_M_RTN_OK| OUT_OKl
Message TU_M_CUST REC Message TU_M_QUT QK
Bl TU_M_CUST_REC 2B Tu_m_ouT_ok -
...... E| CUST_NO... EIE| MSG_GRP_O
=5 NAMEFULL_C B ms6_0
...... E| STREET_C B ND_o
______ g ary_c B FLOW_MSG_0
...... E| STATE_C B cUST_MO_0
...... B ar_c [E] CUST_NAME_O
#-{Z] PHOME... =-{E CUST_PHONE_O
______] MARRIED_C -[E] CUST_AREA_O
...... | SPOUSE_NAME_C I Bl cUsST_EXCH_O
...... El EMPLOYER_C -[E] CUST_PHONE_NO_0O
------ | EMP_ADDRESS_C ~[E CUST_EMPLOYER...
...... = EMP_CITY C -] ACCT_NO_0O
..[S] FMP STATE hd ..[Z] arcT _TYPE N hd

Input

Qutput

TU_M_CUST_CTH.CUST_NO_C

¥ OUT_OK. CUST_NG_O

TU_M_CUST_CTH.MNAMEFULL_G

TU_M_CUST_CTA.PHOMNE_C

 OUT_OK.CUST_PHONE_O

TU_M_CUST_CTH. EMPLOYER_C

¥ OUT_OK.CUST_RMAME_O

¥ OUT_OK CUST_EMPLOYER_O

TU_M_RTH_OK.MSG_D

B OUT_ Ok MSG_0

TU_M_RTH_OK. MSG_IND_D

P OUT_OKLIND_O

[FCust Action 0K

¥ OUT 0K FLOW MSG_O

-

[ox |

Cancel Apply | Help |

Figure 70. Mapping for Map3 node (TU_M_CUST_CTX and TU_M_RTN_OK messages to

OUT_OK message)

4) Perform the mapping for Map4 node as listed in fCable 39 and

shown in i . This map passes warning
response messages to the MQ Error response Output Terminal
(OUT_ERR).

Table 35. Mapping fields for Map4 node (TU_M_DEC message to TU_M_OUT_ERR

message)

Input Field Output Field Description

MSG_D MSG_E Error indicator

MSG_IND_D IND_E Output Error Message

'Cust. Warning’ FLOW_MSG_E Warning message text

Chapter 4. Build an adapter that supports an MQ interface

101

P.f Map4

Build an adapter that supports an MQ interface

Mapd DataMappingExprassion | Descriptinn|

Input Messages
TU_M_RTH_OK |

Message TU_M_DEC

Output Messages
OUT_ERR |

Message TU_M_OUT_ERR

Bl TU_M_OUT_ERR
=-E MSG_GRP_E
. ~Elmsc_E
. ~END_E

|»

B TU_M_DEC

------ El ACTION_D

------ El SIGHOFF_YN_D
------ El FLOW_MSG_D
----- El IEEE

G D
------ [El mss_MD_D
_IN.D
D

ooo oo

Input Output
TU_M_RTK_OK MSG_D p OUT_ERR.MSG_E

TU_M_RTMN_OK MSG_IND_D $ OUT_ERR.IND_E
'Custyvaming b OUT_ERR.FLOW MSG_E

-

Cancel | Apply | Help |

[ox |

Figure 71. Mapping for Map4 node

5) Perform the mapping for Map5 node as listed in able 3d and

shown in [Ei . This map passes error response
messages to the MQ Error response Output Terminal
(OUT_ERR).

Table 36. Mapping fields for Map5 node (TU_M_DEC message to TU_M_OUT_ERR

message)

Input Field Output Field Description

MSG_D MSG_E Error indicator

MSG_IND_D IND_E Output Error Message

'Cust. Error’ FLOW_MSG_E Error message text

102 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

p:i Maph

Build an adapter that supports an MQ interface

Map5 | DatabiappingExpression’| pescription |

Input Messages
TU_M_RTN_OK'

tMessage TU_M_DEC

Output Messages
OUT_ERR |

Message TU_M_OUT_ERR

|»

B TU_M_DEC
------ E ACTION_D
------ E| SIGNOFF_YN_D

| »

B TU_M_OUT_ERR
-5 MSG_GRP_E
------- B FLOw_MSG_E

Input

Qutput

TU_M_RTH_OK. MSG_D

QUT_ERR.MSG_E

TU_M_RTH_OK. MSG_IND_D

QUT_ERR..IND_E

'"Cust. Error’

v vw

OUT_ERR.FLOW_MSG_E

-

[ox |

Cancel | ARply |

Help |

Figure 72. Mapping for Map5 node

6) Perform the mapping for Map6 node as listed in [[able 32 and
shown in Eigure 73 on page 104. This map passes error response
messages to the MQ Error response Output Terminal
(OUT_ERR).

Table 37. Mapping fields for Map6 node (TU_M_DEC message to TU_M_OUT_ERR

message)

Input Field

Output Field

Description

MSG_D MSG_E Error indicator
MSG_IND_D IND_E Output Error Message
"Cust. Action not defined’ FLOW_MSG_E Error message text

Chapter 4. Build an adapter that supports an MQ interface

103

Build an adapter that supports an MQ interface

Fif Map6E
Mapf DataMappingExpressinnl Descriptignl

Input Messages
TU_M_RTN_OK |

Message TU_M_DEC

Cutput Messages
OUT_ERR |

Message TU_M_OUT_ERR

B tu_m_DEC

B TU_M_OUT_ERR

| v

------ E ACTION_D

-5 MSG_GRP_E
------ | SIGNOFF_YN_D

[m
=
o
@
=
(&
o

Input Qutput
TU_M_RTH_OK._MEG_D OUT_ERR.MSG_E
TU_M_RTH_OK._MEG_IND_D OUT_ERR.IND_E

I'CLISI. Action npt Defined OUT_ERR.FLOW_MSG_E

v v v

-

QK I Cancel Apply | Help |

Figure 73. Mapping for Map6 node

o

You just..

PN

You just completed the modelling stage in the process of building your adapter.

In your model, you have coded the instructions on how the adapter is supposed to
behave at run time. You are now ready to create the adapter.

__Step 7. Assign the model to a CICS MQAdapter

In this step you will associate the microflow (the model that you just
completed), with a CICS MQAdapter.

A CICS MQAdapter provides the actual implementation of the adapter
request processing.

a. Right click on the CICS MQAdapter Collection folder and select
Create > CICS MQAdapter

b. On the Create a new CICS MQAdapter dialog, enter TUMQAD for
the Name and use the drop down menu to select TUMQO1 for the

104 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports an MQ interface

Microflow Type. Leave the Proxy Client Connector Resource and
Proxy Client Interaction Specification fields blank. Click Finish.

ﬂi Create a new CICS MQAdapter ¥]

Name: [TUMQAD

CICS MOAdapter | Description
Microflow Type TUMG0

Proxy Client Connector Resource |

-]
=l
=l

Proxy Client Interaction Specification |

Finish I Cancel Help

Figure 74. Creating a CICS MQAdapter

You have completed the microflow and setup your adapter.

Save your workspace by selecting File > Save Workspace from the
menubar.

Now you are ready to generate your adapter.
__Step 8. Generate the adapter
The adapter code files will be generated in the output directory that
you specify.
Adapter code generation is a two step process:
a. Generate copybooks from message definitions (in Message Sets
view).
b. Generate the adapter run time code from the modeled microflow
(in Adapters view).
* Generate Copybooks.
You will generate copybooks for the following messages:
- TU_M_RAW
- TU_M_DEC
- TU_M_OUT_OK
- TU_M_OUT_ERR
- TU_M_CUST_REC
- TU_M_BE_C_IN

Chapter 4. Build an adapter that supports an MQ interface 105

Build an adapter that supports an MQ interface
- TU_M_BE_C_OUT

Note: To generate a copybook for a message, the message must be
checked out or newly created.

E-CMessages
i %‘I TUM BE C_IN E Message Checked Out Symbol
EI TUM_BE C_OUT "i_ New Message Symbol

Figure 75. Messages Sets folder showing checked out message and newly created message
This screen capture contains a Messages Sets folder showing a checked out message,
indicating by an associated key symbol, and newly created message, indicated by a yellow
star symbol.

To generate copybooks, make sure that you are in the Message Sets

view and then, follow this procedure:

a. Make sure the list of messages are visible under the Messages
folder for the TU_M_MESSAGE_SET. To view the messages, click
on the + sign in front of the Messages folder to display the list of
messages.

b. Right click on the message for which you want to generate a
copybook (for example, TU_M_RAW) and select Generate >
COBOL.

c. Enter the output destination in the Path field and click Finish.
Note: The copybook generate removes underscores from the

message names and only uses the first eight characters of
the filename to generate the new copybook name.

Ei Cobol Language Message Generator

~Destination Panel

Path |Camoiactutarial s Browse |

Finish | Cancel | Help |

== Haok [HExt ==

Figure 76. Specifying pathname for copybook generation output

d. Repeat the process to generate copybooks for the remaining
messages in the list.

* Generate adapter Code

106 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports an MQ interface

To generate adapter code, make sure that you are in the Adapters
view and then, follow this procedure:

Note: You must generate the adapter code in the same directory
where you generated the copybooks.

a. Right click on TUMQAD adapter (listed under the CICS
MQAdapters folder) and select Generate > Generate COBOL
Adapter. Enter the output destination in the PATH field (the
example uses C:\Mgiac\Tutorials\MQ). Click Finish.

The generated adapter code will be output to the destination
path directory.

ﬂi Cobol Language Adapter Generator

~Destination Panel

Path [:iMgiactutorialsiMe

== Back et == Finish Cancel | Help |

Figure 77. Specifying pathname for adapter code generation output

Deploying an adapter

G

In the following section you will learn how to deploy the adapter that you created. The
deploy operation sends the copybooks, source code, JCL and the configuration
parameters for each microflow that you generated, to the host system, for source code
configuration, object code build and parameter update operations.

You will need an account and password to the OS/390 environment that will host
the adapter you are deploying.

Make sure that you have customized the build time JCL templates to your site

standards. See ['Building adapters” on page d for information on the JCL you need

to customize.

Chapter 4. Build an adapter that supports an MQ interface 107

Build an adapter that supports an MQ interface

To deploy an adapter, make sure that you are in the Adapters view and then,

follow this procedure:

1. Right click on TUMQAD adapter (listed under the CICS MQAdapters folder)
and select Generate > Deploy COBOL Adapter. Click the Define Settings radio
button and enter the following information:

* IP Address — IP Address - The host system IP address (for example,
9.89.7.114)

* High Level Qualifier — The high level qualifier for the partition data set
(PDS)

¢ Account — The account under which JCL submits a job for compilation.

Note: If you wish to save these settings for reuse, then click Save. You will be
prompted to specify an output location and filename to store the setting
information. The next time you deploy adapter code you can click the
Use Pre-defined Settings radio button and enter the saved filename.

Click Next.

Ei Cobol Language Adapter Deployment E

~Target Host Panel

" Use Pre-defined Settings

File Mame | Brayee

& Define Settings Save |

P Address [9.89.7.114

High Level Qualifier [2AS MIAC

Account JQASMPM

== Back | Mend == I izt Cancel | Help |

Figure 78. Specifying the target host

Note: The values displayed in Eigure 7d are for example purposes only. The
values that you enter will depend on your site’s host system parameters.

2. On the User Identification panel enter your user ID and password.

108 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports an MQ interface

[:i Cobol Language Adapter Deployment

~U=er Identification Panel

Userld Jasshipmi

Pasgword |nnnn

== Hack | MEst== I Finizh Cancel | Helx |

Figure 79. Logon to the host

Click Finish.

3. The Sub-process dialog appears and provides a status of the deploy process as it
happens. When the deploy is complete the generated adapter code, copybooks,
and JCL (Compile / Properties File Update) files will be moved to the OS/390
server.

Note: You should scroll through the output listing in the Sub-process dialog
window to see if any errors occurred.

ﬁi Sub-process spawned

Sub-process camplete

ﬂ Sub-process camplete ﬂ
o =

ﬂ efkprep CiMgiacttutorials AT LIMCLAD

ﬂ erased file . CidgiaciutorialSIWMONTMPYEDT 826821 JCF

ﬂ erased file : CAhgiachtutarialsWCNTMPYTCMEAYT JCP

9 erased file : CAWgiachtutarialsWMONTMPYT CMMAYT CBL _I_,.I
k

..“-u--Iu-u--n..“-H-u -

Dk Zancel

Figure 80. Sub-process dialog indicating status of the deploy process

4. Select OK to close the dialog.

Chapter 4. Build an adapter that supports an MQ interface 109

Build an adapter that supports an MQ interface

The adapter now resides on the OS/390 server and is ready to be tested. See

Chapter 6, “Validating the adapters” on page 231 for instructions on how to test the

adapter.

Check to see that the adapter compiled in CICS

After you have deployed the adapter to the OS/390 server, you need to make sure
that it compiled with no errors. Consult with your CICS systems administrator for
assistance with this procedure.

Defining the adapter resources to CICS

If you do not have access to CICS at your site, you will need to ask your CICS
administrator to perform the necessary CEDA and CEMT functions. You will need
to provide the CICS administrator with the following information as it relates to
the adapter that you deployed:

* Program names
* Group name
* Transaction Identifiers

For the MQ adapter, the following values apply:

Table 38. Values for the Define Transactions screen

Program Group Transid
TUMNAV1 MIACUSER TUM1
TUMQO1P MIACUSER TUMP
TUMQO1G MIACUSER TUMG

To define resources to CICS, the CICS administrator must:
* Run the CEDA transaction to define programs and any files to CICS.
* Submit JCL to run the Properties File Update job.

This is necessary only if you did not automatically submit JCL using the
builder’s generator facility.

If you were not allowed to submit JCL automatically, you can manually submit
JCL (DFHMAMPU) to run the Properties File Update job (DFHMAMUP). See
the MQSI Agent for CICS Run Time User’s Guide for information on the
Properties file update JCL (DFHMAMPU).

The CICS administrator must NEWCOPY any server adapter programs that were
modified.

For an example of defining CICS resources to CICS, See I'Example pracedure fo
Hefining adapter resaurces to CICS” an page 239,

”

110 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Chapter 5. Build an adapter that supports a FEPI interface
Before you begin this tutorial, read IChapter 2, “Tutorial overview” on page d. The

Tutorial Overview section contains important information on the business
transaction to be modeled, as well as information on the tutorial’s file structure.
The Tutorial Overview also lists the assumed environment requirements that must
be adhered to in order to build and deploy the adapter. The Tutorial overview also
provides important information on the tutorial files, the tutorial directory structure
and how to avoid naming conflicts when you create message sets and messages.

G

From this tutorial, you will learn how to use the MQSI Agent for CICS Adapter Builder
tool to model and generate code for an adapter that supports a FEPI interface.

You will model an adapter that has the functionality to access an existing application
using a CICS / FEPI Interface. See /About the adapter you will design” an page 111 for a
description of the adapter that you will model.

If you have not had any exposure to the Adapter Builder component of the
MQSeries Integrator Agent for CICS Transaction Server product, you should read
the MQSeries Integrator Agent for CICS Transaction Server Using the Control Center.
This book contains information on the concepts of the MQSeries Integrator Agent
for CICS Adapter Builder.

This tutorial consists of:

After completing this tutorial you should be able to:

* Identify required Host based information you need to gather and use.
¢ Import COBOL copybooks and create message sets.

¢ Import 3270 screens.

* Create workspaces to define adapter flow logic.

* Create and generate a COBOL adapter.

* Deploy and test the generated COBOL adapter.

Designing an adapter

7

As was discussed in I‘Requirements analysis and design considerations” on page 1,
before you start to use the MQSI Agent for CICS Adapter Builder, you would
spend some time analyzing the business need that the adapter will address and
then spend some time considering how you will design the adapter.

When you finish with requirements analysis and design considerations, you should

have a sound understanding of how your adapter will behave at run time in order
to manage and fulfill a business transaction.

© Copyright IBM Corp. 2001 111

Build an adapter that supports a FEPI interface

To help you gain a frame of reference for what you will create in this tutorial, you
should understand the following;:

* The business need to be addressed
* The messages in and out structure
* The CICS resources required

Addressing a business need

An adapter should address a particular business need. In this tutorial, the business
need is to provide a controlling application with an interface to a back-end
environment for the purpose of accessing an existing CICS application that
performs a customer inquiry.

In this tutorial you will be accessing the same back-end environment that was
installed and used by the run time installation verification procedure (IVP). For
information on the programs used by the IVP, see the chapter on performing post
installation tasks in the MQSI Agent for CICS Run Time User’s Guide.

About the adapter you will design

This section identifies some preliminary information that you would gather or
consider prior to invoking the builder. It is essential that you understand your
objectives and the environment you will be working in.

The adapters that you build using the MQSI Agent for CICS Adapter Builder are
visual models of business transactions. They are intended to map out the activities
that comprise the entire business transaction, from invocation to completion.

The adapter that you build contains the instructions, logic and code that enable it
to run on an OS/390 server, this includes an interface technology for accessing
information on the back-end system. In this tutorial the business transaction on
which you will base your adapter is a customer inquiry request and the interface
method used is a CICS / FEPI interface.

Your adapter design will include instructions on accessing a back-end application
to retrieve customer information and will include instructions on where to put the
information so that it can be returned to the controlling application.

The tutorial models a FEPI adapter that consists of a base navigator microflow and
five subflows A subflow is a microflow that is nested under the base navigator flow:

* The main flow or the base navigator microflow (TU_F_NAV) — represents the
adapter microflow that models the behavior of the Navigator in the run time
environment.

* Subflow (TU_F_PARSER) — identifies the current 3270 screen via FEPI

* Subflow (TU_F_SIGNON) — signs the user onto the Customer application via
FEPI

* Subflow (TU_F_INQ) — performs an inquiry on Customer information via FEPI

* Subflow (TU_F_SGNOFF) — signs off from the Customer application and
displays a blank CICS screen via FEPI

* Subflow (TU_F_RESET) — resets the Customer screen for inputting the next
customer number via FEPI.

¢ This tutorial describes how to design and construct an adapter that when
deployed will perform the following functions:

112 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

10.

Build an adapter that supports a FEPI interface

Accept the message structure TU_F_RAW from the Simulator in the form of
a request.

Pass the information to the parser subflow (TU_F_PARSER):

— The parser command (TU_F_PARSER) will determine the 3270 screen
identity

— Map the screen identifier to the DOC_SCR indicator

Use a decision node (TU_F_SCR_ID) to determine the screen identity

passed from the TU_F_PARSER subflow. Based on the identity of the screen,

select one of the following flow paths:

— Signon to the application (TU_F_SIGNON subflow)

— Reset the customer screen (TU_F_RESET subflow)

— Unknown, which terminates the flow and outputs a reply message.

Note: To continue with the signon path go to steg l. To continue with the

reset the customer screen path go to step

The signon to the application subflow (TU_F_SIGNON subflow) performs

the following:

— Use the SYS_LU_LOGON data context to supply the values in
LU_OWNER and PASSTICKET so these values can be mapped to the
appropriate USERID and PASSWORD fields on a 3270 Signon Screen.

— The signon command (TU_F_SIGNON) uses the supplied LU_OWNER
and PASSTICKET values to display a blank native CICS screen.

— If signon is successful, the TU_F_CMAV command inputs the CMAV
transaction to display the Customer screen. Output a good customer
application screen reply.

— If signon is not successful or the screen returned is unknown, output an
error reply.

Check the reply message for either a good signon or error using a Decision
node (TU_F_GOOD_SIGNON).

For a successful signon, perform a Customer information inquiry using the
TU_F_INQ subflow.

— Map the Customer inquiry request information to the Customer
Information screen.

— Process the Customer inquiry command

— Use a Decision node (TU_F_REC_NOT_FND) to determine whether a
valid data record is returned for the Customer inquiry.

— If the data record exists, map the data in the record to the output reply
message, otherwise map an error reply message.

Store the data record information in a Data Context node

(TU_F_HOLD_REPLY). Map the input data (TU_F_RAW) to the message

supplied to a Decision node (TU_F_SIGNOEFF).

Decide whether to signoff (release the LU connection) using a Decision
node (TU_F_SIGNOFF).

If signoff is selected. Map information from the Data Context node
(TU_F_HOLD_REPLY) and the FEPI Data Context node
(SYS_FEPI_OVERRIDES) to the input message supplied to the signoff
subflow (TU_F_SGNOFF). The FEPI Override feature is used to dynamically
set the FEPI LogoffType property.

The signoff subflow (TU_F_SGNOFF) performs the following:

Chapter 5. Build an adapter that supports a FEPI interface 113

Build an adapter that supports a FEPI interface

— Maps a signoff key (PF3) to the Customer Information screen.

— If the signoff is valid, then map the required CESF LOGOFF transaction
information and process the transaction using the CESF LOGOFF
command. Output reply message indicating a valid logoff to be returned
to the Simulator and exit.

— If the signoff is not valid, then output a reply message indicating an
invalid logoff to be returned to the Simulator and exit.

11. If signoff is not selected, then in the main flow pass along the Reply record
to an output reply message to be returned to the Simulator and exit.

12. If you are already on the Customer screen because of a previously
processed inquiry, then reset the Customer screen to accept input for the
next customer number. The reset subflow (TU_F_RESET) performs the
following:

— Maps a PF12 key to reset the Customer screen for new input.

— Process the PF12 input using the Customer screen command
(TU_E_CUST).

— If an error occurs during the Customer screen reset, then output an error
message.

Identify the components of the run time environment

Before building the adapter we need to:

* Define the CICS programs and transaction IDs for the adapter programs that are
generated.

For the purpose of this tutorial the following will be generated:

Table 39. MQ Adapter programs

Program type Program name Transaction ID

Navigator TUFNAV TUF1

FEPT Adapters TUFPRSER TUF4
TUFSGON TUF2
TUFINQ TUF6
TUFSGOFF TUF3
TUFRESET TUF5

* Determine the FEPI screens that are invoked. For this tutorial the following
screens will be invoked:

Signon screen (TUFSGON)
Inquiry screen (TUFINQ)
Sign off screen (TUFSGOFF)
— Reset screen (TUFRESET)
* Determine the CICS region where the adapter programs will execute.

* Determine the CICS region where the FEPI program will execute to access the
back-end system.

After some analysis, we determine that the host environment for the deployed
adapter will look like [Figure 81 on page 115, In this host environment, the
generated adapter programs, TUFNAV and its associated subflow programs
TUFSGON, TUFSGOFF, TUFPRSER, TUFRESET, and TUFINQ execute in CICS
region QAS1. CMAV acts as the back-end system in the CICS region DEV2.

114 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

0S/390 Host
e N

CICS Region 1: QAS1 Base navigator
TUFNAV
TRANID: TUF1
Generated Adapter Navigator
Programs V/'/ l \v\v
TUFPRSER TUFSGON TUFINQ TUFSGOFF TUFRESET
Parser Signon Inquiry Signoff Reset
TRANID: TUF4 TRANID: TUF2 TRANID: TUF6 TRANID: TUF3 TRANID: TUF5

s [J
\

>
CMAV Transaction
DEV2
Transaction to Access
Back End Data
DFHMAMPF
Run Time H
Properties
File
Back End System

Figure 81. Tutorial run time environment for FEPI adapter

Accessing the FEPI tutorial files

The files you will need in order to build and deploy an adapter that supports a
FEPI interface are located in two directories as follows:

* C:\<mgiac_tutorials>\fepi

* C:\<mgiac_base>\cics

In the C:\<mgqiac_tutorials>\fepi directory you will find the following files:

Table 40. Files in the C:\<mgiac_base>\cics directory

File name Description Use
TU_F_RDS.cbl COBOL record Used as import for messages.
description. Contains the message structure.

TC_FEPI_WS.zip

Completed workspace for
FEPI adapter.

A completed workspace that you
import and use as the basis for the
workspace used to create the FEPI
adapter. See

7

for information on using the
contents of this file

Chapter 5. Build an adapter that supports a FEPI interface

115

Build an adapter that supports a FEPI interface

Table 40. Files in the C:\<mgiac_base>\cics directory (continued)

File name

Description

Use

*.cpy

Generated copybooks.

The generated copybooks for the
FEPI adapter

In the C:\<mgqiac_base>\cics directory you will find the following files:

Table 41. Files in the C:\<mgiac_base>\cics directory

File name

Description

Use

tu_f_fepiinteraction.ispec

Interaction specification
file

Identifies the use of the FEPI
command.

tu_f _nav.rsc

Connector resource file

Specifies synchronous rollback,
Navigator type, COBOL program
name for the FEPI adapter and
the CICS TransID.

tu_f_INQfepi.rsc

Connector resource file

Specifies synchronous rollback,
FEPI Navigator type, program
name for the FEPI adapter, CICS
TransID, logoff type, FEPI pool,
FEPI target, FEPI conversation
status, timeout value, maximum
Commarea length and FEPI
PassTicket status.

tu_f_PRSERfepi.rsc

Connector resource file

FEPI Navigator. See description
for tu_f INQfepi.rsc

tu_f_RESETfepi.rsc

Connector resource file

FEPI Navigator. See description
for tu_f INQfepi.rsc

tu_f_SGONfepi.rsc

Connector resource file

FEPI Navigator. See description
for tu_f INQfepi.rsc

tu_f SGOFFfepi.rsc

Connector resource file

FEPI Navigator. See description
for tu_f INQfepi.rsc

Note: There is also a version of the Specification files prefixed with tc_f_ that are used for
the completed workspace supplied in the TC_FEPI_WS.zip file.

Configuring the Specification Files

G

documentation.

In this section you will learn how to configure the physical properties of each FEPI
adapter component (the base microflow and the subflows). These properties represent
the XML definitions that are sent to the Properties file on the host at deployment time.

For information on the Properties file, see the MQSI Agent for CICS run time

Specification files are XML-format files that provide specific values to certain
components created in MQSI Agent for CICS. An Interaction Specification file
provides unique values for the component to which it is assigned. A Connector
Resource file provides more general values for the component.

116 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

Some of the information in the Interaction Specification file and Connector
Resource file maps to a run time properties file, DFHMAMPEFE. Other information in
the Interaction Specification file is incorporated in generated Command and
Navigator programs. The DFHMAMPF stores data that is needed to run the
generated adapter code programs on the host. See the MQSI Agent for CICS run
time documentation for information on DFHMAMPE.

The FEPI adapter requires the following specification files:

* Interaction Specification file (TU_F_fepiinteraction.ispec) for the FEPI Command
type

* Connector Resource file (TU_F_NAV.rsc) for the Microflow type (adapter
Navigator)

* Connector Resource files for the FEPI Microflow Types
— Inquiry subflow (TU_F_INQfepi.rsc)

Parser subflow (TU_F_PRSERfepi.rsc)

Reset subflow (TU_F_RESETfepi.rsc)

Signon subflow (TU_F_SGONfepi.rsc)

— Signoff subflow (TU_F_SGOFFfepi.rsc)

The specification files are located in the <mgiac_base>/cics directory. You must
configure the settings in the specification files used for the tutorial.

c:\ program files
\Ibm mqgseries integrator agent for cics

\cics

\Tc_f fepiinteraction.ispec (Specification files)
\Tc_f INQfepi.rsc

\Tc_f NAV.rsc

\Tc_f PRSERfepi.rsc
\Tc_f RESETfepi.rsc

\Tc_f SGOFFfepi.rsc
\Tc_f SGONfepi.rsc

\Tu_f fepiinteraction.ispec
\Tu_f_INQfepi.rsc

\Tu_f NAV.rsc

\Tu_f PRSERfepi.rsc
\Tu_f RESETfepi.rscl
\Tu_f SGOFFfepi.rsc
\Tu_f SGONfepi.rsc

Figure 82. Directory structure for locating specification files for the FEPI interface

The FEPI Command type uses an Interaction Specification file. In the Interaction
Specification file (TU_F_fepiinteraction.ispec), the MAT_CMDTYPE identifies the
type of command. In the example, the MAT_CMDTYPE variable has a value of
MAT_FEPIL

Chapter 5. Build an adapter that supports a FEPI interface 117

Build an adapter that supports a FEPI interface

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE AttributeGroup SYSTEM "mgsi.dtd">
<AttributeGroup xmi.label="Interaction Specification">

<Attribute xmi.label="MAT_CMDTYPE" type="MAT_DPL MAT_MQ MAT_FEPI"
xmi.uuid="" valueMandatory="true" value="MAT_FEPI" encoded="false"/>
</AttributeGroup>

The Connector Resource file for the base Navigator Microflow type used in the
tutorial is tu_f_nav.rsc.

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE AttributeGroup SYSTEM "mgsi.dtd">
<AttributeGroup xmi.label="Connector Resource">
<Attribute xmi.label="MAT_REQTYPE" type="" xmi.uuid="" valueMandatory="false"
value="0" encoded="false"/>
<Attribute xmi.label="MAT_NAVTYPE" type="" xmi.uuid="" valueMandatory="false"
value="R" encoded="false"/>
<Attribute xmi.label="MAT_PROGID" type="" xmi.uuid="" valueMandatory="false"
value="TUFNAV" encoded="false"/>
<Attribute xmi.label="MAT_TRANID" type="" xmi.uuid="" valueMandatory="false"
value="TUF1" encoded="false"/>
</AttributeGroup>

Table 42. Keyword values used for base Navigator Microflow Connector Resource file

Keyword Symbolic Description / Use Example Value

MAT_REQTYPE Specifies whether the request is run 0
on the server in asynchronous,
synchronous or synchronous rollback
mode 0 (asynchronous) 1
(synchronous) 2 (synchronous
rollback)

MAT_NAVTYPE Specifies whether the Microflow Type R
is a base Navigator (R) or a FEPI
Navigator (F)

MAT_PROGID The name of the COBOL program TUENAV
generated for the FEPI Navigator
microflow.

MAT_TRANID The CICS TransID for the server TUF1
command program generated on the
server.

The Connector Resource file for the base FEPI Microflow type for the Inquiry
subflow used in the tutorial is TU_F_INQfepi.rsc.

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE AttributeGroup SYSTEM "mgsi.dtd">
<AttributeGroup xmi.label="Connector Resource">
<Attribute xmi.label="MAT_REQTYPE" type="" xmi.uuid="" valueMandatory="false"
value="0" encoded="false"/>
<Attribute xmi.label="MAT_NAVTYPE" type="" xmi.uuid="" valueMandatory="false"
value="F" encoded="false"/>
<Attribute xmi.label="MAT_PROGID" type="" xmi.uuid="" valueMandatory="false"
value="TUFINQ" encoded="false"/>
<Attribute xmi.label="MAT_TRANID" type="" xmi.uuid="" valueMandatory="false"
value="TUF6" encoded="false"/>
<Attribute xmi.label="MAT LOGOFFTYPE" type="" xmi.uuid="" valueMandatory="false"
value="A" encoded="false" />
<Attribute xmi.label="MAT_POOL" type="" xmi.uuid="" valueMandatory="false"
value="CICSDEV2" encoded="false" />
<Attribute xmi.label="MAT_TARGET" type="" xmi.uuid="" valueMandatory="false"
value="" encoded="false" />
<Attribute xmi.label="MAT_CONVERSE" type="" xmi.uuid="" valueMandatory="false"

118 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

value="Y" encoded="false" />

<Attribute xmi.label="MAT_TIMEOUT" type="" xmi.uuid="" valueMandatory="false"

value="025" encoded="false" />
<Attribute xmi.label="MAT_MAXCALEN" type="" xmi.uuid="" valueMandatory="false"
value="400" encoded="false" />
<Attribute xmi.label="MAT_USELUPASS" type="" xmi.uuid="" valueMandatory="false"
value="Y" encoded="false" />

</AttributeGroup>

Table 43. Keyword values used for a FEPI Connector Resource file

Keyword Symbolic

Description / Use

Example Value

MAT_REQTYPE

Specifies whether the request is run
on the server in asynchronous,
synchronous or synchronous rollback
mode 0 (asynchronous) 1
(synchronous) 2 (synchronous
rollback)

MAT_NAVTYPE

Specifies whether the Microflow Type
is a base Navigator (R) or a FEPI
Navigator (F)

MAT_PROGID

The name of the COBOL program
generated for the FEPI command.

TUFINQ

MAT_TRANID

The CICS TransID for the server
command program generated on the
server.

TUF6

MAT_LOGOFFTYPE

Used to set the state of the
conversation upon exit of a FEPI
microflow. Valid values are:

R = release

A = assign

P = pass

OVERRIDE

MAT_POOL

Specifies the name of the FEPI Pool
from which connections will be
attached. Use OVERRIDE to
dynamically set the Pool property
during run time.

CICSDEV2

MAT_TARGET

Specifies the FEPI Target, that is the
back-end region with which FEPI will
communicate. Use OVERRIDE to
dynamically set the Target property
during run time.

no value specified
(blank)

MAT_CONVERSE

Indicates that the FEPI conversation
to the back-end region is
conversational.

MAT_TIMEOUT

Amount of time, in seconds, before a
FEPI Receive from the back-end will
terminate with a timeout condition.
Use OVERRIDE to dynamically set
the Timeout property during run
time.

025

MAT_MAXCALEN

Specifies the maximum Commarea
length for the MAX_LINKNAME
program.

400

Chapter 5. Build an adapter that supports a FEPI interface

119

Build an adapter that supports a FEPI interface

Table 43. Keyword values used for a FEPI Connector Resource file (continued)

Keyword Symbolic Description / Use Example Value

MAT_USELUPASS Switch to indicate whether a FEPI Y
microflow should generate a UserID
and PassTicket for signing on to the
back-end region.

The other FEPI subflows use the same Connector Resource values with the
exception of the MAT_PROGID and the MAT_TRANID values.

Table 44. Program and transaction IDs values used for the FEPI microflows

FEPI Microflow Resource file MAT_PROGID MAT_TRANID MAT_LOGOFFTYPE
Type

Signon TU_F_SGONfepi.rsc TUFSGON TUF2 A

Signoff TU_F_SGOFFfepirsc | TUFSGOFF TUF3 OVERRIDE

Parser TU_F_PRSERfepirsc | TUFPRSER TUF4 A

Reset TU_F_RESETfepi.rsc TUFRESET TUF5 A

Inquiry TU_F_INQfepi.rsc TUFINQ TUF6 A

You just..

PN

You have just completed the steps necessary to configure the Properties file. You are
now ready to import the required screens and message sets into the adapter builder.

Creating an adapter that supports a CICS FEPI interface

G

In this section you will learn how to import the necessary COBOL record descriptions
and system interfaces for the FEPI adapter. These are stored in the logical message
model in the Adapter Builder for use in the FEPI adapter flow.

Import Message Sets

Follow these instructions to begin the process of building an adapter that supports

a FEPI interface:

__ Step 1. Start the builder and create a new workspace.
To start the builder, go to the Start > Programs > IBM MQSI Agent
for CICS >IBM MQSI Agent for CICS. This will launch the tool as
shown below, in [Ei

120 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

You should begin the tutorial with a new workspace. A workspace is a
view of what you can work with at one time. A workspace is displayed
as the graphical space in the builder where you will build the adapter
to support the FEPI interface.

From the File pull-down menu, select New Workspace.

ﬁi MO51 Agent for CICS Adapter Builder - untitled =] E3
File Edit ¥iew Message Sets Help o

D) & W e

Message Sets l Adapters]

M| [Me.. | O w Propeties m
) Message Sets

R |

| | s

Figure 83. Initial panel of the MQSI Agent for CICS Adapter Builder

__Step 2. Name your tutorial workspace and save it to the repository.

From the File pull-down menu, select Save Workspace. Enter a name
for the workspace, such as TU_FEPI_WS, and click Save

Note: Be sure to use under_scores and not dashes "-"
workspace.

when naming the

__Step 3. Import message sets.

A message set is a collection of structured XML-based data types that
are stored in the message repository.

When you import a message set, what you are really doing is bringing
in the COBOL structured data type definitions from existing CICS
transactions and the 3270 screen interactions with the host system, into
the Adapter Builder’s control center. The control center utilizes the
message set as an interface between the adapter builder tool and the
business transaction to be modelled.

After importing a message, you can modify and store it.
Note: It is much easier to import a COBOL structured data type

definition than it is to build the message set. If there is no record
description, create one with a text editor and import it.

This tutorial uses the following message sets:

Chapter 5. Build an adapter that supports a FEPI interface 121

Build an adapter that supports a FEPI interface

TU_F_MSG_SET — Basic adapter messages. These include the
following:

— TU_F_RAW — The input record description from the controlling
application.

— TU_F_DEC — The Decision node message.

— TU_F_REPLY — The Response message.

CICS_SAMPLES — Standard CICS sample messages. These include:
— CICS Request and Response

— System FEPI overrides

— System LU LOGON

TU_F_3270_MSG_SET — CICS captured screen messages and screen
layouts.

a. Right click on the Message Sets folder, select Import to New

Message Set > COBOL.

Ei Cobol Language Message Importer [¥]

—Source Information Panel

Please selectthe COBOL saurce file.

Message SetMame [TU_F_MSG_SET

source File [moiaciTutarialS\FEPR_T_rds chl

[Create Copybook Compound Type Only

== Hack Mext == Einist | Cancel | Help |

Figure 84. Import a message set (source information)

On the COBOL Language Message Importer dialog (Source
Information Panel), enter the Message Set Name (in the tutorial,
TU_F_MSG_SET) and the directory path where the Source Files for
the copybooks are located (<mqiac_tutorials>\fepi\tu_f_rds.cbl).

For the purposes of this tutorial, leave theCreate Copybook
Compound Type Only box unchecked. This box is an option that
controls how copybooks can be imported.

b. Click Next.

122 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

€. On the COBOL Language Message Importer dialog (Group Level
Panel), select the message to import (for the tutorial, select
TU_F_RAW) and select the Request message type radio button.

Ei Cobol Language Message Importer %]

—Group Level Panel

Please selectthe COBOL Group Level to impaort.

TEE

T _F_DEC

TU_F_REPLY % Request
" Response
" Undefined

O, specify a non-Level 01 Graup

View COBOL File |

== Back [t == | Einish I Cancel | Help |

Figure 85. Import a message set (group level)

The radio button selections are as follows:

Request
Use if the message is going to be used as an input message
in a transaction.

Response
Use if the message is going to be used as an output
message in a transaction.

Undefined
Can be used for messages that are not used in a transaction.

Click Finish to complete the import.

d. Right click on the newly created TU_F_MSG_SET folder and select
Import to Message Set > COBOL. On the COBOL Language
Message Importer dialog (Source Information Panel), enter the
directory path where the Source Files for the copybooks are located
(<mgiac_tutorials>\fepi\tu_f_rds.cbl). See [Eigure 84 on page 12J).
Click Next.

e. On the COBOL Language Message Importer dialog (Group Level
Panel), select the message to import (for the tutorial, select
TU_F_DEC) and select the Undefined message type radio button.

Chapter 5. Build an adapter that supports a FEPI interface 123

Build an adapter that supports a FEPI interface

ﬁi Cobol Language Meszsage Importer E

—Group Level Panel

Please selectthe COBOL Group Level to import.

TU_F_Rew |

TI_F_REPLY " Reqguest

" Response

Or, specify a non-Level 01 Group

Wiewy COBOL File |

== Back [t == | Finish I Cancel | Help |

Figure 86. Import a message set (group level)

Click Finish to complete the import.

f. Repeat the procedure in steps ¢ and d until all of the following
messages (with the specified message types) are imported:

Table 45. Messages to add to the workspace

Message Message Type Purpose

TU_F_RAW Request Input message used by the
navigator to receive
information from the
controlling application.

TU_F_DEC Undefined Decision node message used
by the navigator to
determine how to flow
logically within the flow.
This message provides a
series of fields, the context of
which are evaluated by the
Navigator to control logical
flow.

TU_F_REPLY Response Message used to receive
customer demographic
information as provided by
the back end application.

g. Next, you need to add the CICS_SAMPLES message set to your
workspace. Right click on the Message Sets folder and select Add to
Workspace > Message Set.

124 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

The CICS_SAMPLES message set will be utilized later on in this
tutorial to assist with screen recognition and transaction
implementation issues in overrides and passticket processing.

h. Select the CICS_SAMPLES message set in the Add an Existing
Message Set window and click Finish.

Fif Add an existing Message Set Eq

Bl Tc_M_MESSAGE_SET
B Tc_D_MESSAGE_SET
B 54 MESSAGE_SET
B Tc_F_3270_MSG_SET
B TC_F_M3G_SET

= C SAMPLES

Bl Tu_D_MESSAGE_SET

Finish I Cancel Help

Figure 87. Add the CICS_SAMPLES message set

i. Right click on the CICS_SAMPLES message set folder and select
Add to Workspace > Message. Select all the messages in the Add an
Existing Message window (click on each message while you press
the CTRL key) and click Finish.

Chapter 5. Build an adapter that supports a FEPI interface 125

Build an adapter that supports a FEPI interface

ﬁi Add an existing Meszage

Finish I Cancel Help

Figure 88. Add messages to the CICS_SAMPLES message set

j. Finally, you need to create a message set to hold imported 3270
messages. Right click on the Message Sets folder, select Import to
New Message Set > 3270. On the Create 3270 Message Set dialog,
enter the Message Set Name (in the tutorial, TU_F_3270_MSG_SET)
and the Host IP Address. The Host IP Address you enter should
correspond to the host system you are accessing. Click Finish.

126 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

ﬁi Create 3270 Meszage Set E3

—3270 Message Set Panel

Message Set Mame ITU_F_32TD_MSG_SET

Host IP Address |g_eg_e,115

== Hack IEsdi=e | Finigh I Cancel | Help |

Figure 89. Create the 3270 message set

o=

You just..

P

You have just completed importing the required message sets using the COBOL
importer.

You are now ready to import the 3270 screens to the message sets.

Importing Screens

a. Right click on the TU_F_3270_MSG_SET message set folder and
select Import to Message Set > 3270.

b. On the 3270 Screen Importer dialog, click Connect to connect to the
Host. This will put you in 3270 emulation mode.

Chapter 5. Build an adapter that supports a FEPI interface 127

Build an adapter that supports a FEPI interface

Hot Line:
Date _
H E T

EE T

Enter Logen Informatrion:

User .

lication

np

16-61 Terminal :

Time .

Marme

E—

PF1 PF2 PF3 PF4 PF& PFE& Erter P At | Hewline
FF7 FFg FFa FF10 FF11 PF1Z Clear PAZ | SwsReq | MextPad
Mext == Finish Cancel ‘ Help

Figure 90. 3270 Screen Importer in emulation mode

c. Logon to the CICS region where the installation verification
back-end programs were installed.

Note: You should use the Userid and Password that you have been

assigned to access your

host system.

128 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

Fignon to CICE

Disconnect

*+++ GELCOME TO CICE *+**
Impaort

v Calify screen

Type wrour userid and passwerd, then press ENTER:

Mame

Groupid . . .
Languages . . .

¥Wew Pas=word . . .

PF1 PF2 PF3 PF4 PF5 PFE& PA1 Aftn | Hewline
PFT PFa PFa FF0 PF14 PFi12 Clear Paz | SwysReq | MextPad
Mest == | Finish | Cancel | Help ‘

Figure 91. CICS logon screen

d. Perform a screen capture for the CICS logon screen. Enter
TU_F_SIGNON_SCR in the Name field and click the Import button.

Note: No Userid or Password values are entered in the screen
before the screen capture because these values will be
supplied using the FEPI PassTicket feature in the tutorial.

Bignon to CICE APPLID CIC Disconnect

g *** TELCOME TO CICE ***

3
=
)
—-

v Gualify screen

Teype wour userid and pas d. then pres=s ENTER:

Mame
U_F_SIGHNON_S

T

T=arid Froupid . . .

Fas=sword . . .

Figure 92. Capturing the CICS logon screen

When you import a screen, the builder uses an algorithm to select
the best elements to represent the screen layout. Each field on a
screen is imported as an element. In addition, an element qualifier
is created for each field that was chosen by the algorithm to use for
screen identification.

You can view the element qualifiers that were created for the CICS
Login screen (TU_F_SIGNON_SCR) by clicking the Next button (see

Chapter 5. Build an adapter that supports a FEPI interface 129

Build an adapter that supports a FEPI interface

[Eigure 93). Notice that there are 6 Screen Qualifiers specified. Select
the TU_F_SIGNON_SCR_Row1Col66 qualifier which indicates the
screen position (row 1 and column 66). The text for the element
qualifier is "APPLID” and notice that the Use as Qualifier checkbox
is now selected.

You can customize element qualifiers, but for now just click the
Back button to continue with the 3270 screen import process.

Ei 3270 Screen Importer
3270 Element Gualifier Selection

Select the Elements to use as Qualifiers

[El TU_F_SIGNON_SCR_Rawi Col1 |~]
E TU_F_SIGMON_SCR_Rowl Col29

=l TL SIGHNON_SCR_Row! Col6

[l TU_F_SIGNON_SCR_Row Col73

|E| TU_F_SIGHOM_SCR_Row3Cal2 Remaove all qualifiers
El TU_F_SIGNON_SCR_RowdCol2

[TU_F_SIGNON_SCR_RowsCol2 Text

B TU_F_SIGNON_SCR_RowéCaol2 JaprLID

El TU F_SIGNON_SCR_RowiCol2

= TU F_SIGMON_SCR_Rowl 0Call 1 :
0

E TU_F_SIGNON_SCR_Rowl 0Cal26 &l Usz ge Gzl fres

El TU_F_SIGNON_SCR_Rowl0Cal35 Text Offeet

= TU_F_SIGNON_SCR_Rowl0Cal38 Ii

El TU F_SIGNON_SCR_Rowl0cals? —| |0

E] TU_F_SIGNON_SCR_Rowl DCal61

= TU_F_SIGNON_SCR_Rowl1Call 1 Text Length

E TU_F_SIGNON_SCR_Rowl1Cal26 0

E TU_F_SIGNON_SCR_Rowl1Cal35

= TU_F_SIGNON_SCR_Rowl 2Call 1

E TU_F_SIGNON_SCR_Rowl 2Cal26 | |

e

e

e

e

Mumber of Screen Qualifiers:

[=7]

== Back ‘ Finish | Cancel ‘ Help |

Figure 93. Element Qualifiers for the CICS logon screen

e. On the CICS Login screen, click in the Userid field and enter your
Userid. Enter your Password in the Password field. Click the Enter
button to logon. This will display the Signon Complete screen.

f. Make sure that the Qualify Screen check box is checked.

g. Capture the Signon Complete screen. Enter TU_F_COMP_SCR in
the Name field and click the Import button.

130 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

Disconnect

Import

]

[v Gualify screen

Mame
U_F_COMP_Skz

DFHCEZ54? Zign-on is coemplets [(Languages ENUT).

Figure 94. CICS Signon Complete screen

The information message shown in w displays. This message
indicates that you need to customize element qualifiers to identify
the CICS Signon Complete screen. Click OK to close the
information message and click the Next button.

[%]
ér): CIATBEOZ] Screen recoghition data cannot be determined.
Element CGualifiers could not be automatically generated for this screen.
The screen and transaction data will be sawved, but Element Qualifiers

should be created manually to allow for future screen recagnition.

Press Mextto proceed to the 3270 Element Gualifier Selection Panel.

)

Figure 95. 'Screen recognition data cannot be determined’ information message

h. Create an element qualifier for the CICS Signon Complete screen.

1) Select the TU_F_COMP_SCR_Row24Col2 element qualifier.

2) Highlight the substring "Sign-on is complete” within the Text
field. This will be the substring that will be used to identify the
CICS Signon Complete screen.

3) Check the Use as Qualifier check box. Notice when the
substring is selected the Text Offset field is 11 and Text Length
19.

Chapter 5. Build an adapter that supports a FEPI interface 131

Build an adapter that supports a FEPI interface

3270 Element Gualifier Selection

Selectthe Elements to use as Qualifiers
TU_F COMF‘ SCR_Rowl CUH

= R
B TU F COMF‘ SCR RDW2400I48

Remove all gualifiers

]iLanguage EMLY

v Lise as Qualifier

Text Offset
11

Text Length
19

kumber of Screen Gualifiers:
1

Figure 96. Customizing the element qualifier

4) Click Finish. The Continue Importing 3270 Screen message box
will display.
5) Click Yes to continue importing screens.

i. Input the following CICS transaction to continue to the Customer
Information screen:

1) Put the cursor focus on the CICS Signon Complete screen.
2) Click the Clear button (located below the screen).
a) Put the cursor focus on the CICS Signon Complete screen.
3) Type CMAYV in the CICS Signon Complete screen.
4) Click the Enter button (located below the screen).
5) Check the Qualify Screen check box.

j- Enter TU_F_CUST_SCR in the Name field and click the Import
button.

132 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

**% CUSTOMEE IDENTITICATION *+*+* CIFS01

Disconnect |
, Firer Middla
v Gualify screen

ou=e Mame:

Marme
L_F_CUST_SCR

Select an option ([1=D

Enter=Fr

FF1 PFz PF2 PF4 PF& PF& Enter Pl Atn MewLine
FF? PF& FFa PF10 FF11 PF12 Clear P2 SwsReq | MextPad

Figure 97. Customer Information screen

k. View a customer record. Enter 10000 in the Account # field, enter 1
in the Select an option field:

IMEE. IDENTIFICATION *** 5
Disconnect

, Firsr Middle

|

v Gualify screen

Mame
U_F_CUST_SCF

T

Enterc=Fr

PF1 PFz PF2 PF4 PFS PF& Eniter PA1 Atn MewLine
PFY PF& FFa PF10 PF11 PF1z2 Clear PAZ SysReq | MextPad

Figure 98. Requesting a customer record display on the Customer Information screen

Click Enter.

Chapter 5. Build an adapter that supports a FEPI interface 133

Build an adapter that supports a FEPI interface

The following record should display.

La=t, First Middle

*%&% CUSTOMER IDEHWTIFICATION **+% 0 Disconnect

2ip Code:

[v Cualify screen

Mame
U_F_CUST_SCF

T

Account No

1111111

Withdrawm E=Eal Ing)

Enter=Pr el

Figure 99. Customer record display

Before moving on to the next step, you should sign off the host
session and disconnect from the 3270 Importer.

From the Customer Identification screen:

* Click PF3 to get to a CICS blank screen

* Type the transaction that signs you off of your host system
* Click Disconnect and then click Finish.

You just..

TN

You just completed importing both the COBOL structured data type definitions required
to model the FEPI microflow and the 3270 screens that will be used to scrape data from
the target back-end system.

__ Step 4. Add transactions to the workspace.
a.

A transaction represents the screen recognition, message and data
flowing to and from the back-end FEPI screens to be accessed by
the adapter. In order to create a FEPI command node, you need to
associate the command node with a transaction. The messages
associated with the transaction are defined as Input and Output
representing the expected format of the input message (and
identified as input terminal in the node) and the expected format of
the output screen (and identified as the output terminal in the

134 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

node). Select the Transactions folder under the
TU_F_3270_MSG_SET message set. Right click on the Transaction
folder. Select Add to Workspace > Transaction. Select the
TU_F_CUST_SCR and TU_F_SIGNON_SCR transactions and click
Finish.

A FEPI microflow transaction is a relationship between the content
of all the captured back-end application screens. These transactions
are then incorporated into the appropriate command nodes.

Ei Add an existing Tranzaction
. S IZQ'EF_

&) TU_F_COMP_SCR (TU_F_COMP_SCR)

_CUST_SCR
L TULF_SIGROR_SCR)

Finish Cancel Help

Figure 100. Add an existing transaction

b. Customize the system-supplied transactions for use in the
microflows. Expand the CICS_SAMPLES message set folder. Right
click on the Transaction folder. Select Add to Workspace >
Transaction. Select the SAMPLE_PARSER and
SAMPLE_TRANSACTION transactions and click Finish.

1) Expand the Transactions folder under the CICS_SAMPLES
message set. Right click on the SAMPLE_PARSER transaction
and click Copy.

2) Right click on the Transactions folder in your
TU_F_3270_MSG_SET message set and click Paste.

Note: A warning message stating that "Any existing elements in
this message set will not be overwritten. Are you sure
you want to paste this message?” will appear. Click the
Yes button.

You should rename the transaction that you copied to
TU_F_SAMPLE_PARSER. Also rename the Identifier field to

Chapter 5. Build an adapter that supports a FEPI interface 135

Build an adapter that supports a FEPI interface

3)

ﬁi Add an existing Meszage

TU_F_SAMPLE_PARSER in the Properties pane. Click the
Apply bar at the bottom of the Properties pane to apply the
change.

Add the messages representing the imported 3270 screens to the
TU_F_SAMPLE_PARSER. These are the screens the parser will
attempt to recognize during the adapter processing in order to
identify the current user screen.

Right click on the TU_F_SAMPLE_PARSER transaction and
select Add > Message. Select the TU_F_SIGNON_SCR _screen,
TU_F_CUST_SCR_screen, and TU_F_COMP_SCR_screen
messages as depicted in the following figure and click Finish.

E{ CICSMACROD _request (CICSMACRO request)

@ CICEMACRO response (CICESMACRO response)

|§1 TU_F_COMP_SCR_request (TU_F_COMP_SCR_request)

|§1 TU_F_COMP_SCR_response (TU_F_COMP_SCR_response)
B TU_F_COMP_SCR_screen (TU_F_COMP_SCR_screen)

@ TU_F_CUST_SCR_request (TU_F_CLUST_SCR_requesh

|§1 TU_F_CUST_SCR_response (TU_F_CUST_SCR_response)

B TU_F_CUST_SCR_screen (TU_F_CLIST_SCR_screen)
E{ TU_F_SIGHOMN_SCR_request (TU_F_SIGMOMN_SCR_request)
@ TU_F_SIGHOMN_SCR_response (TU_F_SIGHOMN_SCR_response)

B TU_F_SIGNON_SCR_screen (TU_F_SIGMNON_SCR_screen)

Finish I Cancel Help

Figure 101. Add messages to the TU_F_SAMPLE_PARSER folder

4)

5)

When you import a screen, the following items are created:
* screen

* request

* response

The screens identify where you are in the application. The
request and response are the commands that are used as input
and output for traversing the application and capturing the
screens.

Under the CICS_SAMPLES message set, right click on the
SAMPLE_TRANSACTION transaction and click Copy.

Right click on the Transactions folder in your
TU_F_3270_MSG_SET message set and click Paste. You should
rename the transaction to TU_F SMPLE_TRANSACTION. Also
rename the Identifier field to TU_F_SMPLE_TRANSACTION in

136 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

':i MQ51 Agent for CICS Adapter Builder - TU_FEPI_WS5_xml

Build an adapter that supports a FEPI interface

the Properties pane. Click the Apply bar at the bottom of the

Properties pane to apply the change.

6) Add the messages representing Customer screen to the
TU_F SMPLE_TRANSACTION. This is needed to add data to a
blank CICS screen. This is the screen that will display after the
CMAV transaction is processed.

Right click on the TU_F_SMPLE_TRANSACTION folder and

select Add > Message. Select the TU_F_CUST_SCR_screen and

click Finish.

c. The Message Sets view is shown in w Save your
workspace by selecting File > Save Workspace.

Tip: The SAMPLE_PARSER is renamed TU_F_SAMPLE_PARSER,

but the SAMPLE_TRANSACTION is renamed

TU_F SMPLE_TRANSACTION because when the COBOL source

code for each of these transactions is generated, the first 8

characters (excluding the underscores "_") are used to create the

name. This same 8—character name would be created for the
TU_F_SAMPLE_TRANSACTION. By renaming the
SAMPLE_TRANSACTION to TU_F_SMPLE_TRANSACTION, you

avoided the name collision.

File Edit ¥iew Message Sets Help

O/ @ &) By &y

M=l E3

Messag

e Sets lAdapters]

TU_F_.
[+ Categaries

------ E3] Element Gualifiers
------ Bl Elements

------ = Element Lengths

| | Message Sets

(m] M4 Froperies

Sets

3270_M3G_SET B

Messages

- B TU_F_COMP_SCR_request

- [Bl TU_F_CUST_SCR_reguest
----@TU_F_SIGNON_SCR_request

=--g=9 Transactions

-G TU_F_SMPLE_TRANSACTION
=< TU_F_SAMPLE_PARSER
-8 TU_F_SIGNON_SCR_screen

] Elementalid Values
B CICS_SAMPLES
&8 TU_F_MSG_SET B

Apply

4]

Figure

102. Message Sets view

Create the subflows for the FEPI adapter

G

In the following sections you will create the subflows for the FEPI adapter.

Chapter 5. Build an adapter that supports a FEPI interface

137

Build an adapter that supports a FEPI interface

The following sections contain instructions that will allow you to create the FEPI

adapter subflows identified inFigure 81 on page 115.

Each subflow that you create contains the instructions regarding its functional role
at run time, as described in K i ign”

For each subflow, you will perform the following tasks:
1. Create component types

A component type represents a template that can be used as a building block in
modeling the subflow. The component types used by the subflow will depend
on what the subflow is intended to do. For example, if at run time the subflow
is required to test a condition for true or false to resolve a control flow path,
you would create a Decision component type. For a list of the component types
that are supplied with the adapter builder and for a description of their
purpose, see the section on Microflow components in the MQSeries Integrator
Agent for CICS Transaction Server Using the Control Center book.

When you are finished with creating component types for a subflow, you will
have all the necessary building blocks required to model the subflow’s
functionality. The component types will display in the Adapter Tree View. From
the Adapter Tree view you will be able to drag a component type onto the
Microflow Definition pane and begin the process of constructing the subflow.

2. Model the subflow
In this step you will perform a set of tasks to model the subflow. When you
model a subflow you are specifying how it will function at run time. Within the
context of the business flow, the model is of the navigation of the server
application with the back end systems.
Within the builder, the model of each subflow is represented as a separate and
distinct microflow, a sequence of nodes and connections. The microflow models
the processing of a message as it passes from the input of the adapter to the
output of the adapter.
The modelling step is made up of the following tasks:
¢ Adding microflow nodes
* Connecting the microflow nodes
* Defining the mappings

3. Assign the model of the subflow to a CICS MQAdapter
By associating the model of the subflow with a CICS MQAdapter, you create
the adapter that provides the actual implementation of the adapter request
processing at run time.

4. Generate the adapter
In this step you generate the copybooks and the run time code for the subflow.

Create the Parser subflow

Many production implementations of FEPI allow the FEPI application to leave the
connection active or hot when the application has completed. The next time the
connection is used, any screen could be received from the back-end system.
Because of this, we recommend that you use a parser subflow to perform screen
recognition.

The Parser subflow is used to identify which screen the user is on and then set a
switch to determine the processing path.

138 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

Follow these steps to create the Parser subflow:
1. Create the component types for use in the Parser subflow
This step is made of the following tasks:
* Create a Command Type
* Create a Microflow Type
a. Create a command type .

The TU_F_PARSER Command type will allow the microflow to identify the
current screen (Complete screen, Signon screen or Customer screen). Make
sure you are in the Adapters view.

1) Right click on the Command Types folder and select Create >
Command Type. Enter TU_F_PARSER in the Name field.

2) Using the drop down menus, set the following field property values:

Table 46. TU_F_PARSER Command property values

Field Value
Message Set TU_F_3270_MSG_SET
Transaction TU_F_SAMPLE_PARSER
Interaction Specification TU_F_fepiinteraction.ispec

Note: The Connector Resource for FEPI command types is not used and
is left blank.

r:i Create a new Command Type

Mame: [Tl_F_PARSER

Commmand Type | Interaction Specification | Description

Message Set [TU_F_3270_MSG_SET =
Transaction [TU_F_SAMPLE_PARSER =
Caonnector Resource | ;l
Interaction Specification [TU_F_fepiinteraction.ispec =l
In Terminal JCICSPARSER request

Qut Terminal 1 JTU_F_SIGNON_SCR_screen

Qut Terminal 2 JTU_F_CUST_SCR_screen

Qut Terminal 3 JTU_F_COMP_SCR_screen

Out Terminal 4 |

Finish I Cancel Help

Figure 103. Creating a TU_F_PARSER Command type

Click Finish to apply the property values.
b. Create a microflow type.

Create a microflow that will model the Parser subflow processing.

Chapter 5. Build an adapter that supports a FEPI interface 139

Build an adapter that supports a FEPI interface

1) Right click on the Microflow Types folder and select Create > Microflow
Type.

2) Enter TU_F_PARSER in the Name field.

3) Use the drop down menu in the Connector Resource field to select

TU_F_PRSERfepi.rsc as the Connector Resource file and then click
Finish.

r:i Create a new Microflow Type]

Name: [TIU_F_PARSER

Microflow Type | Connector Resource | Description
Connector Resource [TU_F_PRSERfepirsc =]

‘ Finish I Cancel Help

Figure 104. Creating a TU_F_PARSER Microflow Type

4) Save your workspace by selecting File > Save Workspace from the
menubar.

==

You just..

PN

You just created all of the component types that you will need to model the Parser
subflow.

2. Model the Parser subflow

In this step you will perform a set of tasks to define and model the Parser
subflow’s functionality. The model represents the behavior of this subflow at
run time.

This step is made of the following tasks:
* Adding subflow nodes

140 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

* Connecting the subflow nodes
* Defining the mappings
a. Add nodes to the Parser subflow.

The subflow processing identifies which screen the user is on and sets a
switch. Construct the Parser subflow by adding the nodes as shown in

In this task, you will drag the component types that you created in step il
W, onto the Microflow Definition pane. When you drag a
component type onto the Microflow Definition pane, it is instantiated and
referred to as a microflow node. A single component type can be used to
create one or more microflow nodes (instances) as part of the same
microflow.

1) Add the Input Terminal node
An Input Terminal serves as an entry point for the microflow. The Input
Terminal can make a connection to any terminal that resides within the
microflow.
a) Drag the node on to the Microflow Definition pane.
In the Microflow Types folder, select the TU_F_PARSER microflow
you created.

Note: To model your adapter in the workspace (Microflow
Definition pane), you must make sure the microflow is
selected in the Microflow Types folder.

Drag an Input Terminal type from the Adapter Tree View to the
workspace (Left click and hold on the Input Terminal to drag it to
the workspace).

b) Rename the node

Right click on the Input Terminal and select Rename. Rename the
Input Terminal node to Input RAW and click Finish.

C) Set the properties for the node

Right click on the Input Terminal and select Properties. From the
drop down menus, select TU_F_MSG_SET in the Message Sets field
and select TU_F_RAW in the Messages field. Click OK.

Chapter 5. Build an adapter that supports a FEPI interface 141

Build an adapter that supports a FEPI interface

E§ Input RAW
Iriput HAW' Descriptinnl
Message Set [TU_F_MSG_SET =
Message [TU_F_Raany =l
Dk Cancel SRRl | Help |

Figure 105. Configuring the Input RAW Input Terminal node properties

2) Add the Command node

In this step you will create a Parser command type that will be used to
determine which screen you are on (Complete screen, Signon screen, or
Customer screen).

a) Drag the node on to the Microflow Definition pane
Drag a TU_F_PARSER Command type from the Adapter Tree View
to the workspace. Place the node to the right of the Input RAW
node.
b) Rename the node
Right click on the TU_F_PARSER1 Command node and select
Rename. Modify TU_F_PARSER1 in the New name field to the name
TU_F_PARSER and click Finish.
3) Add the Output Terminal node
An Output Terminal serves as an exit point for the microflow. The
Output Terminal can receive connections only. It can never start a
connection. A microflow can have multiple Output Terminals (as in the
DPL and MQ tutorial exercises). A developer must design the
controlling application to recognize the possible reply messages
provided by multiple Output Terminals.
a) Drag the node on to the Microflow Definition pane
Drag an Output Terminal type from the Adapter Tree View to the
workspace and place the node to the right of the TU_F_PARSER
node.
b) Rename the node
Rename the Output Terminal node to Output DEC and click Finish.

c) Flip the node

142 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

Right click on the Output DEC node and select Flip node.
d) Set the properties for the node

Right click on the Output Terminal and select Properties. From the
drop down menus, select TU_F_MSG_SET in the Message Sets field
and select TU_F_DEC in the Messages field. Click OK.

4) Save your workspace by selecting File > Save Workspace from the
menubar.

b. Connect the microflow nodes

In this task you will connect the microflow nodes that are on the Microflow
Definition pane. You will do this by creating connections. A connection is a
wire that connects an output terminal of one microflow node to the input
terminal of another. There are two types of connections (control connection
and data connection). For a detailed description of the different types of
connections, see the section on composing microflows in the MQSeries
Integrator Agent for CICS Transaction Server Using the Control Center book.

1) Right click on the Input RAW node and select Connect > Out. Move the
connection line to the TU_F PARSER node and left click. This adds a
control connection and a map (Map1 node) between the two nodes.

A control connection provides a sequential relationship between 2 nodes
in a microflow.

& o -

Input RAYVY TU F_PARSER

Figure 106. Connecting the Input RAW Input Terminal node and the TU_F_PARSER
Command node

2) Add a control connection from the first out terminal
(TU_F_SIGNON_SCR _screen) on the TU_F_PARSER node to the Output
DEC node. This auto-adds a Map2 node on the control connection line.

Refer to [Figure 107 on page 144 (the Map node labeling has been added

to the figure).

3) Add a control connection from the second out terminal
(TU_F_CUST_SCR _screen) on the TU_F_PARSER node to the Output
DEC node. This auto-adds a Map3 node on the control connection line.

4) Add a control connection from the third out terminal
(TU_F_COMP_SCR _screen) on the TU_F_PARSER node to the Output
DEC node. This auto-adds a Map4 node on the control connection line.

5) Add a Map node (Map5) between the TU_F_PARSER node and the
Output DEC node. To create a Map node, drag a Map type from the
Adapters Tree View (left panel) to the Microflow Definition panel (right
panel).

6) Add a control connection from the fourth out terminal (labeled
Unknown) on the TU_F_PARSER node to the Map5 node and from the
Map5 node to the Output DEC node.

Chapter 5. Build an adapter that supports a FEPI interface 143

Build an adapter that supports a FEPI interface

7) Save your workspace by selecting File > Save Workspace from the
menubar.

ﬁi MO51 Agent for CICS Adapter Builder - TU_FEPI_W5.xml
File Edit Wiew Adapters Help

O 5 BB 8

Message Sets AdamErSl

T | Adapters | O | w4 TU_F_PARSER | Microflow Definition

~- 1 CICS MaAdapters
=1 Microflow Types
IU_F_PARSER
-] Cammand Types
-] Data Context Types
- Decision Types
-] lteration Types

-.EE Input Terminal
-2 Output Terminal .D 5 =B

M
Input RAWY TU_F_PAE

L O

| T sl

v 4l

Figure 107. TU_F_PARSER

c. Map your subflow

You are now ready to perform the data mappings for the TU_F_PARSER
subflow. The act of mapping refers to the modeling of data transformation
via a Map node, between an output terminal on one node and an input
terminal on another node.

Data transformation can include a variety of functions:
* Associating a field in one message with a field in another message.
* String mapping such as specifying pad characters.

* Date mapping, such as converting a date in one format to a date in
another format.

* DPutting literal data into a message.
* Adding custom code to perform other data transformation functions.
1) Perform the mapping for the Mapl node as listed in [Cable 47 od

w and shown in [Eigure 108 on page 149, This map sets the

CICSPARSER request to a blank character. The blank character is needed
because there must be some character mapped in a mapper node.

Right click on the Map1 node (the Map node that appears between the
Input RAW and TU_F_PARSER nodes) and select Properties. Click the

DataMappingExpression tab.

144 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

Perform a literal mapping. Right click on the CICSPARSER_request field
in the CICSPARSER_request Output Message and select Add element.
This will create a mapping that is labeled LITERAL on the input field.
Double click on LITERAL field and rename it to * * (quotes must be used
around the space).

Table 47. Mapping fields for Mapl node (TU_F_RAW message to CICSPARSER_request
message)

Input Field Output Field Description
Y CICSPARSER _request Blank character to provide mapping
content
Ef Map1
Map1 DataMappingExpression | Deg.;ripti.;.n|
Input Messages COutput Messages =
Input RAYY | TU_F_PARSER |
Messane TLLF_RA Messane CICSPARSER_request
B TU_F_RaAw Bl CICSPARSER_request
El CUST_HNUM
“-[Z] SIGNOFF_¥N
Input Ctput
" » TIJ_F_PARSER CICSPARSER_request | —
)54 I Cancel | Apply | Help |

Figure 108. Mapping for Mapl node

2) Perform the mapping for the Map2 node as listed in ffable 49 and shown
in Eigure 109 on page 144. This map passes information about the screen
identity when a Signon screen is identified.

Table 48. Mapping fields for Map2 node (TU_F_SIGNON_SCR_screen message to
TU_F_DEC message)

Input Field Output Field Description

'S’ DOC_SCR Sets DOC_SCR to 'S” when on the Signon
screen

Chapter 5. Build an adapter that supports a FEPI interface 145

Build an adapter that supports a FEPI interface

giHapE
Mapz DataMappingE}{pressiunl Descripﬁnnl
Input Messages Cutput Messages |;
TU_F_PARSER | Output DEC |
Meszage TLF_SIGMOMN_SCRE_screen Meszage TU_F_DEC
Bl TU_F_SIGNON_SCR_screen = |§1TU F_DEC
-E TU_F_SIGNON_SCR_Rowicalt]| E poc_s...

B TU_F_SIGNON_SCR_Row1 Col28
B TU_F_SIGNON_SCR_Row1 Col6e
B TU_F_SIGNON_SCR_Row1Cal73
B TU_F_SIGNON_SCR_Row3Colz
B TU_F_SIGNON_SCR_Row4Col2
B TU_F_SIGNON_SCR_RowsCol2
B TU_F_SIGNON_SCR_RowECol2
B TU_F_SIGNON_SCR_Row&Col2
B TU_F_SIGNON_SCR_Row1 0Cal11
B TU_F_SIGNON_SCR_Row 0C0l26
B TU_F_SIGNON_SCR_Row10Cal35 =

b

h Input Cutput
'S $ Cutput DEC. .DOC_SCR —

_ox |

Apply | HEHG.J

Figure 109. Mapping for Map2 node

3) Perform the mapping for the Map3 node as listed in [Cable 4d. This map
passes information about the screen identity when a Customer screen is
identified.

Table 49. Mapping fields for Map3 node (TU_F_CUST_SCR_screen message to
TU_F_DEC message)

Input Field Output Field Description

'’ DOC_SCR Sets DOC_SCR to 'C’ when on the
Customer screen

4) Perform the mapping for the Map4 node as listed in [Cable 50. This map
passes information about the screen identity when an Unknown screen
is identified.

Table 50. Mapping fields for Map4 node (TU_F_COMP_SCR_screen message to
TU_F_DEC message)

Input Field Output Field Description

U DOC_SCR Sets DOC_SCR to "U” when on the
Complete screen

Note: For the purposes of this tutorial, the TU_F_COMP_SCR_screen is
mapped as 'U” (Unknown).

5) Perform the mapping for the Map5 node as listed in [Cable 51 od
@. This map passes information about the screen identity when a
screen is unknown.

146 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

Table 51. Mapping fields for Map5 node (UNKNOWN message to TU_F_DEC message)

Input Field Output Field Description

U’ DOC_SCR Sets DOC_SCR to "U” when on the
Unknown screen

o=

You just..

P

You just modelled the Parser subflow.

In your model, you have coded the instructions on how the subflow is supposed to
behave at run time. You are now ready to assign this subflow to an CICS MQAdapter.

3. Assign the model of the subflow to a CICS MQAdapter

In this step you will associate the subflow (the model that you just completed),

with a CICS MQAdapter.

A CICS MQAdapter provides the actual implementation of the adapter request

processing.

a. Right click on the CICS MQAdapter Collection folder and select Create >
CICS MQAdapter

b. On the Create a new CICS MQAdapter dialog, enter TU_F_PARSER for the
Name and use the drop down menu to select TU_F_PARSER for the
Microflow Type. Leave the Proxy Client Connector Resource and Proxy
Client Interaction Specification fields blank. Click Finish.

Ei Create a new CICS MOAdapter <]

Name: [TU_F_PARSER
CICE MOAdapter | Description

Wicraflow Type [TU_F_PARSER
Prowy Client Connector Resource |

Led Lef Lo

Prowy Client Interaction Specification |

Finish I Cancel Help

Figure 110. Creating an CICS MQAdapter

Chapter 5. Build an adapter that supports a FEPI interface 147

Build an adapter that supports a FEPI interface

You have completed the parser subflow and setup of this segment of your
adapter.

Save your workspace by selecting File > Save Workspace from the
menubar.

Now you are ready to generate your adapter.
4. Generate the adapter
The adapter code files will be generated in the output directory that you
specify.
Adapter code generation is a two step process:
a. Generate copybooks from message definitions (in Message Sets view).

b. Generate the adapter run time code from the modeled microflow (in
Adapters view).

a. Generate Copybooks
You will generate copybooks for the following messages:
« TU_F_DEC
+ TU_F_RAW
+ TU_F_REPLY
e TU_F_COMP_SCR_request
e TU_F_CUST_SCR _request
* TU_F_SIGNON_SCR_request

Note: To generate a copybook for a message, the message must be checked
out or newly created.

E-CMessages

E‘I TUM BE C_IN E Message Checked Out Symbol
%1 TUM_BE C_OUT "i_ New Message Symbol

Figure 111. Messages Sets folder showing checked out message and newly created
message

To generate copybooks, make sure that you are in the Message Sets view
and then, follow this procedure:

1) Make sure the list of messages is visible under the Messages folder for
the TU_F_3270_MSG_SET. To view the messages, click on the + sign in
front of the Messages folder to display the list of messages.

2) Right click on the message for which you want to generate a copybook
(for example, TU_F_COMP_SCR_request) and select Generate >
COBOL.

3) Enter the output destination <mgqiac_tutorials>\fepi in the Path field
and click Finish.

Note: The copybook generate removes underscores from the message

names and only uses the first eight characters of the filename to
generate the new copybook name.

148 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

ﬁi Cobol Language Meszage Generator E

—Destination Panel

Path [moiaciTutorials\Fepi Browse |

= HAG | [HEx == | Einish I Cancel | Help |

Figure 112. Specifying pathname for copybook generation output

4) To complete generating COEEbOOkSE reFeat steps 2 and 3 for each of the

messages listed in step
b. Generate adapter code

To generate adapter code, make sure that you are in the Adapters view and
then, follow this procedure:

Note: You must generate the adapter code in the same directory where you

generated the copybooks.

1) Right click on the TU_F_PARSER adapter (listed under the CICS
MQAdapters folder) and select Generate > Generate COBOL Adapter.
Enter the output destination <mqiac_tutorials>\fepi in the PATH field
(the example uses C:\Mgiac\Tutorials\FEPI). Click Finish.

The generated adapter code will be output to the destination path
directory.

Chapter 5. Build an adapter that supports a FEPI interface 149

Build an adapter that supports a FEPI interface

Ei Cobol Language Adapter Generator E

—Destination Panel

Path |CiMgiaciTutorials\Fepi

== Hapk [HEst== Finish Cancel | Help |

Figure 113. Specifying pathname for adapter code generation output

Create the Signon subflow
The Signon subflow is used to sign a user onto a Customer application. Follow
these steps to create the Signon subflow:

1. Create the component types for use in the Signon subflow
This step is made of the following tasks:
* Create 2 Command Types
* Create a Data Context Type
* Create a Microflow Type
a. Create Command Types.
You will need to create two Command types:

¢ TU_F_SIGNON — Signs the user onto the system using FEPI PassTicket
information.

¢ TU_F_CMAV — Processes the CMAV transaction to bring up the
Customer screen.

1) Create the TU_F_SIGNON Command type.

a) Right click on the Command Types folder and select Create >
Command Type. Enter TU_F_SIGNON in the Name field.

b) Using the drop down menus, set the following field property values:

Table 52. TU_F_SIGNON Command property values

Field Value
Message Set TU_F_3270_MSG_SET
Transaction TU_F_SIGNON_SCR
Interaction Specification TU_F_fepiinteraction.ispec

150 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

Ei Create a new Command Type X
L

MName: [TU_F_SIGMNOMN

Carmmand Type | Interaction Specification | Description

Message Set [TU_F 3270 _MSG_SET -~
Transaction [TU_F_SIGNON_SCR [
Connectar Resource | j
Interaction Specification |TU_F_fepiinteraction.ispec =l
In Terminal JTU_F_SIGNOMN_SCR_request

Cut Terminal 1 TU_F_COMP_SCR_streen

Out Terminal 2 |

Finish I Cancel Help

Figure 114. Creating a TU_F_SIGNON Command type

Click Finish to apply the property values.
2) Create the TU_F_CMAV Command type.

a) Right click on the Command Types folder and select Create >
Command Type. Enter TU_F_CMAYV in the Name field.

b) Using the drop down menus, set the following field property values:
Table 53. TU_F_CMAV Command property values

Field Value
Message Set TU_F_3270_MSG_SET
Transaction TU_F_SMPLE_TRANSACTION
Interaction Specification TU_F_fepiinteraction.ispec

Chapter 5. Build an adapter that supports a FEPI interface 151

Build an adapter that supports a FEPI interface

Ei Create a new Command Type

Name: [TU_F_ChAY

Cormmand Type | Interaction Specification | Description

Message Set
Transaction
Zonnector Resource
Interaction Specification
In Terminal

Ot Terminal 1

Out Terminal 2

[TU_F_3270_M5G_SET
[TU_F_SMPLE_TRAMNSACTION
|TU_F_fepiinteractinn.ispec
JCICEMACRO_request
JTU_F_CUST_SCR_screen

Lef LefLefLel

Finizsh I Cancel Help

Figure 115. Creating a TU_F_ CMAV Command type

Click Finish to apply the property values.
b. Create the Data Context type

A data context type is a simple adapter component that is used to store data
for later access through a data flow.

Add a SYS_LU_LOGON Data Context. The SYS_LU_LOGON is the name of
a system-supplied Message as well as a system-supplied Data Context type.
It can be used in conjunction with the MAT_USELUPASS field defined in
the Connector Resource associated with a FEPI microflow.

When the MAT_USELUPASS field is set to Y, the FEPI microflow will use
the Userid from the MQ Message as the LU_OWNER and retrieve a
PASSTICKET value from CICS. These values will be stored in the fields in
the SYS_LU_LOGON Message. To use this FEPI PassTicket feature, you
need to add a SYS_LU_LOGON Data Context to your workspace.

1) Right click on the Data Context Types folder and select Add to
Workspace > Data Context Type.

2) In the Add an existing Data Context Type dialog list, select
SYS_LU_LOGON and click Finish.

c. Create a microflow type

Create a microflow that will model the processing of the Signon.

1) Right click on the Microflow Types folder and select Create > Microflow

Type.

2) Enter TU_F_SIGNON in the Name field.

3) Use the drop down menu in the Connector Resource field to select
TU_F_SGONfepi.rsc as the Connector Resource file and then click

Finish.

152 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

ﬁi Create a new Microflow Type
Name: [TLU_F_SIGNON
Microflow Type | Connector Resource Descriptinnl
Connector Besource |TU_F_EGDN1’Epi.rsc ;l
Finish Cancel Help

Figure 116. Creating a TU_F_SIGNON Microflow Type

4) Save your workspace by selecting File > Save Workspace from the
menubar.

—

You just..

P

You just created all of the component types that you will need to model the Signon
subflow.

2. Model the Signon subflow

In this step you will perform a set of tasks to define and model the Signon
subflow’s functionality. The model represents the behavior of this subflow at
run time.

This step is made of the following tasks:
¢ Adding subflow nodes

* Connecting the subflow nodes

* Defining the mappings

a. Add nodes to the Signon subflow

In this task, you will drag the component types that you created in [Lod
. When you drag a component type onto the Microflow Definition
pane, it is instantiated and referred to as a microflow node. A single

Chapter 5. Build an adapter that supports a FEPI interface 153

Build an adapter that supports a FEPI interface

component type can be used to create one or more microflow nodes
(instances) as part of the same microflow.

The Signon subflow processing uses the FEPI Override feature to supply a
Userid and PassTicket that allows the user to signon to the host system. You
will add the nodes shown in Ei

1) Add the Input Terminal node

An Input Terminal serves as an entry point for the microflow. The Input
Terminal can make a connection to any terminal that resides within the
microflow.

a) Drag the node on to the Microflow Definition pane

In the Microflow Types folder, select the TU_F_SIGNON microflow
you created.

Note: To model your adapter in the workspace (Microflow
Definition pane), you must make sure the microflow is
selected in the Microflow Types folder.

Drag an Input Terminal type from the Adapter Tree View to the
workspace (Left click and hold on the Input Terminal to drag it to
the workspace).

b) Rename the node

Right click on the Input Terminal and select Rename. Rename the
Input Terminal node to Input RAW and click Finish.

C) Set the properties for the node

Right click on the Input Terminal and select Properties. From the
drop down menus, select TU_F_MSG_SET in the Message Sets field
and select TU_F_RAW in the Messages field. Click OK.

154 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Bifl Input RAW
Iripput Hrﬂ%"é“'fl Descriptinnl

Build an adapter that supports a FEPI interface

Message Set |TLJ_F_MEG_EET
Messane

=
[TU_F_Rauny =]

QI Cancel SRRl | Help |

Figure 117. Configuring the Input RAW Input Terminal node properties

2) Add the Signon Command node

In this step you will add a TU_F_SIGNON Command node which will
be used to sign the user onto the host system.

3)

a)

b)

Drag the node on to the Microflow Definition pane
Drag a TU_F_SIGNON Command type from the Adapter Tree View

to the workspace. Place the node to the right of the Input RAW
Input Terminal node

Rename the node

Right click on the TU_F_SIGNON1 Command node and select
Rename.

Modify TU_F_SIGNONI in the New name field to the name
TU_F_SIGNON and click Finish.

Add the Data Context node

In this step you will add the SYS_LU_LOGON Data Context which will
provide the data context for the USERID and PASSTICKET fields.

a)

b)

Drag the node on to the Microflow Definition pane

Drag a SYS_LU_LOGON Data Context type from the Adapter Tree
View to the workspace. Place the node between the Input RAW node
and TU_F_SIGNON node but above the nodes.

Rename the node

Right click on the SYS_LU_LOGON1 Command node and select
Rename.

Modify SYS_LU_LOGONT1 in the New name field to the name
SYS_LU_LOGON and click Finish

4) Add the CMAV Command node

Chapter 5. Build an adapter that supports a FEPI interface 155

Build an adapter that supports a FEPI interface

In this step you will add a TU_F_CMAV Command which will be used
to process the CMAV transaction and display the Customer screen.

a) Drag the node on to the Microflow Definition pane
Drag a TU_F_CMAV Command type from the Adapter Tree View to
the workspace. Place the node to the right of the TU_F_SIGNON
node and slightly above.

b) Rename the node

Right click on the TU_F_CMAV1 Command node and select
Rename.

Modify TU_F_CMAV1 in the New name field to the name
TU_F_CMAV and click Finish

5) Add the Output terminal node
a) Drag the node on to the Microflow Definition pane

Drag an Output Terminal type from the Adapter Tree View to the
workspace and place the node to the right of the TU_F_CMAV node.

b) Rename the node

Right mouse click and rename the Output Terminal node to Output
REPLY.

c) Flip the node
Right click on the Output REPLY node and select Flip node.
d) Set the properties for the node

Right click on the Output Terminal and select Properties. From the
drop down menus, select TU_F_MSG_SET in the Message Sets field
and select TU_F_REPLY in the Messages field. Click OK.

6) Save your workspace by selecting File > Save Workspace from the
menubar.

b. Connect the microflow nodes

In this task you will connect the microflow nodes that are on the Microflow
Definition pane. You will do this by creating connections. A connection is a
wire that connects an output terminal of one microflow node to the input
terminal of another. There are two types of connections (control connection
and data connection). For a detailed description of the different types of
connections, see the section on composing microflows in the MQSeries
Integrator Agent for CICS Transaction Server Using the Control Center book.

1) Right click on the Input RAW node and select Connect > Out. Move the
connection line to the TU_F_SIGNON node and left click. This adds a
control connection and a map (Map1 node) between the two nodes.

Refer to [Eigure 118 on page 157
2) Add a data connection from the out terminal on the SYS_LU_LOGON
node to the Map1 node.

3) Add a control connection from the first out terminal
(TU_F_COMP_SCR_screen) on the TU_F_SIGNON node to the
TU_F_CMAV node. This auto-adds a Map2 node on the control
connection line.

4) Add a Map node (Map3) between the TU_F_SIGNON node and the
Output REPLY node. To create a Map node, drag a Map type from the
Adapters Tree View (left panel) to the Microflow Definition panel (right
panel). Position the cursor between the nodes and release the mouse
button.

156 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

5) Add a control connection from the second out terminal (Unknown) on
the TU_F_SIGNON node to Map3 node and then add a control
connection from the Map3 node to the Output REPLY node.

6) Add a control connection from the first out terminal
(TU_F_CUST_SCR _screen) on the TU_F_CMAV node to the Output
REPLY node. This auto-adds a Map4 node on the control connection
line.

7) Add a control connection from the second out terminal (labeled
Unknown) on the TU_F_CMAYV node to the Map3 node.

8) Save your workspace by selecting File > Save Workspace from the
menubar.

ﬂi MOS1 Agent for CICS Adapter Builder - TU_FEPI_'WS.xml R =] E3 |
File Edit View Microfow Definion Help :

0 o) B Gy B

fessage Sets MEDIEFSI

T | adapte.. | O] » | TU_F_SIGNON | Microfow Definition |

O CIGE MaAdapters
EI----_I Micraflow Types
Lo TUF_MAY

- TU_F_RESET

o TU_F_SGNOFF D Map2
o TULF_ING B m{e) Z
4 [NEERER SYS_LU_LOGON
e TUF_ PARSER

-] Command Types

Bl

TU_F_CMav

-] Data Gontext Types hap1
F-_] Decision Tynes @ Gy — ke IR '
------ 1 teration Types @ hap3
-y Map INpUE RAYY TU_F_SIGNON Output REPLY

------ €% Input Terminal
------ & Cutput Terminal

| | T— o

2 | 3

Figure 118. TU_F_SIGNON

c. Map your subflow

You are now ready to perform the data mappings for the TU_F_SIGNON
subflow. Mapping models data transformation via a Map node between an
output terminal on one node and an input terminal on another node. Data
transformation can include a variety of functions:

* Associating a field in one message with a field in another message.
 String mapping such as specifying pad characters.

* Date mapping, such as converting a date in one format to a date in
another format.

* Putting literal data into a message.

* Adding custom code to perform other data transformation functions.

Chapter 5. Build an adapter that supports a FEPI interface 157

Build an adapter that supports a FEPI interface

Note: Valid values will assign the appropriate PF key "value” to the Aid

key.

1) Perform the mapping for the Map1l node as listed in [fable 54 and shown

!’:i Y alid¥ alue5 election ¥]

WalidvWalueSelectian |

Yalid Value |Soyp==l" ="

in Eigure 120 on page 159. Map1 maps the LU_OWNER, PASSTICKET,
and ENTERKEY for the CICS Signon screen.

Right click on the Map1 node (the Map node that appears between the
Input RAW and TU_F_SIGNON nodes) and select Properties. Click the
DataMappingExpression tab.

a) Perform a valid value mapping. Right click on the AIDKEY field in
the TU_F_SIGNON_SCR_request Output Message and select Add
element. This will create a mapping that is labeled LITERAL on the
input field. Right click on the LITERAL field and select Valid Values
from the pop up menu. Use the pull down menu to select
ENTERKEY in the Valid Value field. Click OK.

Note: Do not type the word ENTERKEY, but rather make sure you
select it from the drop down menu for the Valid Value field.

8] Cancel Apply | Help |

Figure 119. Valid Values dialog

Table 54. Mapping fields for Mapl node (SYS_LU_LOGON message to TU_F_SIGNON_SCR_request message)

Input Field Output Field Description
ENTERKEY AIDKEY Maps the enter key for signon
LU_OWNER TC_F_SIGNON_SCR_Row10Col26 Maps screen position that corresponds to the
LU_OWNER field.
PASSTICKET TC_F_SIGNON_SCR_Row11Col26 Maps screen position that corresponds to the
PASSTICKET field.

158 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

Fd Map1
Map1 DataMappingExpression | Degcriptinnl
Input Messages Cutput Messages -
5YS_LU_LOGOM | input Terminalt | TU_F_SIGNON |
Message SYS_LLL LOGORN tMessage TU_F_SIGRON_SCRE_request
B 55 LU_LOGOoN B TU_F_SIGNON_SCR_request =
2] LU_owER ~[E CURSORPOS

B PassTICKET -5 MDKEY

B TU_F_SIGNON_SCR_Row Col
B TU_F_SIGNON_SCR_Row! Col20
B TU_F_SIGNON_SCR_Row ColBs
B TU_F_SIGNON_SCR_Row! ColT3
B TU_F_SIGNON_SCR_Row3Col2
B TU_F_sIGNON_SCR_RowdCol2
B TU_F_SIGNON_SCR_Row5Col2
B TU_F_SIGNON_SCR_RowBCol2
B TU_F_SIGNON_SCR_RowdCol2

B TU_F_SIGNON_SCR_Rowl0Call
LSl T F SIGkinkl SrB Bawd 0ral 76

Input Qutput —
ENTERKEY B TII_F_SIGKHOM, AIDKEY
SYS_LU_LOGON. . LU_OWHNER B TU_F_SIGNOMN. TU_F_SIGNON_SCR_Row! 0C0I26
SYS_LU_LOGON. PASSTICKET B TI_F_SIGKHON, TU_F_SIGHNON_SCR_Row!1Col26

0]14 I cancel Apply | Help |

Figure 120. Mapping for Mapl node

b) Perform the LU_OWNER mapping. Click in the LU_OWNER field
under the SYS_LU_LOGON message and drag to the
TU_F_SIGNON_SCR_Row10Col26 field under the
TU_F_SIGNON_SCR_request message.

c) Perform the PASSTICKET mapping. Click in the PASSTICKET field
under the SYS_LU_LOGON message and drag to the
TU_F_SIGNON_SCR_Row11Co0l26 field under the
TU_F_SIGNON_SCR_request message. Click OK.

2) Perform the mapping for the Map2 node as listed in [able 55.od
and shown in [Eigure 121 on page 160. Map2 maps the
CLEARKEY for initially clearing the screen, the ‘"CMAV’ transaction ID
for bringing up the Customer screen, and the ENTERKEY.

Right click on the Map2 node (the Map node that appears between the
TU_F_SIGNON and TU_F_CMAV nodes) and select Properties. Click
the DataMappingExpression tab.

a) Perform a valid value mapping. Right click on the destination field
for the literal (the INITIAL_AIDKEY field in the
CICSMACRO_request Output Message) and select Add element.
This will create a mapping that is labeled LITERAL on the input
field. Right click on the LITERAL field and select Valid Values from
the pop up menu. Use the pull down menu to select CLEARKEY in
the Valid Value field.

b) Perform a literal mapping. Right click on the destination field for the
literal (the CICSMACRO_DATA field in the CICSMACRO_request
Output Message) and select Add element. This will create a

Chapter 5. Build an adapter that supports a FEPI interface 159

Build an adapter that supports a FEPI interface

mapping that is labeled LITERAL on the input field. Double click on
LITERAL field and rename it to 'CMAV’ (quotes must be used
around the CMAV string).

c) Perform a valid value mapping. Right click on the AIDKEY field in
the CICSMACRO_request Output Message and select Add element.
This will create a mapping that is labeled LITERAL on the input
field. Right click on the LITERAL field and select Valid Values from
the pop up menu. Use the pull down menu to select ENTERKEY in
the Valid Value field. Click OK.

Table 55. Mapping fields for Map2 node (TU_F_COMP_SCR_screen message to
CICSMACRO_request message)

Input Field Output Field Description
CLEARKEY INITIAL_AIDKEY Maps the key to initial clear the screen
'CMAV’ CICSMACRO_DATA Maps the 'CMAV’ transaction that
displays the Customer screen
ENTERKEY AIDKEY Maps the enter key
EiMap2]
Map2 : DataMappingExpression | Description |
Input Messages Output Messages | —
TU_F_SIGMON | TU_F_Chay |
Message TU_F_COMP_SCRE_screen Message CICEMACRO_request
B TU_F_COMP_SCR_screen Bl CICEMACRO_reguest
El TU_F_COMP_SCR_Row1Coll E INITIAL_AIDKEY
B TU_F_COMP_SCR_Row24Col2 - CURSORPOS
B TU_F_COMP_SCR_Row24Caldd E CICSMACRO_DATA
B MDKEY
Input Qutput
CLEARKEY b TU_F_CMAY IMITIAL_AIDKEY | —
'Chisy B TU_F_ChMAY. CICSMACRO_DA..
ENTERKEY $ TL_F_CMAY AIDKEY

Ok I Cancel | Ay | Help |

Figure 121. Mapping for Map2 node

3) Perform the mapping for the Map3 node as listed in [able 56 od

bage 161 and shown in [Figure 122 on page 161. This map sets the

REPLY_IND to “E’ to indicate a bad signon.

Perform a literal mapping. Right click on the REPLY_IND field in the
TU_F_REPLY Message and select Add element. This will create a
mapping that is labeled LITERAL on the input field.

160 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

Double click on LITERAL field and rename it to 'E’ (quotes must be
used around the string). Click OK.

Table 56. Mapping fields for Map3 node (Unknown message to TU_F_REPLY message)

Input Field Output Field Description
'E’ REPLY_IND Sets REPLY_IND to 'E’ to indicate a bad
signon
i Map3]
Map3 DataMappingExpressionl Degcriptignl
Input Messanes Cutput Messages 1B
TU_F_GMAY | TU_F_SIGNON| Output REPLY |
tMessage LIMKRMOWR Message TU_F_REPLY
Bl TU_F_REPLY
------ & REPLY_HUM
------ E REPLY_I

------] REPLY_E_MSG
------ [E] REPLY_NAME

------ [E] REPLY_ADDRESS
------ [E] REPLY_CITY

------ [E] REPLY_STATE

------ [E] REPLY_ZIP

------ =] REPLY_PHONE

Input Cutput
E' » Output REPLY .REPLY_IMD

-

(0]34 I Cancel | Apply | Help |

Figure 122. Mapping for Map3 node

4) Perform the mapping for the Map4 node as listed in [Cable 52 This map
sets the REPLY_IND to ‘G’ to indicate a good signon.

Perform a literal mapping. Right click on the REPLY_IND field in the
Output REPLY Message and select Add element. This will create a
mapping that is labeled LITERAL on the input field.

Double click on LITERAL field and rename it to ‘G’ (quotes must be
used around the string). Click OK.

Table 57. Mapping fields for Map4 node (TU_F_CMAV message to Output REPLY
message)

Input Field Output Field Description

‘G’ REPLY_IND Sets REPLY_IND to ‘G’ to indicate a
good signon

Chapter 5. Build an adapter that supports a FEPI interface 161

Build an adapter that supports a FEPI interface

E—

You just..

PN

You just modelled the Signon subflow.

In your model, you have coded the instructions on how the subflow is supposed to
behave at run time. You are now ready to assign this subflow to an CICS MQAdapter.

3. Assign the model of the subflow to a CICS MQAdapter.

In this step you will associate the TU_F_SIGNON subflow (the model that you

just completed), with a CICS MQAdapter.

A CICS MQAdapter provides the actual implementation of the adapter request

processing.

a. Right click on the CICS MQAdapter Collection folder and select Create >
CICS MQAdapter.

b. On the Create a new CICS MQAdapter dialog, enter TU_F_SIGNON for the
Name and use the drop down menu to select TU_F_SIGNON for the

Microflow Type. Leave the Proxy Client Connector Resource and Proxy
Client Interaction Specification fields blank. Click Finish.

Ei Create a new CICS MQAdapter

Name: [TU_F_SIGMNON
CICS MOAdapter | Description|

Microflow Type [TU_F_SIGMaN
Proxy Client Caonnector Resource |

LedLef e

Proxy Client Interaction Specification |

Finish I Cancel Help

Figure 123. Creating an CICS MQAdapter

You have completed the TU_F_SIGNON subflow and setup your adapter.

Save your workspace by selecting File > Save Workspace from the
menubar.

162 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

Now you are ready to generate your adapter.

Note: The copybooks were previously generated during the parser subflow
(TU_F_PARSER) adapter modeling section (see stepm).

4. Generate adapter Code.

To generate adapter code, make sure that you are in the Adapters view and
then, follow this procedure:

Note: You must generate the adapter code in the same directory where you

generated the copybooks.

a. Right click on the TU_F_SIGNON adapter (listed under the CICS
MQAdapters folder) and select Generate > Generate COBOL Adapter.
Enter the output destination <mqiac_tutorials>\fepi in the PATH field (the
example uses C:\Mgiac\Tutorials\FEPI). Click Finish.

The generated adapter code will be output to the destination path directory.

ﬁi Cobol Language Adapter Generator]

—Destination Panel

Path |CMgiaciTutorialsiFepi

e HE0E st == Einish Cancel | Help |

Figure 124. Specifying pathname for adapter code generation output

Create the Inquiry subflow
The Inquiry subflow is used to perform an inquiry on Customer information.

Follow these steps to create the Inquiry subflow:
1. Create the component types for use in the Parser subflow
This step is made of the following tasks:
¢ Create a Command Type
* Create a Decision Type
* Create a Microflow Type
a. Create the TU_F_CUST Command type.

You will need to create a Command type which processes the Customer
information screen.

Chapter 5. Build an adapter that supports a FEPI interface 163

Build an adapter that supports a FEPI interface

Click on the Adapters tab to switch to the Adapters view.

1) Right click on the Command Types folder and select Create >
Command Type. Enter TU_F_CUST in the Name field.

2) Using the drop down menus, set the following field property values:

Table 58. TU_F_CUST Command property values

Field Value
Message Set TU_F_3270_MSG_SET
Transaction TU_F_CUST_SCR
Interaction Specification TU_F_fepiinteraction.ispec
ﬁi Create a new Command Type E
IS

Name: [TL_F_CUST

Command Type | Interaction Specification | Description

Message Set ITU_F_EETD_MBG_SET ;I
Transaction [TUF_cusT scr =]
Connector Resaurce [=l
Interaction Specification [TU_F_fepiinteraction.ispec =l
In Terminal JTU_F_CUST_SCR_request

Out Terminal 1 fTU_F_CUST_SCR_screen

out Terminal 2 |

Finish I Cancel Help

Figure 125. Creating a TU_F_CUST Command type

Click Finish to apply the property values.
b. Create a Decision Type

You will need to create a Decision type which will test to see if the selected

record specified in the input message is in the file.

1) Right click on the Decision Types folder and select Create > Decision
Type. Enter TU_F_REC_NOT_FND in the Name field and click Finish.

2) Associate a message set and message with the In Terminal on the
TU_F_REC_NOT_FND Decision type.

a) Right click on the TU_F_REC_NOT_FND Decision type under the
Decision Types folder and select Decision Branch. Make sure the In
Terminal tab is selected.

b) Using the drop down menus, select TU_F_3270_MSG_SET for the
Message Sets field and TU_F_CUST_SCR _screen for the Messages
field.

164 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

Ei Edit TU_F_BEC_MOT_FMD Decizion Branches
In Terminal | out Terminal
Mew name [In Terminal
Message Set |TU_F_3270_MSG_SET -1
Message |TU_F_CUST_SCR_screen =
Fropetties
014 Cancel Help

Figure 126. Editing the In Terminal on the Decision type

3) Create an Out Terminal for the Record Not Found decision. On the Edit
TU_F_REC_NOT_FND Decision Branches, select the Out Terminal tab.
Click Out Terminal in the terminal list box. and click Rename. Enter
REC_NOT_FND in the New name field and click Finish. Click OK.

Chapter 5. Build an adapter that supports a FEPI interface 165

Build an adapter that supports a FEPI interface

Ei Edit TU F REC_HOT_FMD Decision Branches

I Terminal Ut Terminal

Marme | Add
REC_MOT_FMD
default
Rerarmme...
[Delete
=t | =1 | Properties
ok izancel Help

Figure 127. Editing the Out Terminal on the Decision type

4) Right click on the TU_F_REC_NOT_END Decision type and select
Properties on the pop up menu. Make sure the ConditionExpression tab
is selected. Click in the REC_NOT_FND test condition input area and
press CTRL-SHIFT to display a list of available message fields (these
fields are from the TU_F_CUST_SCR_screen message that we associated
with the TU_F_REC_NOT_END Decision type). Select the
TU_F_CUST_SCR_Row24Col3 field to add this to the
ConditionExpression area.

You should add the code shown in Figure 128 on page 167 for the

REC_NOT_FND terminal test condition.
Click OK.

166 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

E§ TU_F_REC_NOT_FND

ConditionExpressian | Degcriptiunl

REC_MOT_FMD |
TU_F_CUST_SER_RDW24E013 = 'BEECOED NOT ON FILE'

i Cancel Apply Help

Figure 128. Code for the REC_NOT_FND Terminal

c. Create a microflow type

Create a microflow that will model the processing of the customer data
request.

1) Right click on the Microflow Types folder and select Create > Microflow
Type.
2) Enter TU_F_INQ in the Name field.

3) Use the drop down menu in the Connector Resource field to select
TU_F_INQfepi.rsc as the Connector Resource file and then click Finish.

Chapter 5. Build an adapter that supports a FEPI interface 167

Build an adapter that supports a FEPI interface

ﬁi Create a new Microflow Type B

Name: [TU_F_ING

| Connector Resource | Description
Connector Resource TU_F_IMGfepirsc =l

‘ Finish I Cancel Help

Figure 129. Creating a TU_F_INQ Microflow Type

4) Save your workspace by selecting File > Save Workspace from the
menubar.

o=

You just..

P

You just created all of the component types that you will need to model the Inquiry
subflow.

2. Model the Inquiry subflow.

In this step you will perform a set of tasks to define and model the Inquiry
subflow’s functionality. The model represents the behavior of this subflow at
run time.

The subflow processing determines whether or not the requested customer

record is found. You will add the nodes shown in Eigure 131 on page 171l

This step is made of the following tasks:

* Adding subflow nodes

* Connecting the subflow nodes
* Defining the mappings

a. Add nodes to the subflow

In this task, you will drag the component types that you created in [Lad
. When you drag a component type onto the Microflow Definition
pane, it is instantiated and referred to as a microflow node. A single

168 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

component type can be used to create one or more microflow nodes
(instances) as part of the same microflow.

1) Add the Input Terminal node
An Input Terminal serves as an entry point for the microflow. The Input
Terminal can make a connection to any terminal that resides within the
microflow.
a) Drag the node on to the Microflow Definition pane.

In the Microflow Types folder, select the TU_F_INQ microflow you
created.

Note: To model your adapter in the workspace (Microflow
Definition pane), you must make sure the microflow is
selected in the Microflow Types folder.

Drag an Input Terminal type from the Adapter Tree View to the
workspace (Left click and hold on the Input Terminal to drag it to
the workspace).

b) Rename the node
Right click on the Input Terminal and select Rename. Rename the
Input Terminal node to Input RAW and click Finish.

C) Set the properties for the node

Right click on the Input Terminal and select Properties. From the
drop down menus, select TU_F_MSG_SET in the Message Sets field
and select TU_F_RAW in the Messages field. Click OK.

Kf Input RAW
Iripput Hrﬂ%"é“'fl Descriptinnl
Message Set [TU_F_MSG_SET =
Message [TU_F_Rauny =l
QI Cancel SRRl | Help |

Figure 130. Configuring the Input RAW Input Terminal node properties

2) Add the Command node
a) Drag the node on to the Microflow Definition pane

Chapter 5. Build an adapter that supports a FEPI interface 169

Build an adapter that supports a FEPI interface

Drag a TU_F_CUST Command type from the Adapter Tree View to
the workspace. Place the node to the right on the Input RAW node.
This command processes the Customer information screen.

b) Rename the node
Right click on the TU_F_CUST1 Command node and select Rename.
Modify TU_F_CUST1 in the New name field to the name
TU_F_CUST and click Finish.

3) Add the Decision node

The TU_F_REC_NOT_END Decision Node tests to see if the requested

data record is found.

a) Drag the node on to the Microflow Definition pane
Drag a TU_F_REC_NOT_FND Decision type from the Adapter Tree
View to the workspace. Place the node to the right on the
TU_F _CUST node.

b) Rename the node
Right click on the TU_F_REC_NOT_FND1 Command node and
select Rename.
Modify TU_F_REC_NOT_ENDI in the New name field to the name
TU_F_REC_NOT_FND and click Finish.

4) Add the Output terminal node

a) Drag the node on to the Microflow Definition pane
Drag an Output Terminal type from the Adapter Tree View to the
workspace and place the node to the right of the
TU_F_REC_NOT_FND node.

b) Rename the node
Rename the Output Terminal node to Output REPLY. Click Finish

c) Flip the node
Right click on the Output REPLY node and select Flip node.

d) Set the properties for the node
Right click on the Output Terminal and select Properties. From the

drop down menus, select TU_F_MSG_SET in the Message Sets field
and select TU_F_REPLY in the Messages field. Click OK.

5) Save your workspace by selecting File > Save Workspace from the
menubar.

b. Connect the microflow nodes

In this task you will connect the microflow nodes that are on the Microflow
Definition pane. You will do this by creating connections. A connection is a
wire that connects an output terminal of one microflow node to the input
terminal of another. There are two types of connections (control connection
and data connection). For a detailed description of the different types of
connections, see the section on composing microflows in the MQSeries
Integrator Agent for CICS Transaction Server Using the Control Center book.

1) Right click on the Input RAW node and select Connect > Out. Move
the connection line to the TU_F_CUST node and left click. This adds a
control connection and a map (Map1 node) between the two nodes.

Refer to Eigure 131 on page 171

2) Add a control connection from the second out terminal (Unknown) on
the TU_F_CUST node to the Output REPLY node.

3) Add a Map node (Map2) to the control connection between the
TU_F_CUST node and the Output REPLY node. To create a Map node,

170 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

drag a Map type from the Adapters Tree View (left panel) to the
Microflow Definition panel (right panel) and position the cursor
between the nodes before you release the mouse button.

4) Add a control connection from the first out terminal
(TU_F_CUST_SCR_screen) on the TU_F_CUST node to the
TU_F_REC_NOT_FND node.

5) Add a control connection from the first out terminal (REC_NOT_FND)
on the TU_F_REC_NOT_FND node to the Output REPLY node.

6) Add a Map node (Map3) to the control connection between the
TU_F_REC_NOT_FND node and the Output REPLY node.

7) Add a control connection from the second out terminal (default) on the
TU_F_REC_NOT_END node to the Output REPLY node.

8) Add a Map node (Map4) to the control connection between the
TU_F_REC_NOT_FND node and the Output REPLY node.

9) Add a data connection from the Input RAW node to the Map3 node.

10) Save your workspace by selecting File > Save Workspace from the
menubar.

ﬁi MQ51 Agent for CICS Adapter Builder - TU_FEPI_wS _xml M=l B3 |
File Edit Yiew Microflow Defimition Help i :

0 & W R

Massage Sets | Adapters 1

T | agapt. | O | TU_F_ING Mictomane DEfiRition o |

oo CITS MQAdapters -
- flicroflow Types

m

4 TU_F_SIGNON Map3

e TU_F_PARSER B
-] Command Types g5y /
/|8 Mapd

#-__| Data Context Types ‘

/-] Decigion Tynes
...... J Iteration T\,I'DES TU_ _REC_NOT_FND

------ & Input Terminal Map1 Map2
...... 3 outpul Terminal @ & B q;f;'gl &

Input RAVY TU_F_CUST Qutput REPLY

J | »
| | P .

v | &

F.-3- 151
(e gy i |

Figure 131. TU_F_INQ

c. Map your subflow

You are now ready to perform the data mappings for the TU_F_INQ
subflow. Mapping models data transformation via a Map node between an
output terminal on one node and an input terminal on another node. Data
transformation can include a variety of functions:

* Associating a field in one message with a field in another message.

Chapter 5. Build an adapter that supports a FEPI interface 171

Build an adapter that supports a FEPI interface

* String mapping such as specifying pad characters.

* Date mapping, such as converting a date in one format to a date in
another format.

* DPutting literal data into a message.
* Adding custom code to perform other data transformation functions.

1) Perform the mapping for the Mapl node as listed in fable 5d and shown
in Eigure 132 on page 173, This map sets the customer number field from
the Customer screen to the customer number from the Input RAW
record, hard codes a "1’ for an Inquiry transaction and passes along the
ENTERKEY.

Right click on the Map1 node (the Map node that appears between the
Input RAW and TU_F_CUST nodes) and select Properties. Click the
DataMappingExpression tab.

a) Left click on the CUST_NUM field under the TU_F_RAW message
(view input message on right of panel) and drag the mouse cursor to
the TU_F_CUST_SCR_Row3Col19 field under the
TU_F_CUST_SCR_request message (view output message on left of
panel). This will create a mapping between the two fields.

b) Perform a literal mapping. Right click on the
TU_F_CUST_SCR_Row22Col71 field in the TU_F_CUST_SCR_request
Output Message and select Add element. This will create a mapping
that is labeled LITERAL on the input field. Double click on LITERAL
field and rename it to '1” (quotes must be used).

c) Perform a valid value mapping. Right click on the AIDKEY field in
the TU_F_CUST_SCR_request Output Message and select Add
element. This will create a mapping that is labeled LITERAL on the
input field. Right click on the LITERAL field and select Valid Values
from the pop up menu. Use the pull down menu to select
ENTERKEY in the Valid Value field.

Table 59. Mapping fields for Mapl node (TU_F_RAW message to TU_F_CUST_SCR_request message)

Input Field Output Field Description
CUST_NUM TU_F_CUST_SCR_Row3Col19 Customer number for input record
1 TU_F_CUST_SCR_Row?22Col71 Inquiry transaction
ENTERKEY AIDKEY Maps the enter key

d) Click OK on the Map 1 dialog box.

172 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

B Map]
map1 | DataappinaExpressioni| Description |
Input Messages Output Messages o
Input R&W | TU_F_CUST |
Meszage TU_F_RAW Meszage TU_F_CUST_SCR_reguest
B TU_F_Raw Bl TU_F_cUsT_SCR_reguest -]
B cusT_MuM -E CURSORPOS
...[E] SIGNOFF_Y¥N B sDKEY —

[TU_F_cusT_scR_RowiColt

+[E TU_F_CUST_SCR_Row1Col26
B TU_F_CUST_SCR_Row1Col58
B TU_F_CUST_SCR_RowiCol71
[TU_F_cUST_SCR_Row2Col6g
~[E TU_F_CUST_SCR_Row3Col?

B TU_F_CUST_SCR_Row3Cal17
B TU_F_CUST_SCR_Row3Col19
[TU_F_cUsT_SCR_Row3Col25
B TU_F_CUST_SCR_Row4Cal12
B TU_F_CUST_SCR_Row4Cal17

[El T11 C 10T oD Dawvedcalin

Input

Output

Input RAW..CUST_MUM

TU_F_CUST.TU_F_CUST_SCR_Row3Col18

Oy

ENTERKEY

% TU_F_CUST.TU_F_CUST_SCR_Row22Col71

TU_F_CLUST.AIDKEY

ok I Cancel | Aaply | Helg

Figure 132. Mapping for Mapl node

2) Perform the mapping for the Map2 node as listed in fable 60 and shown

m

. This mapping occurs in the case where an

Unknown screen is received from the TU_F_CUST command. These
mappings set the REPLY_IND to 'E’ and creates an error message. Use
literal mappings to perform these field mappings, as was done in step

Rclc on page 172 of the Define the Mappings task.

Table 60. Mapping fields for Map2 node (Unknown message to TU_F_REPLY message)

Input Field

Output Field Description

IE/

REPLY_IND Sets REPLY_IND to 'E’ to indicate an
error

"UNKNOWN SCREEN IN
INQ’

REPLY_E_MSG Error message

Chapter 5. Build an adapter that supports a FEPI interface 173

Build an adapter that supports a FEPI interface

ﬁi Map2
Mapz | DataMappingExpression | Description |
|Inpu1ru1nassages Cutput Messages |
TU_F_CUST | Output REPLY |
Message LIMKMOWN Message TU_F_REPLY
Bl TU_F_REPLY
[REPLY_HUM
& REPLY_L...

--[E] REPLY_G_MSG
--E] REPLY_E_MSG
--E] REPLY_NAME
--[E] REPLY_ADDRESS
-[E] REPLY_CITY
-[Z] REPLY_STATE
--[Z) REPLY_ZIP

2] REPLY_PHONE

Input Cutput
Output REPLY. REPLY_IND
Output REPLY.REPLY_E_MSG |—

E
UNKENOWN SCREEM IN NG

v v

-

| ok | cancel | Anol Help i-

Figure 133. Mapping for Map2 node

3) Click OK on the Map2 dialog box.

4) Perform the mapping for the Map3 node as listed in [fable 61 and shown
in Figure 134 on page 175. On a REC_NOT_FND condition, the mapper
sets an error message and passes along the customer number to the
REPLY record. Use literal mappings to perform these field mappings.

Table 61. Mapping fields for Map3 node (TU_F_RAW message to TU_F_REPLY message)

Input Field Output Field Description

CUST_NUM REPLY_NUM Passes the customer number to the reply
'RECORD NOT ON FILE" |REPLY_E_MSG Error message

174 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

[:i Map3

Map3 DataMappingE}{pressiDnE! Descriptignl

Input Messanes Cutput Messanes

|»

Input RAW' TU_F_REC_NOT_FNDI Cutput REPLY |
Message TU_F_RAY Message TU_F_REPLY
Bl TU_F_Raw Bl TU_F_REPLY

El cusT_MuUm B REPLY_MUM

= SIGNOFF_YN -[Z] REPLY_IND

--[E] REPLY_G_MSG
5] REPLY_E_MSG
-5 REPLY_NAME
-5 REPLY_ADDRESS
-5 REPLY_CITY
-[5] REPLY_STATE
-[S] REPLY_ZIP

=] REPLY_PHONE

Input Qiutput

Input RAW. CUST_MUM

Output REPLY.REPLY_MUM

RECORD MOT OM FILE'

w il

output REPLY. REPLY E MSG

-

(o’ I Cancel Arply | Help |

Figure 134.

Mapping for Map3 node

Click OK on the Map3 dialog box.

Perform the mapping for the Map4 node as listed in ffable 61 and shown
in Eigure 135 on page 17d. When a record is present, this mapper sets all
the customer data to the REPLY record.

Table 62. Mapping fields for Map4 node (TU_F_CUST_SCR_screen message to TU_F_REPLY message)

Input Field

Output Field Description

TU_F_CUST_SCR_Row3Col19 REPLY_NUM Customer number
TU_F_CUST_SCR_Row4Col19 REPLY_NAME Customer name
TU_F_CUST_SCR_Row5Col19 REPLY_ADDRESS Customer address
TU_F_CUST_SCR_Row6Col19 REPLY_CITY Customer city
TU_F_CUST_SCR_Row6Col49 REPLY_STATE Customer state
TU_F_CUST_SCR_Row6Col64 REPLY_ZIP Customer zip

TU_F_CUST_SCR_Row7Col21

REPLY_PHONE* Telephone area code

TU_F_CUST_SCR_Row?7Col28

REPLY_PHONE* Telephone local exchange

TU_F_CUST_SCR_Row7Col34

REPLY_PHONE* Telephone number (last 4 digits)

* This field is a concatenation of three input fields.

The REPLY_PHONE output field is a concatenation of three input fields.
To perform this mapping;:

a) In the Input section, left click the TU_F_CUST_SCR_Row?7Col21 field
and drag to the REPLY_PHONE field in the Output section.

Chapter 5. Build an adapter that supports a FEPI interface 175

Build an adapter that supports a FEPI interface

b) In the Input section, drag a second input data field
(TU_F_CUST_SCR_Row?7C0l28) and drop it on the previously
mapped input data field (TU_F_CUST_SCR_Row7Col21) in the
Inputs section. The mapping arrow will change to a drop down
menu after the second field is mapped.

C) Select Concatenate from the drop down menu.

d) In the Input section, drag a third input data field
(TU_F_CUST_SCR_Row?7Co0l34) and drop it on the previously
mapped input data field (TU_F_CUST_SCR_Row7Col28) in the
Inputs section. This is done to concatenate the fields in the proper
sequence.

Map4 ; DatablappingExpression: Descriptionl
Input Messages Output Messages

TU_F_REC_MOT_FND | Output REPLY |

Message TIU_F_CUST_SCR_screen mMessage TU_F_REFPLY

B TU_F_CUST_SCR_screen jl B Tu_F_REPLY

------ Bl Tu_F_cusT_scR_RowlColl & REPLY_MNUM

------ Bl Tu_F_cuUsT_sCR_RowlCol26 -5 REPLY_IND

------ Bl Tu_F_cusT_sCR_RowlColss -[E] REPLY_G_MSG

------ Bl Tu_F_cusT_sSCR_RowiColT1 -[E] REPLY_E_MSG

------ Bl TU_F_cusT_SCR_Row2Col6d & REPLY_MNAME

------ Bl TU_F_cuUsT_sCR_Rowacal? & REPLY_ADDRE...

------ El Tu_F_cusT_scR_Row3cCall7 -[E REPLY_CITY

------ Bl Tu_F_cusT_scR_Row3Col1g & REPLY_STATE

------ Bl Tu_F_cusT_sSCR_Row3Col25 & REPLY_ZIP

------ Bl TU_F_cUsT_SCR_RowdCall2 -[E] REPLY_PHO...

------ Bl Tu_F_cusT_sSCR_RowdColl 7

------ Bl Tu_F_cusT_scR_RowdCollg

Bl TU_F_cusT_SCR_RowdCols0
-E TU_F_cUST_SCR_RowsCala
% TI I_F_l"l IC:T_QPR_F’n.wﬁI“nH T ;JI
Input Qutput

TU_F_REC_MOT_FND.TU_F_CUST_SCR_Row3Col19 $ Cutput REPLY..REFLY_MUM
TU_F_REC_MOT_FMD.TU_F_CUST_SCR_RowdCol19 $ Cutput REPLY. REFLY_MNAME
TU_F_REC_MOT_FMD.TU_F_CUST_SCR_RowSCol1d ¥ Cutput REFLY..REFLY_ADDRESS
TU_F_REC_MOT_FMD.TU_F_CUST_SCR_Row6Col13 $ Cutput REFLY..REFLY_CITY
TU_F_REC_MOT_FND.TU_F_CUST_SCR_Row6Col49 $ Cutput REFLY. REFLY_STATE
TU_F_REC_MOT_FMD.TU_F_CUST_SCR_RowGCnlG4 $ Cutput REFLY. REFLY_ZIP
TU_F_REC_MOT_FMD.TU_F_CUST_SCR_Row?Col21 [Concatenate | Output REPLY..REFLY_PHOME
TU_F_REC_MOT_FMD.TU_F_CUST_SCR_Row7Col2&
TU_F_REC_MOT_FMD.TU_F_CUST_SCR_Row7Col34

ak I Cancel il | Help |

Figure 135. Mapping for Map4 node

e) Click OK.

o=

You just..

P

176 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

You just modelled the Inquiry subflow.

In your model, you have coded the instructions on how the subflow is supposed to

behave at run time. You are now ready to assign this subflow to an CICS MQAdapter.

3. Assign the model of the subflow to a CICS MQAdapter.

In this step you will associate the Inquiry subflow (the model that you just
completed), with a CICS MQAdapter.

A CICS MQAdapter provides the actual generation of the adapter request
processing.

a. Right click on the CICS MQAdapter Collection folder and select Create >

CICS MQAdapter
b. On the Create a new CICS MQAdapter dialog, enter TU_F_INQ for the

Name and use the drop down menu to select TU_F_INQ for the Microflow

Type. Leave the Proxy Client Connector Resource and Proxy Client
Interaction Specification fields blank.

[':i Create a new CICS MQAdapter

Name: [TU_F_ING
CICS MOAdapter | Description |

Wicroflow Type |TU_F_ING

FProwxy Client Connector Resource |

Led Lef e

Froxy Client Interaction Specification |

Finish I Cancel Help

Figure 136. Creating an CICS MQAdapter

c. Click Finish.

You have completed the Inquiry subflow and setup of this segment of your

adapter.

Save your workspace by selecting File > Save Workspace from the
menubar.

Now you are ready to generate your adapter.

Note: The copybooks for the Inquiry microflow were previously generated

during the parser subflow (TU_F_PARSER) adapter modeling section
(see Daon page 128),

Now you are ready to generate your adapter.

Chapter 5. Build an adapter that supports a FEPI interface

177

Build an adapter that supports a FEPI interface

4. Generate adapter Code.

To generate adapter code, make sure that you are in the Adapters view and
then, follow this procedure:

Note: You must generate the adapter code in the same directory where you

generated the copybooks.

a. Right click on the TU_F_INQ adapter (listed under the CICS MQAdapters
folder) and select Generate > Generate COBOL Adapter. Enter the output
destination in the PATH field (the example uses C:\Mgiac\Tutorials\FEPI).
Click Finish.

The generated adapter code will be output to the destination path directory.

Ei Cobol Language Adapter Generator E

—Destination Panel

Path |CiMgiaciTutorials\Fepi

e Hank [HEsd=s Finizh Cancel | Help |

Figure 137. Specifying pathname for adapter code generation output

Create the Signoff subflow
The Signoff subflow is used to sign a user off the Customer application and put

the user on a blank CICS screen.

Follow these steps to create the Signoff subflow:
1. Create the microflow component type for use in the Signoff subflow.
Create a microflow that will model the processing for the user signoff request.
a. Right click on the Microflow Types folder and select Create > Microflow
Type.
b. Enter TU_F_SGNOFF in the Name field.

c. Use the drop down menu in the Connector Resource field to select
TU_F_SGOFFfepi.rsc as the Connector Resource file and then click Finish.

178 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

Ei Create a new Microflow Type
Name: [TU_F_SGMNOFF
hicroflow Type | Connector Resource | Description
Connector Resource TI_F_SGOFFfepirse =]
Finish Cancel Help

Figure 138. Creating a TU_F_SGNOFF Microflow Type

I
You just..

PN

You just created the one component type that you will need to model the Signoff
subflow.

2. Model the Signoff subflow

In this step you will perform a set of tasks to define and model the Signoff
subflow’s functionality. The model represents the behavior of this subflow at
run time.

This step is made of the following tasks:
* Adding the subflow nodes
* Connecting the subflow nodes
* Defining the mappings
a. Add nodes to the subflow
1) Add the Input Terminal node

An Input Terminal serves as an entry point for the microflow. The Input
Terminal can make a connection to any terminal that resides within the
microflow.

Chapter 5. Build an adapter that supports a FEPI interface 179

Build an adapter that supports a FEPI interface

a) Drag the node on to the Microflow Definition pane.

In the Microflow Types folder, select the TU_F_SGNOFF microflow

you created.

Note: To model your adapter in the workspace (Microflow
Definition pane), you must make sure the microflow is
selected in the Microflow Types folder.

Drag an Input Terminal type from the Adapter Tree View to the

workspace (Left click and hold on the Input Terminal to drag it to

the workspace).

b) Rename the node
Right click on the Input Terminal and select Rename. Rename the
Input Terminal node to Input REPLY and click Finish.

C) Set the properties for the node

Right click on the Input Terminal and select Properties. From the

drop down menus, select TU_F_MSG_SET in the Message Sets field

and select TU_F_REPLY in the Messages field. Click OK.
F.§ Input REPLY Ed
InputHEF'L‘r‘l Description |
Message Set [TU_F_MSG_SET =1
Message |TU_F_REPLY =l
8] Cancel Aty | Help |

Figure 139. Configuring the Input REPLY Input Terminal node properties

2) Add the TU_F_CUST Command node

In this step you will add the command node that processes the
Customer information screen.

a) Drag the node on to the Microflow Definition pane

Drag a TU_F_CUST Command type from the Adapter Tree View to
the workspace. Place the node to the right on the Input REPLY node.

b) Rename the node

Right click on the TU_F_CUST1 Command node and select Rename.

180 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface
Modify TU_F_CUST1 in the New name field to the name
TU_F CUST and click Finish.
3) Add the TU_F_CMAYV Command node

In this step you will add the command node that processes the CESF
Logoff transaction.

a) Drag the node on to the Microflow Definition pane

Drag a TU_F_CMAV Command type from the Adapter Tree View to
the workspace. Place the node to the right on the TU_F_CUST node.

b) Rename the node
Right click on the TU_F_CMAV1 Command node and select Rename

Modify TU_F_CMAV1 in the New name field to the name
CESF_LOGOFF and click Finish

4) Add the Output terminal node
a) Drag the node on to the Microflow Definition pane

Drag an Output Terminal type from the Adapter Tree View to the
workspace and place the node to the right of the CESF_LOGOFF
node.

b) Rename the node

Rename the Output Terminal node to Output REPLY.
c) Flip the node

Right click on the Output REPLY node and select Flip node.
d) Set the properties for the node

Right click on the Output REPLY and select Properties. From the
drop down menus, select TU_F_MSG_SET in the Message Sets field
and select TU_F_REPLY in the Messages field. Click OK

5) Save your workspace by selecting File > Save Workspace from the
menubar.

. Connect the microflow nodes

In this task you will connect the microflow nodes that are on the Microflow
Definition pane. You will do this by creating connections. A connection is a
wire that connects an output terminal of one microflow node to the input
terminal of another. There are two types of connections (control connection
and data connection). For a detailed description of the different types of
connections, see the section on composing microflows in the MQSeries
Integrator Agent for CICS Transaction Server Using the Control Center book.

1) Right click on the Input REPLY node and select Connect > Out. Move
the connection line to the TU_F_CUST node and left click. This adds a
control connection and a map (Map1 node) between the two nodes.

Refer to Eigure 140 on page 182

2) Add a Map node (Map2) between the TU_F_CUST node and the
CESF_LOGOFF node. To create a Map node, drag a Map type from the
Adapters Tree View (left panel) to the Microflow Definition panel (right
panel) and position the cursor between the nodes before releasing the
mouse button.

3) Add a control connection from the second out terminal (Unknown) on
the TU_F_CUST node to the Map2 node and from the Map2 node to
the CESF_LOGOFF node.

4) Add a control connection from the first out terminal
(TU_F_CUST_SCR_screen) on the TU_F_CUST node to the Output
REPLY node. The auto-adds a Map3 node on the connection.

Chapter 5. Build an adapter that supports a FEPI interface 181

Build an adapter that supports a FEPI interface

5)

6)
7
8)

9)
10)

Add a control connection from the first out terminal

(TU_F_CUST_SCR _screen) on the CESF_LOGOFF node to the Map3
node.

Add a Map node (Map4) between the CESF_LOGOFF node and the
Output REPLY node.

Add a control connection from the second out terminal (Unknown) on
the CESF_LOGOFF node to the Map4 node and from the Map4 node to
the Output REPLY node.

Add a data connection from the Input REPLY node to the Map3 node.
Add a data connection from the Input REPLY node to the Map4 node.

Save your workspace by selecting File > Save Workspace from the
menubar.

E§ MOSI Agent for CICS Adapter Builder - TU_FEPI_WS.xml

File

Edit View Microflow Definition Help

0} 3 6 N E

Message Sets Adamers\

| | Adapt.. | O

M4

3] TU_F_SGHOFF Wicraflow Definition

ol] CICS MOAdapters
2. Microflow Types

..... e TU_F_SGMNOFF
s TU_F_IMD
e TU_F_SIGNOMN
..... -§ TU_F_PARSER
=] Command Types
----- lﬁ TU_F_CUST
-t TU_F_CMAY

..... & TU_F_SIGNON
-t TU_F_PARSER
- Data Contest Tvpes
-] Decision Types

------ 1 lteration Types
[a Ml

...... €F Input Terminal

------ &3 Qutput Terminal

[Tl

5]
[l

Kl

[—

Bk

=

Input REPLY

M[?m—:p

TU F_CUST

CESF LOGOFF Output REPLY

sl

v |

- |

Figure 140. TU_F_SGNOFF

c. Map your subflow

You are now ready to perform the data mappings for the TU_F_SGNOFF
subflow. Mapping models data transformation via a Map node between an
output terminal on one node and an input terminal on another node. Data
transformation can include a variety of functions:

* Associating a field in one message with a field in another message.

* String mapping such as specifying pad characters.

182 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

* Date mapping, such as converting a date in one format to a date in
another format.

* DPutting literal data into a message.
* Adding custom code to perform other data transformation functions.
1) Perform the mapping for the Map1 node as listed in [Cable 63 and shown

in . This map passes a PF3 key to the Customer information
screen to logoff from the application and return to a blank CICS screen.

a) Right click on the Map1 node (the Map node that appears between

the Input REPLY and TU_F_CUST nodes) and select Properties.
Click the DataMappingExpression tab.
b) Perform a valid value mapping.

* Right click on the destination field for the AIDKEY field in the
TU_F_CUST_SCR_request Output Message and select Add
element. This will create a mapping that is labeled LITERAL on
the input field.

* Right click on the LITERAL field and select Valid Values from the

pop up menu. Use the pull down menu to select PE3 in the Valid
Value field. Click OK

Table 63. Mapping fields for Mapl node (TU_F_REPLY message to
TU_F_CUST_SCR_request message)

Input Field Output Field Description
PF3 AIDKEY Maps the PE3 key
Ei Mapl E
Map1 | DataMappingExpression | Descriptinnl
Input Messages Cutput Messages =
Input REPLY | TU_F_CUST |
Message TU_F_REPLY Message TU_F_CUST_SCR_reguest
B TU_F_REPLY B TU_F_CUST_SCR_request =
______] REPLY_NUM & CURSORPOS
......] REPLY_IND 5] AIDKEY
______ B REPLY_G_MSG -[E] TU_F_CUST_SCR_Rowil Caoll
------ [E| REPLY_E_MSG B TU_F_CUST_SCR_Rowl Col26
______ B REPLY_NAME -[E] TU_F_CUST_SCR_Rowil Col5a
------ E| REPLY _ADDRESS El TU_F_CUST_SCR_Rowlal71
______ B repLY_ciTy -[E] TU_F_CUST_SCR_Row2ColGd
------ E| REPLY STATE El TU_F_CUST_SCR_Row3cal?
______ B repLY_zIP -[E] TU_F_CUST_SCR_Row3Coll7
------ E| REPLY_ PHONE El TU_F_CUST_SCR_Row3col1d
------ Bl TU_F_CUST_ScR_Row3Col2s
| E TU_F_CUST_SCR_Row4Caol2 -
Input Qutput
FF3 b TU_F_CUST.AIDKEY
o] I Cancel Ay | Help |

Figure 141. Mapping for Mapl node

Chapter 5. Build an adapter that supports a FEPI interface 183

Build an adapter that supports a FEPI interface

2) Perform the mapping for the Map2 node as listed in [able 64 and shown
in Figure 142 on page 183. This mapping occurs in the case where an
Unknown screen is received from the TU_F_CUST command. The
mapping sets the REPLY_IND to "E’” and creates an error message.

Right click on the Map2 node (the Map node that appears between the

TU_F_CUST and CESF_LOGOFF nodes) and select Properties. Click the
DataMappingExpression tab.

a) Perform a literal mapping.

i. Right click on the destination field for the CICSMACRO_DATA
field in the CICSMACRO_request Output Message and select Add
element. This will create a mapping that is labeled LITERAL on
the input field.

ii. Double click on LITERAL field and rename it to "CESF LOGOFF’
(quotes must be used around the CESF LOGOFF string).

b) Perform a valid value mapping.

i. Right click on the destination field for the AIDKEY field in the
CICSMACRO_request Output Message and select Add element.
This will create a mapping that is labeled LITERAL on the input
field.

ii. Right click on the LITERAL field and select Valid Values from

the pop up menu. Use the pull down menu to select ENTERKEY
in the Valid Value field. Click OK.

Table 64. Mapping fields for Map2 node (Unknown message to CICSMACRO_request

message)
Input Field Output Field Description
"CESF LOGOFF’ CICSMACRO_DATA Maps the "CESF’ transaction to
signoff of CICS system
ENTERKEY AIDKEY Maps the enter key

184 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

ﬁiMapZ [x|
Map2 | DatabiappingExpression? Description |
Input Messages Cutput Messages =
TU F_CUST | CESF_LOGOFF |
Message UNKNOWE Message CICSMACRO_reguest
Bl CICEMACRO request
2] INITIAL_AIDKEY
“E CURSORPOS
~[E CICEMACRO_DATA
“-[E] AIDKEY
Input Qutput
'CESF LOGOFF' » CESF_LOGOFF. CICEMACRO_DATA
EMTERKEY » CESF_LOGOFF. AIDKEY (I
o4 I Cancel | Al | Help |

Figure 142. Mapping for Map2 node

3) Perform the mapping for the Map3 node as listed in ffable 69 and shown

. On an Invalid Signoff condition, the mapper

in
passes along the REPLY record and sets a message stating INVALID
SIGNOFE.
Table 65. Mapping fields for Map3 node (TU_F_REPLY message to TU_F_REPLY
message)
Input Field Output Field Description
TU_F_REPLY TU_F_REPLY Passes the REPLY record
"INVALID SIGNOFF REPLY_E_MSG Error message

Chapter 5. Build an adapter that supports a FEPI interface

185

Build an adapter that supports a FEPI interface

Ef Map3

Wap3 | DatahfappingExpressioni| Descrition |

Input Messages

Output Messages

| »

--[E REPLY_G_MSG
-[& REPLY_E_MSG
(& REPLY_NAME
& REPLY_ADDRESS
{8 REPLY_CITY
-2 REPLY_STATE
--[E] REPLY_ZIP

{5 REPLY_PHOMNE

Input REPLY | cESF_LOGOFF | TU_F_cusT| Output REPLY |
Message TU_F_REPLY Message TU_F_REPLY
Bl TU_F_REPLY B TU_F_REPLY

B REPLY NUM [l El REPLY_NUM

B REPLYIND [E| REPLY_IND

[El REPLY_G_MSG
B rerLY_E_msG
El REPLY_NAME

[E| REPLY_ADDRESS
El REPLY_CITY

[E| REPLY_STATE
El rREPLY_ZIP

[E| REPLY_PHONE

Input

Qutput I

Input REFLY.TU_F_REPLY

Qutput REPLY. . TU_F_REPLY

1MYALID SIGMOFF

w i

Qutput REPLY . .REPLY_E_MSG

-

[ox |

Cancel | Anply | Help |

Figure 143. Mapping for Map3 node

4) Perform the mapping for the Map4 node as listed in ffable 64 and shown
in [Figure 144 on page 187. On an Valid Signoff condition, the mapper
passes along the REPLY record.

Table 66. Mapping fields for Map4 node (TU_F_REPLY message to TU_F_REPLY

message)

Input Field

Output Field

Description

TU_F_REPLY

TU_F_REPLY

Passes the REPLY record

186 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

P Mapd [x]
Mapd DataMappingExpressinnl Descriptiunl
Input Messages Dutput Messages =
Input REF'LY' CESF_LOGOFF' Qutput REPLY |
mMessage T _F_REPLY Message TU_F_REPLY
B Tu_F_REPLY B Tu_F_REPLY
------ [E] REPLY_NUM --[Z] REPLY_NUM
------ [E] REPLY_IND [REPLY_IND
------ [E] REPLY_G_MSG --[Z] REPLY_G_MSG
......] REPLY_E_MSG --[Z] REPLY_E_MSG
------ [E] REPLY_NAME --[Z] REPLY_NAME
------ [E] REPLY_ADDRESS --[Z] REPLY_ADDRESS
------ [E REPLY_CITY --[Z] REPLY_CITY
------ [E REPLY_STATE --[Z] REPLY_STATE
------ [REPLY_ZIP --[Z] REPLY_ZIP
------ [E REPLY_PHOMNE --[Z] REPLY_PHONE
Input Qutput
Input REPLY. TU_F_REFLY % Output REPLY TU_F_REPLY —
Ok I Cancel Apply | Help |

Figure 144. Mapping for Map4 node

=

You just..

PN

You just modelled the Signoff subflow.

In your model, you have coded the instructions on how the subflow is supposed to
behave at run time. You are now ready to assign this subflow to an CICS MQAdapter.

3. Assign the model of the subflow to a CICS MQAdapter.

In this step you will associate the Signoff subflow (the model that you just
completed), with a CICS MQAdapter.

A CICS MQAdapter provides the actual implementation of the adapter request
processing.

a. Right click on the CICS MQAdapter Collection folder and select Create >
CICS MQAdapter

b. On the Create a new CICS MQAdapter dialog, enter TU_F_SGNOFF for the
Name and use the drop down menu to select TU_F_SGNOFF for the
Microflow Type. Leave the Proxy Client Connector Resource and Proxy
Client Interaction Specification fields blank. Click Finish.

Chapter 5. Build an adapter that supports a FEPI interface 187

Build an adapter that supports a FEPI interface

P:i Create a new CICS MQAdapter

Name: [TU_F_SGMNOFF
CICS MOAdapter | Deserigtion |

Microflow Tepe [TU_F_SGHOFF
Prosy Client Caonnector Resource |

LedLefle

Proxy Client Interaction Specification |

Finish I Cancel Help

Figure 145. Creating an CICS MQAdapter

You have completed the microflow and setup your adapter. Save your
workspace by selecting File > Save Workspace from the menubar. Now you
are ready to generate your adapter.

Note: The copybooks for the SIGNOFF microflow were previously
generated during the }Earser subflow (TU_F_PARSER) adapter

modeling section (see).
4. Generate adapter Code.

To generate adapter code, make sure that you are in the Adapters view and
then, follow this procedure:

Note: You must generate the adapter code in the same directory where you

generated the copybooks.

a. Right click on the TU_F_SGNOFF adapter (listed under the CICS
MQAdapters folder) and select Generate > Generate COBOL Adapter.
Enter the output destination <mqiac_tutorials>\fepi in the PATH field (the
example uses C:\Mgqiac\Tutorials\FEPI). Click Finish.

The generated adapter code will be output to the destination path directory.

188 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

ﬁi Cobol Language Adapter Generator E

—Destination Panel

Path |CMgiaciTutorialsiFepi

== Hapk et == Finizh Cancel | Help |

Figure 146. Specifying pathname for adapter code generation output

Create the Reset subflow
The Reset subflow is used to reset the Customer screen for inputting the next

customer number.

Follow these steps to create the Reset subflow:
1. Create the microflow component type for use in the Reset subflow
Create a microflow that will model the processing for the Customer screen
reset.
a. Right click on the Microflow Types folder and select Create > Microflow
Type.
b. Enter TU_F_RESET in the Name field.

Use the drop down menu in the Connector Resource field to select
TU_F_RESETfepi.rsc as the Connector Resource file and then click Finish.

Chapter 5. Build an adapter that supports a FEPI interface 189

Build an adapter that supports a FEPI interface

ﬁi Create a new Microflow Type

Mame: [TlJ_F_RESET

Microflow Type | Connector Resource | Description

Connector Resource ITU_F_REEETfepi_rSE

Finish

Cancel

Help

Figure 147. Creating a TU_F_RESET Microflow Type

—

You just..

PN

You just created the one component type that you will need to model the Reset subflow.

2. Model the Reset subflow

Now you will begin to define and model the Reset subflow’s functionality.

The subflow processing determines whether or not to reset the Customer

screen.
This step is made of the following tasks:
* Adding subflow nodes

* Connecting the subflow nodes

* Defining the mappings

a. Add nodes to the subflow

You will add the nodes shown in [Figure 149 on page 193.

1) Add the Input Terminal node

An Input Terminal serves as an entry point for the microflow. The Input
Terminal can make a connection to any terminal that resides within the

microflow.

190 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

a) Drag the node on to the Microflow Definition pane.

In the Microflow Types folder, select the TU_F_RESET microflow
you created.

Note: To model your adapter in the workspace (Microflow
Definition pane), you must make sure the microflow is
selected in the Microflow Types folder.

Drag an Input Terminal type from the Adapter Tree View to the
workspace (Left click and hold on the Input Terminal to drag it to
the workspace).

b) Rename the node
Right click on the Input Terminal and select Rename. Rename the
Input Terminal node to Input CUST SCR and click Finish.

C) Set the properties for the node

Right click on the Input Terminal and select Properties. From the
drop down menus, select TU_F_3270_MSG_SET in the Message Sets
field and select TU_F_CUST_SCR_screen in the Messages field. Click

OK.
£ Input CUST SCR E3
Input CUST SCR | Description |
Message Set [TU_F_3270_MSG_GET =
Message |TU_F_CUST_SCR_5creen =1

ARl | Help |

ok |

Figure 148. Configuring the Input CUST SCR Input Terminal node properties

2) Add the Command node
This command processes the Customer information screen.
a) Drag the node on to the Microflow Definition pane

From the Command Types folder in the Adapter Tree View, select a
TU_F_CUST Command type.

Chapter 5. Build an adapter that supports a FEPI interface 191

Build an adapter that supports a FEPI interface

Left click and hold on the TU_F_DCUST Command type to drag it
to the Microflow Definition pane. Place the node to the right on the
Input CUST SCR node.

b) Rename the node
Right click on the TU_F_CUST1 Command node and select Rename.
Modify TU_F_CUST1 in the New name field to the name
TU_F_CUST and click Finish.

3) Add the Output terminal node

a) Drag the node on to the Microflow Definition pane
Drag an Output Terminal type from the Adapter Tree View to the
workspace and place the node to the right of the TU_F_CUST node.

b) Rename the node
Rename the Output Terminal node to Output REPLY.

c) Flip the node
Right click on the Output REPLY node and select Flip node

d) Set the properties for the node
Right click on the Output REPLY and select Properties. From the

drop down menus, select TU_F_MSG_SET in the Message Sets field
and select TU_F_REPLY in the Messages field. Click OK.

4) Add a second Output terminal node

a) Drag the node on to the Microflow Definition pane
Drag a second Output Terminal type from the Adapter Tree View to
the workspace and place the node to the right of the TU_F_CUST
node and above the Output REPLY node.

b) Rename the node
Rename the Output Terminal node to Output CUST SCR.

c) Flip the node
Right click on the Output CUST SCR node and select Flip node

d) Set the properties for the node
Right click on the Output CUST SCR and select Properties. From the
drop down menus, select TU_F_3270_MSG_SET in the Message Sets
field and select TU_F_CUST_SCR_screen in the Messages field. Click
OK.

5) Save your workspace by selecting File > Save Workspace from the
menubar.

b. Connect the microflow nodes

In this task you will connect the microflow nodes that are on the Microflow
Definition pane. You will do this by creating connections. A connection is a
wire that connects an output terminal of one microflow node to the input
terminal of another. There are two types of connections (control connection
and data connection). For a detailed description of the different types of
connections, see the section on composing microflows in the MQSeries
Integrator Agent for CICS Transaction Server Using the Control Center book.

1) Right click on the Input CUST SCR node and select Connect > Out.
Move the connection line to the TU_F_CUST node and left click. This
adds a control connection and a map (Mapl node) between the two

nodes. Refer to Eigure 149 on page 193,

192 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

2)

3)

4)

5)

Build an adapter that supports a FEPI interface

Add a control connection from the first out terminal

(TU_F_CUST_SCR _screen) on the TU_F_CUST node to the Output
CUST SCR node.

Add a Map node (Map?2) between the TU_F_CUST node and the Output
REPLY node. To create a Map node, drag a Map type from the Adapters
Tree View (left panel) to the Microflow Definition panel (right panel)
and position the cursor slightly below the two nodes before releasing
the mouse button.

Add a control connection from the second out terminal (Unknown) on
the TU_F_CUST node to the Map2 node and from the Map2 node to the
Output REPLY node.

Save your workspace by selecting File > Save Workspace from the
menubar.

[:i Ma51 Agent for CICS Adapter Builder - TU_FEPI_ W5 xml
Edit “iew Microflow Definition

File

Help

~u

0 &

@ ®oa

Message Sets Adapters‘

| Adapt...

22
-

| o

k4

TU_F_RESET Microflow Definition |

-] CICE MaAdapters

|_‘_|----_| Microflow Types

e TU_F_MAY
IJ_F_RESET

g TU_F_SGNOFF
e TU_F_ING
g TU_F_SIGMON
“dpe TU_F_PARSER
F-_) Command Types
=] Data Context Types
-] Decision Types

...... __1 lteration Types
[ﬁ Map

...... &= Input Terminal

...... & Output Terminal

| »

I =i

Input CUST SCR

T —

FY

Qutput CUST SCR

Map1

@ Map2

TU_F_CUST H

Output REFLY

or]

v |

4]

Figure 149. TU_F_RESET Microflow

C.

Map your subflow

You are now ready to perform the data mappings for the TU_F_RESET
subflow. Mapping models data transformation via a Map node between an
output terminal on one node and an input terminal on another node. Data
transformation can include a variety of functions:

Associating a field in one message with a field in another message.
String mapping such as specifying pad characters.

Date mapping, such as converting a date in one format to a date in
another format.

Putting literal data into a message.

Chapter 5. Build an adapter that supports a FEPI interface 193

Build an adapter that supports a FEPI interface

* Adding custom code to perform other data transformation functions.

1) Perform the mapping for the Map1 node as listed in [able 67 and shown
in w This maps the PF12 key to prepare the Customer
information screen for input of the next Customer number.

Right click on the Map1 node (the Map node that appears between the
Input CUST SCR and TU_F_CUST nodes) and select Properties. Click
the DataMappingExpression tab.

Perform a valid value mapping.

* Right click on the destination field AIDKEY field in the
TU_F_CUST_SCR_request Output Message and select Add element.
This will create a mapping that is labeled LITERAL on the input field.

* Right click on the LITERAL field and select Valid Values from the
pop up menu. Use the pull down menu to select PF12 in the Valid
Value field. Click OK.

Table 67. Mapping fields for Mapl node (TU_F_CUST_SCR_screen message to
TU_F_CUST_SCR_request message)

Input Field Output Field Description
PF12 AIDKEY Maps the PF12 key
!’:.i Mapl [x]
Map DataMappingE}{pression' Description]
Input Messages Output Messages =
Input CUST SCR | TU_F_cUsT |
Message TU_F_CUST_SCR_screen Message TU_F_CUST_SCR_request
B TU_F_CUST_SCR_streen |l||B Tu_F_cusT_ScR_request =
------ El TU_F_CUST_SCR_RowiCall - [El CURSORPOS
------ El TU_F_CUST_SCR_Rowl Col26 || & AokrEY
------ B TU_F_CUST_SCR_Rowi Calss Bl TU_F_CUST_SCR_Rowl Colt
------ E TU_F_CUST_SCR_Rowi CalTt Bl TU_F_CUST_SCR_Rowl Col26
------ E TU_F_CUST_SCR_Row2Caolgd Bl TU_F_CUST_SCR_Rowl Colss
...... B TU_F_cUST_SCR_RaowiCal? [TU_F_CUST_SCR_RowlCol71
------ E TU_F_CUST_SCR_Row3Call7 Bl TU_F_CUST_SCR_Row2Col69
------ E TU_F_CUST_SCR_Row3Callg Bl TU_F_CUST_SCR_Row3Col?
------ E TU_F_CUST_SCR_Row3Colzs Bl TU_F_CUST_SCR_Row3Col7
------ B TU_F_cUST_SCR_RowdCol12 & TU_F_CcUST_SCR_Row3Col19
------ B TU_F_cUST_SCR_RowdColl7 & TU_F_CUST_SCR_Row3Cnl25
| B TU_F_CUST_SCR_Row4Col3 =||| B Tu_F_cuUsT_SCR_Row4Caol12 h
Input Qutput
FF12 $ TU_F_CUST.AIDKEY (I

[o]34 I Cancel | Anply | Help |

Figure 150. Mapping for Mapl node

2) Perform the mapping for the Map2 node as listed in [Cable 68 od

w and shown in [Figure 151 on page 193. This mapping occurs in

the case where an Unknown screen is received from the TU_F_CUST
command. The mapping sets the REPLY_IND to 'E” and creates an error
message.

194 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

Right click on the Map2 node (the Map node that appears between the
TU_F_CUST and Output REPLY nodes) and select Properties. Click the
DataMappingExpression tab.

a) Perform a literal mapping.

i. Right click on the destination field REPLY_IND in the
TU_F_REPLY Output Message and select Add element. This will

create a mapping that is labeled LITERAL on the input field.

ii. Double click on LITERAL field and rename it to "E” (quotes must
be used around the E string).

b) Perform a literal mapping.

i. Right click on the destination field the REPLY_E_MSG field in the
TU_F_REPLY Output Message and select Add element. This will

create a mapping that is labeled LITERAL on the input field.
ii. Double click on LITERAL field and rename it to 'UNKNOWN

SCREEN IN RESET” (quotes must be used around the E string).

Click OK.

Table 68. Mapping fields for Map2 node (Unknown message to TU_F_REPLY message)

Input Field

Output Field

Description

rE/

REPLY_IND

Sets REPLY_IND to 'E’ to indicate an

error

"UNKNOWN SCREEN IN
RESET”

REPLY_E_MSG

Error message

B Map2]
Mapz DataMappingExprassion | Descriptinnl
Input Messages Cutput Messages =)
TU_F_cusT | Output REPLY |
Message LIRKROWR Message TU_F_REPLY
B TU_F_REPLY
-[E] REPLY_NUM
--& REPLY_|...
-[E] REPLY_G_MSG
-2 REPLY_E_MSG
—[Z] REPLY_NAME
--[E] REPLY_ADDRESS
-] REPLY_CITY
-[S] REPLY_STATE
--[Z] REPLY_ZIP
--[Z] REPLY_PHONE
Input Qutput
'E' $ Output REPLY. . REPLY_IND
UMKMOWN SCREEMN IN RESET' $ Dutput REFLY. REFPLY_E_MSG
(0]%4 I Cancel Araly | Help |
Figure 151. Mapping for Map2 node
Chapter 5. Build an adapter that supports a FEPI interface 195

Build an adapter that supports a FEPI interface

E—

You just..

PN

You just modelled the Reset subflow.

In your model, you have coded the instructions on how the subflow is supposed to
behave at run time. You are now ready to assign this subflow to an CICS MQAdapter.

3. Assign the model of the subflow to a CICS MQAdapter

In this step you will associate the Reset subflow (the model that you just

completed), with a CICS MQAdapter.

A CICS MQAdapter provides the actual implementation of the adapter request

processing.

a. Right click on the CICS MQAdapter Collection folder and select Create >
CICS MQAdapter

b. On the Create a new CICS MQAdapter dialog, enter TU_F_RESET for the
Name and use the drop down menu to select TU_F_RESET for the

Microflow Type. Leave the Proxy Client Connector Resource and Proxy
Client Interaction Specification fields blank. Click Finish.

ﬁi Create a new CICS MQAdapter

Name: [TU_F_RESET
CIGE MaAdapter | Description

Microflow Type |TU_F_RESET
Prowy Client Cannector Resource |

Led Led L

Prowy Client Interaction Specification |

Finish I Cancel Help

Figure 152. Creating an CICS MQAdapter

You have completed the Reset subflow and setup of this segment of your
adapter.

196 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

Save your workspace by selecting File > Save Workspace from the
menubar.

Now you are ready to generate your adapter.

Note: The copybooks were previously generated during the parser subflow
(TU_F_PARSER) adapter modeling section (see ém).

4. Generate adapter Code.

To generate adapter code, make sure that you are in the Adapters view and
then, follow this procedure:

Note: You must generate the adapter code in the same directory where you

generated the copybooks.

a. Right click on the TU_F_RESET adapter (listed under the CICS MQAdapters
folder) and select Generate > Generate COBOL Adapter. Enter the output
destination <mqiac_tutorials>\fepi in the PATH field (the example uses
C:\Mqiac\Tutorials\FEPI). Click Finish.

The generated adapter code will be output to the destination path directory.

Ei Cobol Language Adapter Generator E

—Destination Panel

Path |CMgiaciTutorialsiFepi

== Hapk | Hexd== Finish Cancel | Help |

Figure 153. Specifying pathname for adapter code generation output

Create the Navigator microflow

The Navigator microflow is the parent microflow for the FEPI interface. The
Navigator microflow calls the FEPI subflows.

This flow represents the Navigator in the run time environment. See W

Follow these steps to create the Navigator microflow:
1. Create the component types for use in the Navigator microflow
This step is made up of the following tasks:

Chapter 5. Build an adapter that supports a FEPI interface 197

Build an adapter that supports a FEPI interface

¢ Create a Microflow Type

* Create Decision Types

* Create Data Context Types

a. Create a microflow type

Create a microflow that will model the controlling navigation processing for
the FEPI interface.

1) Click on the Adapters tab to switch to the Adapters view.
2) Right click on the Microflow Types folder and select Create > Microflow
Type.
3) Enter TU_F_NAV in the Name field.
4) Use the drop down menu in the Connector Resource field to select
TU_F_NAV.rsc as the Connector Resource file and then click Finish.
.’:i Create a new Microflow Type E
: BN
Name: [TU_F_MNAY
Microflowe Type | Connectar Resource | Description
Connector Resource T F_MAW rsc d
Finish Cancel Help

Figure 154. Creating a TU_F_NAV Microflow Type

b. Create Decision Types

Now it is time to create the Decision types that will be used in the
Navigator microflow. You will need to create the following Decision types:

1)

TU_F _SCR_ID — Tests to see what screen the user is on after the Parser
subflow processing completes.

TU_F_GOOD_SIGNON — Tests for a valid signon.

TU_F SIGNOFF — Tests the data in the RAW record to determine
whether to release the LU connection.

Create the TU_F_SCR_ID Decision type.

Right click on the Decision Types folder and select Create > Decision
Type. Enter TU_F_SCR_ID in the Name field and click Finish.

198 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

a) Associate a message set and message with the In Terminal on the
TU_F_SCR_ID Decision type.

i. Right click on the TU_F_SCR_ID Decision type under the Decision
Types folder and select Decision Branch. Make sure the In
Terminal tab is selected.

ii. Using the drop down menus, select TU_F_MSG_SET for the

Message Sets field and TU_F_DEC for the Messages field. Click
OK.

Mew name [In Tarminal
Message Set |TU_F_MSG_SET -1
Message |TU_F_DEC -1
Fropetties
]4 Cancel Help

Figure 155. Editing the In Terminal on the Decision type

b) Create Out Terminals for the SIGNON and CUSTOMER decisions.

The TU_F_SCR_ID Decision type will determine which of these

actions to take based on the screen identity that is returned from the
Parser subflow.

i. Right click on the TU_F_SCR_ID Decision type under the Decision
Types folder and select Decision Branch.

i) Make sure the Out Terminal tab is selected. Click Out Terminal
in the terminal list box and click Rename.

i) Enter SIGNON in the New name field.
iii) Click Finish.
ii. Enter CUSTOMER in the Name field and click Add. Click OK

Chapter 5. Build an adapter that supports a FEPI interface 199

Build an adapter that supports a FEPI interface

Ei Edit TU _F SCH_ID Decision Branches

Inh Terminal @Qut Terminal

Mame | Add
SIGMOM
CLSTOMER
default S
[relete
%—-’ | % | Froperties
2k izancel Help

Figure 156. Editing the Out Terminal on the Decision type

iii. Right click on the TU_F_SCR_ID Decision type and select
Properties on the pop up menu.

i) Make sure the ConditionExpression tab is selected and the
SIGNON tab is selected.

ii) Click in the SIGNON test condition input area and press
CTRL-SHIFT to display a list of available message fields
(these fields are from the TU_F_DEC message that we
associated with the TU_F_SCR_ID Decision type).

iif) Select the DOC_SCR field to add this to the
ConditionExpression area.

iv) You should add the code shown in Ei
for the SIGNON terminal test condition. The letter 'S’ for the
DOC_SCR field is based on the screen indicator codes that
are defined for the decision message (TU_F_DEC). The
DOC_SCR field is returned from the parser subflow
indicating the current screen that the user is on.

200 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

F§ TU_F_SCR_ID

ConditionExpression | Description |

Build an adapter that supports a FEPI interface

SIGNON | cUSTOMER |

Doc_Ack = '&

0] 4 Cancel Ay Help

Figure 157. Code for the SIGNON Terminal

iv. In a similar manner, add the test condition code for the
CUSTOMER terminal remaining terminals. See [Cable 6d for the
code to add. When finished, click OK

Table 69. Code for the Out Terminal actions for the TU_F_SCR_ID Decision type

Terminal Code Description
SIGNON DOC_SCR ="5 S - SIGNON screen identified by Parser subflow
CUSTOMER |DOC_SCR ='C’ C - CUSTOMER screen identified by Parser

subflow

2) Create the TU_F_GOOD_SIGNON Decision type.
Right click on the Decision Types folder and select Create > Decision
Type. Enter TU_F_GOOD_SIGNON in the Name field and click Finish.
Associate a message set and message with the In Terminal on the
TU_F_GOOD_SIGNON Decision type.
a) Right click on the TU_F_GOOD_SIGNON Decision type under the
Decision Types folder and select Decision Branch.

b) Make sure the In Terminal tab is selected. Using the drop down
menus, select TU_F_MSG_SET for the Message Sets field and
TU_F_REPLY for the Messages field. Click OK.

Chapter 5. Build an adapter that supports a FEPI interface 201

Build an adapter that supports a FEPI interface

Ei Edit TU_F_GODOD_SIGHOM Decizion Branches

In Terminal | iyt Terminal

Mew name [In Terminal
Message Set |TU_F_MSG_SET -l
Message [TU_F_REPLY -l
Fropetties
] 24 Cancel Help

Figure 158. Editing the In Terminal on the Decision type

c) Create Out Terminals for the GOOD_SIGNON decision.

The TU_F_GOOD_SIGNON Decision type will determine which
action to take based on whether a valid signon occurs.

i. Right click on the TU_F_GOOD_SIGNON Decision type under the
Decision Types folder and select Decision Branch.

. Make sure the Out Terminal tab is selected. Click Out Terminal in
the terminal list box and click Rename.

iii. Enter GOOD_SIGNON in the New name field and click Finish.
iv. Click OK.

202 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

ﬁi Edit TU_F_GOOD_SIGHON Decision Branches
In Terminal Qut Terminal
Mame A
SO0 _SIGMNOM
default
Femame...
Helete
E—-’ | % | Froperies
]28 Cancel Help

Figure 159. Editing the Out Terminal on the TU_F_GOOD_SIGNON Decision type

v. Right click on the TU_F_GOOD_SIGNON Decision type and
select Properties on the pop up menu.

i) Make sure the ConditionExpression tab is selected.

i) Click in the GOOD_SIGNON test condition input area and
press CTRL-SHIFT to display a list of available message fields
(these fields are from the TU_F_REPLY message that we
associated with the TU_F_GOOD_SIGNON Decision type).

iii) Select the REPLY_IND field to add this to the
ConditionExpression area.

ivV) You should add the code shown in Eigure 160 an page 204 for
the GOOD_SIGNON terminal test condition. The letter ‘G’ for

the REPLY_IND field indicates that a valid signon has
occurred.

v) Click OK.

Chapter 5. Build an adapter that supports a FEPI interface 203

Build an adapter that supports a FEPI interface

ﬁi TU_F_GOOD_SIGHON X]
ConditionExpression | Description |
GOOD_SIGNON |
FEPLY_IND = 'G'

] Cancel Apply Help

Figure 160. Code for the GOOD_SIGNON Terminal

3) Create the TU_F_SIGNOFF Decision type.

The TU_F_SIGNOFF Decision type will determine whether to release the

LU connection.

a) Right click on the Decision Types folder and select Create >
Decision Type.

b) Enter TU_F_SIGNOFF in the Name field and click Finish.

C) Associate a message set and message with the In Terminal on the
TU_F_SIGNOFF Decision type. Right click on the TU_F_SIGNOFF
Decision type under the Decision Types folder and select Decision
Branch.

d) Make sure the In Terminal tab is selected.

e) Using the drop down menus, select TU_F_MSG_SET for the Message
Sets field and TU_F_RAW for the Messages field. Click OK.

204 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

Ei Edit TU_F_SIGMOFF Decizion Branches

In Terminal | Ut Terminal

Mew name [In Terminal

Message Set |TU_F_MSG_SET

Message |TU_F_RAW

Froperies

] 4 Cancel Help

Figure 161. Editing the In Terminal on the TU_F_SIGNOFF Decision type

f) Create an Out Terminal for the SIGNOFF decision.

i. Right click on the TU_F_SIGNOEFF Decision type under the
Decision Types folder and select Decision Branch.

Make sure the Out Terminal tab is selected. Click Out Terminal in
the terminal list box and click Rename.

iii. Enter SIGNOFF in the New name field and click Finish.
iv. Click OK.

Chapter 5. Build an adapter that supports a FEPI interface 205

Build an adapter that supports a FEPI interface

ﬁi Edit TU_F_SIGHMOFF Decision Branches

MNarme | Add
SIGMNOFF
default
BEREME...
Delete
=t | =1 | Eroperies
Ok Cancel Help

Figure 162. Editing the Out Terminal on the TU_F_SIGNOFF Decision type

g) Set the Decision type properties.

i. Right click on the TU_F_SIGNOEFF Decision type and select
Properties on the pop up menu.

. Make sure the ConditionExpression tab is selected. Click in the
SIGNOFF test condition input area and press CTRL-SHIFT to
display a list of available message fields (these fields are from the
TU_F_RAW message that we associated with the TU_F_SIGNOFF
Decision type).

iii. Select the SIGNOFF_YN field to add this to the
ConditionExpression area.

You should add the code shown in Eigure 163 an page 207 for the
SIGNOFF terminal test condition. The letter Y’ for the

SIGNOFF_YN field indicates that signoff should occur.

206 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

F.§ TU_F_SIGNOFF K

ConditionExpression | Description |

SIGMNOFF |
SIGI'IEIFF_YIII = I'y!

] Cancel By Help

Figure 163. Code for the SIGNOFF Terminal

v. Click OK.
C. Create Data Context Types.

You will create the following two Data Context types to use in the
Navigator microflow:

e TU_F_HOLD_REPLY — Holds the data in the REPLY record for
processing later in the flow.

* SYS_FEPI OVERRIDES — Holds the override values for FEPI processing.
1) Create the TU_F_HOLD_REPLY Data Context type.

a) Right click on the Data Context Types folder and select Create >
Data Context Type. Enter TU_F_HOLD_REPLY in the Name field.

b) Using the drop down menus, set the field property values shown in

Chapter 5. Build an adapter that supports a FEPI interface 207

Build an adapter that supports a FEPI interface

Ei Create a new Data Context Type
BN

Name: [TU_F_HOLD_REFLY
Data Context Type | Description |

Stope [Local =l
Message Set [TU_F_mSc_SET [
Message [TU_F_REPLY =l
In Terrminal [TU_F_REPLY

Qwt Terminal ITU_F_REF'LY

Finish I Cancel Help

Figure 164. Creating a TU_D_HOLD_REPLY Data Context type

Click Finish to apply the property values.

2) Right click on the Data Context types folder and select Add to
Workspace > Data Context Type. Select the SYS_FEPI_OVERRIDES Data
Context type and click Finish.

2. Model the Navigator microflow

In this step you will perform a set of tasks to define and model the Navigator
flow’s functionality.

This step is made of the following tasks:

* Adding microflow nodes

* Connecting the nodes

* Defining the mappings

a. Add nodes to the Navigator microflow

In this task, you will drag the component types that you created in step

, onto the Microflow Definition pane. When you drag a
component type onto the Microflow Definition pane, it is instantiated and
referred to as a microflow node. A single component type can be used to
create one or more microflow nodes (instances) as part of the same
microflow.

1) Add the Input Terminal node

The Input Terminal can make a connection to any terminal that resides
within the microflow.

a) Drag the node on to the Microflow Definition pane

In the Microflow Types folder, select the TU_F_NAV microflow you
created.

208 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

Note: To model your adapter in the workspace (Microflow
Definition pane), you must make sure the microflow is
selected in the Microflow Types folder.

Drag an Input Terminal type from the Adapter Tree View to the
workspace (Left click and hold on the Input Terminal to drag it to
the workspace).

b) Rename the node
Right click on the Input Terminal and select Rename. Rename the
Input Terminal node to Input RAW and click Finish.
C) Set the properties for the node
Right click on the Input Terminal and select Properties. From the
drop down menus, select TU_F_MSG_SET in the Message Sets field
and select TU_F_RAW in the Messages field. Click OK.
E.§ Input RAW Ed
_Inpul RAW] Descripton|
Message Set ITU_F_MSG_SET _'I
Message [TU_F_Ramwn =
Ok Cancel Apply | Help |

Figure 165. Configuring the Input RAW Input Terminal node properties

2) Add the Parser node

a)

b)

Drag the node on to the Microflow Definition pane

Drag a TU_F_PARSER Microflow type from the Adapter Tree View
to the workspace. Place the node to the right on the Input RAW
node.

Rename the node

Right click on the TU_F_PARSER1 Microflow node and select
Rename.

Modify TU_F_PARSERI1 in the New name field to the name
TU_F PARSER and click Finish.

3) Add the Decision node

a)

Drag the node on to the Microflow Definition pane

Chapter 5. Build an adapter that supports a FEPI interface 209

Build an adapter that supports a FEPI interface

Drag a TU_F_SCR_ID Decision type from the Adapter Tree View to
the workspace. Place the node to the right on the TU_F_PARSER
node.

b) Rename the node

Right click on the TU_F_SCR_ID1 Decision node and select
Rename

Modify TU_F_SCR_ID1 in the New name field to the name
TU_F_SCR_ID and click Finish.

4) Add a Reset node
a) Drag the node on to the Microflow Definition pane

Drag a TU_F_RESET Microflow type from the Adapter Tree View to
the workspace. Place the node to the right on the TU_F_SCR_ID
node.

b) Rename the node

Right click on the TU_F_RESET1 Microflow node and select
Rename.

Modify TU_F_RESET1 in the New name field to the name
TU_F RESET and click Finish.

5) Add the Output terminal node
a) Drag the node on to the Microflow Definition pane

Drag an Output Terminal type from the Adapter Tree View to the
workspace and place the node to the right of the TU_F_RESET
node.

b) Rename the node

Rename the Output Terminal node to Output REPLY.
c) Flip the node

Right click on the Output REPLY node and select Flip node.
d) Set the properties for the node

Right click on the Output REPLY and select Properties.

From the drop down menus, select TU_F_MSG_SET in the Message
Sets field and select TU_F_REPLY in the Messages field. Click OK.

6) Add the Signon node
a) Drag the node on to the Microflow Definition pane

Drag a TU_F_SIGNON Microflow type from the Adapter Tree View
to the workspace. Place the node above and to the right of the
TU_F_SCR_ID node.

b) Rename the node

Right click on the TU_F_SIGNON1 Microflow node and select
Rename.

Modify TU_F_SIGNONTI in the New name field to the name
TU_F_SIGNON and click Finish.

7) Add the Good Signon Decision node
a) Drag the node on to the Microflow Definition pane

Drag a TU_F_GOOD_SIGNON Decision type from the Adapter
Tree View to the workspace. Place the node above and to the right
of the TU_F_SIGNON node.

b) Rename the node

210 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

Right click on the TU_F_GOOD_SIGNONT1 Decision node and
select Rename.

Modify TU_F_GOOD_SIGNON1 in the New name field to the
name TU_F_GOOD_SIGNON and click Finish.

8) Add the Inquiry Microflow node

9)

10)

11)

12)

a)

b)

Drag the node on to the Microflow Definition pane

Drag a TU_F_INQ Microflow type from the Adapter Tree View to
the workspace. Place the node to the right on the

TU_F _GOOD_SIGNON node.

Rename the node

Right click on the TU_F_INQ1 Microflow node and select Rename.

Modify TU_F_INQI in the New name field to the name TU_F_INQ
and click Finish.

Add the Signoff Decision node

a)

b)

Drag the node on to the Microflow Definition pane

Drag a TU_F_SIGNOFF Decision type from the Adapter Tree View
to the workspace. Place the node to the right of the TU_F_INQ
node.

Rename the node

Right click on the TU_F_SIGNOFF1 Decision node and select
Rename.

Modify TU_F_SIGNOFF1 in the New name field to the name
TU_F_SIGNOFF and click Finish.

Add the Signoff Microflow node

a)

b)

Drag the node on to the Microflow Definition pane

Drag a TU_F_SGNOFF Microflow type from the Adapter Tree View
to the workspace. Place the node to the right on the
TU_F_SIGNOFF node and above and to the left of the Output
REPLY node.

Rename the node

Right click on the TU_F_SGNOFF1 Microflow node and select
Rename.

Modify TU_F_SGNOFF1 in the New name field to the name
TU_F _SGNOFF and click Finish.

Add the Hold Reply Data context node

a)

b)

Drag the node on to the Microflow Definition pane

Drag a TU_F_HOLD_REPLY Data Context type from the Adapter
Tree View to the workspace. Place the node above and between the
TU_F_INQ and TU_F_SIGNOFF nodes.

Rename the node

Right click on the TU_F_HOLD_REPLY1 Data Context node and
select Rename.

Modify TU_F_HOLD_REPLY1 in the New name field to the name
TU_F HOLD_REPLY and click Finish.

Add the FEPI Overrides Data context node

a)

Drag the node on to the Microflow Definition pane

Drag a SYS_FEPI_OVERRIDES Data Context type from the Adapter
Tree View to the workspace. Place the node above the
TU_F _SGNOFF Microflow node.

Chapter 5. Build an adapter that supports a FEPI interface 211

Build an adapter that supports a FEPI interface

13)

b) Rename the node
Right click on the SYS_FEPI_ OVERRIDES1 Data Context node and
select Rename.
Modify SYS_FEPI_OVERRIDES] in the New name field to the
name SYS_FEPI OVERRIDES and click Finish.

Save your workspace by selecting File > Save Workspace from the
menubar.

b. Connect the microflow nodes

In this task you will connect the microflow nodes that are on the Microflow
Definition pane. You will do this by creating connections. A connection is a
wire that connects an output terminal of one microflow node to the input
terminal of another. There are two types of connections (control connection
and data connection). For a detailed description of the different types of
connections, see the section on composing microflows in the MQSeries
Integrator Agent for CICS Transaction Server Using the Control Center book.

1

2)
3)
4)

5)

6)

7

8)

9)

10)

11)

Right click on the Input RAW Input Terminal node and select Connect
> Out. Move the connection line to the TU_F_PARSER Command node
and left click. This adds a control connection. Refer to

Add a control connection from the TU_F_PARSER Microflow node to
the TU_F_SCR_ID node.

Add a control connection from the first out terminal (SIGNON) on the
TU_F_SCR_ID Decision node to the TU_F_SIGNON node.

Add a control connection from the TU_F_SIGNON Microflow node to
the TU_F_GOOD_SIGNON Decision node.

Add a Map node (Map1) between the TU_F_GOOD_SIGNON Decision
node and the TU_F_INQ Microflow node. To create a Map node, drag
a Map type from the Adapters Tree View (left panel) to the Microflow
Definition panel (right panel) and position the cursor between the node
before releasing the mouse button.

Add a control connection from the first out terminal (GOOD_SIGNON)
on the TU_F_GOOD_SIGNON Decision node to the Map1 node and
from the Map1 node to the TU_F_INQ Microflow node.

Add a control connection from the TU_F_INQ Microflow node to the
TU_F_SIGNOFF Decision node. This adds a control connection and a
map (Map2 node) between the two nodes.

Add a Map node (Map3) between the TU_F_SIGNOEFF Decision node
and the TU_F_SGNOFF Microflow node. To create a Map node, drag a
Map type from the Adapters Tree View (left panel) to the Microflow
Definition panel (right panel) and position the cursor between the
nodes before releasing the mouse button.

Add a control connection from the first output terminal (SIGNOFF) on
the TU_F_SIGNOFF Decision node to the Map3 node and from the
Map3 node to the TU_F_SGNOFF Microflow node.

Add a control connection from the TU_F_SGNOFF Microflow node to
the Output REPLY node.

Add a Map node (Map4) between the TU_F_SIGNOFF Decision node
and the Output REPLY node. To create a Map node, drag a Map type
from the Adapters Tree View (left panel) to the Microflow Definition

panel (right panel) and position the cursor between the nodes before

releasing the mouse button.

212 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

12)

13)

14)

15)

16)

17)

18)

19)

20)

21)

22)
23)
24)
25)

26)

Build an adapter that supports a FEPI interface

Add a control connection from the second output terminal (default) on
the TU_F_SIGNOFF Decision node to the Map4 node and from the
Map4 node to the Output REPLY node.

Add a Map node (Map5) between the TU_F_GOOD_SIGNON Decision
node and the Output REPLY node. To create a Map node, drag a Map
type from the Adapters Tree View (left panel) to the Microflow
Definition panel (right panel) and position the cursor between the
nodes before releasing the mouse button.

Add a control connection from the second output terminal (default) on
the TU_F_GOOD_SIGNON Decision node to the Map5 node and from
the Map5 node to the Output REPLY node.

Add a control connection from the second output terminal
(CUSTOMER) on the TU_F_SCR_ID Decision node to the TU_F_RESET
Microflow node.

Add a control connection from the first out terminal
(TU_F_CUST_SCR) on the TU_F_RESET Microflow node to the Map1
node.

Add a control connection from the second out terminal (TU_F_REPLY)
on the TU_F_RESET Microflow node to the Output REPLY node.

Add a Map node (Map6) between the TU_F_SCR_ID node and the
Output REPLY node. To create a Map node, drag a Map type from the
Adapters Tree View (left panel) to the Microflow Definition panel (right
panel) and position the cursor between the nodes before releasing the
mouse button.

Add a control connection from the third out terminal (default) on the
TU_F_SCR_ID Decision node to the Map6 node and from the Map6
node to the Output REPLY node.

Add a data connection. Right click on the Input RAW node and select
Connect > Out. Move the connection line to the Map1 node and select
In > DataConnectionType from the pop up menu.

Add a data connection. Right click on the Input RAW node and select
Connect > Out. Move the connection line to the Map2 node and select
In > DataConnectionType from the pop up menu.

Add a data connection from the Map2 node to the Input Terminal of
TU_F HOLD_REPLY Data Context node.

Add a data connection from the Output Terminal of
TU_F_HOLD_REPLY Data Context node to the Map3 node.

Add a data connection from the Map3 node to the Input Terminal of
SYS_FEPI_OVERRIDES Data Context node.

Add a data connection from the Output Terminal of
TU_F_HOLD_REPLY Data Context node to the Map4 node.

Save your workspace by selecting File > Save Workspace from the
menubar.

Table 70. Summary of connections used in the TU_F_NAV microflow

From To Type of Connection
Input RAW TU_F_PARSER Control Connection
TU_F_PARSER TU_F_SCR_ID Control Connection
TU_F_SCR_ID TU_F_SIGNON Control Connection
(first out terminal — SIGNON)
TU_F_SIGNON TU_F_GOOD_SIGNON Control Connection

Chapter 5. Build an adapter that supports a FEPI interface 213

Build an adapter that supports a FEPI interface

Table 70. Summary of connections used in the TU_F_NAV microflow (continued)

From To Type of Connection
TU_F_GOOD_SIGNON (First Mapl Control Connection
terminal)

Mapl TU_F_INQ Control Connection
TU_F_INQ Map?2 Control Connection
Map2 TU_F_SIGNOFF Control Connection
TU_F_SIGNOFF (Decision) Map3 Control Connection
(first out terminal — SIGNOFF)

Map3 TU_F_SGNOFF Control Connection
TU_F_SGNOFF Output REPLY Control Connection
TU_F_SIGNOFF (Decision) Map4 Control Connection
(second out terminal — default)

Map4 Output REPLY Control Connection
TU_F_GOOD_SIGNON Map5 Control Connection
(second out terminal — default)

Map5 Output REPLY Control Connection
TU_F_SCR_ID TU_F_RESET Control Connection
(second out terminal —

CUSTOMER)

TU_F_RESET Mapl Control Connection
(first out terminal —

Output CUST SCR)

TU_F_RESET Output REPLY Control Connection
(second out terminal —

Output REPLY)

TU_F_SCR_ID Map6 Control Connection
(third out terminal — default)

Map6 Output REPLY Control Connection
Input RAW Mapl Data Connection
Input RAW Map?2 Data Connection
Map2 TU_F_HOLD_REPLY Data Connection
TU_F_HOLD_REPLY Map3 Data Connection
TU_F_HOLD_REPLY Map4 Data Connection

Map3

SYS_FEPI_OVERRIDES

Data Connection

214 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

r:i MQS5I1 Agent for CICS Adapter Builder - TU_FEPI_WS_xml | _ (O] x|
File Edit Wiew Microflow Definition Help e :

D& & { B & {

Message Sets Adapters l

TU_F_KAY hicroflow Definition | =}

Input RAWY TU_F_PARSER TU_F_SCR_ID _F_ Qutput REPLY

4 | i
4] [°]

Figure 166. TU_F_NAV

Map the Navigator microflow

The act of mapping refers to the modeling of data transformation via a Map
node, between an output terminal on one node and an input terminal on
another node.

Data transformation can include a variety of functions:

Associating a field in one message with a field in another message.
String mapping such as specifying pad characters.

Date mapping, such as converting a date in one format to a date in
another format.

Putting literal data into a message.

Adding custom code to perform other data transformation functions.

1) Perform the mapping for the Mapl node as shown in W

This map passes along the RAW record data for processing in the
TC_F_INQ subflow.

Right click on the Map1 node (the Map node that appears between the
TU_F_GOOD_SIGNON and TU_F_INQ nodes) and select Properties.
Click the DataMappingExpression tab.

Left click on the TU_F_RAW message under the Input RAW message
(view input message on left of panel) and drag the mouse cursor to the
TU_F_RAW message under the TU_F_RAW output message (view

Chapter 5. Build an adapter that supports a FEPI interface 215

Build an adapter that supports a FEPI interface

output message on right of panel). This will create a mapping between
the two messages. Click OK.

Ei Mapl
Map1 DataMappingExpressiDnl Descriptiunl
Input Messages Cutput Messages =
Tl F GOOD SIGNON TU_F_ING |
Input RAV TULF NEsel Message TU_F_RAW
hessage TU_F_RAW E.ITU_F_HAW
Bl TU_F_R&w -[E] CUST_NUM
--[Z CUST_NUM ‘...[Z] SIGNOFF_YN
..[E] SIGNOFF_YN
Input Qutput
Input RAwY TIU_F_RAW B TL_F_ MG, TU_F_RAW

QK I Cancel | Anply | Help |

Figure 167. Mapping for Mapl node

2) Perform the mapping for the Map2 node as shown in M

This mapping passes along the RAW record for testing in the
TU_F_SIGNOFF decision and puts the REPLY record in the
TU_F_HOLD_REPLY data context.

Right click on the Map2 node (the Map node that appears between the
TU_F_INQ and TU_F_SIGNOFF nodes) and select Properties. Click the
DataMappingExpression tab.

Select the Input RAW message tab (Input Messages) and
TU_F_SIGNOFF message tab (Output Messages). Left click on the
TU_F_RAW message under the Input RAW message tab and drag the
mouse cursor to the TU_F_RAW message under the TU_F_SIGNOFF
message tab. This will create a mapping between the two messages (see

Eigure 168 on page 217).

216 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

!’:i Map2
fap2 DataMappingE}{pressiDnl Descriptiunl

lnput Messages
Input R&w | TU_F_Na|
Message TL_F_RAW

Output Messages
TU_F_HOLD_REPLY TU_F_SIGNOFF'

Message TU_F_RAW

|»

B TU_F_RAw B TU_F_RAW
~[E] CUST_NUM -~ CUST_NUM
...[] SIGNOFF_YN i [2] SIGNOFF_¥N
Input Output

$TU_F_SIGMNOFF.TU_F_RAW

Input RAW.TLLF_RAW

-

0]24 I Cancel | Anply | Help

Figure 168. Mapping for Map2 node

Select the TU_F_INQ message tab (Input Messages) and
TU_F_HOLD_REPLY message tab (Output Messages). Left click on the
TU_F_REPLY message under the TU_F_INQ message tab and drag the
mouse cursor to the TU_F_REPLY message under the
TU_F_HOLD_REPLY message tab. This will create a mapping between

the two messages (see Eigure 169 on page 218). Click OK.

Chapter 5. Build an adapter that supports a FEPI interface

217

Build an adapter that supports a FEPI interface

ﬁi Map2 =
hap2 DataMappingExpressinn' Description |
Irput Messages Dutput Messages =
Input RAw TU_F_ING TU_F_HOLD_REPLY | TU_F_gIGNOFF |
Message TU_F_REPLY hMessage TU_F_REPLY
Bl TU_F_REPLY ~||||B Tu_F_REFLY =
...... [E REPLY_NUM --[Z] REPLY_HUM
...... [E REPLY_IND --[Z] REPLY_IND
...... [E| REPLY_G_MSG --[Z] REPLY_G_MSG
...... [E REPLY_E_MSG --[E] REPLY_E_MSG
...... [E| REPLY_NAME --[Z] REPLY_NAME
...... [E REPLY_ADDRESS --[Z] REPLY_ADDRESS
...... = REPLY_CITY -[Z] REPLY_CITY
...... [E] REPLY_STATE ||l B REPLY_STATE |
...... [REPLY_ZIP .| --[Z] REPLY_ZIP -
Input Qutput
TU_F_ING.TU_F_REPLY » TU_F_HOLD_REFLY.TU_F_REPLY

(]34 I Cancel | Apply | Help |

Figure 169. Mapping for Map2 node

3) Perform the mapping for the Map3 node as shown in w

This map sets the RELEASE_LU_IND field to 'R’ (release LU connection
for signoff) and passes along the REPLY record.

a) Perform a literal mapping. Under the SYS_FEPI_OVERRIDE Output
Messages tab, right click on the RELEASE_LU_IND field and select
Add element. This will create a mapping that is labeled LITERAL on
the input field. Double click on LITERAL field and rename it to 'R’

(quotes must be used). Refer to Eigure 170 on page 219,
b) Click Apply.
c) Select the TU_F_HOLD_REPLY tab under the Input Messages and

the TU_F_SGNOFF tab under the Output Messages. Map the
TU_F_REPLY message to the TU_F_REPLY message

d) Perform a literal mapping. Under the TU_F_SGNOFF Output
Messages tab, right click on the REPLY_IND field and select Add
element. This will create a mapping that is labeled LITERAL on the
input field. Double click on LITERAL field and rename it to 'L’
(quotes must be used). This indicates that the signoff path will be

followed. Refer to [Eigure 171 on page 22(.

218 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

Ei Map3

Wap3 DataMappingExpressinnl Description |
Input Messages Output Messages =
TU_F_HOLD_REPLY' TU_F_SIGNOFF' SY5_FEPI_OVERRIDES | TU_F_SGNOFF'
Message TU_F_REPLY Message SYS_FEFI_OVERRIDES
Bl TU_F_REPLY B 5vS_FEPI_OVERRIDES

------ E REPLY_NUM El RELEASE_LU_IND

------ E REPLY_IND El TIMECUT

------ [E| REPLY_G_MSG -8 PooL

...... E] REPLY_E_MSG “o 2] TARGET

------ [E REPLY_MAME

------ E REPLY_ADDRESS

------ [E REPLY_CITY

------ [E REPLY_STATE

------ B RrePLY_ZIP

------ E REPLY_PHOMNE (I

Input Output
IS » =S _FEPI_OVERRIDES. RELEASE_LU_IND
(0]34 I Cancel Apply | Help |
Figure 170. Mapping for Map3 node (SYS_FEPI_OVERRIDES message)
e) Click OK.
Chapter 5. Build an adapter that supports a FEPI interface 219

Build an adapter that supports a FEPI interface

ﬁi Map3

Wap3 DataMappingExpression | Description |

lrput Messages
TU_F_HOLD_REPLY | TU_F_SIGNOFF |

Message T F_REPLY

Cutput Messages
SYS_FEPI_OVERRIDES TU_F_SGNOFF'
Message TU_F_REPLY

| v

Bl TU_F_REPLY Bl TU_F_REPLY
--[E] REPLY_NUM (=] REPLY_NUM
--[E] REPLY_IND --[E] REPLY_IND

-] REPLY_G_MSG
--[E] REPLY_E_MSG
(5] REPLY_NAME
-[E REPLY_ADDRESS

-[E] REPLY_CITY --[Z] REPLY_CITY
--[E] REPLY_STATE -] REPLY_STATE
--[E] REPLY_ZIP -[Z] REPLY_ZIP

(5] REPLY_PHOME

-5 REPLY_G_MSG
-5 REPLY_E_MSG
-2 REPLY_NAME
-5 REPLY_ADDRESS

-2 REPLY_PHOMNE

Input Qutput

TU_F_HoOLD_REPLY.TU_F_REPLY $ TU_F_SGMOFF. TU_F_REFLY

'K

$ TU_F_SGMOFF.REPLY_IND

-

[ox |

Cancel | Apaly | Help |

Figure 171. Mapping for Map3 node (TU_F_REPLY message to TU_F_REPLY message)

4) Perform the mapping for the Map4 node as shown in w

This mapping passes along the REPLY record in the
TU_F_HOLD_REPLY data context to the Output REPLY.

Right click on the Map4 node (the Map node that appears between the
TU_F_SIGNOFF and Output REPLY nodes) and select Properties. Click
the DataMappingExpression tab.

Select the TU_F_HOLD_REPLY message tab (Input Messages) and
Output REPLY message tab (Output Messages). Left click on the
TU_F_REPLY message under the TU_F_HOLD_REPLY message tab and
drag the mouse cursor to the TU_F_REPLY message under the Output
REPLY message tab. This will create a mapping between the two

messages (see [Figure 172 on page 221)). Click OK.

220 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

ﬁi Map4 | %]
Mapd DatadMappingExpression | Descriptinnl
nput Messages utput Messages =
lirput bt Cutput b
TU_F_HOLD_REPLY | TU_F_SIGNOFF | Output REPLY |
Message TL_F_REPLY mMessage TU_F_REPLY
B TU_F_REPLY B TU_F_REPLY
...... [E REPLY_NUM --[Z] REPLY_NUM
...... [E REPLY_IND --[Z] REPLY_IND
...... [E REPLY_G_MSG -] REPLY_G_MSG
...... S| REPLY_E_MSG --[E] REPLY_E_MSG
...... 5| REPLY_NAME --[Z] REPLY_NAME
...... [E| REPLY_ADDRESS --[E] REPLY_ADDRESS
...... [E REPLY_CITY --[Z] REPLY_CITY
...... [E REPLY_STATE --[Z| REPLY_STATE
...... [REPLY_ZIP -[E] REPLY_ZIP
...... (S| REPLY_PHOMNE —[Z] REPLY_PHONE
Input Cutput
TU_F_HOLD_REPLY.TU_F_REPLY ¥ Cutput REFLY. TU_F_REPLY
(0] I Cancel | Apply | Help |

Figure 172. Mapping for Map4 node

5) Perform the mapping for the Map5 node as shown in m

This mapping passes along the REPLY record in the
TU_F_GOOD_SIGNON decision to the Output REPLY.

Right click on the Map5 node (the Map node that appears between the
TU_F_GOOD_SIGNON and Output REPLY nodes) and select Properties.
Click the DataMappingExpression tab.

Left click on the TU_F_REPLY message under the
TU_F_GOOD_SIGNON message tab and drag the mouse cursor to the
TU_F_REPLY message under the Output REPLY message tab. This will
create a mapping between the two messages (see @E@

). Click OK.

Chapter 5. Build an adapter that supports a FEPI interface

221

Build an adapter that supports a FEPI interface

ﬁi Map5

Maps DataMappingE}{pressinnl Descriptinnl

lInput Messages
TU_F_GOOD_SIGNON |

Message TU_F_REPLY

Cutput Messages
Output REPLY |

Message TL_F_REPLY

|»

Bl TU_F_REPLY

------ =] REPLY_NUM
------ [E| REPLY_IND

------ E| REPLY_G_MSG
------ E| REPLY_E_MSG
------ =] REPLY_NAME
------ | REPLY_ADDRESS
------ E| REPLY_CITY
------ [E| REPLY_STATE
------ El REPLY_ZIP

------ [E] REPLY_PHONE

Bl TU_F_REPLY

------ =] REPLY_NUM
------ [E| REPLY_IND

------ E| REPLY_G_MSG
------ El REPLY_E_MSG
------ [E| REPLY_NAME
------] REPLY_ADDRESS
------ E| REPLY_CITY
------ [E| REPLY_STATE
------ El REPLY_ZIP

------ [E| REPLY_PHONE

IRt

output

TU_F_GOOD_SIGNON. TU_F_REPLY

» Output REPLY. TU_F_REFLY

-

O I Cancel | Apply | Help |

Figure 173. Mapping for Map5 node

6) Perform the mapping for the Map6 node as listed in [able 71 and shown

in |F'ignrp 174 on page 223

This mapping occurs in the case where an Unknown screen is received
from the TU_F_SCR_ID decision. The mapping sets the REPLY_IND to
"E” and creates an error message.

a) Perform a literal mapping. Right click on the destination field for the
literal (the REPLY_IND field in the TU_F_REPLY Message) and select
Add element. This will create a mapping that is labeled LITERAL on
the input field. Double click on LITERAL field and rename it to "E’

(quotes must be used).

b) Perform a second literal mapping. Right click on the destination field
the REPLY_E_MSG field in the TU_F_REPLY Message and select
Add element. This will create a mapping that is labeled LITERAL on

the input field.

c) Double click on LITERAL field and rename it to "'UNKNOWN SCR
FROM TU_F_SCR_ID’ (quotes must be used). Click OK.

Table 71. Mapping fields for Map6 node (Unknown message to TU_F_REPLY message)

Input Field

Output Field

Description

TU_E_SCR_ID’

'E’ REPLY_IND Sets REPLY_IND to 'E’ to indicate an
error
"UNKNOWN SCR FROM REPLY_E_MSG Error message

222 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

Ei Mapb
Maph §DataMappingExpressinn§! Deg[;ripﬁgnl
Input Messages Cutput Messanges =
TU_F_SCR_ID | Dutput REPLY |
Message TU_F_DEC Message TU_F_REPLY
B TU_F_DEC B TU_F_REPLY
L.Boocsce |l e =] REPLY_NUM
------ El rREPLY_I...
------ E| REPLY_G_MSG
------ E] REFLY_E_MSG
------ [E] REPLY_NAME
------ E| REPLY_ADDRESS
------ E| REPLY_CITY
------ El REPLY_STATE
------ E| REPLY_ZIP
------ [E| REPLY_PHOMNE
Input Qutput
= § Output REFLY. _REFLY_IND
UMKMOWN SCR FROM TU_F_SCR_ID" $ Output REPLY . REFLY_E_MSG

[ox |

Cancel Al | Help |

Figure 174. Mapping for Map6 node

==

You just..

PN

You just modelled the Navigator microflow.

In your model, you have coded the instructions on how the Navigator is supposed to
behave at run time. You are now ready to assign this subflow to an CICS MQAdapter.

3. Assign the model of the Navigator microflow to a CICS MQAdapter.
In this step you will associate the Navigator microflow (the model that you just

completed), with a CICS MQAdapter.

A CICS MQAdapter provides the actual implementation of the adapter request

processing.

a. Right click on the CICS MQAdapter Collection folder and select Create >

CICS MQAdapter

b. On the Create a new CICS MQAdapter dialog, enter TU_F_NAV for the

Name and use the drop down menu to select TU_F_NAV for the Microflow
Type. Leave the Proxy Client Connector Resource and Proxy Client
Interaction Specification fields blank. Click Finish.

Chapter 5. Build an adapter that supports a FEPI interface

223

Build an adapter that supports a FEPI interface

Ei Create a new CIC5 MQAdapter]

Name: [TU_F_RaY
CICS MOAdaptar | Description

Micraflow Type |TU_F_NAU
Proxy Client Connector Resource |

Led Lef Lo

Prowy Client Interaction Specificatian |

Finish I Cancel Help

Figure 175. Creating an CICS MQAdapter

You have completed the microflow and setup your adapter.

Save your workspace by selecting File > Save Workspace from the
menubar.

Now you are ready to generate your adapter.

Note: The copybooks were previously generated during the parser subflow
(TU_F_PARSER) adapter modeling section (see m).

4. Generate adapter Code.

To generate adapter code, make sure that you are in the Adapters view and
then, follow this procedure:

Note: You must generate the adapter code in the same directory where you

generated the copybooks.

a. Right click on the TU_F_NAV adapter (listed under the CICS MQAdapters
folder) and select Generate > Generate COBOL Adapter. Enter the output
destination <mqiac_tutorials>\fepi in the PATH field (the example uses
C:\Mqiac\Tutorials\FEPI). Click Finish.

The generated adapter code will be output to the destination path directory.

224 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

ﬁi Cobol Language Adapter Generator E

—Destination Panel

Path |CMgiaciTutorialsiFepi

== Hapk et == Finizh Cancel | Help |

Figure 176. Specifying pathname for adapter code generation output

You have created all of the microflows that are required for the FEPI adapter.

Deploying an adapter

G

In the following section you will learn how to deploy the adapter that you created. The
deploy operation sends the copybooks, source code, JCL and the configuration
parameters for each microflow that you generated, to the host system, for source code
configuration, object code build and parameter update operations.

You must deploy all the subflows prior to deploying the Navigator flow.

You now need to deploy the adapters that you have generated. The following
adapters need to be deployed:

* TU_F_PARSER (subflow)

* TU_F_SIGNON (subflow)

* TU_F_INQ (subflow)

* TU_F_SGNOFF (subflow)

* TU_F_RESET (subflow)

¢ TU_F_NAV (Navigator microflow)

Note: You will notice that all subflows will be compiled during the deployment of
the Navigator microflow (TU_F_NAV). This does not mean that you can
deploy only the Navigator as a shortcut. Each microflow must be deployed
individually.

Chapter 5. Build an adapter that supports a FEPI interface 225

Build an adapter that supports a FEPI interface

The Navigator (TU_F_NAV) has no knowledge of the copybooks and file
structures required by each subflow. Therefore, deploying only the
Navigator will result in compile errors for each subflow.

To deploy an adapter, make sure that you are in the Adapters view and then,
follow this procedure:

1. Right click on the adapter (listed under the CICS MQAdapters folder) and
select Generate > Deploy COBOL Adapter. Click the Define Settings radio
button and enter the following information:

e IP Address — IP Address - The host system IP address (for example,
9.89.7.114)

* High Level Qualifier — The high level qualifier for the partition data set
(PDS)
* Account — The account under which JCL submits a job for compilation.

Note: If you wish to save these settings for reuse, then click Save. You will be
prompted to specify an output location and filename to store the setting
information. The next time you deploy adapter code you can click the
Use Pre-defined Settings radio button and enter the saved filename.

Click Next.

gi Cobol Language Adapter Deployment E3

~Target Host Panel

" Use Pre-defined Settings

File Name | Brase |

& Define Settings Save

IP Address [2.89.7.114

High Level Qualifier [QAS MIAC

Account JQASMPMI

== Back: | ext == I Finisti Cancel | Help |

Figure 177. Specifying the target host

2. On the User Identification panel enter your user ID and password. Click
Finish.
The generated adapter code, copybooks, and JCL (Compile / Properties File
Update) files will be moved to the OS/390 server

226 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

[:i Cobol Language Adapter Deployment

~U=er Identification Panel

Userld Jasshipmi

Pasgword |nnnn

== Hack | MEst== I Finizh Cancel | Helx |

Figure 178. Logon to the host

3. The Sub-process dialog appears and provides a status of the deploy process as it
happens. When the deploy is complete the generated adapter code, copybooks,
and JCL (Compile / Properties File Update) files will be moved to the OS/390
server.

Note: You should scroll through the output listing in the Sub-process dialog
window to see if any errors occurred.

ﬁi Sub-process spawned

Sub-process complete

ﬂ Sub-process complete

ﬂ efkprep CiMoiactTutorials\FepitTL_F_PARSER prp

ﬂ erased file ;. CAMgiaciTutarials\FepiTMATUFPRESER P

ﬂ erased file ;. CAMgiaciTutorials\Fepi TMATUFPRSER.CBAL

'E erased file ;. ChkgiaciTutorials\Fep TMPATLUFDEC CRY -
r|

e -Iu--n.u—u--un—a-\.a-\.n.u—\.a—\. o

2k | =] ed=d| |

Figure 179. Sub-process dialog indicating status of the deploy process

Chapter 5. Build an adapter that supports a FEPI interface ~ 227

Build an adapter that supports a FEPI interface

4. Select OK to close the dialog.

You have completed the deploy steps and the adapter now resides on the OS/390

server and is ready to be tested. See Chapter 6, “Validating the adapters” onl

for instructions on how to test the adapter.

Check to see that the adapter compiled in CICS

G

In the following sections you will you will perform a series of tasks designed to test
and validate that the adapters that you created were successfully deployed to the host.

After you have deployed the adapter to the OS/390 server, you need to make sure
that it compiled with no errors. Consult with your CICS systems administrator for
assistance with this procedure.

Defining the adapter resources to CICS

If you do not have access to CICS at your site, you will need to ask your CICS
administrator to perform the necessary CEDA and CEMT functions. You will need
to provide the CICS administrator with the following information as it relates to
the adapter that you deployed:

* Program names
e Group name
* Transaction Identifiers

For the FEPI adapter, the following values apply:

Table 72. Values for the Define Transactions screen

Program Group Transid
TUFNAV MIACUSER TUF1
TUFSGON MIACUSER TUF2
TUFSGOFF MIACUSER TUF3
TUFPRSER MIACUSER TUF4
TUFRESET MIACUSER TUF5
TUFINQ MIACUSER TUF6

To define resources to CICS, the CICS administrator must:

* Run the CEDA transaction to define programs and any files to CICS.

* Submit JCL to run the Properties File Update job.

This is necessary only if you did not automatically submit JCL using the
generator facility in the builder.

If you were not allowed to submit JCL automatically, you can manually submit
JCL (DFHMAMPU) to run the Properties File Update job (DFHMAMUP). See
the MQSI Agent for CICS Run Time User’s Guide for information on the

Properties file update JCL (DFHMAMPU).

228 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Build an adapter that supports a FEPI interface

The CICS administrator must NEWCOPY any server adapter programs that were
modified.

For an example of defining CICS resources to CICS, See [Example pracedure for
ot] CICS 734,

”

Chapter 5. Build an adapter that supports a FEPI interface 229

230 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Chapter 6. Validating the adapters

The adapter validation process employs the same Simulator program that was
used in the MQSI Agent for CICS run time installation verification procedure. This
program formats and submits a request message, in order to simulate a controlling
application that is requesting services of the MQSI Agent for CICS run time
software.

The Simulator program, along with the same sample back-end programs used in
the IVP are incorporated as part of this tutorial to simulate run time processing,
including processing the back-end transactions associated with each type of
adapter you modeled.

How the Simulator works

Upon receipt of the request message from the Simulator, the MQSI Agent for CICS
invokes the server adapter program (DPL, MQ or FEPI) identified in the request.

The server adapter performs adapter request processing, as modeled, which results
in a reply message. A successful reply (GOOD RESPONSE RECEIVED) means that
the server adapter was deployed successfully.

See Eigure 180 on page 232 for an illustration of the processing that occurs when

you issue a request using the simulator.

© Copyright IBM Corp. 2001 231

Validating the adapters

Request Name Depends
on Adapter that you create:

TUDPLO1 = DPL Adapter
TUMQO1 = MQ Adapter

TU_F_NAV = FEPI Adapter

v

Simulator

.

Dynamic Queue

Send

Figure 180. Request processing using the simulator

Props
File
Mesasge header and ? based on the
request application data reads request name
passed in comm area \
Bridge . e
get ——p Link links — . Communication area : ———»| DPL Stub
CKBP
BTS Process ¢
starts Navigation Navigation Navigation
i Manager Manager Manager
Bridge TUDNAV1 TUMNAVA TU_F_NAV]
browse — Monitor
CKBR v ¥ v
Request Queue CHILD TUFINQ
TUDPL1 TUFPRSER]
VUL TUFRESET|
UFSGNOFF
TUMQO1G TUFSGON
A
EXEC
CICSLINK v y FEPI
| L
DFHMABP4 PUT GET I 3270
Q Q Data
DFHMABP6
; Legacy
] system

Preparing to use the Simulator

When you first invoke the Simulator, some of the screens will be populated with

data from the Installation Verification Procedure (IVP). Although the adapters you
modeled will access the same back-end sample transactions that the IVP accessed,
you will need to modify some fields to reflect information about the adapters that

you modeled in the tutorials.

Running the Simulator to validate the adapters

See Bigure 181 on page 237 for a flow of the Simulator invoking an adapter that

you modeled in the tutorial.

232 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Validating the adapters

cics
Command Line

Type CMA1

DFHMASP1

SIMULATOR
REQUEST
INITIATION

F11 Reset Data
Fill in fields

F10 Exp‘and Data

DFHMASP4

SIMULATOR
SYMBOLIC
MAPPING UTILITY

Browse mode

F10 Mode

DFHMASP4

SIMULATOR
SYMBOLIC
MAPPING UTILITY

Update mode

Edit data

Press Enter

F16 Return

DFHMASP1

SIMULATOR
REQUEST
INITIATION

F1 Send Request

DFHMASP1
Error? Yes F13 Process
fror Status
PROCESS STATUS
BRIDGE STATUS
DFHMASP4
View \ Yes F14 Reply
Reply? Data ™ RepLy DATA

Figure 181. Flow of an adapter being run from the Simulator

Perform the following steps to validate the adapters that you have deployed:
1. Log on to the OS/390 host system
2. Start the Simulator.

Chapter 6. Validating the adapters 233

Validating the adapters

From the CICS command line type CMAT.
CMAL1 is the transaction identifier for the Simulator.

~
cmal
DFHCE3543 You have cancelled your sign-on request. Sign-on is terminated.)
Figure 182. Simulator transaction
3. Press Enter. The Simulator Request Initiation screen displays.
4 N
SIMULATOR REQUEST INITIATION DFHMASP1
REQUEST QUEUE: BRIDGE.REQUEST.QUEUE
REQUEST NAME: MAIVPREQ TYPE: 1 (0) Async; (1) Sync; (2) Sync/Rollback
PROCESSTYPE: DFHMAINA
PROCESS 1D:
REPLY QMODEL: MIAC.IVP.REPLY.MODEL.QUEUE
DYNAMIC QNAME: SIMULATION.=*
WAIT ON REPLY: 030 seconds
USERID:
USER DATALEN: 00000 SYMBOLICS NAME: MAIVPREQ
MAX REPLYLEN: 00400
Please select system option:
(1) SEND REQUEST (2) REPLAY DATA
(9) MANAGE DATA (10) EXPAND DATA (11) RESET DATA (12) EXIT
(13) PROCESS STATUS (14) REPLY DATA (16) RETURN
o J

Figure 183. Simulator request initiation screen — Initial appearance
4. Press F11 Reset Data.
Type the following values.

REQUEST QUEUE:
X(48). Accept the default value. This is the CICS Bridge Request
Queue.

234 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Validating the adapters

REQUEST NAME:
X(8). The request name indicates the name of the request to
process. The value specified is used to read the MQSI Agent for
CICS Properties file to determine processing flow and parameters.
Valid values are as follows:

* For MQ Adapter, enter TUMQO01
* For DPL Adapter, enter TUDPL01
* For FEPI Adapter, enter TU_F_NAV

TYPE: X(1). Indicates the processing mode. Enter 0 for asynchronous
processing.

* 0 = request processing will be run asynchronously. For requests
that will be updating information when adapter request
processing runs in asynchronous mode, syncpoints are taken
while the Navigation Manager, Navigator and server adapter
programs complete their processing. These synchronization
points provide the necessary state, status and journaling
information in the event of subsequent failure. This information
can in turn be used in a compensation flow.

* 1 = request processing will be run synchronously. For requests
that will be making inquiries only (i.e., the request will not result
in information being updated).

* 2 = request processing will include rollback processing.
Synchronous Rollback is a processing mode where the MQSI
Agent for CICS BTS process and all activities run within the
process are initiated and run in synchronous mode (i.e., BTS
RUN ACQPROCESS SYNCHRONOUS and RUN ACTIVITY()
SYNCHRONOUS commands), however, any failure within any
activity within the process results in an abend of the process.
This has the effect of returning the state of any and all
recoverable resources updated during adapter request processing
to its original state, that is, the state prior to the execution of the
failed adapter request or process.

PROCESSTYPE:
X(8). Accept the default value. This field indicates the type of the
new MQSI Agent for CICS run time process instance.

PROCESS ID:
Leave blank.

REPLY QMODEL:
X(48). Accept the default value. Name of the model reply queue.

DYNAMIC QNAME:
X(48). Accept the default value. Prefix used for the name of the
Reply Queue when dynamically built.

WAIT ON REPLY:
9(4). Identifies how long the Simulator will wait for a response
before timing out. Accept the default value of 30 seconds.

USERID:
X(8). For MQ and DPL adapters you can leave this blank. For FEP]I,
enter your valid CICS user ID. This will be used for authentication
in MQSeries-CICS bridge and to allocate a PassTicket in the FEPI
Navigator. For the FEPI Navigator, this field corresponds to the
MAT USELUPASS field that is set to Y in the Resource files.

Chapter 6. Validating the adapters 235

Validating the adapters

USER DATALEN:
9(5). For DPL and MQ type 00005. For FEPI type 00006. This
indicates the length of the user data in the request message.

SYMBOLICS NAME:
Leave blank.

MAX REPLYLEN:
9(5). For DPL and MQ type 00401. For FEPI type 00400. This
indicates the length of reply data in the reply message.

5. Select PF 10 EXPAND DATA
The Simulator symbolic mapping utility screen appears

4 N
SIMULATOR SYMBOLIC MAPPING UTILITY DFHMASP4
NAME : COLUMN: 1 CHAPTER:
OFFSET: LEFT/RIGHT BY: 35 SIZE: 5

LIST BY: O (O)FFSET/(N)AME/(S)EQ UPDATE MODE: BROWSE
Please select system option:

OFFSET NAME S Puppu: SRy . —
0 FILLER

(1) TOP (3) SELECT (4) VIEW (7) BACKWARD (8) FORWARD (10) MODE (12) EXIT
(13) HEX (16) RETURN (19) LEFT (20) RIGHT (22) INIT (ENTER) GO TO
\SYMBOLICS WERE NOT FOUND FOR AREA SELECTED - FILLER USED TO MAP TEMP STORAGE

Figure 184. Simulator Symbolic Mapping Utility
Select F10 MODE to change from BROWSE mode to UPDATE mode.
For MQ and DPL, tab to data entry area on screen and type 10000 .
For FEPI you must account for the SIGNOFF field for releasing the LU. So

tab to the data entry area on screen and type 10000Y. The Y will release the
LU. If you enter any other value but Y, the LU will not be released.

236 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Validating the adapters

/ N
SIMULATOR SYMBOLIC MAPPING UTILITY DFHMASP4
NAME: COLUMN: 1 CHAPTER:
OFFSET: LEFT/RIGHT BY: 35 SIZE: 5

LIST BY: O (O)FFSET/(N)AME/(S)EQ UPDATE MODE: UPDATE
Please select system option:

OFFSET NAME S
0 FILLER 10000

Figure 185. Updated symbolic mapping utility screen

6. Select (ENTER).
7. Select F16 RETURN to go back to the Simulator request initiation screen.
8. For FEPI Adapter only

Before you send the request message, make sure that FEPI is running by
ensuring that the Target, Nodes, Property Set and Pool are in service. You
may need to check with your CICS administrator.

9. Select F1 SEND REQUEST to send the request.

REQUEST QUEUE: QAS1.MAC.BRIDGE.REQUEST

REQUEST NAME: TUMQO1 TYPE: Q (0) Async; (1) Sync; (2) Sync/Rollback
PROCESSTYPE: DFHMAINA
PROCESS 1ID:

REPLY QMODEL: QAS1.MAC.MODEL.QUEUE
DYNAMIC QNAME: SIMULATION.=*
WAIT ON REPLY: 030 seconds
USERID:
USER DATALEN: 00005 SYMBOLICS NAME:
MAX REPLYLEN: 00401

Please select system option:

(1) SEND REQUEST (2) REPLAY DATA
(9) MANAGE DATA (10) EXPAND DATA (11) RESET DATA (12) EXIT
(13) PROCESS STATUS (14) REPLY DATA (16) RETURN

Figure 186. Simulator request initiation screen — Sending the request

¢ If the request is processed, you receive a GOOD RESPONSE RECEIVED
in the message area of the Simulator Request Initiation screen.

* If the request is not processed, you receive an ERROR RESPONSE
RECEIVED in the message area of the Simulator Request Initiation
screen. See the section on troubleshooting the simulator in the MQSeries
Integrator Agent for CICS Run Tim User’s Guide for information on how to
respond to an ERROR RESPONSE RECEIVED message.

Chapter 6. Validating the adapters 237

Validating the adapters

__10. Check the reply to the adapter request
After you receive a response to the F1 SEND REQUEST, select F14 REPLY
DATA from the Simulator Request Initiation screen.
The Simulator Symbolic Mapping Utility screen appears.

Select F20 RIGHT (shift F8) to scroll the screen image to the right. This will
allow you to view the reply data:

4 N
SIMULATOR SYMBOLIC MAPPING UTILITY DFHMASP4
NAME : COLUMN: 36 CHAPTER:
OFFSET: LEFT/RIGHT BY: 35 SIZE: 169

LIST BY: O (O)FFSET/(N)AME/(S)EQ UPDATE MODE: BROWSE
Please select system option:

OFFSET NAME PPy SRy
0 FILLER Cust Action 0K 100000NE

(1) TOP (3) SELECT (4) VIEW (7) BACKWARD (8) FORWARD (10) MODE (12) EXIT
(13) HEX (16) RETURN (19) LEFT (20) RIGHT (22) INIT (ENTER) GO TO

- J

Figure 187. Simulator symbolic mapping utility screen

__11. Select F16 RETURN to return to the Simulator Request Initiation Screen.

From this screen you can reset the data and type in the values required to
test the next adapter. See

238 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Appendix. Example procedure for defining adapter resources
to CICS

After you build and deploy your adapters to CICS, a CICS systems administrator
will need to define the adapter resources to CICS.

As CICS environments will vary from site to site, do not use the information in
this example to define your adapter resources to your CICS environment. The
procedures documented in the following sections are examples and they should be
used only for reference purposes.

Defining DPL adapter resources to CICS

Check to see that the adapter compiled in CICS

After you have deployed the adapter to the OS/390 server, you need to make sure
that it compiled with no errors.

Perform the following steps to check the compile:
1. Sign on to the OS/390 server and select the option to access TSO.
2. Enter your TSO logon password and select Enter.

/ N
——————————————————————————————— TSO/E LOGON === == mmm oo mmm e
Enter LOGON parameters below: RACF LOGON parameters:
Userid ===> QASGSR1
Password ===> New Password ===>
Procedure ===> IKJCLOUD Group Ident ===>

Acct Nmbr ===> 00

Size ===> 1024
Perform ===>
Command ===>

Enter an 'S' before each option desired below:
-Nomail -Nonotice -Reconnect -0IDcard

PF1/PF13 ==> Help PF3/PF15 ==> Logoff PA1 ==> Attention PA2 ==> Reshow
You may request specific help information by entering a '?' in any entry field

Figure 188. TSO/E logon screen

3. Press Enter to complete signon.

© Copyright IBM Corp. 2001 239

-
ICH700011 QASGSR1

**k%k

LAST ACCESS AT 14:49:51 ON MONDAY, OCTOBER 8, 2001
IKJ564551 QASGSR1 LOGON IN PROGRESS AT 15:05:30 ON OCTOBER 8, 2001
15.00.56 JOBO7309 $HASP165 QASGSR1C ENDED AT ECNODE15 MAXCC=4 CN(INTERNAL)
15.03.07 JOBO7310 $HASP165 QASGSR1C ENDED AT ECNODE15 MAXCC=4 CN(INTERNAL)
15.03.58 JOBO7311 $HASP165 QASGSR1C ENDED AT ECNODE15 MAXCC=0 CN(INTERNAL)

Figure 189. List of completed job notifications sent to OS/390 server (for active user id) via

the deploy process

4. Press Pause to go to the ISPF Primary Option Menu.

Menu Utilities

Settings
View

Edit
Utilities
Foreground
Batch

Command

ECC Utilities
SDSF

SYS Support

NOLVMmMmOOH WN — O

Enter X to T

Option ===>S.H
Fl=Help F3=

Compilers Options Status Help

ISPF Primary Option Menu

Terminal and user parameters
Display source data or listings
Create or change source data
Perform utility functions
Interactive Tanguage processing
Submit job for language processing
Enter TSO or Workstation commands
Early, Cloud and Company Utilities
Spool Display and Search Facility
Operating System Support Functions

erminate using log/list defaults

F10=Actions

Exit F12=Cancel

User ID .
Time. . .
Terminal.
Screen. .
Language.

Appl ID . :
TSO Togon :
TSO prefix:
System ID :
: 00

MVS acct.

Release . :

SS

: QASGSR1
: 13:46

: 3278

g 1

: ENGLISH

ISp
IKJCLOUD
QASGSR1
DSYS

ISPF 4.5

Figure 190. ISPF P

5. Type S.H on the Option line and press Enter to see go to the compile job

listing:

rimary Option Menu

240 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Display Filter View Print Options Help

SDSF HELD OUTPUT DISPLAY ALL CLASSES LINES 37,935 LINE 1-3 (3)

NP JOBNAME JOBID OWNER PRTY C ODISP DEST TOT-REC TOT-

N QASGSR1C JOBO7309 QASGSR1 ~ 112 X HOLD LOCAL 10,247
QASGSR1C JOBO7310 QASGSR1 96 X HOLD LOCAL 27,565
QASGSR1C JOBO7311 QASGSR1 ~ 144 X HOLD LOCAL 123

COMMAND INPUT ===> SCROLL ===> PAGE
F1=HELP F2=SPLIT F3=END F4=RETURN F5=IFIND F6=BOOK
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 191. Spool Display and Search Facility Held Output Display screen

6. To view an output listing, type an S to the left of its job name and press Enter.
This will open (for view purposes) the JES2 JOB LOG:

Display Filter View Print Options Help h
SDSF OUTPUT DISPLAY QASGSR1C JOB07309 DSID 2 LINE O COLUMNS 02- 81
COMMAND INPUT ===> SCROLL ===> PAGE

TOP OF DATA
JES2 JO0OB LOG -- SYSTEM CSYS -- NODE

15.00.23 JOBO7309 ---- MONDAY, 08 OCT 2001 ----
15.00.23 JOBO7309 IRRO1OI USERID QASGSR1 IS ASSIGNED TO THIS JOB.
15.00.33 JOBO7309 ICH700011 QASGSR1 LAST ACCESS AT 14:49:51 ON MONDAY, OCTOBER
15.00.33 J0B0O7309 $HASP373 QASGSR1C STARTED - INIT 1 - CLASS A - SYS DSYS
15.00.35 JOBO7309 - --TIMINGS (M
15.00.35 JOBO7309 -JOBNAME STEPNAME PROCSTEP RC EXCP CONN TCB SRB
15.00.35 JOBO7309 -QASGSR1C COMPILE TRANSTEP 00 84 226 .00 .00
15.00.49 JOBO7309 -QASGSR1C COMPILE COBLSTEP 04 1307 1217 .04 .00
15.00.54 JOB0O7309 -QASGSR1C COMPILE LINKSTEP 00 278 708 .01 .00
15.00.54 JOBO7309 -QASGSR1C ENDED. NAME- TOTAL TCB CPU TIM
15.00.54 J0B07309 $HASP395 QASGSR1C ENDED
—————— JES2 JOB STATISTICS ------

08 OCT 2001 JOB EXECUTION DATE

34 CARDS READ
10,247 SYSOUT PRINT RECORDS
F1=HELP F2=SPLIT F3=END F4=RETURN F5=IFIND F6=B0O0K
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE)

Figure 192. JES2 Job Log

Scroll to the bottom of the JES2 JOB LOG to see the Error Message Summary
report. To advance directly to the bottom of the JES2 JOB LOG type M on the
Command Input line and press F8.

Appendix. Example procedure for defining adapter resources to CICS 241

Display Filter View Print Options Help
SDSF OUTPUT DISPLAY QASGSR1C JOBO7309 DSID 104 LINE 288 COLUMNS 02- 81
COMMAND INPUT ===> SCROLL ===> PAGE
MESSAGE SUMMARY REPORT

SEVERE MESSAGES (SEVERITY = 12)
NONE
ERROR MESSAGES (SEVERITY = 08)
NONE
WARNING MESSAGES (SEVERITY = 04)
NONE
INFORMATIONAL MESSAGES (SEVERITY = 00)

2008 2278 2322

**%% END OF MESSAGE SUMMARY REPORT s+

Figure 193. Error Message Summary report section of the JES2 JOB LOG

7. Review the summary report. If errors are found, correct them.
8. Press F3 END to return to the output listings and select another to view.

Defining the adapter resources to CICS

After deploying an adapter to the OS/390 server, you need to define the adapter
resources (programs and transaction ids) to CICS. You will need to do this each
time a new adapter is deployed.

You also must NEWCOPY any server adapter programs that were modified.

Using the CEDA transaction, perform the following tasks:
* Define the adapter programs to CICS

* Define the adapter transactions to CICS

* Install the adapter programs to CICS

* Install the adapter transactions to CICS

Using the CEMT transaction, perform the following tasks:
* Validate the association of installed programs to installed transactions
* NEWCOPY the adapter programs

Running the CEDA transaction
The following sections provide the instructions on running the CEDA transaction
to define and install adapter resources to CICS.

Define the adapter programs to CICS: You should have the names of the adapter
programs and transactions available before running the CEDA transaction. The
names of the programs and their associated transaction identifiers are listed in the
ispec file(s). The ispec file(s) that you used for your adapter is located in the
following directory:

C:\<mgiac_base>\cics

Perform the following steps to define adapter programs to CICS.

1. Access a command line in CICS.

242 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

2. Type the following command:

ceda def prog

3. DPress Enter.

The Define Program screen appears:

~
DEF PROG
OVERTYPE TO MODIFY CICS RELEASE = 0530
CEDA DEFine PROGram()
PROGram ==>
Group ==>
DEscription ==>
Language ==> CObol | Assembler | Le370 | C | P1i
RELoad ==> No No | Yes
RESident ==> No No | Yes
USAge ==> Normal Normal | Transient
USElpacopy ==> No No | Yes
Status ==> Enabled Enabled | Disabled
RS1 : 00 0-24 | Public
CEdf ==> Yes Yes | No
DAtalocation ==> Below Below | Any
EXECKey ==> User User | Cics
COncurrency ==> Quasirent Quasirent | Threadsafe
REMOTE ATTRIBUTES
DYnamic ==> No No | Yes
+ REMOTESystem ==>
MESSAGES: 2 SEVERE
SYSID=QAS1 APPLID=CICSQAS1
\PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL)

4. Type values for the PROGram, Group and Transid (Use F8 — Scroll Forward
to access the transaction id field).

Table 73. Values for the Define Transactions screen

Program

Group Transid

TUNAV1

MIACUSER

TUDN

TUDPL1

MIACUSER

TUD1

5. Press Enter to define the program to CICS.
You should see the message DEFINE SUCCESSFUL at the bottom of the screen.

6. Press F3 END to return to the define program command line.

Repeat the CEDA define program function until each adapter program is

defined to CICS.

Define the adapter program transactions to CICS: Perform the following steps to
define adapter programs to CICS:

1. Access a command line in CICS.

2. Type the following command:

ceda def trans

3. Press Enter.

The Define Transaction screen appears:

Appendix. Example procedure for defining adapter resources to CICS

243

/' N\
DEF TRANS
OVERTYPE TO MODIFY CICS RELEASE = 0530
CEDA DEFine TRANSaction()
TRANSaction ==
Group ==> DEV1
DEscription ==>
PROGram ==>
TWasize ==> 00000 0-32767
PROFiTe ==> DFHCICST
PArtitionset ==>
STAtus ==> Enabled Enabled | Disabled
PRIMedsize : 00000 0-65520
TASKDATALoc ==> Below Below | Any
TASKDATAKey ==> User User | Cics
STOrageclear ==> No No | Yes
RUnaway ==> System System | 0 | 500-2700000
SHutdown ==> Disabled Disabled | Enabled
ISolate ==> Yes Yes | No
Brexit ==
+ REMOTE ATTRIBUTES
S An object must be specified.
SYSID=QAS1 APPLID=CICSQAS1
- J

4. Type values for the TRANSaction, Group, DEscription and PROGram.
5. Press Enter to define the transaction to CICS.

You should see the message DEFINE SUCCESSFUL at the bottom of the screen.
6. Press F3 END to return to the define transaction command line.

Repeat the CEDA define transaction function until each adapter program
transaction is defined to CICS.

Install the adapter programs to CICS: Perform the following steps to install the
adapter programs to CICS.
1. Access a command line in CICS.
2. Type the following command:
ceda inst gr(x) prog(y)

Where x = the group name assigned and y = the program being installed.

Note: You can choose to run the install command on the entire group by
typing ceda inst gr(x) on the command line (where x = the name of the
group). This command automatically installs all of the adapter programs
and their transactions to CICS. When you install programs to CICS in
this manner, you will receive an error even though the programs and
transactions were successfully installed. To verify that the programs
and their associated transactions were installed, go to a CICS command
line and type the following command:

CEMT I TRANS

The screen shows the programs and the transactions installed for the group
specified in the command.

3. Press Enter to install the program.

You should see the message INSTALL SUCCESSFUL at the bottom of the
screen:

244 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

INST GR(MIACUSER) PROG(TUMQO1G)

OVERTYPE TO MODIFY

CEDA Install
Connection
DB2Conn
DB2Entry
DB2Tran
DOctemplate
Engmodel
File
Journalmodel
LSrpool
Mapset
PARTItionset
PARTNer
PROCesstype
PROFile
PROGram
Requestmodel ==>

+ Sessions ==>

VVVVVVYV

VVVVVYV

nuw u o uw uw o u nonononon
\

\

TUMQO1G

SYSID=QAS1 APPLID=CICSQAS1
INSTALL SUCCESSFUL TIME: 16.24.37 DATE: 01.275
\\PF 1 HELP 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

Select F3 END to return to the CEDA INST command line.

Edit the command line to indicate the next program to install and select Enter
to install that program.

Repeat the process until you have installed all the programs to CICS.

Install the adapter program transactions to CICS: Perform the following steps to
install the adapter programs to CICS.

1.
2.

Access a command line in CICS.
Type the following command:
ceda inst gr(x) trans(y)

Where x = the group name assigned and y = the program transaction being
installed.

Press Enter to install the transaction.

You should see the message INSTALL SUCCESSFUL at the bottom of the
screen.

Select F3 END to return to the CEDA INST command line.

Edit the command line to indicate the next program transaction to install and
select Enter to install that transaction.

Repeat the process until you have installed all the program transactions to
CICS.

If you want to see that the programs and transactions are associated with each
other, go to a CICS command line and type the following command:

CEMT I TRANS

NEWCOPY the adapter programs to CICS: From the CICS command line type
the following:

CEMT I PROG(x)

Where x = the installed adapter program.

The following screen appears:

Appendix. Example procedure for defining adapter resources to CICS 245

-
CEMT I PROG(TUDPL1)
STATUS: RESULTS - OVERTYPE TO MODIFY
Prog(TUDPL1) Len(0000000) Pro Ena Pri Ced
Res (000) Use(0000000000) Bel Uex Ful Qua

SYSID=QAS1 APPLID=CICSQAS1

RESPONSE: NORMAL TIME: 09.30.08 DATE: 10.08.01
PF 1 HELP 3 END 5 VAR 7 SBH 8 SFH 9 MSG 10 SB 11 SF
- J
Tab to the Pri field and type New. The following update occurs:
g N
I PROG(TUDPL1)
STATUS: RESULTS - OVERTYPE TO MODIFY
Prog(TUDPL1) Len(0031280) Pro Ena Pri Ced NORMAL
Res(000) Use(0000000000) Bel Uex Ful Qua
SYSID=QAS1 APPLID=CICSQASI
RESPONSE: NORMAL TIME: 09.32.43 DATE: 10.08.01
_PF 1 HELP 3 END 5 VAR 7 SBH 8 SFH 9 MSG 10 SB 11 SF)

See Chapter 6, “Validating the adapters” on page 231 for how to run and validate

the adapter.

Defining MQ adapter resources to CICS

Check to see that the adapter compiled in CICS

After you have deployed the adapter to the OS/390 server, you need to make sure
that it compiled with no errors.

Perform the following steps to check the compile:
1. Sign on to the OS/390 server and select the option to access TSO.

246 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

2. Enter your TSO logon password and select Enter.

4 N
------------------------------- TSO/E LOGON =====mmmmmmm o mm e o e
Enter LOGON parameters below: RACF LOGON parameters:
Userid ===> QASGSR1
Password ===> New Password ===>
Procedure ===> IKJCLOUD Group Ident ===>

Acct Nmbr ===> 00

Size ===> 1024
Perform ===>
Command ===>

Enter an 'S' before each option desired below:
-Nomail -Nonotice -Reconnect -0IDcard

PF1/PF13 ==> Help PF3/PF15 ==> Logoff PA1l ==> Attention PA2 ==> Reshow
You may request specific help information by entering a '?' in any entry field

Figure 194. TSO/E logon screen

3. Press Enter to complete signon.

/,ICH700011 QASGSR1 LAST ACCESS AT 11:45:30 ON TUESDAY, OCTOBER 2, 2001
IKJ564551 QASGSR1 LOGON IN PROGRESS AT 13:35:59 ON OCTOBER 2, 2001
11.41.33 JOBO7145 $HASP165 QASGSRIC ENDED AT ECNODE15 MAXCC=4 CN(INTERNAL)
11.43.36 JOB0O7146 $HASP165 QASGSRIC ENDED AT ECNODE15 MAXCC=4 CN(INTERNAL)
11.45.56 JOB07147 $HASP165 QASGSRIC ENDED AT ECNODE15 MAXCC=4 CN(INTERNAL)
11.46.43 JOBO7148 $HASP165 QASGSR1C ENDED AT ECNODE15 MAXCC=0 CN(INTERNAL)

*k*k

Figure 195. List of completed job notifications sent to OS/390 server (for active user id) via
the deploy process

4. Press Pause to go to the ISPF Primary Option Menu

Appendix. Example procedure for defining adapter resources to CICS 247

Menu

Settings

View

Edit
Utilities
Foreground
Batch

Command

ECC Utilities
SDSF

SYS Support

NOLVMmOOOTH WN — O

Option ===>S.H
Fl=Help

Utilities
$SSSSS55SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

F3-

Compilers Options Status Help

ISPF Primary Option Menu

Terminal and user parameters
Display source data or listings
Create or change source data
Perform utility functions
Interactive Tanguage processing
Submit job for language processing
Enter TSO or Workstation commands
Early, Cloud and Company Utilities
Spool Display and Search Facility
Operating System Support Functions

Enter X to Terminate using log/1ist defaults

Exit F10=Actions F12=Cancel

User ID .
Time. . .
Terminal.
Screen. .
Language.
Appl ID . :
TSO Togon :
TSO prefix:
System ID :
MVS acct.
Release . :

: QASGSR1
: 13:46

. 3278
1

: ENGLISH

ISp
IKJCLOUD
QASGSR1
DSYS

: 00

ISPF 4.5

Figure 196. ISPF Primary Option Menu

5. Type S.H on the Option line and press Enter to see go to the compile job

listing:

SDSF HELD OUTPUT

Display Filter View Print Options

Help

DISPLAY ALL CLASSES LINES 56,188

NP JOBNAME JOBID OWNER PRTY C ODISP DEST
N QASGSR1C JOB06978 QASGSR1 112 X HOLD LOCAL
QASGSR1C JOB06979 QASGSR1 ~ 112 X HOLD LOCAL
QASGSR1C JOB06980 QASGSR1 96 X HOLD LOCAL
QASGSR1C JOB06981 QASGSR1 144 X HOLD LOCAL
QASGSR1 TSUO6975 QASGSR1 144 K HOLD LOCAL
COMMAND INPUT ===>
F1=HELP F2=SPLIT F3=END F4=RETURN
F7=UP F8=DOWN F9=SWAP F10=LEFT

F11=RIGHT

LINE 1-5 (5)

TOT-REC TOT-
13,874
14,206
27,723

SCROLL
F5=IFIND

F6=
Fl2=

127
258

===> PAGE
BOOK
RETRIEVE

Figure 197. Spool Display and Search Facility Held Output Display screen

6. To view a job type an S to the left of its job name and press Enter. This will

open (for view purposes) the JES2 JOB LOG:

248 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Display Filter View Print Options Help

SDSF OUTPUT DISPLAY QASGSRIC JOB06978 DSID 2 LINE 0 COLUMNS 02- 81
COMMAND INPUT ===> M SCROLL ===> PAGE
wiwx TOP OF DATA * ok
JES2 JOB LOG -- SYSTEM CSYS -- NODE
15.48.08 JOBO6978 ---- WEDNESDAY, 26 SEP 2001 ----

15.48.08 JOB06978 IRRO1OI USERID QASGSR1 IS ASSIGNED TO THIS JOB.
15.48.15 JOB06978 ICH700011 QASGSR1 LAST ACCESS AT 13:35:05 ON WEDNESDAY, SEPT
15.48.16 J0B06978 $HASP373 QASGSR1C STARTED - INIT 1 - CLASS A - SYS DSYS
15.48.19 JOBO6978 - --TIMINGS (M
15.48.19 JOBO6978 -JOBNAME STEPNAME PROCSTEP RC EXCP CONN TCB SRB
15.48.19 JOB06978 -QASGSRIC COMPILE TRANSTEP 00 81 207 .00 .00
15.48.36 J0B06978 $HASP375 QASGSR1C ESTIMATED LINES EXCEEDED
15.48.37 J0B06978 -QASGSR1C COMPILE COBLSTEP 04 1722 1565 .07 .00
15.48.43 JOB06978 -QASGSRIC COMPILE LINKSTEP 00 286 720 .01 .00
15.48.43 J0B06978 -QASGSRIC ENDED. NAME- TOTAL TCB CPU TIM
15.48.43 J0BO6978 $HASP395 QASGSRIC ENDED
—————— JES2 JOB STATISTICS ------

26 SEP 2001 JOB EXECUTION DATE

34 CARDS READ
F1=HELP F2=SPLIT F3=END F4=RETURN F5=IFIND F6=BOOK
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 198. JES2 Job Log

Scroll to the bottom of the JES2 JOB LOG to see the Error Message Summary
report. To advance directly to the bottom of the JES2 JOB LOG type M on the
Command Input line and press F8.

~
Display Filter View Print Options Help
SDSF OUTPUT DISPLAY QASGSR1C JOB06978 DSID 104 LINE 289 COLUMNS 02- 81
COMMAND INPUT ===> SCROLL ===> PAGE
MESSAGE SUMMARY REPORT
SEVERE MESSAGES (SEVERITY = 12)
NONE
ERROR MESSAGES (SEVERITY = 08)
NONE
WARNING MESSAGES (SEVERITY = 04)
NONE
INFORMATIONAL MESSAGES (SEVERITY = 00)
2008 2278 2322
**%% END OF MESSAGE SUMMARY REPORT ##x
- J

Figure 199. Error Message Summary report section of the JES2 JOB LOG

7. Review the summary report. If errors are found, correct them.

8. Press F3 END to return to the list of output listings and select another to view.

Defining the adapter resources to CICS

After deploying an adapter to the OS/390 server, you need to define the adapter
resources (programs and transaction ids) to CICS. You will need to do this each
time a new adapter is deployed.

Appendix. Example procedure for defining adapter resources to CICS 249

You also must NEWCOPY any server adapter programs that were modified.

Using the CEDA transaction, perform the following tasks:
* Define the adapter programs to CICS.

* Define the adapter transactions to CICS.

¢ Install the adapter programs to CICS.

* Install the adapter transactions to CICS.

Using the CEMT transaction, perform the following tasks:
* Validate the association of installed programs to installed transactions
* NEWCOPY the adapter programs

Running the CEDA transaction
The following sections provide the instructions on running the CEDA transaction
to define and install adapter resources to CICS.

Define the adapter programs to CICS: You should have the names of the adapter
programs and transactions available before running the CEDA transaction. The
names of the programs and their associated transaction identifiers are listed in the
ispec file(s). The ispec file(s) that you used for your adapter is located in the
following directory:

C:\<mgiac_base>\cics

Perform the following steps to define adapter programs to CICS.
1. Access a command line in CICS.
2. Type the following command:
ceda def prog
3. Press Enter.

The Define Program screen appears:

~
DEF PROG
OVERTYPE TO MODIFY CICS RELEASE = 0530
CEDA DEFine PROGram()
PROGram ==>
Group ==>
DEscription ==>
Language ==> CObol | Assembler | Le370 | C | P1i
RELoad ==> No No | Yes
RESident ==> No No | Yes
USAge ==> Normal Normal | Transient
USETpacopy ==> No No | Yes
Status ==> Enabled Enabled | Disabled
RS1 : 00 0-24 | Public
CEdf ==> Yes Yes | No
DAtalocation ==> Below Below | Any
EXECKey ==> User User | Cics
COncurrency ==> Quasirent Quasirent | Threadsafe
REMOTE ATTRIBUTES
DYnamic ==> No No | Yes
+ REMOTESystem ==>
MESSAGES: 2 SEVERE
SYSID=QAS1 APPLID=CICSQAS1
\PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL)

4. Type values for the PROGram, Group and Transid (Use F8 — scroll forward to
access the transaction id field).

5. Press Enter to define the program to CICS.
You should see the message DEFINE SUCCESSFUL at the bottom of the screen.

250 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

6. Press F3 END to return to the define program command line.

Repeat the CEDA define program function until each adapter program is

defined to CICS.

Define the adapter program transactions to CICS: Perform the following steps to

define adapter programs to CICS.

1. Access a command line in CICS.

2. Type the following command:

ceda def trans
3. Press Enter.

The Define Transaction screen appears:

-

DEF TRANS

OVERTYPE TO MODIFY CICS RELEASE = 0530
CEDA DEFine TRANSaction()
TRANSaction ==>
Group ==> DEV1
DEscription ==>
PROGram ==>
TWasize ==> 00000 0-32767
PROFile ==> DFHCICST
PArtitionset ==>
STAtus ==> Enabled Enabled | Disabled
PRIMedsize : 00000 0-65520
TASKDATALoc ==> Below Below | Any
TASKDATAKey ==> User User | Cics
STOrageclear ==> No No | Yes
RUnaway ==> System System | 0 | 500-2700000
SHutdown ==> Disabled Disabled | Enabled
ISolate ==> Yes Yes | No
Brexit ==>

+ REMOTE ATTRIBUTES
S An object must be specified.
SYSID=QAS1 APPLID=CICSQAS1

4. Type values for the TRANSaction, Group, DEscription and PROGram

Table 74. Values for the Define Transactions screen

Program Group Transid
TUMNAV1 MIACUSER TUM1
TUMQO1P MIACUSER TUMP
TUMQO1G MIACUSER TUMG

5. DPress Enter to define the transaction to CICS.

You should see the message DEFINE SUCCESSFUL at the bottom of the screen.

6. Press F3 END to return to the define transaction command line.

Repeat the CEDA define transaction function until each adapter program

transaction is defined to CICS.

Install the adapter programs to CICS: Perform the following steps to install the

adapter programs to CICS.

1. Access a command line in CICS.

2. Type the following command:
ceda inst gr(x) prog(y)

Where x = the group name assigned and y = the program being installed.

Appendix. Example procedure for defining adapter resources to CICS

Note: You can choose to run the install command on the entire group by
typing ceda inst gr(x) on the command line (where x = the name of the
group). This command automatically installs all of the adapter programs
and their transactions to CICS. When you install programs to CICS in
this manner, you will receive an error even though the programs and
transactions were successfully installed. To verify that the programs
and their associated transactions were installed, go to a CICS command
line and type the following command:

CEMT I TRANS

The screen shows the programs and the transactions installed for the group
specified in the command.

3. Press Enter to install the program.

You should see the message INSTALL SUCCESSFUL at the bottom of the
screen:

INST GR(MIACUSER) PROG(TUMQO1G)

OVERTYPE TO MODIFY

CEDA Install
Connection
DB2Conn
DB2Entry
DB2Tran
DOctemplate
Engmode]
File
Journalmodel
LSrpool
Mapset
PARTItionset
PARTNer
PROCesstype
PROFile
PROGram
Requestmodel ==>

+ Sessions ==>

VVVVVYVYV

V.V VYV VYV

nmonowouwononouwonnuwunnun
v

\%

TUMQO1G

SYSID=QAS1 APPLID=CICSQAS1
INSTALL SUCCESSFUL TIME: 16.24.37 DATE: 01.275
\\PF 1 HELP 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

4. Select F3 END to return to the CEDA INST command line.

5. Edit the command line to indicate the next program to install and select Enter
to install that program.

Repeat the process until you have installed all the programs to CICS.

Install the adapter program transactions to CICS: Perform the following steps to
install the adapter programs to CICS.

1. Access a command line in CICS.
2. Type the following command:
ceda inst gr(x) trans(y)

Where x = the group name assigned and y = the program transaction being
installed.

3. Press Enter to install the transaction.

You should see the message INSTALL SUCCESSFUL at the bottom of the
screen.

4. Select F3 END to return to the CEDA INST command line.

252 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

5. Edit the command line to indicate the next program transaction to install and

select Enter to install that transaction.

Repeat the process until you have installed all the program transactions to

CICS.

If you want to see that the programs and transactions are associated with each

other, go to a CICS command line and type the following command:

CEMT I TRANS

NEWCOPY the adapter programs to CICS: From the CICS command line type

the following:
CEMT I PROG(x,y,z)

Where X,y, z = the installed adapter programs.

The following screen appears:

-
CEMT I PROG(TUDPL1)
STATUS: RESULTS - OVERTYPE TO MODIFY
Prog(TUDPL1) Len(0000000) Pro Ena Pri
Res (000) Use(0000000000) Bel Uex Ful Qua

RESPONSE: NORMAL

Ced

TIME:

SYSID=QAS1 APPLID=CICSQAS1
09.30.08 DATE: 10.08.01

\PF 1 HELP 3 END 5 VAR 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Tab so that the cursor follows the Pri field and type New. The following update

occurs:

Appendix. Example procedure for defining adapter resources to CICS

253

4 N\
I PROG(TUDPL1)
STATUS: RESULTS - OVERTYPE TO MODIFY
Prog(TUDPL1) Len(0031280) Pro Ena Pri Ced NORMAL
Res(000) Use(0000000000) Bel Uex Ful Qua
SYSID=QAS1 APPLID=CICSQAS1

RESPONSE: NORMAL TIME: 09.32.43 DATE: 10.08.01

\\PF 1 HELP 3 END 5 VAR 7 SBH 8 SFH 9 MSG 10 SB 11 SF)

See Chapter 6_“Validating the adapters” an page 231 for how to run and validate

the adapter.

Defining FEPI adapter resources to CICS

Check to see that the adapter compiled in CICS
Perform the following steps to check the compile:
1. Sign on to the OS/390 server and select the option to access TSO.
2. Enter your TSO logon password and select Enter.

Ve
——————————————————————————————— TSO/E LOGON =====mmmmm oo e mm e
Enter LOGON parameters below: RACF LOGON parameters:
Userid ===> QASGSR1
Password ===> New Password ===>
Procedure ===> IKJCLOUD Group Ident ===>

Acct Nmbr ===> 00

Size ===> 1024
Perform ===>
Command ===>

Enter an 'S' before each option desired below:
-Nomail -Nonotice -Reconnect -0IDcard

PF1/PF13 ==> Help PF3/PF15 ==> Logoff PA1 ==> Attention PA2 ==> Reshow
\Tou may request specific help information by entering a '?' in any entry field

Figure 200. TSO/E logon screen

254 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

3. Press Enter to complete signon.

Ve
ICH700011
IKJ564551

QASGSR1

LAST ACCESS AT 10:45:40 ON TUESDAY, OCTOBER 9, 2001

QASGSR1 LOGON IN PROGRESS AT 10:54:20 ON OCTOBER 9, 2001

JOB07340 $HASP165 QASGSR1C
JOBO7341 $HASP165 QASGSR1C
JOBO7342 $HASP165 QASGSR1C
JOB07343 $HASP165 QASGSR1C
JOBO7344 $HASP165 QASGSR1C
JOB07345 $HASP165 QASGSR1C
JOB07346 $HASP165 QASGSR1C
JOB07347 $HASP165 QASGSR1C
JOB07348 $HASP165 QASGSR1C
JOB07349 $HASP165 QASGSR1C
JOB07350 $HASP165 QASGSR1C
JOBO7351 $HASP165 QASGSR1C

ENDED
ENDED
ENDED
ENDED
ENDED
ENDED
ENDED
ENDED
ENDED
ENDED
ENDED
ENDED

ECNODE15
ECNODE15
ECNODE15
ECNODE15
ECNODE15
ECNODE15
ECNODE15
ECNODE15
ECNODE15
ECNODE15
ECNODE15
ECNODE15

MAXCC=4
MAXCC=4
MAXCC=4
MAXCC=4
MAXCC=4
MAXCC=4
MAXCC=4
MAXCC=4
MAXCC=4
MAXCC=4
MAXCC=4
MAXCC=0

CN(INTERNAL)
CN(INTERNAL)
CN(INTERNAL)
CN(INTERNAL)
CN(INTERNAL)
CN(INTERNAL)
CN(INTERNAL)
CN(INTERNAL)
CN(INTERNAL)
CN(INTERNAL)
CN(INTERNAL)
CN(INTERNAL)

Figure 201. List of completed job notifications sent to the OS/390 server (for active user id)
via the deploy process

4. Press Pause to go to the ISPF Primary Option Menu.

~
Menu Utilities Compilers Options Status Help
SSS55SS5SSSSSSSSSSSSSSS
ISPF Primary Option Menu
0 Settings Terminal and user parameters User ID . : QASGSR1
1 View Display source data or listings Time. . . : 13:46
2 Edit Create or change source data Terminal. : 3278
3 Utilities Perform utility functions Screen. . : 1
4 Foreground Interactive Tanguage processing Language. : ENGLISH
5 Batch Submit job for language processing App1 ID . : ISP
6 Command Enter TSO or Workstation commands TSO Togon : IKJCLOUD
E ECC Utilities Early, Cloud and Company Utilities TSO prefix: QASGSR1
S SDSF Spool Display and Search Facility System ID : DSYS
Z SYS Support Operating System Support Functions MVS acct. : 00
Release . : ISPF 4.5
Enter X to Terminate using log/list defaults
Option ===>S.H
F1=Help F3=Exit F10=Actions F12=Cancel)
Figure 202. ISPF Primary Option Menu
5. Type S.H on the Option line and press Enter to see go to the compile job
listing:
Appendix. Example procedure for defining adapter resources to CICS 255

Display Filter View Print Options Help

SDSF HELD OUTPUT DISPLAY ALL CLASSES LINES 37,935 LINE 1-3 (3)

NP JOBNAME JOBID OWNER PRTY C ODISP DEST TOT-REC TOT-

S QASGSR1C JOBO7309 QASGSRL ~ 112 X HOLD LOCAL 10,247
QASGSR1C JOBO7310 QASGSR1 96 X HOLD LOCAL 27,565
QASGSR1C JOBO7311 QASGSR1 144 X HOLD LOCAL 123

COMMAND INPUT ===> SCROLL ===> PAGE
F1=HELP F2=SPLIT F3=END F4=RETURN F5=IFIND F6=B0OK
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 203. Spool Display and Search Facility Held Output Display screen

6. To view an output listing an S to the left of its name and press Enter. This will
open (for view purposes) the JES2 JOB LOG:

Display Filter View Print Options Help h
SDSF OUTPUT DISPLAY QASGSRIC JOB07309 DSID 2 LINE 0 COLUMNS 02- 81
COMMAND INPUT ===> SCROLL ===> PAGE

TOP OF DATA
JES2 J0OB LOG -- SYSTEM CSYS -- NODE

15.00.23 JOBO7309 ---- MONDAY, 08 OCT 2001 ----
15.00.23 JOBO7309 IRRO1OI USERID QASGSR1 IS ASSIGNED TO THIS JOB.
15.00.33 JOBO7309 ICH700011 QASGSR1 LAST ACCESS AT 14:49:51 ON MONDAY, OCTOBER
15.00.33 JOB0O7309 $HASP373 QASGSR1C STARTED - INIT 1 - CLASS A - SYS DSYS
15.00.35 JOB0O7309 - --TIMINGS (M
15.00.35 JOBO7309 -JOBNAME STEPNAME PROCSTEP RC EXCP CONN TCB SRB
15.00.35 JOBO7309 -QASGSR1C COMPILE TRANSTEP 00 84 226 .00 .00
15.00.49 JOBO7309 -QASGSR1C COMPILE COBLSTEP 04 1307 1217 .04 .00
15.00.54 JOB0O7309 -QASGSR1C COMPILE LINKSTEP 00 278 708 .01 .00
15.00.54 JOBO7309 -QASGSR1C ENDED. NAME- TOTAL TCB CPU TIM
15.00.54 J0B0O7309 $HASP395 QASGSR1C ENDED
—————— JES2 JOB STATISTICS ------

08 OCT 2001 JOB EXECUTION DATE

34 CARDS READ
10,247 SYSOUT PRINT RECORDS
F1=HELP F2=SPLIT F3=END F4=RETURN F5=IFIND F6=B0O0OK
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE)

Figure 204. JES2 Job Log

Scroll to the bottom of the JES2 JOB LOG to see the Error Message Summary
report. To advance directly to the bottom of the JES2 JOB LOG type M on the
Command Input line and press F8.

256 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Display Filter View Print Options Help
SDSF OUTPUT DISPLAY QASGSR1C JOBO7309 DSID 104 LINE 288 COLUMNS 02- 81
COMMAND INPUT ===> SCROLL ===> PAGE
MESSAGE SUMMARY REPORT

SEVERE MESSAGES (SEVERITY = 12)
NONE
ERROR MESSAGES (SEVERITY = 08)
NONE
WARNING MESSAGES (SEVERITY = 04)
NONE

INFORMATIONAL MESSAGES (SEVERITY
2008 2278 2322

00)

**** END OF MESSAGE SUMMARY REPORT #s%%*

Figure 205. Error Message Summary report section of the JES2 JOB LOG

7. Review the summary report. If errors are found, correct them.

8. Press F3 END to return to the list of output listings and select another to view.

Defining the adapter resources to CICS

After deploying an adapter to the OS/390 server, you need to define the adapter
resources (programs and transaction ids) to CICS. You will need to do this each
time a new adapter is deployed.

You also must NEWCOPY any server adapter programs that were modified.

Using the CEDA transaction, perform the following tasks:
* Define the adapter programs to CICS.

* Define the adapter transactions to CICS.

¢ Install the adapter programs to CICS.

* Install the adapter transactions to CICS.

Using the CEMT transaction, perform the following tasks:
* Validate the association of installed programs to installed transactions
¢ NEWCOPY the adapter programs

Running the CEDA transaction

The following sections provide the instructions on running the CEDA transaction
to define and install adapter resources to CICS.

You should have the names of the adapter programs and transactions available
before running the CEDA transaction. The names of the programs and their
associated transaction identifiers are listed in the ispec file(s). The ispec file(s) that
you used for your adapter is located in the following directory:

C:\program files\ibm mgseries integrator agent for cics\cics

Appendix. Example procedure for defining adapter resources to CICS 257

Define the adapter programs to CICS
Perform the following steps to define adapter programs to CICS.

1. Access a command line in CICS.

2. Type the following command:

ceda def prog
3. DPress Enter

The Define Program screen appears:

REMOTE ATTRIBUTES

+ REMOTESystem ==>
MESSAGES: 2 SEVERE

PF 1 HELP 2 COM 3 END
-

DEF PROG

OVERTYPE TO MODIFY

CEDA DEFine PROGram()
PROGram ==>
Group ==>
DEscription ==>
Language ==>
RELoad ==> No
RESident ==> No
USAge ==> Normal
USETpacopy ==> No
Status ==> Enabled
RS1 : 00
CEdf ==> Yes
DAtalocation ==> Below
EXECKey ==> ser

COncurrency ==> Quasirent

DYnamic ==> No

CICS RELEASE = 0530

CObol | Assembler | Le370 | C | P1i
No | Yes

No | Yes

Normal | Transient

No | Yes

Enabled | Disabled
0-24 | Public

Yes | No

Below | Any

User | Cics

Quasirent | Threadsafe

No | Yes

SYSID=QAS1 APPLID=CICSQAS1

6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

J

4. Type values for the PROGram, Group, and Transid (you will need to scroll to
the next page to enter a value for the transaction id).

Table 75. Values for the Define Transactions screen

Program Group Transid
TUFNAV MIACUSER TUF1
TUFSGON MIACUSER TUF2
TUFSGOFF MIACUSER TUF3
TUFPRSER MIACUSER TUF4
TUFRESET MIACUSER TUF5
TUFINQ MIACUSER TUF6

Note: If you have modified the Specification files supplied with the FEPI
tutorial, then you will need to modify the values used to define the

values for the program, group and transid accordingly.

5. Press Enter to define the program to CICS.
You should see the message DEFINE SUCCESSFUL at the bottom of the screen.
6. Press F3 END to return to the define program command line.

Repeat the CEDA define program function until each adapter program is

defined to CICS.

Define the adapter program transactions to CICS
Perform the following steps to define adapter programs to CICS.

1. Access a command line in CICS.

258 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

2. Type the following command:
ceda def trans
3. DPress Enter

The Define Transaction screen appears:

~
DEF TRANS
OVERTYPE TO MODIFY CICS RELEASE = 0530
CEDA DEFine TRANSaction()
TRANSaction ==>
Group ==> DEV1
DEscription ==>
PROGram ==>
TWasize ==> 00000 0-32767
PROFile ==> DFHCICST
PArtitionset ==>
STAtus ==> Enabled Enabled | Disabled
PRIMedsize : 00000 0-65520
TASKDATALoc ==> Below Below | Any
TASKDATAKey ==> User User | Cics
STOrageclear ==> No No | Yes
RUnaway ==> System System | 0 | 500-2700000
SHutdown ==> Disabled Disabled | Enabled
ISolate ==> Yes Yes | No
Brexit ==>
+ REMOTE ATTRIBUTE
S An object must be specified.
SYSID=QAS1 APPLID=CICSQAS1
- J

4. Type values for the TRANSaction, Group, DEscription and PROGram.
5. Press Enter to define the transaction to CICS.

You should see the message DEFINE SUCCESSFUL at the bottom of the screen.
6. Press F3 END to return to the define transaction command line.

Repeat the CEDA define transaction function until each adapter program
transaction is defined to CICS.

Install the adapter programs to CICS
Perform the following steps to install the adapter programs to CICS.

1. Access a command line in CICS.
2. Type the following command:
ceda inst gr(x) prog(y)

Where x = the group name assigned and y = the program being installed.

Note: You can choose to run the install command on the entire group by
typing ceda inst gr(x) on the command line (where x = the name of the
group). This command automatically installs all of the adapter programs
and their transactions to CICS. When you install programs to CICS in
this manner, you will receive an error even though the programs and
transactions were successfully installed. To verify that the programs
and their associated transactions were installed, go to a CICS command
line and type the following command:

CEMT I TRANS

The screen shows the programs and the transactions installed for the group
specified in the command.

3. Press Enter to install the program.

You should see the message INSTALL SUCCESSFUL at the bottom of the
screen:

Appendix. Example procedure for defining adapter resources to CICS 259

INST GR(MIACUSER) PROG(TUMQO1G)

OVERTYPE TO MODIFY

CEDA Install
Connection
DB2Conn
DB2Entry
DB2Tran
DOctemplate
Engmodel
File
Journalmodel
LSrpool
Mapset
PARTItionset
PARTNer
PROCesstype
PROFile
PROGram > TUMQO1G
Requestmodel ==>

+ Sessions ==>

VVVVVVYV

VVVVVYV

o nnn
nuw u nonou n \I} nn uw o nonou

SYSID=QAS1 APPLID=CICSQAS1
INSTALL SUCCESSFUL TIME: 16.24.37 DATE: 01.275
\\PF 1 HELP 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

4. Select F3 END to return to the CEDA INST command line.

5. Edit the command line to indicate the next program to install and select Enter
to install that program.

Repeat the process until you have installed all the programs to CICS.

Install the adapter program transactions to CICS
Perform the following steps to install the adapter programs to CICS.

1. Access a command line in CICS.
2. Type the following command:
ceda inst gr(x) trans(y)

Where x = the group name assigned and y = the program transaction being
installed.

3. Press Enter to install the transaction.

You should see the message INSTALL SUCCESSFUL at the bottom of the
screen.

4. Select F3 END to return to the CEDA INST command line.

5. Edit the command line to indicate the next program transaction to install and
select Enter to install that transaction.

Repeat the process until you have installed all the program transactions to
CICS.

If you want to see that the programs and transactions are associated with each
other, go to a CICS command line and type the following command:

CEMT I TRANS(TUF=*)

This lists all the transactions that start with TUF.

NEWCOPY the adapter programs to CICS
From the CICS command line type the following:
CEMT I PROG(x)

Where x = the installed adapter program.

260 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

The following screen appears:

4 N\
CEMT I PROG(TUDPL1)
STATUS: RESULTS - OVERTYPE TO MODIFY
Prog(TUDPL1) Len(0000000) Pro Ena Pri Ced
Res (000) Use(0000000000) Bel Uex Ful Qua
SYSID=QAS1 APPLID=CICSQAS1
RESPONSE: NORMAL TIME: 09.30.08 DATE: 10.08.01
PF 1 HELP 3 END 5 VAR 7 SBH 8 SFH 9 MSG 10 SB 11 SF
- J
Tab to the Pri field and type New. The following update occurs:
4 N\
1 PROG(TUDPL1)
STATUS: RESULTS - OVERTYPE TO MODIFY
Prog(TUDPL1) Len(0031280) Pro Ena Pri Ced NORMAL
Res (000) Use(0000000000) Bel Uex Ful Qua
SYSID=QAS1 APPLID=CICSQAS1
RESPONSE: NORMAL TIME: 09.32.43 DATE: 10.08.01
\\PF 1 HELP 3 END 5 VAR 7 SBH 8 SFH 9 MSG 10 SB 11 SF)

See Chapter 6, “Validating the adapters” on page 231 for how to run and validate

the adapter.

Appendix. Example procedure for defining adapter resources to CICS 261

262 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:
IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2001 263

Notices

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,

Mail Point 151,

Hursley Park,

Winchester,

Hampshire,

England

S0O21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

CICS MQSeries SupportPac
CICSPlex MVS VTAM
e-business 0S/390

IBM RACF

Lotus and LotusScript are trademarks of Lotus Development Corporation in the
United States, or other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

264 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Notices

Other company, product, and service names may be trademarks or service marks
of others.

Notices 265

266 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Glossary

The glossary contains key terms and their meanings as used in the information.

If a particular concept or term appears in one section only, it might not be contained in the glossary. It

might, however, be found via the EIndex” on page 273.

The glossary does not contain terms of other IBM products such as MQSeries.

A

activity. In BTS, one part of the process managed by
CICS business transaction services. Typically, an activity
is part of a business transaction.

Activities can be hierarchically organized, in a tree
structure. An activity that starts another activity is
known as a parent activity. An activity that is started
by another is known as a child activity.

A program that implements an activity differs from a
traditional CICS application program only in its being
designed to respond to BTS events.

adapter . The output of the MQSeries Integrator Agent
for CICS Adapter Builder. It consists of COBOL source
code that is compiled and run in a CICS environment
on an OS/390 server. The adapter implements a
business transaction.

Depending on how one models the adapter, it can
contain a wide variety of functionalities, such as control
flow, data flow, sequential navigation, conditional
branching including decision and iteration, data typing,
storing data context, transformation of data elements,
logical operations and custom code.

The adapter can enable any MQSeries-enabled
application or application that can initiate a CICS
program by invoking one or more server adapter
programs, to access:
Existing CICS transactions (including custom
programs) via a distributed program link (DPL).
Legacy CICS and IMS applications via a 3270 data
stream.

MQSeries-enabled applications via MQSeries.

In the MQSeries Integrator Agent for CICS Adapter
Builder, the adapter is built in two complementary
ways:
The structures of messages are imported or created
and maintained in the form of message sets, in the
Message Set view. See message set.
The processing of messages is modeled in the form
of a microflow in the Adapters view. See microflow.

adapter reply message. A message sent out of the
MQSI Agent for CICS run time in response to an

© Copyright IBM Corp. 2001

adapter request message sent from the controlling
application. An adapter reply message contains the
result of processing the business transaction that was
defined in the request message. Not every adapter
request message merits a reply. At build time the
request message is formatted to indicate whether or not
a reply is required

The adapter reply message is an application-level reply.
It is different from a response that is required by a
communications protocol. For example, EXCI requires
that all requests be responded to at the protocol level.
Therefore, if the controlling application used EXCI for
the adapter request message and if no adapter reply
message was required, a protocol-level response would
still be sent. However, this protocol-level response
would not be performed by the MQSeries Integrator
Agent for CICS. This protocol-level response would not
have to be addressed during build time, diagnostics
and tracing.

adapter request. The means by which the controlling
application invokes the MQSI Agent for CICS run time.
An adapter request is sent in the form of an adapter
request message.

adapter request message. A message sent by the
controlling application to the MQSI Agent for CICS run
time to invoke an adapter to process a business
transaction. If the controlling application is
MQSeries-enabled, the adapter request message is of
the form of an MQSeries message. If the controlling
application is using a CICS-supplied interface the
request message is of the form of a communication area
(COMMAREA).

adapter request processing. The programmatic
functions (modeled at build time) that an adapter
performs in order to manage and fulfill a business
transaction on the server run time. To handle the work
required by adapter request processing, MQSI Agent
for CICS can invoke one or multiple server adapter
programs without requiring action by the controlling
application. Each adapter request results in a different
instance of the Navigation Manager, Navigators and
only those server adapter programs that are needed to
support that adapter request.

267

Glossary

asynchronous. An event that occurs at a time that is
unrelated to the time at which another event occurs.
The two events are mutually asynchronous. The
relationship between the times at which they occur is
unpredictable.

asynchronous mode. A type of MQSI Agent for CICS
run time processing in which the BTS process
implements an instance of the MQSI Agent for CICS
run time is run asynchronously from the initiating
unit-of-work. All BTS activities within that BTS process
will be run asynchronously from their parent activities.
This has the effect of running the BTS process and all
activities as separate units-of-work each with a distinct
commit scope.

You would typically want to process a request in
asynchronous mode if as a result of the processing,
data will be updated.

asynchronous processing. A means of distributing the
processing of an application between systems in an
intercommunication environment. The processing in
each system is independent of the session on which
requests are sent and replies are received. No direct
correlation can be made between requests and replies
and no assumptions can be made about the timing of
replies.

auditing. Collecting and recording information about
the state of MQSI Agent for CICS run time for the
purpose of diagnostics and tracing. MQSI Agent for
CICS run time uses BTS facilities for auditing.

audit trail utility. A CICS-supplied utility program,
DFHATUP, that enables you to print selected BTS audit
records from a specified logstream.

authentication. In computer security, verification of
the identity of a user or the user’s eligibility to access
an object. In MQSI Agent for CICS, the authentication
process is established within the MQSeries-CICS bridge
via an AUTH parameter passed to the bridge monitor
at startup.

B

build time. The time period when business
transaction processing is defined, modeled or modified
electronically. At build time, a programmer that is
familiar with the enterprises business processes uses
the MQSeries Integrator Adapter Builder to:

* Extract (and store as structured data types)
information from COBOL records and 3270 screens.

* Model and define the Navigators and server adapter
programs to be used by MQSI Agent for CICS run
time.

* Generate the source code used by MQSI Agent for
CICS run time.

build time environment. A modeling environment.
The adapter modeling environment for MQSI Agent for
CICS runs under Windows NT .

builder. See MQSeries Integrator Agent for CICS Adapter
Builder on BZd

business transaction. A self-contained business
function. An account transfer for example. Traditionally,
in CICS a business transaction might be implemented
as multiple user transactions. Using BTS, a business
transaction might be implemented as multiple
activities. In MQSI Agent for CICS run time, the
adapter enables the processing that will manage and
complete the business transaction.

C

CICS transaction. A unit of application data
processing (consisting of one or more application
programs) initiated by a single request, often from a
terminal. A transaction may require the initiation of one
or more tasks for its execution.

CICS Business Transaction Services (CICS/BTS). A
CICS domain that supports an application
programming interface (API) and services that simplify
the development of business transactions. Using BTS,
each action that comprises the business transaction is
implemented as one or more CICS transactions. In
order to use MQSeries Integrator Agent for CICS
Transaction Server you must install CICS/BTS.

communication area (COMMAREA). A CICS area
that is used to pass data between tasks that
communicate with a given terminal. The area can also
be used to pass data between programs within a task.
At run time, the DPL Stub program requires that
information from the controlling application be passed
in the form of a communication area.

compensation. The act of modifying the effects of a
child activity. Typically, compensation undoes the
actions taken by an activity. For example, compensation
for an order activity might be to cancel the order. In
MQSeries Integrator Agent for CICS Transaction Server
compensation is taken under consideration at build
time. If a business transaction is to include
compensation, the adapter model needs to reflect it. It
can modify the effects of many activities within a given
process. Although the Adapter Builder does not
support creating compensation microflows explicitly,
programmer’s can set values in a microflow and use
logic in the controlling application to associate one flow
to another for the purpose of performing compensation.

controlling application. Any MQSeries-enabled
application or any application that is capable of
initiating a CICS program. In MQSI Agent for CICS
processing, the controlling application is responsible for
the overall business flow and that also invokes MQSI
Agent for CICS run time. The controlling application

268 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

manages business context, complex state, multiple
request and reply interactions, asynchronous
processing, overall business flow compensation and the
continuation of one logical request through multiple
requests, if required. Examples of controlling
applications include MQSeries Integrator, MQSeries
Workflow, WebSphere, or any local or remote
application can initiate a CICS program.

microflow. The model of the functionality that is
realized in the compiled adapter. A user creates
microflows using the MQSeries Integrator Agent for
CICS Adapter Builder. At build time the microflows are
models of all, or part, of the processing of a business
transaction during adapter request processing. At run
time, the modeled microflows are implemented in
adapter request processing.

custom program. A program that augments adapter
request processing. A custom program can contain
complex rules such as logic and complex IO that could
not be modeled using the MQSeries Integrator Agent
for CICS Adapter Builder. To invoke the custom
program is exactly the same as the mechanism to
invoke a microflow processing with CICS transactions,
(that is, DPL.)

D

data-container. A named area of storage, maintained
by BTS and used to pass data between activities or
between different invocations of the same activity. Each
data-container is associated with an activity; it is
identified by its name and by the activity for which it
is a container. An activity can have any number of
containers as long as they all have different names. A
data-container can be read by all the activities that
comprise a process.

Distributed Program Link (DPL). A function of CICS
intersystem communication that enables CICS to ship
LINK requests between CICS regions. MQSI Agent for
CICS run time can initiate programs, including custom
programs using one or a sequence of DPLs, via CICS
LINK.

DPL Stub program. During MQSI Agent for CICS run
time processing, a DPL Stub program defines and runs

the BTS process (synchronously or asynchronously) and
creates process data-containers.

E

error logging. The process of writing error
information to a file. During MQSI Agent for CICS run
time processing, the error logging will occur via an MQ
queue. An error listener program allows the queue to
be drained and hardened to a VSAM resource. Error
listener program could be replaced and the queue

Glossary

drained and hardened to resource such as a database, a
Tivoli interface or a third party system management
package.

F

FEPI. Front End Programming Interface. A terminal
emulator that permits CICS programs to interact with
other 3270-based applications through virtual terminal
sessions. INMQSI Agent for CICS run time, a server
adapter program can interface with IBM’s FEPI as part
of processing a business transaction. The server adapter
program interaction with FEPI must be modeled and
defined at build time. Using IBM’s FEPI product, the
server adapter program can send requests to and
receive replies from any CICS and IMS application
whose 3270 datastream is intended for a SLU2 3278
Model 2 terminal (24 rows by 80 columns), that is, the
returned buffer in the a single send and receive is not
greater than 3600 bytes.

J

journal. A set of one or more data sets to which
records are written during a CICS run:

* By CICS to implement user-defined resource
protection (logging to the system log).

* By CICS to implement user-defined automatic
journaling (to any journal, including the system log) .

* Explicitly by the JOURNAL command from any
application program (user journaling to any journal,
including the system log).

journaling. The recording of information onto any
journal (including the system log), for possible
subsequent processing by the user. The primary
purpose of journaling is to enable forward recovery of
data sets. In MQSI Agent for CICS run time, journaling
refers to the collecting and maintaining information
about the state of MQSI Agent for CICS run time and
application data to enable the compensation and
recovery of the processing of an adapter request
message.

The MQSI Agent for CICS run time journaling facility
uses CICS/BTS container services to support
compensation. Journal information is maintained only
during the processing of each adapter request message,
except in the case of failure. In the case of failure,
MQSI Agent for CICS retains state information and
application data for subsequent use in a compensation
flow.

The Navigation Manager, Navigators and server
adapter programs participate in capturing two types of
data that are used for compensation:

* State information is stored in the process and status
data-containers as part of the BTS process.

* Journal data is stored in the journal data-container as
part of the BTS process.

Glossary 269

Glossary

L

legacy application. An application to which data is
sent and from which data is received by MQSeries
Integrator Agent for CICS Transaction Server via the
FEPI server adapter program.

M

MQSeries-CICS bridge. An IBM product that
provides the interface between MQSeries enabled
applications and CICS. MQSeries-CICS bridge enables
an application, not running in a CICS environment, to
run a program or transaction on CICS and get a
response back.

If the controlling application invokes the adapter via
MQSeries, then the MQSeries-CICS bridge will provide
the interface between MQSeries and the run time
adapter. This non-CICS application can be run from
any environment that has access to an MQSeries
network that encompasses MQSeries for MVS/ESA.
The MQSI Agent for CICS run time does not require
users to signon before issuing requests for processing.
However, the run time permits customers to check
authentication levels based on the user ID and or
password in request messages for CICS programs that
are run as part of MQSI Agent for CICS run time. The
MQSeries-CICS bridge is the control point for
establishing the authentication level required. The
MQSeries-CICS bridge will link to a DPL Stub program
that in turn defines and starts the BTS process that
implements adapter request processing.

MOQSI Agent for CICS message header. The required
portion of the adapter request message that provides
the meta-information used by the MQSI Agent for CICS
run time for the processing of a message in CICS.

MQSeries Integrator Agent for CICS Transaction
Server. A member of IBM MQSeries product family
that facilitates development of adapters for business
integration solutions. MQSeries Integrator Agent for
CICS Transaction Server will enable any
MQSeries-enabled application or any application
capable of initiating a CICS program to access:

* Existing CICS transactions (including custom
programs) via a distributed program link (DPL).

* Legacy CICS and IMS applications via a 3270 data
stream.

* MQSeries-enabled applications via MQSeries.

MQSeries Integrator Agent for CICS Transaction Server
consists of the following components:

* MQSeries Integrator Agent for CICS Adapter Builder
* MQSeries Integrator Agent for CICS server run time

MQSeries Integrator Agent for CICS Adapter
Builder. The part of MQSeries Integrator Agent for
CICS Transaction Server that is used to model, build

and output adapters to MQSI Agent for CICS run time.
The builder provides a graphical environment for
modeling adapters. The models generate COBOL
source code for deployment of the adapters on an
0S/390 server. The builder software consists of the
following facilities:

* Importers, for extracting information from COBOL
records and 3270 screens and storing the information
as structured data types.

¢ Control Center component, for a GUI that supports
the modeling and definition of the Navigators and of
the three types of server adapter programs (3270
Dialog Adapter, DPL Adapter and MQSeries
Adapter). The definitions are stored as Extensible
Markup Language (XML) documents in MQSeries
Integrator’s repository.

* Generator facility, for reading Navigator and server
adapter program definitions from the repository. The
generator also reads static templates that contain the
portion of server run time that is never affected by
modeling. The generator then transforms the
definitions and generates source code (COBOL and
JCL). The generator sends the source code to the
0S/390 server for compilation.

MQSeries Integrator Agent for CICS server run time.
The part of the MQSeries Integrator Agent for CICS
that runs and executes on an OS/390 server as a CICS
application using CICS/BTS facilities. The server run
time is capable of operating in a SYSplex environment.

The server run time consists of:
¢ MQSeries-CICS bridge monitor and link tasks

¢ A DPL Stub program that links to the Navigation
Manager

¢ A Navigation Manager program that invokes the
Navigator programs (The type of Navigator program
and server adapter programs generated at run time
depends on what was modeled in the builder).

* Three types of server adapter programs. These
programs perform processing as modeled in the
builder:

— The FEPI server adapter program that interfaces
with IBM’s FEPI product to access CICS and IMS
applications.

— The CICS server adapter program that interfaces
to the existing CICS transactions, including
custom programs that can be developed to
augment the adapter, via DPL.

— The MQSeries server adapter program that
interfaces to the MQSeries-enabled applications.

* Error listener program.

* Support of compensation flows and journaling.

* Support of audit levels using CICS/BTS facilities.
* Utility programs that support the server run time.

270 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

N

Navigator. MQSI Agent for CICS run time programs
that perform adapter request processing, manage states
during the microflow processing and invoke server
adapter programs. The Navigator and the server
adapter programs are generated as the result of
modeling via the MQSeries Integrator Agent for CICS
Adapter Builder.

Navigation Manager. MQSI Agent for CICS run time
program that invokes the Navigator programs. Runs as
DFHROOT in BTS process.

P

process. In BTS, a collection of one or more activities.
A process is the largest unit that CICS BTS can work
with and has a unique name by which it can be
referenced and invoked. In MQSI Agent for CICS, the
process is uniquely identified by the 36 byte process
name value in the message adapter message header
(DFHMAHYV).

process container. A data-container associated with a
process. Process containers can be read by all the
activities that make up the process. Note that they are
not the same as the root activity’s containers.

R

Resource Access Control Facility (RACF). An IBM
licensed program that provides access control by
identifying users to the system; verifying users of the
system; authorizing access to protected resources;
logging detected, unauthorized attempts to enter the
system; and logging detected accesses to protected
resources. RACF is included in OS/390 Security Server
and is also available as a separate program for the MVS
and VM environments. In MQSI Agent for CICS RACF
is used to make sure that a user has the authority to
run a particular CICS DPL bridge task.

run time. The time period during which the adapter is
operational, with business transactions being managed
and completed.

S

screen navigation. A form of data transfer between
two application programs in which the first program
accesses the second program through a terminal
emulator or other communications program, and
obtains data that would appear at known screen
locations if the second program was being accessed by
a human operator. The FEPI server adapter program
performs screen navigation to capture 3270 screen
images from legacy CICS and IMS applications.

Glossary

server adapter programs. Any one of three types of
programs in the server run time that are invoked by
the Navigator program to perform the business
transaction activity defined within a microflow at build
time.

Server adapter programs include the following:

* The FEPI server adapter program that interfaces to
the legacy CICS and IMS applications. It performs
screen navigation.

* The CICS server adapter program that interfaces to
the existing CICS transactions, including custom
programs that can be developed to augment the
Message Adapter, via DPL.

* The MQSeries server adapter program that interfaces
to the MQSeries-enabled applications.

synch point. A logical point in execution of an
application program where the changes made to the
recoverable resources by the program are consistent
and complete and can be committed. The output,
which has been stalled to that point, is sent to its
destination(s), the input is removed from the message
queues, and any database updates are made available
to other applications. When a program terminates
abnormally, CICS recovery and restart facilities do not
backout updates prior to the last completed syncpoint.

synchronous. 1) Pertaining to an event that happens,
exists, or arises at precisely the same time as another
event. (2) Pertaining to an operation that occurs
regularly or predictably with regard to the occurrence
of a specified event in another process; for example, the
calling of an input output routine that receives control
at a pre-coded location in a program. Contrast with
asynchronous.

synchronous mode. A type of MQSI Agent for CICS
run time processing in which the BTS process that
implements an instance of the MQSI Agent for CICS
run time is run in the same unit-of-work with the same
commit scope as the MQSeries-CICS bridge link task.
The DPL Stub program (DFHMADPL) and the BTS
process initiated by the Stub program are run
synchronously as part of this single unit-of-work.

You would typically want to process a request in
synchronous mode if the request is merely inquiring on
status (an account inquire for example).

synchronous rollback. A type of MQSI Agent for
CICS run time processing where, as in synchronous
mode processing, the MQSI Agent for CICS BTS
process and all activities run within the process are
initiated and run in synchronous mode (i.e., BTS RUN
ACQPROCESS SYNCHRONOUS and RUN ACTIVITY (
) SYNCHRONOUS commands) however, any failure
within any activity within the process results in an
abend of the process. This has the effect of returning
the state of any and all recoverable resources updated

Glossary 271

Glossary

during adapter request processing to its original state
(the state prior to the execution of the failed adapter
request or process).

U

user. The persons that interact with both the MQSI
Agent for CICS run time and the MQSI Agent for CICS
Adapter Builder.

W

workload management. In CICS, a method of
optimizing the use of system resources by spreading
workload as evenly as possible between different
regions.

272 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Index
R

Run time
processing mode
asynchronous 268
synchronous 271
synchronous rollback 271

© Copyright IBM Corp. 2001 273

274 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Printed in U.S.A.

SC34-6087-00

	Contents
	Figures
	Tables
	About MQSI Agent for CICS
	The objectives of this tutorial
	Who should use this tutorial
	Related information

	Chapter 1. Guidelines for building adapters
	Requirements analysis and design considerations
	Requirements analysis
	Design considerations
	Application interface
	Run time environment variables

	Determining the critical data structures in the server application

	Building adapters
	Deploying adapters
	High level control flow of a CICS business transaction at run time

	Chapter 2. Tutorial overview
	About the business transaction that you will model
	Accessing the files to perform the tutorials
	Assumptions
	Tutorial directory structure
	Accessing a completed workspace

	Chapter 3. Build an adapter that supports a DPL interface
	Designing an adapter
	Addressing a business need
	About the adapter you will design

	Accessing the DPL tutorial files
	Configuring the Specification files for a DPL interface
	Creating an adapter that supports a DPL interface
	Deploying an adapter
	Check to see that the adapter compiled in CICS
	Defining the adapter resources to CICS

	Chapter 4. Build an adapter that supports an MQ interface
	Designing an adapter
	Addressing a business need
	About the adapter that you will design

	Identify the components of the run time environment

	Accessing the MQ tutorial files
	Configuring the Specification files for an MQ interface
	Creating an adapter that supports an MQ interface
	Deploying an adapter
	Check to see that the adapter compiled in CICS
	Defining the adapter resources to CICS

	Chapter 5. Build an adapter that supports a FEPI interface
	Designing an adapter
	Addressing a business need
	About the adapter you will design
	Identify the components of the run time environment

	Accessing the FEPI tutorial files
	Configuring the Specification Files
	Creating an adapter that supports a CICS FEPI interface
	Import Message Sets
	Create the subflows for the FEPI adapter
	Create the Parser subflow
	Create the Signon subflow
	Create the Inquiry subflow
	Create the Signoff subflow
	Create the Reset subflow

	Create the Navigator microflow

	Deploying an adapter
	Check to see that the adapter compiled in CICS
	Defining the adapter resources to CICS

	Chapter 6. Validating the adapters
	How the Simulator works
	Preparing to use the Simulator
	Running the Simulator to validate the adapters

	Appendix. Example procedure for defining adapter resources to CICS
	Defining DPL adapter resources to CICS
	Check to see that the adapter compiled in CICS
	Defining the adapter resources to CICS
	Running the CEDA transaction

	Defining MQ adapter resources to CICS
	Check to see that the adapter compiled in CICS
	Defining the adapter resources to CICS
	Running the CEDA transaction

	Defining FEPI adapter resources to CICS
	Check to see that the adapter compiled in CICS

	Defining the adapter resources to CICS
	Running the CEDA transaction
	Define the adapter programs to CICS
	Define the adapter program transactions to CICS
	Install the adapter programs to CICS
	Install the adapter program transactions to CICS
	NEWCOPY the adapter programs to CICS

	Notices
	Trademarks

	Glossary
	Index

