
© Copyright IBM Corporation 2007, 2008 Version 21/02/2008
CICS TG: Developing .NET components for CICS connectivity
 Page 1 of 12

CICS Transaction Gateway for Windows V7.0

 CICS TG: Developing .NET
components for CICS

connectivity

Version Date: February 21, 2008

Paul Crockett

IBM Hursley

44-1962-815304

paul.crockett@uk.ibm.com

Licensed Materials - Property of IBM

© Copyright IBM Corporation 2007, 2008

All Rights Reserved

US Government Users Restricted Rights – Use,

duplication, or disclosure restricted by GSA ADP

Schedule Contract with IBM Corporation

© Copyright IBM Corporation 2007, 2008 Version 21/02/2008
CICS TG: Developing .NET components for CICS connectivity
 Page 2 of 12

Overview and Background

The CICS Transaction Gateway provides connectivity through a variety of APIs -

Java, C++ and C to name a few. Although there is currently no support for running in

a .NET memory managed environment, it is possible to use a mixed mode DLL to

bridge the gap between .NET and the CICS Transaction Gateway. This article

demonstrates how to use such an approach to exploit the CICS Transaction Gateway

from a .NET environment. A working knowledge of C++ and either C# or Java is

assumed. Visual Studio 2003 or higher is required to build the accompanying source

code.

A .NET managed environment (such as ASP.NET on IIS) is similar to a Java Virtual

Machine in that memory is allocated and freed automatically, alleviating the

developer of the responsibility. When executing unmanaged code from a managed

environment it is therefore necessary to use an intermediate library which is

responsible for marshalling data and function calls between the managed and native

environments. These libraries are known as mixed mode DLLs due to the fact that

they contain both managed and unmanaged code. The relationship between mixed

mode libraries and managed and unmanaged code is shown in figure 1.

Figure 1: Relationships between mixed mode libraries and managed and unmanaged code

Mixed mode DLLs typically expose managed classes to .NET which are responsible

for invoking the native functions they encapsulate. This article documents the creation

of a simple mixed mode DLL wrapper around the ECI components of the CICS

Transaction Gateway API for C which will allow .NET applications to communicate

with CICS using the CICS Transaction Gateway.

© Copyright IBM Corporation 2007, 2008 Version 21/02/2008
CICS TG: Developing .NET components for CICS connectivity
 Page 3 of 12

Creating a mixed mode Visual Studio project

Visual Studio 2002 added support for Managed C++, a variant of C++ with added

keywords and constructs for the creation of managed code. Managed C++ has since

been superseded by C++/CLI, introduced with Visual Studio 2005. C++/CLI uses a

syntax that is neater than Managed C++ and more similar to that of C#. If working on

a new product using Visual Studio 2005 or 2008, C++/CLI is recommended. A full

list of the differences between the two languages can be found at:

http://msdn2.microsoft.com/en-us/library/ms235289(VS.80).aspx

The first step towards creating a mixed mode DLL is to create a new project within

Visual Studio. The project type for managed and mixed mode libraries is the Visual

C++ Class Library. This project type is automatically configured to create mixed

mode libraries with either Managed C++ or C++/CLI.

The code snippets shown in this tutorial are C++/CLI. The accompanying zip file

contains the C++/CLI code as well as the Managed C++ equivalent.

Note:

When compiling Managed C++ from within Visual Studio 2005 or later, you must

change the Common Language Runtime support option to Old Syntax

(/clr:oldSyntax), otherwise C++/CLI is assumed and the code will not compile. This

setting can be found under Configuration Properties ���� General.

To set up a Visual Studio project to use the CICS Transaction Gateway C API the

following steps must be performed:

1. The Additional Include Directories project setting must be changed so that it

contains the \include subdirectory of the CICS Transaction Gateway installation,

for example C:\Program Files\IBM\CICS Transaction Gateway\include. This

setting can be found under Configuration Properties ���� C++ ���� General.

2. The Additional Library Directories project setting must be changed so that it

contains the \lib subdirectory of the CICS Transaction Gateway installation, for

example C:\Program Files\IBM\CICS Transaction Gateway\lib. This setting can

be found under Configuration Properties ���� Linker ���� General.

3. The Additional Dependencies project setting must be changed so that it contains

the cclwin32.lib library. This setting can be found under Configuration

Properties ���� Linker ���� Input.

© Copyright IBM Corporation 2007, 2008 Version 21/02/2008
CICS TG: Developing .NET components for CICS connectivity
 Page 4 of 12

Creating a managed class

All managed classes must exist within a namespace. Namespaces in .NET are roughly

equivalent to packages in Java. Each .NET class can be specified using a fully

qualified name which includes the containing namespace, or namespaces can be

imported to aid readability, thus removing the need to fully qualify each class.

Importing a namespace in .NET is equivalent to importing a package in Java. In

Managed C++ and C++/CLI, namespaces are imported with the using namespace

statement, as shown in figure 2.

#define CICS_W32
#include "cics_eci.h"

using namespace System;
using namespace System::Runtime::InteropServices;

Figure 2: Importing namespaces (CicsEci.h)

The sample class is called CicsEci and is placed within the EciWrapper namespace.

The CicsEci class will encapsulate the CICS_ExternalCall function call, which takes a

parameter of type ECI_PARMS. Therefore the CicsEci class will have an unmanaged

pointer to an ECI_PARMS structure. It will also hold a reference to a managed byte array

used as a commarea, and a delegate which can be used as a callback function pointer.

These fields are shown in figure 3.

namespace EciWrapper {
 public ref class CicsEci
 {
 private:
 //Fields
 ECI_PARMS* eciParms;
 array<Byte>^ commareaArray;
 EciCallback^ callbackDelegate;
 public:
 //Constructor and destructor
 CicsEci();
 ~CicsEci();
 };
}

Figure 3: Fields in the CicsEci class (CicsEci.h)

The ref keyword in the class definition specifies that the CicsEci class is a managed

class and that references to any instances of it should be managed by the .NET

framework. The ^ (caret or hat) symbol denotes a handle to a managed class.

The commareaArray field is of type array<Byte>^ which is a managed pointer to a

managed array of type System::Byte. This means that responsibility for managing any

memory associated with the array lies with the .NET framework. It also means that

whenever the array is accessed, an implicit check is performed and an

IndexOutOfRangeException is thrown if an attempt is made to access an index outside

the bounds of the array. The Byte data type is equivalent to the C++ char type and the

two are interchangeable. In this case Byte has been used to avoid ambiguity, since the

char type in C++ and the char type in C# are of different sizes.

The EciCallback data type is defined later in this article.

© Copyright IBM Corporation 2007, 2008 Version 21/02/2008
CICS TG: Developing .NET components for CICS connectivity
 Page 5 of 12

Constructors and destructors

As with other OOP languages, .NET classes may contain constructors and destructors.

The CicsEci class allocates and initializes the unmanaged ECI_PARMS block in the

constructor and deletes it in the destructor. The constructor and destructor are shown

in figure 4.

CicsEci::CicsEci() {
 //Create the ECI_PARMS structure
 this->eciParms = new ECI_PARMS;
 memset(this->eciParms, 0, sizeof(ECI_PARMS));

 //Set ECI version
 this->eciParms->eci_version = ECI_VERSION_1A;

 //Set callback to null
 this->callbackDelegate = nullptr;
}
CicsEci::~CicsEci() {
 //Delete ECI_PARMS
 delete this->eciParms;

 //Set callback to null
 this->callbackDelegate = nullptr;
}

Figure 4: CicsEci constructor and destructor (CicsEci.cpp)

There two types of destructor in C++/CLI. The standard destructor, which is prefixed

by the ~ (tilde) symbol, compiles into a Dispose method and the containing class is

changed so that it implements the System::IDisposable interface. The

IDisposable.Dispose method can be called from user code when the object is no

longer needed, so this type of destructor is often referred to as a deterministic finalizer.

The second type of destructor is prefixed by the ! (exclamation) symbol and compiles

into a non-deterministic finalizer which is called when the garbage collector is about

to delete the object from memory. It is recommended that this type of destructor is

only used when a deterministic destructor is also specified. The CicsEci class does not

use this type of destructor.

© Copyright IBM Corporation 2007, 2008 Version 21/02/2008
CICS TG: Developing .NET components for CICS connectivity
 Page 6 of 12

Properties

.NET properties are special method pairs which can be used like fields. Each property

may define a get and a set method which will be called implicitly when the property is

accessed in code. The CicsEci class exposes many members of the ECI_PARMS

structure as properties. The declarations of three of the properties are shown in figure

5 as an example.

property String^ AbendCode {
 String^ get();
}
property array<Byte>^ Commarea {
 array<Byte>^ get();
 void set(array<Byte>^ commarea);
}
property short Timeout {
 short get();
 void set(short timeout);
}

Figure 5: Declaration of the AbendCode, Commarea and Timeout properties (CicsEci.h)

Since AbendCode will be a read-only property, no set_AbendCode method is declared or

implemented. The implementation of these three properties is shown in figure 6.

String^ CicsEci::AbendCode::get() {
 return CicsEci::NtvCharToMgdString(this->eciParms->eci_abend_code, 4);
}
array<Byte>^ CicsEci::Commarea::get() {
 return this->commareaArray;
}
void CicsEci::Commarea::set(array<Byte>^ commarea) {
 this->commareaArray = commarea;
}
short CicsEci::Timeout::get() {
 return this->eciParms->eci_timeout;
}
void CicsEci::Timeout::set(short timeout) {
 this->eciParms->eci_timeout = timeout;
}

Figure 6: Implementation of the AbendCode, Commarea and Timeout properties (CicsEci.cpp)

The NtvCharToMgdString method is defined in the next section.

© Copyright IBM Corporation 2007, 2008 Version 21/02/2008
CICS TG: Developing .NET components for CICS connectivity
 Page 7 of 12

Strings

The internal representation of the System::String class is an array of System::Char,

equivalent to wchar_t in C++. However, the ECI_PARMS structure uses fixed length

char arrays, so some care must be taken when converting between the two.

The CicsEci class defines the MgdStringToNtvChar method for copying the first N

characters of a managed String object into an unmanaged char array, using the

System::InteropServices::Marshal class to perform the conversion.

The NtvCharToMgdString method performs the reverse operation, converting

characters in an unmanaged char array into a managed String object. This operation

is much simpler since the String class provides a constructor which takes a pointer to

a char buffer and a length.

The implementation of both functions is shown in figure 7.

void CicsEci::MgdStringToNtvChar(String^ src, cics_char_t* dest, int len) {
 cics_char_t* ntvChars;

 //Zero destination block
 memset(dest, 0, len);

 if (src != nullptr) {
 //Get unmanaged char array
 ntvChars = (cics_char_t*)
Marshal::StringToHGlobalAnsi(src).ToPointer();

 //Copy to destination pointer
 if (src->Length > len) {
 memcpy(dest, ntvChars, len);
 } else {
 memcpy(dest, ntvChars, src->Length);
 }

 //Free temp memory
 Marshal::FreeHGlobal((IntPtr) ntvChars);
 }
}
String^ CicsEci::NtvCharToMgdString(cics_char_t* src, int len) {
 String^ mgdString;

 //Measure the string up to a null character or the maximum length len
 int realLen = 0;

 while ((realLen < len) && (src[realLen] != 0)) {
 realLen++;
 }

 //Create managed string and trim off any trailing whitespace
 mgdString = gcnew String(src, 0, realLen);
 return mgdString->TrimEnd(' ');
}

Figure 7: MgdStringToNtvChar and NtvCharToMgdString functions (CicsEci.cpp)

© Copyright IBM Corporation 2007, 2008 Version 21/02/2008
CICS TG: Developing .NET components for CICS connectivity
 Page 8 of 12

Delegates

Native callback functions can be wrapped by .NET delegates. Delegates are type-safe

function pointers which can point to instance as well as static methods. The CicsEci

class stores the callback function as a delegate and converts it to a native function

pointer before invoking CICS_ExternalCall. The EciCallback delegate type is

declared using the delegate keyword. Since this is a type definition, EciCallback can

be used like any other reference type. The definition of the type is shown in figure 8.

[UnmanagedFunctionPointer(CallingConvention::Cdecl)]
public delegate void EciCallback(short returnCode);

Figure 8: EciCallback delegate (CicsEci.h)

The UnmanagedFunctionPointer attribute specifies that the delegate should be treated

as a cdecl function when used in unmanaged code. If no UnmanagedFunctionPointer

attribute is applied, the default calling convention is stdcall.

Note:

The UnmanagedFunctionPointer attribute is important if passing a delegate to native

code. If an incorrect calling convention is specified, the application using the library

may crash.

The get and set methods for the Callback property can now use this delegate type as

shown in figure 9.

EciCallback^ CicsEci::Callback::get() {
 return this->callbackDelegate;
}
void CicsEci::Callback::set(EciCallback^ callback) {
 this->callbackDelegate = callback;
}

Figure 9: Callback property get and set methods (CicsEci.cpp)

Note:

Extra care must be taken when using the asynchronous callback mechanism to ensure

that the object associated with the delegate is not garbage collected before the

asynchronous call completes, as this could lead to unexpected behaviour.

© Copyright IBM Corporation 2007, 2008 Version 21/02/2008
CICS TG: Developing .NET components for CICS connectivity
 Page 9 of 12

Enumerations

The eci_calltype and eci_extend_mode members of the ECI_PARMS structure should be

set to one of the predefined ECI constants. In .NET it is possible to declare these

values as constants within the CicsEci class. However, the convention in .NET is to

group related constants into special value types called enumerations. Therefore the

ECI constants used with the ECI_PARMS block are grouped into two enumerations

within the EciWrapper namespace. The definitions of the EciCallType and

EciExtendMode enumerations are shown in figure 10.

public enum class EciCallType : short
{
 Sync = 516, /* Synchronous call. */
 Async = 517, /* Async call used with ECI_GET_REPLY. */
 AsyncNotifyMsg = 518, /* Async call, notify by message. */
 AsyncNotifySem = 519, /* Async call, notify by semaphore. */
 GetReply = 520, /* Used to get reply to ASYNC call. */
 GetReplyWait = 521, /* As above but wait for reply. */
 GetSpecificReply = 528, /* Get specific ASYNC reply. */
 GetSpecificReplyWait = 529, /* As above but wait for reply. */
 StateSync = 522, /* Synchronous request for CICS status. */
 StateAsync = 523, /* As above but async, no notify. */
 StateAsyncSem = 524, /* As above but notify by semaphore. */
 StateAsyncMsg = 525, /* As above but notify by message. */
};
public enum class EciExtendMode : short
{
 NoExtend = 0, /* These values are to be used with */
 Extended = 1, /* call_types other that ECI_GET_xxx & */
 Commit = 2, /* ECI_STATE_xxx. */
 Cancel = Commit,
 Backout = 3, /* */
 StateImmediate = 4, /* All ECI_STATE_xxx call-types. */
 StateChanged = 5, /* ECI_STATE_ASYNC_SEM & */
 StateCancel = 6, /* ECI_STATE_ASYNC_MSG call_types only. */
};

Figure 10: EciCallType and EciExtendMode enumerations (CicsEci.h)

The CicsEci properties which encapsulate the eci_calltype and eci_extend_mode

members can now use these enumerations as regular integral types as shown in figure

11.

EciCallType CicsEci::CallType::get() {
 return (EciCallType) this->eciParms->eci_call_type;
}
void CicsEci::CallType::set(EciCallType callType) {
 this->eciParms->eci_call_type = (cics_sshort_t) callType;
}
EciExtendMode CicsEci::ExtendMode::get() {
 return (EciExtendMode) this->eciParms->eci_extend_mode;
}
void CicsEci::ExtendMode::set(EciExtendMode extendMode) {
 this->eciParms->eci_extend_mode = (short) extendMode;
}

Figure 11: CallType and ExtendMode properties (CicsEci.cpp)

The return codes for the CICS_ExternalCall and CICS_EciListSystems native calls are

grouped into the EciReturnCodes enumeration in the same way.

© Copyright IBM Corporation 2007, 2008 Version 21/02/2008
CICS TG: Developing .NET components for CICS connectivity
 Page 10 of 12

Handles

In a managed environment, native handles and pointers are represented by the

System::IntPtr type. Since IntPtr is a value type, it can be directly converted to and

from native pointer types. The eci_async_notify member of the ECI_PARMS structure

can contain a handle to either a window or an event. This member is encapsulated by

the Handle property of the CicsEci class, as shown in figure 12.

IntPtr CicsEci::Handle::get() {
 return IntPtr(this->eciParms->eci_async_notify.sem_handle);
}
void CicsEci::Handle::set(IntPtr handle) {
 this->eciParms->eci_async_notify.sem_handle = (cics_lhandle_t)
handle.ToPointer();
}

Figure 12: Handle property (CicsEci.cpp)

Note:

Although the ECI_PARMS member is called sem_handle, the Handle property should be

set to the handle of an event object, such as System::Threading::AutoResetEvent or

System::Threading::ManualResetEvent, and not a System::Threading::Semaphore.

© Copyright IBM Corporation 2007, 2008 Version 21/02/2008
CICS TG: Developing .NET components for CICS connectivity
 Page 11 of 12

The CICS_ExternalCall native function

In the CicsEci class, the majority of the work involved with placing values in and

reading values from the ECI_PARMS structure is performed by the properties. The only

members of ECI_PARMS which may need to be set before the call are eci_commarea,

eci_commarea_length and eci_callback.

The pin_ptr type can be used to hold a pinned reference to an object. When an object

reference is assigned to the pointer, the object is pinned by the garbage collector,

meaning it cannot be deleted or moved in memory until it has been unpinned.

Therefore the pointer can safely be passed to unmanaged functions which may modify

the memory it points to. The Execute method uses a pinned pointer to hold a reference

to the commarea memory during the native call.

The Marshal class provides the GetFunctionPointerForDelegate method which takes

a delegate as a parameter and returns an IntPtr that can be used to invoke the

delegate from a native environment. The Execute method uses this to set the

eci_callback member.

After the call to CICS_ExternalCall, the method tests the return code. If the return

code is a value other than ECI_NO_ERROR, an EciException is thrown. Unlike

Java, .NET methods do not need to declare which exception types they throw.

The implementation of the Execute method is shown in figure 13.

void CicsEci::Execute() {
 short ret;
 pin_ptr<Byte> commareaPtr;

 //Pin the managed commarea and assign to ECI_PARMS
 if (this->commareaArray != nullptr) {
 commareaPtr = &this->commareaArray[0];
 this->eciParms->eci_commarea = commareaPtr;
 this->eciParms->eci_commarea_length = this->commareaArray->Length;
 }

 //Set up the callback if needed
 if (this->callbackDelegate != nullptr) {
 this->eciParms->eci_callback = (CICS_EciNotify_t)
Marshal::GetFunctionPointerForDelegate(this->callbackDelegate).ToPointer();
 }

 //Make the CICS call
 ret = CICS_ExternalCall(this->eciParms);

 //Check the return code
 if (ret != ECI_NO_ERROR) {
 //Throw an exception
 throw gcnew EciException(ret, this->AbendCode);
 }
}

Figure 13: Execute method implementation (CicsEci.cpp)

The sample CicsEci class also defines a ListSystems method which encapsulates the

CICS_EciListSystems native function call.

© Copyright IBM Corporation 2007, 2008 Version 21/02/2008
CICS TG: Developing .NET components for CICS connectivity
 Page 12 of 12

Using the CicsEci class

If the mixed mode DLL compiles successfully, it can be used from C# or VB.NET by

adding it as a reference. Once referenced, each managed type exported by the DLL

can be used.

The EciB1 sample program is provided in both C# and VB.NET and demonstrates the

CicsEci class by querying the client daemon for a list of defined CICS servers and

then launching an ECI request on the chosen server. Both samples can be found in the

accompanying zip file.

The sample program requires a CICS server which returns the commarea as ASCII

text. However, other client applications may handle text in the EBCDIC encoding.

The System::Text::Encoding class provides access to all codepages installed on the

client machine, so ASCII can be substituted for EBCDIC as shown in figure 14.

//Display commarea as EBCDIC (C#)
Encoding encEbcdic = Encoding.GetEncoding("IBM037");
Console.Write("EBCDIC text: ");
Console.WriteLine(encEbcdic.GetString(eciObj.Commarea));

'Display commarea as EBCDIC (VB.NET)
Dim encEbcdic As Encoding = Encoding.GetEncoding("IBM037")
Console.Write("EBCDIC text: ")
Console.WriteLine(encEbcdic.GetString(eciObj.Commarea))

Figure 14: Using EBCDIC character encoding

This tutorial has demonstrated how to create a mixed mode DLL to wrap the CICS

External Call Interface API of the CICS Transaction Gateway. The same process can

be applied to create managed wrappers for other native code.

