

IBM – CICS SupportPac CS1S

Using User-Defined BUNDLEs to Control CICS Dynamic Scripting
Applications

Version V1.0.0.0

September 25th, 2011

First Edition – September 25th, 2011 - SupportPac CS1S release V1.0.0.0

Please send any questions or comments to:
Dennis Weiand, IBM Corporation
1503 LBJ Freeway
Dallas, TX 65234

© Copyright International Business Machines Corpora tion 2011. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

© Copyright IBM Corporation 2011. All rights reserved.

9/25/2011 CICS SupportPac CS1S User-Defined Bundles to control CICS Dynamic Scripting Applications

 Page 2 of 20

Note: Before using this information and the product it supports, read the information in “Notices” on page 4.

© Copyright IBM Corporation 2011. All rights reserved.

9/25/2011 CICS SupportPac CS1S User-Defined Bundles to control CICS Dynamic Scripting Applications

 Page 3 of 20

Contents

The typical CICS Dynamic Scripting application is controlled (start/stop) using line commands.
For a production environment, you may wish to have your CICS Dynamic Scripting application
available at CICS region startup instead of requiring operators to use line commands (from
TSO or a TTY terminal). The goal of this SupportPac is to offer a technique that can be used
to make CICS Dynamic Scripting applications available at CICS startup.

Using User-Defined Bundles to Control CICS Dynamic Scripting Applications … 1

Contents ………………………………………………………………………… 3
Notices ………………………………………………………………………….. 4
Trademarks …………………………………………………………………….. 5

Section 1: Overview …………………………………………………………………… 6
 1.1 CICS Dynamic Scripting Application Administration .………...……….. 7
 1.2 CICS BUNDLE Resources ……………………………………………….. 7
 1.3 Combining Bundles and CICS Dynamic Scripting Applications ……… 8
 1.4 Recommendations ………………………………………………………… 10

Section 2: The Relationship of Parts ………………………………………………… 12

Section 3: Installation ………………….……………………………………………….. 13
 3.1 Prerequisites ……………………………………………………………….. 13
 3.2 Installation Steps …………………………………………………………… 13

Section 4: Define a Bundle to Control your CICS Dynamic Scripting Application .. 15

Section 5: Controling your Application using the Bundle …………………………... 18

Section 6: Problem Determination ……………………………………………………. 19

Section 7: References …………………………………………………………........… 20

© Copyright IBM Corporation 2011. All rights reserved.

9/25/2011 CICS SupportPac CS1S User-Defined Bundles to control CICS Dynamic Scripting Applications

 Page 4 of 20

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your
local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and
verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are
inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties
in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to
the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as
completely as possible, the examples include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is
entirely coincidental.

See licensing information in the accompanying license files.

© Copyright IBM Corporation 2011. All rights reserved.

9/25/2011 CICS SupportPac CS1S User-Defined Bundles to control CICS Dynamic Scripting Applications

 Page 5 of 20

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AD/Cycle®
AFS®
AIX®
C/370™
CICS®
CICSPlex®
COBOL/370™
DB2®
DFS™
ETE™
eServer™

server®

server®
HiperSockets™
IMS™
Language Environment®
Multiprise®
MVS™
MVS/ESA™
OS/2®
OS/390®
OS/400®
Parallel Sysplex®
PR/SM™

Rational®
Redbooks™

Redbooks (logo) ™
RACF®
S/390®
VisualAge®
VTAM®
WebSphere®
z/Architecture™
z/OS®
zSeries®
z/VM®

The following terms are trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United
States, other countries, or both.

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

© Copyright IBM Corporation 2011. All rights reserved.

9/25/2011 CICS SupportPac CS1S User-Defined Bundles to control CICS Dynamic Scripting Applications

 Page 6 of 20

Section 1: Overview

One of the design points of CICS Dynamic Scripting was to make the CICS implementation of the
Project Zero technology in the CICS Transaction Server Feature Pack for Dynamic Scripting look as
much as possible like any other Project Zero implementation. This means the primary way to administer
a CICS Dynamic Scripting application (start and stop) is through a command line interface.

While this is a benefit for programmers and administrators that are familiar with Project Zero
technology, this does deviate from the methods normally used to control CICS-based production
applications. Typical CICS applications can be made available at CICS startup without operator
intervention. Most CICS customers include a CICS region startup as part of their z/OS IPL procedures
and no further actions are necessary to make a production application available.

This SupportPac offers a technique that can be used to make CICS Dynamic Scripting applications
available at CICS region startup.

In this SupportPac we describe and implement a way of using a CICS User-Defined BUNDLE Resource
to control the start and stop operations for a CICS Dynamic Scripting application. You can use the
CICS Explorer, CEDA, or any other CICS-provided way of defining and installing CICS BUNDLE
resources.

The ‘install’ or ‘enable’ of this User-Defined Bundle resource starts the specified CICS Dynamic
Scripting application, and a ‘disable’ of the resource will stop the CICS Dynamic Scripting application.

The BUNDLE resource that describes your CICS Dynamic Scripting application can be placed in a
group and added to your startup list, which then causes the CICS Dynamic Scripting application to be
started at CICS region startup.

To implement this technique for starting/stopping a CICS Dynamic Scripting application you will need
to:

• Configure your CICS Dynamic Scripting Application owning CICS region for Java
• Add a .jar file in your JVMProfile file’s CLASSPATH_SUFFIX
• Define 3 programs to CICS (one as a PLTPI program)
• Expand a PDS containing two COBOL programs, and add the PDS to your DFHRPL
• Create BUNDLE resource(s) for your CICS Dynamic Scripting applications

Note that the technique used in this SupportPac has only been tested using with z/OS and CICS running
in code page IBM-037.

Also note that as of the date of this paper CICS Dynamic Scripting is only available with CICS TS V4.1,
although there is a statement of direction for the CICS Transaction Server Feature Pack for Dynamic
Scripting to be added to CICS TS V4.2.

© Copyright IBM Corporation 2011. All rights reserved.

9/25/2011 CICS SupportPac CS1S User-Defined Bundles to control CICS Dynamic Scripting Applications

 Page 7 of 20

1.1 CICS Dynamic Scripting Application Administrati on

Administration of CICS Dynamic Scripting applications is normally performed using line commands
known as the command line interface (CLI). These commands are also known as ‘zero’ commands
since CICS Dynamic Scripting is an implementation of the Project Zero technology, and ‘zero’ is the
name of the actual program that is being invoked. The command line interface provides for various
administrative functions that are needed to control a Dynamic Scripting application. Although there are
several commands, the primary commands used to control a Dynamic Scripting application are ‘zero
start’, ‘zero stop’, ‘zero resolve’, ‘zero update’, and ‘zero create’. When using the ‘zero start’ and ‘zero
stop’ commands, you would normally use a TTY session with z/OS’s UNIX System Services (USS) or a
TSO OMVS session with USS, change to your application’s home directory, and issue the appropriate
‘zero’ command.

1.2 CICS BUNDLE Resources

In CICS TS V4.1 (available June 2009), a BUNDLE resource was added to CICS. In addition to being
used for SCA, Event Processing, and TRANSFORMs, the BUNDLE resource is extensible. This means
that you can extend BUNDLEs to control your own resource types. You can have CICS invoke code
that you write when your resource is installed, enabled, disabled, inquired, or discarded.

To tell CICS about the existence of your resource, you write a ‘register program’ that tells CICS that
your resource exists and that when actions are taken against your resource (install, enable, inquire,
disable, discard), a specified ‘callback’ program should be invoked.

To ‘define’ occurrences of your new resource to CICS, you create a BUNDLE resource. A BUNDLE
resource points to a directory on z/OS’s USS. Your BUNDLE directory contains a META-INF/cics.xml
file called the ‘manifest’. The manifest is an XML file that describes the resources in the bundle and
their dependencies. For this SupportPac, the XML tag of most importance in the manifest file is the
‘define’ tag. The define tag allows you to define the ‘name’, ‘type’, and ‘path’ for your resource. The
‘name’ specifies the name of your resource, the ‘type’ indicates that it is the new resource type you just
registered with CICS, and the ‘path’ indicates the name of a file in the BUNDLE’s root directory that
contains further information about your resource. Multiple ‘define’ tags are allowed in a manifest, so
you can describe multiple resources in a BUNDLE. When the BUNDLE is installed, all the resources
defined (with corresponding define tags) in the manifest are installed. For your user-defined resource,
installation of the BUNDLE tells CICS to invoke the callback program specified by the resource
registration program. CICS invokes the registered callback program passing it a parameter list that
indicates the requested action (i.e. create, enable, disable, inquire, and discard). The registered program
is responsible for taking the appropriate action, and telling CICS the results.

© Copyright IBM Corporation 2011. All rights reserved.

9/25/2011 CICS SupportPac CS1S User-Defined Bundles to control CICS Dynamic Scripting Applications

 Page 8 of 20

1.3 Combining BUNDLEs and CICS Dynamic Scripting A pplications

There are several resource types already defined to CICS that can be specified in the type= attribute of
the define tag. If you are going to create your own resources you need to tell CICS about your new
resource in a registration program. The registration program tells CICS the name of the new resource
type and specifies the name of a callback program that should be invoked when actions are requested
against the resource (like install, enable, etc). As indicated above, when a BUNDLE is installed that
defines an instance of your new resource, CICS invokes the registered callback program (that you
specified when you registered your new resource type). The callback program is expected to perform
the requested action on the resource (create, enable, disable, inquire, and discard), report the success or
failure of the action, and report the current status of the resource.

For purposes of this SupportPac, we have written a program (named DDWREGIS) that registers a
‘ZEROAPP’ resource with CICS and indicates that if there is a request to create, enable, disable,
inquire, or discard the ‘ZEROAPP’ resource, that a program named DDWZAPPU should be invoked
(the DDWZAPPU name was chosen for Zero APPlication status Update). The register program is
normally specified in the PLTPI so that your new resource type is available for actions during CICS
startup.

For this SupportPac, the name of the user-defined resource type is in the same style of other resources
CICS provides, with the lowest level part (trailing characters) being ‘ZEROAPP’.

When the ‘callback’ program (DDWZAPPU in this case) is invoked for a ‘create’, CICS passes a
channel with various containers to the DDWZAPPU program. A control container indicates the
function (e.g. create), and the desired state (e.g. enabled). There is also a container that holds the ‘name’
of the resource (the resource name is specified in the define tag of the BUNDLE manifest), a container
that holds the resource type (ZEROAPP in this case), a container that holds the name of the BUNDLE
directory, and a container that holds the contents of the file (in the BUNDLE directory) that was
specified in the path= attribute of the define tag in the manifest file. The callback program
(DDWZAPPU in this case), for a create, is responsible for placing a token in the control container along
with creating the resource and changing the resource to the requested state. The token is used for
subsequent requests from CICS relative to this resource.

When CICS invokes the callback program for enable, disable, inquire, and discard (i.e. requested actions
other than create), CICS only provides a control container. The control container holds the token you
placed into the control container during the create invocation, plus an indication of the desired state.

For this SupportPac, the registration program (DDWREGIS) registers a resource named
“http://www.ibm.com/xmlns/prod/cics/bundle/ZEROAPP” that is associated with the callback
program DDWZAPPU.

To define a CICS Dynamic Scripting application, you would place a ‘define’ tag in the BUNDLE
manifest as follows:

<define name=”ZeroApp1” type=http://www.ibm.com/xml ns/prod/cics/bundle/ZEROAPP
path=“ZeroApp.ascii“/>

(the above is all on one line)

© Copyright IBM Corporation 2011. All rights reserved.

9/25/2011 CICS SupportPac CS1S User-Defined Bundles to control CICS Dynamic Scripting Applications

 Page 9 of 20

When the BUNDLE resource referencing the directory containing this manifest is installed, CICS
invokes the DDWZAPPU program providing the containers listed above, and specifies a function of
‘create’ and a status of ‘enabled’.

For functions other than create, only a control container (token, function, and state) is provided, so
DDWZAPPU stores the information provided during the create in a TS Queue. I use a 16 character
TSQueue name. The first 8 characters are something unique for DDWZAPPU, and the second 8 are the
resource name. Additionally, during a create, DDWZAPPU places the resource name in the ‘client
token’ (the 8 characters) that is provided during other function requests. Note that this means that I have
imposed an artificial limitation on the size of a ZEROAPP resource name of 8 characters. I could have
used other techniques, but using the resource name for both the client token and second part of the TSQ
provided an easy programming approach. Also during a create, I create a Korn shell script in the
BUNDLE’s root directory (more on this script a bit later).

To control your CICS Dynamic Scripting application, DDWZAPPU invokes a Korn shell script to do a
‘zero start’ or ‘zero stop’. CICS needs to know the application’s home directory (the Korn shell script
must be invoked from this location), and the name of a file that contains the environment variable values
that are specific to your application’s environment. For this implementation, I have you create a file in
the BUNDLE’s root directory that has an APP_HOME= parameter to reference the applications home
directory and a SETENV= parameter to reference a script that sets variables for the application’s
environment. The file containing these to values is placed in the BUNDLE’s root directory and is
named in the path= of the define tag in the BUNDLE’s manifest. This file must have a UTF-8 encoding
(same as the manifest file).

When DDWZAPPU receives an ‘enable’ request, it invokes a Java program named “DDWZEROJ”
passing the application’s home directory, the name of the environment setup file, and the characters
‘start’ to the Java program.

During resource ‘create’, I create a Korn shell script named DDWZeroCommand.sh in the BUNDLE’s
root directory (in the local code page) which looks as follows:

#!/bin/ksh
cd $1
. $2
zero $3

The DDWZEROJ Java program invokes the DDWZeroCommand.sh script passing it the application’s
home directory (which is picked up as $1), the name of the file containing environment variables that
establish your application’s environment ($2), and ‘start’ ($3).

The outcome of invoking Korn shell script (i.e. the ‘zero start’) is reported back to DDWZAPPU. If
successful, DDWZAPPU indicates a status of ‘enabled’. If it fails, DDWZAPPU indicates a status of
‘disabled’. Note that although it might be logical to indicate a status of ‘failed’, I chose not to report a
‘failed’ condition since a ‘failed’ indication will cause CICS to believe that the resource is ‘unusable’, in
which case the callback program is never invoked for that resource again (unless you discard and create
the resource again).

© Copyright IBM Corporation 2011. All rights reserved.

9/25/2011 CICS SupportPac CS1S User-Defined Bundles to control CICS Dynamic Scripting Applications

 Page 10 of 20

For a ‘disable’, DDWZAPPU again LINKs to the DDWZEROJ Java program, which again invokes the
DDWZeroCommand.sh Korn shell script. The only difference is that the third parameter for the
DDWZeroCommand.sh script is ‘stop’.

For an ‘inquire’, DDWZAPPU and DDWZEROJ do a quick check of some files in your CICS Dynamic
Scripting application’s home directory and CICS resources to determine whether the application is
running. If the application is running, DDWZAPPU reports ‘enabled’, and if your application is not
running DDWZAAPU reports ‘disabled’. This uses an undocumented/unsupported technique to
determine if the application is running, so unfortunately, if the files used to do this quick check are no
longer used/provided by CICS Dynamic Scripting in a future release, the ‘inquire’ function in
DDWZAPPU will have to be changed (i.e. re-coded).

I already knew how to invoke Korn shell scripts and looking at various directories and files in z/OS
UNIX System Services using Java, so that is why I wrote DDWZEROJ in Java.

Note that the requirements for the contents of the file containing environment variable settings for this
SuportPack are the same environment variable requirements as documented in the CICS InfoCenter.
See step 4 at
http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=/com.ibm.cics.ts.smash.doc/smash
_installation.html

© Copyright IBM Corporation 2011. All rights reserved.

9/25/2011 CICS SupportPac CS1S User-Defined Bundles to control CICS Dynamic Scripting Applications

 Page 11 of 20

1.4 Recommendations

1. I recommend one CICS Dynamic Scripting application per BUNDLE so that you can start and
stop your CICS Dynamic Scripting applications individually. All CICS Dynamic Scripting
applications in the same BUNDLE resources will be started and stopped at the same time. You
are likely to run into situations where the CICS Dynamic Scripting applications will need to be
started and stopped individually. Since you can have as many BUNDLE resources as you would
like, you could have a resource group containing several BUNDLE resources, and when starting
the group, the CICS Dynamic Scripting applications defined in each BUNDLE in the group will
be started. If you need to later stop one of your CICS Dynamic Scripting applications, you can
disable its associated BUNDLE resource individually. The programs in the SupportPac will
allow you to define multiple CICS Dynamic Scripting applications in a single BUNDLE
resource if that is your preference.

2. It is strongly recommended that you create your script containing environment variables and

their settings, and test starting and stopping of your CICS Dynamic Scripting application
manually before starting and stopping it via the technique described in this SupportPac. If the
‘zero start’ or ‘zero stop’ command fails for any reason, the callback program will report the
status as disabled. If your CICS Dynamic Scripting application cannot start, it is likely that
problem determination will be easier while manually invoking the script to set the environment
variables and manually performing the ‘zero start’ and ‘zero stop’.

To test your script that sets environment variables, you can:

- Create the script

- From an OMVS command line invoke the script using the following
. <your_script> (that’s dot space and then the name of your script)

The dot space says to run the script in the current process. Without the dot space, running your
script will have no affect.

- Then, from OMVS, from your application’s home directory, use the ‘zero start’ command.

- If you can start your application this way, you should be able to use my BUNDLE façade to
start and stop your application

3. The supplied programs try to ensure that the CICS Dynamic Scripting application whose home

directory you specify is intended to run in the same region as where you are installing the
BUNDLE resource. The program does this by looking at the NETNAME= parameter in your
application’s config/zerocics.config file (or your CICS Dynamic Scripting installation’s
config/zerocics.config file if your application doesn’t contain this file), and checking to see if
there is a connection definition with the same NETNAME in the current CICS region. Error
messages are issued if appropriate.

© Copyright IBM Corporation 2011. All rights reserved.

9/25/2011 CICS SupportPac CS1S User-Defined Bundles to control CICS Dynamic Scripting Applications

 Page 12 of 20

Section 2: Relationship of Parts

The diagram below shows the relationship between the resource definitions and the associated
directories and files.

At CICS startup, as part of the PLTPI, CICS invokes the DDWREGIS program. The DDWREGIS
program creates a resource named ZEROAPP and tells CICS that when a BUNDLE that specifies this
resource is installed, enabled, etc, that the DDWZAPPU program should be invoked.

You create a BUNDLE resource for each of your CICS Dynamic Scripting applications. The BUNDLE
resource points to a BUNDLE directory containing a META-INF/cics.xml and a ZeroApp.ascii file.
The META-INF/cics.xml file specifies that a resource type of ZEROAPP is to be installed, the resources
name, and the name of a resource file (ZeroApp.ascii).

The BUNDLE installation causes CICS to invoke the DDWZAPPU program which looks at the
ZeroApp.ascii file to find the location of your CICS Dynamic Scripting application, and the name of a
Korn shell script that can be invoked to establish environment variables so that the CICS Dynamic
Scripting Application can be accessed.

The DDWZAPPU program invokes the Korn shell script to establish the environment variables, and
then invokes a ‘zero start’ command to start the specified CICS Dynamic Scripting application.

Figure 1.0

© Copyright IBM Corporation 2011. All rights reserved.

9/25/2011 CICS SupportPac CS1S User-Defined Bundles to control CICS Dynamic Scripting Applications

 Page 13 of 20

Section 3: Installation

The technique described in this SupportPac uses a registration program (named DDWREGIS) to tell
CICS about the ZEROAPP resource and to indicate that any function requests (create, enable, disable,
inquire, discard) for this resource should be sent to the DDWZAPPU program. The DDWZAPPU
program (written in COBOL) LINKs to a Java program named DDWZEROJ when DDWZAPPU needs
its services.

3.1 Prerequisites

This SupportPac has prerequisites of CICS TS V4.1 and the CICS Transaction Server Feature Pack for
Dynamic Scripting. As of the date of this paper, the CICS Transaction Server Feature Pack for Dynamic
Scripting is only available in CICS TS V4.1. There is a statement of direction for the CICS Transaction
Server Feature Pack for Dynamic Scripting to be available with CICS TS V4.2 at some point.

See the CICS InfoCenter CICS Dynamic Scripting installation instructions.

3.2 SupportPac Installation Steps

The steps below have you define three programs to CICS. You may want to place these three programs
in a group by themselves and place this group at the top of your region startup group list.

This part only needs to be done once per BUNDLE-owning CICS region.

___1. Unzip the cs1s-v1.0.0.1.zip file.

___2. Use the File Transfer Program (FTP) to transfer the files to z/OS

a. Transfer the com.ibm.ddw.java.util.cicsds.jar file to the z/OS UNIX file system in binary
 mode.

b. Transfer the cs1s.unload file as a z/OS sequential file as a z/OS sequential using the
 following FTP commands (where userid is replaced with your own z/OS userid):

cd //userid
binary
quote site blksize=3120 lrecl=80 recfm=FB
put cs1s.unload

© Copyright IBM Corporation 2011. All rights reserved.

9/25/2011 CICS SupportPac CS1S User-Defined Bundles to control CICS Dynamic Scripting Applications

 Page 14 of 20

___3. Use the TSO RECEIVE command to reload the cs1s.unload file

RECEIVE INDATASET(CS1S.UNLOAD)

Note that at the prompt you can specify
DSNAME(‘THE.RESTORED.PDS.NAME.YOU.WANT’)

Note that entering the above command reconstructs the CS1S.LOAD library.

___4. Add the CS1S.LOAD dataset to your CICS region’s DFHRPL.

___5. Configure Java support in your CICS region (for the DDWZEROJ program). See the CICS

InfoCenter if you are not sure how to configure Java in your CICS region.

___6. Add the com.ibm.ddw.java.util.cicsds.jar file included with this SupportPac to your

JVMProfile file, in the CLASSPATH_SUFFIX= parameter.

___7. Define the Java program to CICS

Parameter Value
Name DDWZEROJ
Group DDWZROGP
EXECKey Cics
Concurrency Threadsafe
JVM Yes
JVMClass com.ibm.ddw.java.util.cicsds.DDWCicsDSAppStartStopStatus

JVMProfile
DFHJVMPR (you can use any name you want for your
JVMProfile file, but you will need to add the JAR file specified
above to your CLASSPATH_SUFFIX=, see note above)

If you define the Java program to CICS specifying the JVMProfile file DFHJVMPR (the default
JVMProfile file supplied with CICS), you will need to change the CLASSPATH_SUFFIX= in
that file to include the directory where you placed the com.ibm.ddw.java.util.cicsds.jar file (see
step #2 above).

___8. Define the DDWREGIS program to CICS

Parameter Value
Name DDWREGIS
Group DDWZROGP
Language Cobol
EXECKey Cics

___9. Define the DDWREGIS as a PLTPI program after DFHDELIM.

DFHPLT TYPE=ENTRY,PROGRAM=DDWREGIS

© Copyright IBM Corporation 2011. All rights reserved.

9/25/2011 CICS SupportPac CS1S User-Defined Bundles to control CICS Dynamic Scripting Applications

 Page 15 of 20

___10. Define the DDWZAPPU program to CICS (this program uses the CICS SPI)

Parameter Value

Name DDWZAPPU
Group DDWZROGP
Language Cobol
EXECKey Cics
Api Openapi

___11. Add the DDWZROGP group to the top of your startup list.

Section 4: Define a BUNDLE to control your CICS Dynamic
Scripting Application

For each CICS Dynamic Scripting application you want to control using CEDA/CEMT, the CICS
Explorer, or CPSM, you will need to define a BUNDLE resource and the corresponding BUNDLE
directory and manifest.

___1. From the CICS Explorer or RDz (Rational Developer for System z), switch to or open a

Resource perspective.

___2. From the Resource perspective, the Project Explorer view, create a CICS Bundle Project

named CICSBundleZeroApp1.

Note that you could use any name you want for the name of the BUNDLE project, however these
directions will assume you used the name CICSBundleZeroApp1.

___3. Expand the CICSBundleZeroApp1 project.

Note that you will see a directory in the project named META-INF. If you expand the META-
INF directory, you will see a file named cics.xml. This is the bundle manifest file.

© Copyright IBM Corporation 2011. All rights reserved.

9/25/2011 CICS SupportPac CS1S User-Defined Bundles to control CICS Dynamic Scripting Applications

 Page 16 of 20

___4. In the CICSBundleZeroApp1 project define a file named ZeroApp.ascii.

Note that you can name this file anything you want, but whatever name you use will need to be
specified in the path= parameter in the manifest. (see later step)

Note that we chose the .ascii extension because RDz has a default transfer type for this extension
of binary. You can use any extension you want, but this file must be in same code page as
Windows runs in, or the file can be in UTF-8. The manifest file must also be transferred as
binary. RDz has a default transfer type of binary for .xml files, but you may want to check on
the transfer type on your RDz system (at Menu Bar->Window->Preferences, Remote Systems-
>Files on the left, and transfer types will be on the right).

Note that if you transfer your bundle project to z/OS using the CICS Explorer (the Export to
z/OS HFS option), everything is transferred as binary (which is the correct thing to do for this
BUNDLE project).

___5. Edit the ZeroApp.ascii file to include the following:

APP_HOME=<your_CICS_DS_application_home_directory>
SETENV=<name_of_your_Korn_shell_script_to_set_envir onment_variables>

Below is the contents we used during our testing (MyApp is the name of our CICS Dynamic
Scripting application)….

APP_HOME=/u/wspot03/zeroapps/MyApp
SETENV=/u/wspot03/setenv

___6. Ensure your environment variable file referenced by the SETENV= is appropriate.

The CICS InfoCenter describes the environment variables you need to set to run your CICS
Dynamic Scripting application (the exact InfoCenter article was listed previously in this PDF).

You will want to create and manually test this file before using it with the technique/programs
described in this SupportPac.

Below is an example of the environment file we used for our testing. The environment variables
below are described in the CICS InfoCenter, although we should probably note that the directory
set in the ZERO_HOME environment variable is the CICS Dynamic Scripting installation
directory.

#!/bin/ksh
script to set variables for the CICS Dynamic Scri pting Feature Pack
export ZERO_HOME=/usr/lpp/cicsds/zero
export PATH=$ZERO_HOME:$PATH
export STEPLIB=CICSTS.V4R1.CICS.SDFHEXCI:CICSTS.V4R 1.CICS.SDFHLOAD
export JAVA_HOME=/usr/lpp/java/J6.0
export PATH=$JAVA_HOME/bin:$PATH

© Copyright IBM Corporation 2011. All rights reserved.

9/25/2011 CICS SupportPac CS1S User-Defined Bundles to control CICS Dynamic Scripting Applications

 Page 17 of 20

___7. Edit the META-INF/cics.xml file (the bundle manifest) to define your CICS Dynamic Scripting
application.

Change the contents of the manifest file as follows:

<?xml version="1.0" encoding="UTF-8" standalone="ye s"?>
<manifest xmlns="http://www.ibm.com/xmlns/prod/cics /bundle" bundleVersion="1"
bundleRelease="0" build="Not Found">
<meta_directives>
 <timestamp>2010-12-01T15:05:15.453-06:00</timesta mp>
</meta_directives>
<define name="ZeroApp1" type="http://www.ibm.com/xm lns/prod/cics/bundle/ZEROAPP"
path="ZeroApp.ascii"/>
</manifest>

Note that the initial manifest tag is on one line. Note that the define tag should be on one line

On the define tag, the value for name= is the name of the resource that represents your CICS
Dynamic Scripting application. I have written the programs that come with this SupportPac to
limit the maximum size of the name to 8 characters.

The value in the path= attribute is the name of the config file containing your application’s home
directory and the name of the file you are using to set your environment variables. See steps 5
and 6 in this section.

Note that you can have multiple define tags per manifest although I recommend you only define
one CICS Dynamic Scripting application per BUNDLE resource.

___8. Transfer your bundle project to z/OS in the z/OS UNIX file system.

___9. Define a BUNDLE resource in CICS as follows:

Parameter Value
Name ZEROAPP1
Group MYZROAPS
BUndledir /u/wspot03/cicsbundles/CICSBundleZeroApp1
BAsescope http://sample.org/zeroappservice

Note that for the above, the value for the BUndledir is the location of your bundle directory. In
these directions, we had you create a bundle project named CICSBundleZeroApp1. So for the
above, we transferred our CICSBundleZeroApp1 project to the /u/wspot03/cicsbundles directory.

Note that you will want to install/enable/disable/discard your BUNDLE resource to ensure it
works properly before you add the group containing the BUNDLE resource to your startup list.
My program does many checks to ensure it has all artifacts it needs and that they are in the
proper status, so be sure to look at the MSGUSER DD statement in your CICS JCL if it doesn’t
work as expected. Actually I write messages to the CSMT TD destination, which most
customers direct to the MSGUSER DD statement.

© Copyright IBM Corporation 2011. All rights reserved.

9/25/2011 CICS SupportPac CS1S User-Defined Bundles to control CICS Dynamic Scripting Applications

 Page 18 of 20

Section 5: Controlling your Application using the Bundle

Note that the DDWREGIS program must run before you attempt to install the bundle containing your
ZEROAPP resource. In the above installation directions we asked you to add this program to the PLIPI,
although for testing the SupportPac, you may find it easier to invoke the DDWREGIS program using
CECI LINK.

If the BUNDLE resource that you defined in part 2 is placed in a group in your CICS region startup
group list and the DDWREGIS program is specified in the PLTPI table as documented earlier, your
CICS Dynamic Scripting application will be started during CICS startup.

If you don’t include the resource in your Region’s startup group list, you can still install the BUNDLE
resource later, but you must be sure to run the DDWREGIS program first.

When the BUNDLE is installed, your CICS Dynamic Scripting application will be started and the status
of your BUNDLE will be set to ‘enabled’.

If you disable your BUNDLE, your CICS Dynamic Scripting application will be stopped. If you enable
your BUNDLE, your CICS Dynamic Scripting application will be started. As usual, you will have to
disable your bundle before you can discard the resource.

If your CICS Dynamic Scripting application is manually started before the BUNDLE is installed (i.e. a
‘zero start’ from the command line) and you attempt to install the BUNDLE, the DDWZAPPU program
will recognize that your application is already running and return a status of ‘enabled’. A subsequent
BUNDLE disable will stop the application.

If your CICS Dynamic Scripting application is manually stopped after the BUNDLE is installed (i.e. a
‘zero stop’ from the command line), a status display of the BUNDLE will show disabled. If you then
change the status to enabled (e.g. from CEMT or the CICS Explorer), your CICS Dynamic Scripting
application will be started.

If you have multiple CICS Dynamic Scripting applications defined in the same BUNDLE, when the
BUNDLE is installed, enabled, or disabled, all CICS Dynamic Scripting applications defined in the
BUNDLE will be stopped/started. For ease of use, have one CICS Dynamic Scripting application per
BUNDLE and multiple BUNDLEs in a group. You can install the group if you want all CICS Dynamic
Scripting applications started.

Note that it takes a while for a CICS Dynamic Scripting application to be started and/or stopped. Your
CEDA/CEMT or CICS Explorer display will wait for the operation to complete before the new status is
displayed. You can look at your CICS MSGUSER JCL DD statement output for messages.

The user-define BUNDLE façade is intended for use in production and only the equivalent of a ‘zero
start’ and ‘zero stop’ are provided.

© Copyright IBM Corporation 2011. All rights reserved.

9/25/2011 CICS SupportPac CS1S User-Defined Bundles to control CICS Dynamic Scripting Applications

 Page 19 of 20

After the BUNDLE is installed, you can display the BUNDLE status. For example:

You can also display the Bundle Parts which displays the values from the parameters on the define tab in
the META-INF/cics.xml manifest file: the part type (ZEROAPP), the part name (ZeroApp1), and the
path= file (ZeroApp.ascii).

Section 5: Problem Determination

It is strongly recommended that you test the Korn shell script containing your environment variables
manually before you try to implement my BUNDLE facade.

The DDWREGIS program must run before you attempt to install the bundle containing your ZEROAPP
resource. In the above installation directions we asked you to add this program to the PLIPI, although
for testing the SupportPac, you may find it easier to invoke the DDWREGIS program using a CECI
LINK.

You may run into security issues related to your USS files (the bundle directory and manifest file),
however the DDWZEROJ program does access checking so any security related issues should be
detected and listed in the MSGUSER DD of your CICS region JCL (the programs write to the CSMT
TD queue).

The DDWZAPPU program uses the SPI to do an INQUIRE on JVMServers and an INQUIRE on
NETNAME. The DDWZAPPU program will be run under the CEDA, CEMT, or CSSY transaction
(depending on where and when the BUNDLE install is requested), so this shouldn’t provide a security
problem.

If you define a TSQ named DDWZMSGS (put anything in it), the DDWZAPPU and DDWZEROJ
programs will write many more messages to the CSMT destination which may be useful for debugging
problems. Again, manually check your scripts before using this user-defined BUNDLE façade and you
shouldn’t need to turn on extra messages.

© Copyright IBM Corporation 2011. All rights reserved.

9/25/2011 CICS SupportPac CS1S User-Defined Bundles to control CICS Dynamic Scripting Applications

 Page 20 of 20

If the DDWZeroCommand.sh already exists in the bundle directory, DDWZEROJ will not overwrite it.
This means that you can make your own DDWZeroCommand.sh and add additional debugging
statements. Be aware that the DDWZeroCommand.sh must be in codepage 037 or 1047 since it is
executed as a Korn shell script. Everything else associated with the bundle needs to be in UTF-8. It is
recommended that you let me create the DDWZeroCommand.sh script, although if you are having
problems and want more messages produced by the script, you could add a “set –x” at the beginning of
the script.

Section 6: References

For more information on User-Defined Bundles, see the CICS TS V4.1 InfoCenter. Search for ‘user
resource bundle’.

For more information on controlling your CICS Dynamic Scripting application, see the CICS TS V4.1
InfoCenter and the Project Zero documentation (see projectzero.org).

