
CICS JVM Application Isolation Utility

The IBM
®

 Persistent Reusable Java
TM

 Virtual Machine Version 1.4.2 is the

last version of Java on the z/OS platform to support the resettable mode of operation.

In the IBM
®
 Developer Kit and Runtime Environment, Java

TM
 2 Technology Edition,

Version 5, there is no resettable JVM. Because of this, CICS Transaction Server for

z/OS Version 3 Release 1 is the last release of CICS to support the resettable JVM.

In a resettable JVM, the state of the JVM is reset after each use, so that no

application transaction (i.e. non-trusted middleware code) can affect the operation of

subsequent transactions. The JVM reset cleans up the JVM's storage heaps,

reinitializes shareable application classes, and discards and reloads nonshareable

application classes, meaning that no non-trusted static middleware objects can persist

in the JVM from one use of the JVM to the next. Also, if an application causes a

change to a part of the JVM’s own state which cannot be reset, then the JVM is

terminated. Examples of such state changes include setting a system property, or

loading a native library.

The alternative to the resettable JVM in CICS is the continuous JVM. The

continuous JVM does not reset the JVM’s state between uses. This enables the

persistence of static objects across tasks, which can be a powerful tool when used

deliberately. For example, an application developer can use caching techniques to

avoid reinitializing objects on each use. It can also, however, be a source of

unexpected and erroneous behaviour unless it is handled carefully.

Because there is no reset operation in the continuous JVM, applications which

were designed to execute in a resettable JVM might exhibit changed behaviour when

they execute in a continuous JVM. You might need to make changes to an application

in order to preserve its original behavior while running in a continuous JVM.

Example 1: altering static static static static variables

 The most common type of state change that an application can make is to alter

the value of a staticstaticstaticstatic variable. staticstaticstaticstatic variables are shared by all instances of a class,

unlike non-static variables which are allocated separately for each instance.

In a resettable JVM, when a class is first loaded, the JVM takes a copy of the

initial value of each staticstaticstaticstatic variable and uses it to restore the variable to its original

state at the end of each transaction. Consider the following trivial case:

public class HelloWorldpublic class HelloWorldpublic class HelloWorldpublic class HelloWorld
{{{{
 public public public public static int count = 0;static int count = 0;static int count = 0;static int count = 0;

 public static void main(String args[]) public static void main(String args[]) public static void main(String args[]) public static void main(String args[])
 { { { {
 co co co count++;unt++;unt++;unt++;
 Sy Sy Sy System.out.println("Hello World, cstem.out.println("Hello World, cstem.out.println("Hello World, cstem.out.println("Hello World, count is " + count);ount is " + count);ount is " + count);ount is " + count);
 } } } }
}}}}

In a resettable JVM, the staticstaticstaticstatic variable countcountcountcount is reset to zero by the JVM

after each invocation of the HelloWorld main()main()main()main() method. The message therefore shows

that count is 1 each time HelloWorld is invoked.

In a continuous JVM, however, countcountcountcount is not reset to its original value before

the next invocation of the main()main()main()main() method, and the old, shared, value persists. The

message therefore shows the count increasing by 1 on each invocation in subsequent

transactions.

To preserve the original behaviour while running in a continuous JVM, the

HelloWorld class could be changed to make countcountcountcount an instance variable and initialise it

on each invocation in a constructor:

public class HelloWorldpublic class HelloWorldpublic class HelloWorldpublic class HelloWorld
{{{{
 public public public public int count = 0;int count = 0;int count = 0;int count = 0;

 public static void main(String args[]) public static void main(String args[]) public static void main(String args[]) public static void main(String args[])
 { { { {
 HelloWorld hw = new HelloWorld(); HelloWorld hw = new HelloWorld(); HelloWorld hw = new HelloWorld(); HelloWorld hw = new HelloWorld();
 hw.hw.hw.hw.count++;count++;count++;count++;
 System.out.println("Hello World, count is " + System.out.println("Hello World, count is " + System.out.println("Hello World, count is " + System.out.println("Hello World, count is " + hw.hw.hw.hw.count);count);count);count);
 } } } }

 HelloWorld() HelloWorld() HelloWorld() HelloWorld()
 { { { {
 c c c count = 0;ount = 0;ount = 0;ount = 0;
 } } } }
}}}}

Example 2: altering the contents of staticstaticstaticstatic objects

 A more subtle type of issue can arise when the staticstaticstaticstatic variable is an object

reference whose internal state may change, as in this example:

import java.util.Hashtable;import java.util.Hashtable;import java.util.Hashtable;import java.util.Hashtable;
import java.utilimport java.utilimport java.utilimport java.util.Enumeration;.Enumeration;.Enumeration;.Enumeration;

class StaticHashclass StaticHashclass StaticHashclass StaticHash
{{{{
 private static final Hashtable myHashtable = new Hashtable(); private static final Hashtable myHashtable = new Hashtable(); private static final Hashtable myHashtable = new Hashtable(); private static final Hashtable myHashtable = new Hashtable();

 public static void main(String[] args) public static void main(String[] args) public static void main(String[] args) public static void main(String[] args)
 { { { {
 int count = myHashtable.size(); int count = myHashtable.size(); int count = myHashtable.size(); int count = myHashtable.size();
 myHashtable.put("key" + count, "value" + count); myHashtable.put("key" + count, "value" + count); myHashtable.put("key" + count, "value" + count); myHashtable.put("key" + count, "value" + count);

 Enumeration keys = myHashtable.keys();Enumeration keys = myHashtable.keys();Enumeration keys = myHashtable.keys();Enumeration keys = myHashtable.keys();
 while (keys.hasMoreElements()) while (keys.hasMoreElements()) while (keys.hasMoreElements()) while (keys.hasMoreElements())
 { { { {
 Object key = keys.nextElement(); Object key = keys.nextElement(); Object key = keys.nextElement(); Object key = keys.nextElement();
 System.out.println("Found this key in the Hashtable: " + key); System.out.println("Found this key in the Hashtable: " + key); System.out.println("Found this key in the Hashtable: " + key); System.out.println("Found this key in the Hashtable: " + key);
 } } } }
 } } } }
}}}}

In a resettable JVM, a new instance of myHashtablemyHashtablemyHashtablemyHashtable is created every time the

JVM is reset, and it will only ever contain a single key, “key0”. In a continuous JVM,

however, only one instance of myHashtablemyHashtablemyHashtablemyHashtable is created, and each time the class is run, a

new key is added to it. The issue could be solved in a similar manner to the first

example, by making myHashtablemyHashtablemyHashtablemyHashtable an instance variable and creating the new HashtableHashtableHashtableHashtable

in a constructor. Alternatively, myHashtablemyHashtablemyHashtablemyHashtable could be left as a staticstaticstaticstatic reference and be

reset each time by adding a constructor containing an invocation of

myHmyHmyHmyHashtable.clear()ashtable.clear()ashtable.clear()ashtable.clear().

Auditing applications for the use of static variables

 The CICS JVM Application Isolation Utility is provided to help system

administrators and application programmers discover staticstaticstaticstatic variables in Java

applications running in their CICS Transaction Server for z/OS regions. The

application developers should then review the findings of the Utility to determine

whether the application might exhibit unintended behaviour when executed in a

continuous JVM. The Utility can also be used when migrating Java workloads from

resettable to continuous JVMs.

The CICS JVM Application Isolation Utility is a code analyser tool which

inspects Java bytecodes in Java Archive (jar) files and class files. It does not alter any

Java bytecodes. It is provided as a means to help identify potential issues before they

arise in a continuous JVM under CICS Transaction Server.

The Application Isolation Utility is delivered as a jar file. To install it, copy

the file dfdfdfdfhhhhjjjjaiuaiuaiuaiu.jar.jar.jar.jar to a convenient directory .

To run the Utility, log in to a z/OS Unix System Services shell, and enter:

java java java java ––––cp cp cp cp dfdfdfdfhhhhjjjjaiaiaiaiuuuu.jar.jar.jar.jar Cics Cics Cics CicsIsoIsoIsoIsoUtilUtilUtilUtil [[[[----verbose] filename [filename…filename]verbose] filename [filename…filename]verbose] filename [filename…filename]verbose] filename [filename…filename]

The Utility can inspect Java bytecodes in class files and jar files. Wildcard

(glob) characters can be used in the file name.

For example, to inspect the HelloWorld class file used in Example 1 above,

enter:

java java java java ––––cp dfcp dfcp dfcp dfhhhhjjjjaiaiaiaiuuuu.jar Cics.jar Cics.jar Cics.jar CicsIsoIsoIsoIsoUtilUtilUtilUtil Hello Hello Hello HelloWWWWorld.classorld.classorld.classorld.class

The report produced by the Utility is written to System.out, which may be

redirectedto another destination as required. For the HelloWorld class file used in

Example 1 above, the report looks like this:

CicsIsoCicsIsoCicsIsoCicsIsoUtilUtilUtilUtil: : : : CICSCICSCICSCICS JVM JVM JVM JVM AAAApplication pplication pplication pplication Isolation Isolation Isolation Isolation UtilityUtilityUtilityUtility

Copyright (C) IBM Corp. 2006Copyright (C) IBM Corp. 2006Copyright (C) IBM Corp. 2006Copyright (C) IBM Corp. 2006

Reading Class File: HelloWorld.classReading Class File: HelloWorld.classReading Class File: HelloWorld.classReading Class File: HelloWorld.class

 Me Me Me Method: public static void main(java.lang.String[])thod: public static void main(java.lang.String[])thod: public static void main(java.lang.String[])thod: public static void main(java.lang.String[])
 Static fields written in this method: Static fields written in this method: Static fields written in this method: Static fields written in this method:
 public public public public static int countstatic int countstatic int countstatic int count

 Method: <clinit> (Class Initialization) Method: <clinit> (Class Initialization) Method: <clinit> (Class Initialization) Method: <clinit> (Class Initialization)
 Static fields written in this method: Static fields written in this method: Static fields written in this method: Static fields written in this method:
 public public public public static int countstatic int countstatic int countstatic int count

 Number Number Number Number of methods inspected : 3 of methods inspected : 3 of methods inspected : 3 of methods inspected : 3
 Total static writes for this class: 2 Total static writes for this class: 2 Total static writes for this class: 2 Total static writes for this class: 2

Number of Jar Files inspected : 0Number of Jar Files inspected : 0Number of Jar Files inspected : 0Number of Jar Files inspected : 0
Number of Class Files inspected : 1Number of Class Files inspected : 1Number of Class Files inspected : 1Number of Class Files inspected : 1

The report shows that the statstatstatstaticicicic field countcountcountcount is written to during Class

Initialization, and in the main()main()main()main() method. This indicates that countcountcountcount might behave

differently when the class is used in a continuous JVM, than in a resettable JVM. The

application programmer should examine the source code to decide whether countcountcountcount

really will behave differently.

For the StaticHash class file used in Example 2 above, the CICS JVM

Application Isolation Utility report is as follows:

CicsCicsCicsCicsIsoIsoIsoIsoUtilUtilUtilUtil: CICS J: CICS J: CICS J: CICS JVM Application Isolation UtilityVM Application Isolation UtilityVM Application Isolation UtilityVM Application Isolation Utility

Copyright (C) IBM Corp. 2006Copyright (C) IBM Corp. 2006Copyright (C) IBM Corp. 2006Copyright (C) IBM Corp. 2006

Reading Class File: StaticHash.classReading Class File: StaticHash.classReading Class File: StaticHash.classReading Class File: StaticHash.class

 Method: <clinit> (Class Method: <clinit> (Class Method: <clinit> (Class Method: <clinit> (Class Initialization)Initialization)Initialization)Initialization)
 Static fields written in this method: Static fields written in this method: Static fields written in this method: Static fields written in this method:
 private static final java.util.Hashtable myHashtable private static final java.util.Hashtable myHashtable private static final java.util.Hashtable myHashtable private static final java.util.Hashtable myHashtable

 Number of methods inspected : 3 Number of methods inspected : 3 Number of methods inspected : 3 Number of methods inspected : 3
 Total static writes for this class: 1 Total static writes for this class: 1 Total static writes for this class: 1 Total static writes for this class: 1

Number of Jar Files inspected : 0Number of Jar Files inspected : 0Number of Jar Files inspected : 0Number of Jar Files inspected : 0
Number of Class Number of Class Number of Class Number of Class Files inspected : 1Files inspected : 1Files inspected : 1Files inspected : 1

 Note that the staticstaticstaticstatic variable myhashtablemyhashtablemyhashtablemyhashtable is only written to during Class

Initialization, yet the internal state of the HashtableHashtableHashtableHashtable changes on each invocation. This

is a more difficult issue to assess. The output of the Utility identifies that a static

object exists. The application developer must then check the source code of the

application to ensure that the state of the staticstaticstaticstatic object (and the entire graph of other

objects that may be referenced from the original staticstaticstaticstatic object) is not changed in a

way that will unintentionally affect subsequent invocations of the class in a

continuous JVM.

 Normally, the Utility does not print details of methods which do not write to

staticstaticstaticstatic variables, or details of static final Stringstatic final Stringstatic final Stringstatic final String variables. With the –verbose

option specified, the Utility does print these extra details, and also lists all static

method invocations made. This additional information can identify other potential

issues with your applications. For example:

 Static methods invoke Static methods invoke Static methods invoke Static methods invoked by this method:d by this method:d by this method:d by this method:
 boolean isResettableJVM() boolean isResettableJVM() boolean isResettableJVM() boolean isResettableJVM()
 (defined in class: com.ibm.jvm.ExtendedSystem) (defined in class: com.ibm.jvm.ExtendedSystem) (defined in class: com.ibm.jvm.ExtendedSystem) (defined in class: com.ibm.jvm.ExtendedSystem)

 All methods in the com.ibm.jvm.ExtendedSystemcom.ibm.jvm.ExtendedSystemcom.ibm.jvm.ExtendedSystemcom.ibm.jvm.ExtendedSystem class are related to the

resettable JVM. They have all been deprecated, and should be removed from any

application code.

