
SupportPac CA1S v1.1
CICS® TS for z/OS®: REST support in CICS using PHP

Table of Contents
 1. Introduction...2

 2. Installation and Configuration...3

 3. Accessing Request Information with zget() and zlist()..8

 4. RESTful Events and Event Handlers..10

 5. An Example RESTful Service ..12

 6. Calling CICS Programs from PHP..16

 7. Accessing DB2® Databases from PHP..20

 8. Managing Units of Work..23

 9. Encoding Considerations ...24

 10. Debugging PHP Scripts ...29

 11. Troubleshooting..33

 12. Known Issues and Limitations..34

 13. PHP Language Support Reference...35

 14. Version History...53

 15. Legal Notices..54

This edition applies to Version 1.1 of SupportPac CA1S and to all subsequent versions, releases and modifications until otherwise
indicated in new editions.

© Copyright International Business Machines Corporation 2009. All rights reserved. US Government Users Restricted Rights –
Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

10/02/09 12:32:36

CICS TS for z/OS: REST support in CICS using PHP 1

 1. Introduction

 1.1 What this book is about
This book explains how to use PHP with CICS® within the intended scope of this SupportPac.

 1.2 What you need to know to understand this book
This book assumes that you are familiar with CICS, either as a system administrator or as a system or
application programmer. It also assumes some familiarity with the PHP programming language and
concepts.

 1.3 Introduction to PHP on CICS
PHP is a widely-used and easy to learn scripting language. It is primarily used for writing server side Web
applications. For more background information, see the Wikipedia article on PHP .

CA1S provides support for the PHP language using a Java™-based runtime package. This is a subset of the
IBM ® WebSphere ® sMash product, which is a complete Web application platform for developing and
running modern Web applications. The technology behind WebSphere sMash, including the runtime for PHP,
is developed following a community driven commercial development model at www.projectzero.org.

The Java-based runtime for PHP supports almost all the language features of PHP 5.2 and a subset of the
functions provided by PHP extensions. Section 1 3 of this document details the functionality supported by this
runtime and lists known differences compared to the runtime available at php.net.

You can use the PHP scripting language capabilities in CA1S, which are shared with WebSphere sMash, to
extend the range of CICS assets that can be exposed as REST services. Specifically, CA1S enables PHP
programmers to:

• Write PHP scripts that are invoked in response to inbound HTTP requests.
• Access DB2® tables via PHP Data Objects (PDO) using the CICS JDBC driver from PHP code.
• Exploit existing CICS COMMAREA applications from PHP code.
• Easily create sMash-style RESTful services.

 1.4 Introduction to REST
Representational state transfer (REST) is a style of software architecture that is ideally suited to exposing
resources over the Web. Its key principles are:

• Application state and functionality are abstracted into resources.
• Each resource is uniquely addressable by a URI.
• A constrained, uniform set of actions is used to access and manipulate resources. This usually consists

of standard HTTP methods GET, POST, PUT and DELETE.
• Requests are stateless: each request from the client must contain all the information needed for the

server to understand and respond to the request.
• Requests use a pull-based interaction style: clients pull representations of state from the server.

Systems which follow these principles are often referred to as “RESTful”.

REST works particularly well with data-based services, since they are the simplest to describe in terms of
resources. Furthermore, because RESTful services adhere to uniform interfaces, they facilitate the creation
of "mashup" applications which mix and match data from various sources.

In the following example, the resource being exposed is "employee". The full collection of employees is
represented by the URI /employee. Specific employees are represented by appending an identifier to the
URI (e.g. /employee/homer). The HTTP methods define the intent of accessing the resource through a
given URI:

CICS TS for z/OS: REST support in CICS using PHP 2

http://php.net/
http://www.projectzero.org/
http://www-01.ibm.com/software/webservers/smash/
http://www-01.ibm.com/software/webservers/smash/
http://www-01.ibm.com/software/webservers/smash/
http://www-01.ibm.com/software/webservers/smash/
http://www-01.ibm.com/software/webservers/smash/
http://en.wikipedia.org/wiki/Php
http://en.wikipedia.org/wiki/Php
http://en.wikipedia.org/wiki/Php

• URI: http://<host>/employee (the collection URI)
o GET: Returns the list of employee records
o POST: Creates an employee record based on information in the body of the request.

• URI: http://<host>/employee/homer (a member URI)
o GET: Returns the employee record "homer”
o PUT: Updates the employee record "homer" based on information in the body of the request.
o DELETE: Deletes the employee record "homer"

 2. Installation and Configuration

 2.1 Getting Started with PHP in CICS
This section gives a high level overview of the major steps required to install and set up this SupportPac in a
CICS TS v3.2 system. Further details of each step are given in subsequent sections.

The main steps required to install and set up the SupportPac for PHP are:
1. Check the required prerequisites and install if necessary.
2. Unpack the SupportPac tar file to a suitable zFS location.
3. Tailor the supplied configuration files.
4. Define and install the necessary CICS resource definitions.
5. Invoke the HelloCICS sample PHP script to verify correct installation.

In the following sections more detail on each of these steps is given, together with examples which form a
consistent set and if followed will provide a basic working setup.

N.B. These instructions assume that the installed CICS resources will have a prefix of CA1S, and inbound
URIs for PHP will contain /ca1s in the path. If this is not the case then additional changes to the
configuration files will be required during tailoring.

 2.2 Prerequisites
� This SupportPac is for use with CICS TS V3.2 only, and z/OS 1.8 or above.
� CICS PTF PK59577 is required to allow Java 5.0 to be used in CICS.
� Java SDK 5.0 SR8 must be installed and available to CICS.
� CICS Web Support must be available.
� CICS LOCALCCSID must be set to 037 or 1047.
� TCPIP must be open in the CICS region.
� ICSF must be started on the z/OS system.

For more information on configuring CICS to run Java applications, see “Java Applications in CICS” in the
CICS TS 3.2 InfoCenter.

 2.3 Setting up the SupportPac Files
The executable classes, native libraries, sample configuration and script files for this SupportPac are
supplied as a .tar file which must be unpacked to a suitable location in zFS. The configuration files will
typically need to be modified for each installation. You must correctly set up the files provided with the
SupportPac to run PHP scripts in CICS.

What this SupportPac contains
This SupportPac contains a Unix tar file ca1s_v1.1.tar, which includes all of the required files in several
directories.
The following directories and files are included in the SupportPac ca1s_v1.1.tar file:

CICS TS for z/OS: REST support in CICS using PHP 3

http://publib.boulder.ibm.com/infocenter/cicsts/v3r2/index.jsp
http://publib.boulder.ibm.com/infocenter/cicsts/v3r2/topic/com.ibm.cics.ts.java.doc/pdf/dfhpjc00.pdf
http://publib.boulder.ibm.com/infocenter/cicsts/v3r2/topic/com.ibm.cics.ts.java.doc/pdf/dfhpjc00.pdf

ca1s/ca1s.version.id – Contains the version of the CA1S package
ca1s/licenses/* – License files for this package

ca1s/p8/ – Executables for the runtime for PHP
ca1s/p8/p8.version.id – Version of the runtime for PHP
ca1s/p8/jars/ – Jar files required for the record generator and the runtime for PHP
ca1s/p8/jars/p8api.jar – Interfaces for the runtime for PHP
ca1s/p8/jars/p8.jar – Classes for the runtime for PHP
ca1s/p8/jars/p8cics.jar – CICS-specific classes for the runtime for PHP
ca1s/p8/lib/* – Native libraries required by the runtime for PHP and extensions

ca1s/jzos/ – JZOS record generator for COBOL data structures
ca1s/jzos/jzos_recgen.jar – Jar file for the JZOS record generator for COBOL data structures
ca1s/jzos/JZOS Cobol Record Generator Users Guide.pdf – JZOS record generator user guide

ca1s/work/ – Working directory for sample setup
ca1s/work/classes/ – Default area for extra Java classes (for example, generated JZOS record classes)
ca1s/work/examples/ – Example PHP scripts for CICS in several subdirectories
ca1s/work/examples/CICS/HelloCICS.php – Installation verification script
ca1s/work/examples/CICS/info.php – Runs phpinfo()
ca1s/work/examples/CICS/logToFile.php – Example script showing how to log to file from PHP.
ca1s/work/examples/CICS/catalog/* – Example PHP scripts that interact with the 'catalog' CICS Program.
ca1s/work/examples/PDO/PDODB2Test.php – Sample PHP script using PDO to access DB2
ca1s/work/examples/REST/DataStore.php – Utility script used by sample RESTful service
ca1s/work/examples/REST/Display.php – Client for sample RESTful service
ca1s/work/examples/REST/Spaceship.php – Sample RESTful service
ca1s/work/include/ – Default area for user PHP include scripts
ca1s/work/logs/ – Working directory for JVM stdout and stderr output streams
ca1s/work/resources/ – Default area for user REST resource scripts
ca1s/work/scripts/ – Default area for regular user PHP scripts
ca1s/work/shelf/ – Working directory for CICS to copy pipeline configurations

ca1s/config/ – Configuration files for the SupportPac in several subdirectories
ca1s/config/ini/php.ini – Sample php.ini suitable for use in CICS
ca1s/config/pipelines/* – CICS PIPELINE configuration files for the sample setup
ca1s/config/profiles/CA1SJVMP – Sample JVM profile for a PHP JVM
ca1s/config/rdodefs/CA1SGRP – Sample CICS resource definition input for SupportPac setup

Unpacking the SupportPac tar file
• Transfer the tar file from your workstation to the mainframe. If you use FTP, enable binary transfer

mode.
• Identify or create a suitable directory to contain the SupportPac files in the z/OS UNIX system where

your CICS region runs. This directory must be accessible to the region USERID of your CICS
system (with read and execute permissions). From now on, this directory will be referred to by the
identifier <ca1s_loc>.

• Untar the ca1s_v1.1.tar file into the directory chosen in step 1, <ca1s_loc> (this means the directory
which will contain the unpacked ca1s/ directory, rather than that directory itself). In order to avoid
warning messages when the tar file is unpacked, use the –o option on the tar command e.g.
cd <ca1s_loc>
tar xvof <tar_loc>/ca1s_v1.1.tar
In the above, <tar_loc> is the directory to which you copied the downloaded ca1s_v1.1.tar file.

• Check permissions for the unpacked files and directories. The CICS region userid must have read
and execute access to all files under ca1s/p8, read access to files under ca1s/config and full read-
write access to ca1s/work.

File encodings
All configuration files under ca1s/config/ are expected to be EBCDIC, with the exception of php.ini which may
be either ASCII or EBCDIC. PHP script files are expected to be in ISO-8859-1 by default, but this can be

CICS TS for z/OS: REST support in CICS using PHP 4

changed by modifying the unicode.script_encoding setting in php.ini. For example, the following allows you
to write PHP scripts in EBCDIC:
unicode.script_encoding = IBM-1047
When writing scripts in EBCDIC on z/OS, ensure the code page of your 3270 terminal emulator (such as IBM
Personal Communications) is the same as that specified in unicode.script_encoding. If this is not the case,
attempts to enter characters such as ' $' will yield unexpected behaviour, resulting in script parse errors.

The script's output is automatically converted to UTF-8 when it is sent to the client. For more information on
the impact of ASCII and EBCDIC on the runtime for PHP, see the section on encoding considerations.

Editing the configuration files
As a minimum, the sample configuration files under <ca1s_loc>/ca1s/config will need to be tailored for your
installation. In particular, all hard-coded instances of the directory name ‘/u/p8build’ in the configuration files
need to be replaced with <ca1s_loc>.

• The supplied php.ini file is suitable for a basic installation. The include path setting can be changed
to replace the occurrence of ‘/u/p8build’ with <ca1s_loc>. For more information on the configuration
directives available in php.ini, see the php.ini reference section below.

• Edit the sample pipeline configuration files under ca1s/config/pipelines replacing ‘/u/p8build’ with
<ca1s_loc>. These files are EBCDIC encoded and should be saved as such.

• Edit the sample JVM profile ca1s/config/profiles/CA1SJVMP, replacing ‘/u/p8build’ with <ca1s_loc>.
Change CICS_HOME and JAVA_HOME to match your installation. If you plan to use DB2 from
PHP, change instances of ‘/usr/lpp/db2910/’ to match the location of your DB2 driver files.

• Edit the sample resource definitions provided in ca1s/config/rdodefs/CA1SGRP, replacing
‘/u/p8build’ with <ca1s_loc>. Change the port number on TCPIPSERVICE CA1STCP to a suitable
value. If you wish to change the prefix CA1S- used for all sample resources, you will also need to
change the value of <program> in the sample pipeline configuration files to match your new name for
PROGRAM CA1SHNDL.

Configuring CICS
SIT parameters
The following SIT parameters are required:

� LOCALCCSID=1047 (PHP in CICS currently supports code pages 1047 or 037. If you wish to use
the latter, specify LOCALCCSID=037 and change the unicode.runtime_encoding to IBM-037 in
php.ini accordingly).

� TCPIP=YES
� JVMPROFILEDIR=… (See further comments on JVM profiles below).

Resource definitions
The supplied sample resource definitions in ca1s/config/rdodefs/CA1SGRP are in a suitable form to be used
as input to a DFHCSDUP job, which will create and populate the RDO group CA1SGRP. Alternatively use
the contents of ca1s/config/rdodefs/CA1SGRP as a guideline for alternative means of defining the required
resources.

Once defined, install the definitions from group CA1SGRP into your running CICS system. A
TCPIPSERVICE and handler PROGRAM are required. Associated URIMAPs and PIPELINE definitions may
be installed in pairs depending on the use cases you wish to enable, however it is simpler to install all
definitions if possible.

JVM profiles
CICS requires that JVM profiles DFHJVMPR and DFHJVMCD are always available. PHP support requires
JVM profile CA1SJVMP. There are two main options:

• Set JVMPROFILEDIR=<ca1s_loc>/config/profiles and copy or create links to DFHJVMPR and
DFHJVMCD in that directory.

• Copy CA1SJVMP or create a link to it in your existing JVMPROFILEDIR.

CICS TS for z/OS: REST support in CICS using PHP 5

Running the supplied examples
Assuming that you installed all the sample resources as provided with the SupportPac, with only the
configuration changes prescribed in the preceding sections, you are now ready to run your first PHP scripts
in CICS.
Some of the supplied examples will run immediately with no further setup required, whilst others will require
further steps before they can be successfully invoked. To verify correct installation and basic operation of
the runtime for PHP in CICS, invoke the HelloCICS.php script from a browser by entering one of the
following two URLs in your browser address field:

• http://hostname:port/ca1s/hellocics
• http://hostname:port/ca1s/cics/HelloCICS.php

In the above, hostname is the name or IP address of the system where your CICS is running, and port is the
port number you chose while editing CA1SGRP or defining your TCPIPSERVICE.

The following output should appear in your browser:

Hello from HelloCICS.php running in CICS TS!

This indicates that your setup is successful and a basic installation of PHP in CICS is working correctly.

 2.4 Pipeline Configuration

When an HTTP request is received, a CICS URIMAP matches the inbound URIs, thereby mapping requests
to named PIPELINEs. Each PIPELINE has an xml file known as the pipeline configuration file.

The pipeline configuration file can be used to influence the behaviour of the PHP engine. To do so, add an
XML element <php_handler> as a child of <handler_parameter_list>. For example:

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline xmlns="http://www.ibm.com/software/htp/cics/pipeline">
 <service>
 <terminal_handler>
 <handler>
 <program>RFPHNDLR</program>
 <handler_parameter_list>

<php_handler prefix="/robinf" type="php_script"
 basedir="/u/robinf/scripts/" script="myscript.php" />

 </handler_parameter_list>
 </handler>
 </terminal_handler>
 </service>
</provider_pipeline>

The <php_handler> element has 4 optional attributes:

Attribute Description Default Value
prefix A sub-path which will be stripped from the beginning of the inbound URI

before using it to construct the path to the script.

If specified, this must match a complete (i.e. up to a / boundary) prefix
sub-path of the inbound URI exactly. Failure to match will result in a
fatal error.

 (empty string)

type The type of script invocation triggered by inbound HTTP requests. Valid
values are:

• "php_script": the script will be executed normally.

"php_script"

CICS TS for z/OS: REST support in CICS using PHP 6

• "php_rest": the script will be invoked to handle a RESTful event.

basedir The base path for PHP scripts. The home
directory of the
CICS region
USERID.

script The location of script to be invoked. This may be an absolute path, or a
path relative to basedir.

If unspecified, the location depends on the inbound URI and type:
• type="php_script": location is the URI with the prefix removed.

If this represents a directory default file name “index.php” will be
used.

• type="php_rest": location is the first element of the URI with
prefix removed, with the suffix ".php" added if not present.

(see left)

If type is php_rest, then information about the RESTful resource targeted by an incoming request can be
contained in the URI. This includes the resource name, and optionally a resource ID and further resource
information.

The PHP handler uses a simple convention to determine which parts of the URI carry this information:
• The resource name is the first URI element after the prefix.
• The resource id is the second URI element after the prefix.
• Any further URI elements up to the query string represent additional resource information.

http://xyz.com/<…pre/fix…>/<resourceName>/<resourceID>/<…more/resource/info…>

 2.5 Pipeline Configuration Examples

No pipeline configuration, or <php_handler />
Inbound URI Target Script

http://xyz.com/a.php $HOME/a.php
http://xyz.com/b/c.php $HOME/b/c.php
http://xyz.com/b $HOME/b/index.php

<php_handler basedir="/u/robinf/scripts" />
Inbound URI Target Script

http://xyz.com/a.php /u/robinf/scripts/a.php
http://xyz.com/b/c.php /u/robinf/scripts/b/c.php
http://xyz.com/b /u/robinf/scripts/b/index.php

<php_handler basedir="/u/robinf/scripts" script="foo.php" />
Inbound URI Target Script

http://xyz.com/a.php /u/robinf/scripts/foo.php
http://xyz.com/b/c.php /u/robinf/scripts/foo.php
http://xyz.com/b /u/robinf/scripts/foo.php

<php_handler prefix="/team/forum" basedir="/u/robinf/forum2.0" />
Inbound URI Target Script

http://xyz.com/team/forum /u/robinf/forum2.0/index.php
http://xyz.com/team/forum/post.php /u/robinf/forum2.0/post.php
http://xyz.com/team/forum/db/config.php /u/robinf/forum2.0/db/config.php

CICS TS for z/OS: REST support in CICS using PHP 7

<php_handler type="php_rest"
prefix="/my/service" basedir="/u/robinf/restlib" />

Inbound URI Target Script
http://xyz.com/my/service/photo /u/robinf/restlib/photo.php

(resource name: “photo”)
http://xyz.com/my/service/user /u/robinf/restlib/user.php

(resource name: “user”)
http://xyz.com/my/service/user/303 /u/robinf/restlib/user.php

(resource name: “user”,
resource ID: “303”)

http://xyz.com/my/service/user/303/addr
ess/postcode

/u/robinf/restlib/user.php
(resource name: “user”,
resource ID: “303”,
resource info: “/address/postcode”)

<php_handler type="php_rest"
prefix="/my/service" basedir="/u/robinf/restlib"
script="entrypoint.php" />

Inbound URI Target Script
http://xyz.com/my/service/photo /u/robinf/restlib/entrypoint.php

(resource name: “photo”)
http://xyz.com/my/service/user /u/robinf/restlib/entrypoint.php

(resource name: “user”)
http://xyz.com/my/service/user/303 /u/robinf/restlib/entrypoint.php

(resource name: “user”,
resource ID: “303”)

http://xyz.com/my/service/user/303/addr
ess/postcode

/u/robinf/restlib/entrypoint.php
(resource name: “user”,
resource ID: “303”,
resource info: “/address/postcode”)

 3. Accessing Request Information with zget() and zlist()

 3.1 Overview

Functions zget() and zlist() emulate a small part of WebSphere sMash’s Global Context feature.
Together, they provide easy access to information about the current request and RESTful event from within a
PHP script.

These functions are part of the CICS extension, which is enabled in php.ini with the following entry:
extension = com.ibm.p8.library.cics.CICSLibrary

The extension is enabled in the php.ini shipped in the package.

• zget($key [, $defaultValue=NULL]) returns the value corresponding to key $key, or
$defaultValue if no such key exists. Valid keys are:

Key Type Description
/request/method string The HTTP method (GET, POST, PUT, DELETE)
/request/input stream Stream providing access to the raw bytes of the

request content. Use this for accessing non-form-
encoded post or put data

/request/input/transcoded string The request input data transcoded into a string using
the runtime encoding. This is specific to the CICS
extension and is not available on sMash.

/request/params/<name> string The value of form element <name>. Includes query

CICS TS for z/OS: REST support in CICS using PHP 8

http://stlzin1.torolab.ibm.com/wiki/bin/view/Development/PhpCICSMiniGC?skin=zero.nat%2Cnat&sortcol=2;table=1;up=0#sorted_table
http://stlzin1.torolab.ibm.com/wiki/bin/view/Development/PhpCICSMiniGC?skin=zero.nat%2Cnat&sortcol=1;table=1;up=0#sorted_table
http://stlzin1.torolab.ibm.com/wiki/bin/view/Development/PhpCICSMiniGC?skin=zero.nat%2Cnat&sortcol=0;table=1;up=0#sorted_table
http://www.projectzero.org/zero/silverstone/latest/docs/zero.devguide.doc/zero.core/GlobalContext.html

string elements, as well as POST or PUT data if they
are form encoded (application/x-www-form-
urlencoded). Input that is not form-encoded can be
accessed through /request/input and
/request/input/transcoded

/request/params/<resourceName>Id string The id of the resource if this is a RESTful request to
member URI. See sMash docs for more info.

/event/pathInfo string The part of the URI following the resource ID if this is a
RESTful request. See sMash docs for more info.

/event/_name string The name of the event if this is a RESTful request (list,
create, retrieve, update, delete, postMember,
putCollection or deleteCollection). See sMash docs for
more info. Note that CICS also supports automatic
dispatch to the appropriate PHP method for the event –
see below.

• zlist($prefix [, $includePrefix=false]) returns the list of keys starting with $prefix. The
optional argument $includePrefix defines whether or not the prefix should be included in the result.

For example, assuming the request includes form data a=1&b=2&c=3:

<?php
 foreach (zlist("/request/params", false) as $key) {
 echo "$key: " . zget("/request/params/" . $key) ."\n";
 }
 foreach (zlist("/request/params", true) as $key) {
 echo "$key: " . zget($key) ."\n";
 }
?>

Output:
 a: 1
 b: 2
 c: 3
 /request/params/a: 1
 /request/params/b: 2
 /request/params/c: 3

 3.2 Limitations and Differences Compared to IBM WebSphere sMash

• On sMash, the global context is read/write. On CICS, it is read-only (there is no zput(), zpost...).

• On sMash, many keys are available. On CICS, only the keys listed above are available. Note: if you
need information about the HTTP request that is not available through zget on CICS, you might find
it in the $_SERVER superglobal.

• On sMash, different zones of the Global Context have different lifetimes: some entries survive for
only a part of a request, while others survive across multiple requests. On CICS, everything that can
be accessed via zget() or zlist() is valid for the duration of the current request: all available
keys are from the /request and /event zones, and it is not possible to fire multiple events per request.

• CICS provides zget("/request/input/transcoded") which returns non-form-encoded input
as a string, transcoded to the runtime encoding. This is not applicable to sMash.

CICS TS for z/OS: REST support in CICS using PHP 9

http://www.projectzero.org/zero/silverstone/latest/docs/zero.devguide.doc/zero.core/GlobalContextReference.html
http://www.projectzero.org/zero/silverstone/latest/docs/zero.devguide.doc/zero.core/REST.html#PHP_Method_Dispatch
http://www.projectzero.org/zero/silverstone/latest/docs/zero.devguide.doc/zero.core/REST.html#PHP_Method_Dispatch
http://www.projectzero.org/zero/silverstone/latest/docs/zero.devguide.doc/zero.core/REST.html#PHP_handler_mappings
http://www.projectzero.org/zero/silverstone/latest/docs/zero.devguide.doc/zero.core/REST.html#PHP_handler_mappings
http://www.projectzero.org/zero/silverstone/latest/docs/zero.devguide.doc/zero.core/REST.html#PHP_handler_mappings

• On CICS, no items accessible with zget() are Lists, so the syntax for directly accessing List and
FirstElementList elements is not available.

 4. RESTful Events and Event Handlers

 4.1 RESTful Events
When the PHP handler is in REST mode (type="php_rest" in the pipeline configuration), any inbound
HTTP request corresponds to one of 8 possible RESTful event types. The event type is determined by two
factors:

• the HTTP method of the request
• whether the request URI corresponds to a collection or a specific member – that is, whether a resource

ID is specified in the URI

Request URI HTTP
Method

Event

Collection URI, e.g.:
http://xyz.com/prefix/myResource

GET list
POST create
PUT putCollection
DELETE deleteCollection

Member URI, e.g.:
http://xyz.com/prefix/myResource/resourceID

GET retrieve
POST postMember
PUT update
DELETE delete

The event type can be determined programmatically within the script using zget('/event/_name').
This can be used in conjunction with zget('/request/<resourceName>Id') and
zget('/event/pathInfo') to easily construct scripts to respond to RESTful requests.

For example, the following script would respond as expected to GET requests to URIs
http://xyz.com/resources/user, http://xyz.com/resources/user/123 and
http://xyz.com/resources/user/123/address.

user.php
<?php
switch(zget('/event/_name')) {
 case 'list':

// list all users (/user)
 break;
 case 'retrieve':

$userId = zget('/request/params/userId');
$info = zget('/event/pathInfo');
if ($info == null) {

 // show all info for user $userId (/user/123)
} else {

 // show $info for user $userId (/user/123/address)
}

 break;
 default:

// Do nothing for other event types
}
?>

CICS TS for z/OS: REST support in CICS using PHP 10

http://stlzin1.torolab.ibm.com/wiki/bin/view/Development/PhpCICSMiniGC?skin=zero.nat%2Cnat&sortcol=2;table=1;up=0#sorted_table
http://www.projectzero.org/zero/silverstone/latest/docs/zero.devguide.doc/zero.core/AccessingGlobalContext.html
http://www.projectzero.org/zero/silverstone/latest/docs/zero.devguide.doc/zero.core/AccessingGlobalContext.html

 4.2 Event Handler Methods

Developers may also choose a more object-oriented approach to event handling:
• After executing the script, the PHP engine searches for a class with the same name as the resource.
• If such a class is defined, an instance is created. The constructor is invoked if it is present and does not

require arguments.
• Finally, a method corresponding to the event is invoked, if present:

Request URI HTTP Method Event Handler

http://xyz.com/prefix/user
GET User::onList()
POST User::onCreate()
PUT User::onPutCollection()
DELETE User::onDeleteCollection()

http://xyz.com/prefix/user/123
GET User::onRetrieve()
POST User::onPostMember()
PUT User::onUpdate()
DELETE User::onDelete()

In other words, the following script is equivalent to the script above:

user.php
<?php
class User {
 function onList() {
 // list all users (/user)
 }

 function onRetrieve() {
 $userId = zget('/request/params/userId');

$info = zget('/event/pathInfo');
if ($info == null) {

 // show all info for user $userId (/user/123)
} else {

 // show $info for user $userId (/user/123/address)
}

 }
}
?>

Notes:

• Services may implement as few or as many handlers as necessary – there is no requirement to
implement them all. The most commonly used events are those that represent “LCRUD” operations:
onList, onCreate, onRetrieve, onUpdate and onDelete.

• The outer scope script is always invoked prior to the method dispatch. This means that any code outside
the class definition (including code in any included files) will be executed for all operations. Therefore,
only common code applicable to all operations should be placed outside the class definition.

• The class is instantiated prior to method dispatch. If a constructor which takes no arguments is present,
then it is called.

• The class does not need to be defined in the PHP file specified in the HTTP request: it can be defined in
an included PHP script.

• In PHP, class names and function names are case-insensitive. So whilst it is good practice to use names
such as onList(), in fact onlist() would also match.

CICS TS for z/OS: REST support in CICS using PHP 11

http://stlzin1.torolab.ibm.com/wiki/bin/view/Development/PhpCICSMiniGC?skin=zero.nat%2Cnat&sortcol=2;table=1;up=0#sorted_table

 5. An Example RESTful Service
A simple RESTful service is included in the SupportPac. It demonstrates the usage of zget() and the
event handler mechanism.

 5.1 Overview

The resource used in the example is spaceship, which has 2 attributes: “x” and “y”. Both are non-zero
positive integers.

Spaceship.php provides handlers for LCRUD operations on spaceships. All output data returned by the
service is in JSON format. In order to illustrate reading both form-encoded data and non-form-encoded data,
the service expects form input data (with Content-Type: “application/x-www-form-urlencoded”) for Create
operations and JSON input data for Update operations.

Here are some operations supported by the service:

HTTP
Method

Request URI Result

GET

/Spaceship Returns HTTP 200 with JSON list of all spaceships, with their x and
y values.

/Spaceship?x=1 As above, but filtered to include only ships where x=1.
/Spaceship/1 Returns HTTP 200 with JSON representation of Spaceship 1’s x

and y values, or HTTP 404 if no such ship exists
/Spaceship/1/x Returns HTTP 200 with JSON representation of Spaceship 1’s x

value, or HTTP 404 if no such ship exists

POST /Spaceship

Create spaceship, assuming requests include form-encoded data
like: id=3&x=2&y=4.
Returns HTTP 200 with JSON representation of the newly created
ship, or HTTP 400 if the input data is invalid, or HTTP 409 if
supplied id matches an existing ship.

PUT

/Spaceship/1
Update spaceship 1 with JSON data supplied in the request.
Returns HTTP 200 with the representation of the ship prior to the
update, or HTTP 201 if the ship did not exist and was created, or
HTTP 400 if the input data is invalid.

/Spaceship/1/x
Update attribute x of spaceship 1 with JSON data supplied in the
request.
Returns HTTP 200 with the representation of the ship prior to the
update or HTTP 400 if the input data is invalid.

DELETE /Spaceship/1
Deletes spaceship 1.
Returns HTTP 200 with JSON representation of the deleted ship, or
HTTP 404 if no such ship exists.

DataStore.php implements the persistence mechanism for the service. For simplicity, each ship is
represented by a separate file containing the ship’s “x” and “y” attributes.

Display.php is a simple client which issues regular asynchronous GET requests to the collection URI, and
accordingly adjusts HTML elements representing ships 1 to 9.

CICS TS for z/OS: REST support in CICS using PHP 12

 5.2 How to Use the Example Service

• The script files that constitute the example are supplied under work/examples/REST. In a default
CA1S setup, the Spaceship service and Display page are available under the following URIs:

http://<host>:<port>/ca1s/rest/Spaceship
http://<host>:<port>/ca1s/rest/Display

This uses the URIMAP and PIPELINE named CA1SREST and the config file phppipe_REST.xml.
T

• Optionally,you may create your own URIMAP and PIPELINE to customize the location of the script files
or the URI of the service. You will need a RESTful pipeline config as described in section 2.4 and to
ensure files Spaceship.php, Display.php and DataStore.php are copied to the appropriate resource
directory.
For example, with this pipeline configuration:

 <php_handler type='php_rest' prefix='robinf/rest/resources'
 basedir='/u/robinf/cicswork/scripts/robinf/restlib/' />
the scripts would be copied into u/robinf/cicswork/scripts/robinf/restlib/ and accessed
using URIs like http://<host>:<port>/robinf/rest/resources/Spaceship .

• Browse to /Display. If there is no data in the data store (as will be the case initially), the application will
populate the data store with two ships. The page will then update to display them:

CICS TS for z/OS: REST support in CICS using PHP 13

• To add a ship, issue a POST request to /Spaceship with form-encoded data like id=3&x=2&y=4.
Ensure that the request specifies “application/x-www-form-urlencoded” as the Content-Type. In the
screenshot below, the Poster add-on f or Firefox® is used as a simple REST client to interact with the
service:

CICS TS for z/OS: REST support in CICS using PHP 14

https://addons.mozilla.org/en-US/firefox/addon/2691
https://addons.mozilla.org/en-US/firefox/addon/2691
https://addons.mozilla.org/en-US/firefox/addon/2691

• To update a ship’s attributes, issue a PUT request to /Spaceship/<id> with JSON like {"x ":1, "y
":2} :

CICS TS for z/OS: REST support in CICS using PHP 15

• To delete a ship’s attributes, issue a DELETE request to /Spaceship/<id>:

 6. Calling CICS Programs from PHP
The CICS extension allows a PHP programmer to call a CICS program from a PHP script. The extension
currently supports CICS programs that can be called using EXEC LINK, and that communicate using a
commarea data structure.

 6.1 Using the CICS Extension to Call a CICS Program

Typical Work flow
1. From a COBOL program, use the COBOL compiler to generate a binary ‘adata’ file, which contains

meta-data describing a COBOL copybook from the program.
2. Use supplied JZOS tooling to parse the ‘adata’ file and produce a Java source file.
3. Compile the resulting source to Java class files. These classes allows the creation of a commarea

data structure that can be passed to a CICS program.
4. Ensure the generated classes are on the Java CLASSPATH.
5. Use PHP reflection to determine the available methods on the generated Java class.
6. Write a PHP program that:

• Uses the Java bridge to access the generated JZOS classes (no knowledge of the Java
programming language required).

CICS TS for z/OS: REST support in CICS using PHP 16

• Uses these classes to generate an appropriate commarea
• Uses the CICS extension to call a CICS program (passing the generated commarea)
• Examines the result using bridged JZOS classes.

In order to successfully use the CICS extension for PHP:
• The CICS extension must be specified in the php.ini file:

extension = com.ibm.p8.library.cics.CICSLibrary
• The generated classes representing the commarea of the CICS program to be called must be

available on the Java CLASSPATH. The Java CLASSPATH can be set in the JVM profile using the
CLASSPATH_SUFFIX setting. If you are using the supplied JVM profile (CA1SJVMP), you can use
the directory ca1s/work/classes/, which already is set up to be on the CLASSPATH.

Example Scripts

A simplified example script is show below:

<?php
// Use the Java bridge to import the commarea class.
// Call java_import specifying the full package name (if any)
// and the class name, but not the .class extension.
java_import("package.name.GeneratedJzosClass");

// Instantiate the class as a PHP class
$commArea = new GeneratedJzosClass();

// Set some data in the commarea by calling method on the class
$commArea->setCallType("1");

// Use the CICS extension to call a CICS program
$program = new CICSProgram("ProgramName");
try {

$program->link($commArea);
} catch (CICSException $e) {

echo $e->getMessage();
exit;

}

echo "Return value is " . $commArea->getReturnValue();
?>

An example of determining available methods by PHP reflection:

<?php

// Use reflection to get an array of methods available on a
// generated commarea class
$generatedClass = new ReflectionClass("GeneratedJzosClass");
$methods = $generatedClass->getMethods();
foreach ($methods as $method) {

// Print each method name
echo $method->getName() . "\n";

}

?>

CICS TS for z/OS: REST support in CICS using PHP 17

 6.2 Representing Commarea Data Structures in PHP
Commarea data structures are represented by generated Java classes. The Java source code for these
classes is generated by the JZOS record generator tooling, using binary ADATA files created by the COBOL
compiler. The JZOS record generator tool and its documentation are included in the package under
ca1s/jzos. More information on JZOS, along with updates, FAQs and a forum, are available on the IBM
JZOS Batch Toolkit for z/OS SDKs site at alphaworks.

Generating ADATA files
Use the COBOL compiler on the program containing the data structure of interest. Use the option ADATA
and specify a DD card SYSADATA to indicate where the adata is to be stored. See "Enterprise COBOL for z/
OS Programming Guide" for more details.

If you use FTP to transfer the ADATA to your workstation, remember to issue the command 'quote site rdw'.
If this step is omitted, the record generation step will fail with a java.lang.NegativeArraySizeException or
similar. For more information, see section "Running the COBOL RecordClassGenerator" of "JZOS Cobol
Record Generator Users Guide.pdf".

Generating the Java source files using JZOS
Detailed documentation for generating these classes is available in the “JZOS Cobol Record Generator
Users Guide.pdf” file in the ca1s/jzos directory. A simple example invocation of the generator is:

java -cp jzos_recgen.jar com.ibm.jzos.recordgen.cobol.RecordClassGenerator
genCache=false adataFile=SOMEADATA symbol=DSECTname class=GENCLASS
package=sample

Note that the above is a single command and should be pasted as one line.

Parameters:
• adataFile – the file containing the binary adata output from the COBOL compiler.
• class – the class name for the generated Java record class (optional: if omitted, a default name will

be generated).
• genCache=false – disable caching in the generated Java source files. NB: This parameter is

required: genCache must be set to false for correct interaction between PHP and COBOL.
• package – the Java package name to be used for the generated Java class (optional). The complete

generated class name used to refer to the commarea class in PHP is formed by concatenating
“package.class”.

• symbol – the name of the level 01 data description entry in the COBOL program that describes the
data structure of interest. This is required unless the COBOL source program contains only one
level 01 data description entry.

 6.3 API Documentation

CICSProgram Class

CICSProgram->__construct(string $programName)
Description:
Create a new CICSProgram object

Parameters:
• programName: The name of the CICS program to call.

boolean CICSProgram->link([object $inputCommArea [, object $outputCommArea]])
Description:
Call the CICS program

CICS TS for z/OS: REST support in CICS using PHP 18

http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/topic/com.ibm.entcobol.doc_4.1/PGandLR/pgtitlemvs.htm
http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/topic/com.ibm.entcobol.doc_4.1/PGandLR/pgtitlemvs.htm
http://www.alphaworks.ibm.com/tech/zosjavabatchtk
http://www.alphaworks.ibm.com/tech/zosjavabatchtk

Parameters:
• inputCommArea: a commarea that will be passed to the CICS program as input data. This

object should be an imported Java class that has a public method with signature: byte[]
getByteBuffer() (such as generated by the JZOS tooling). If no output commarea is supplied, the
results of calling the CICS program will be overwritten into this object.

• outputCommArea: a commarea that will have the output from the CICS program written into it.
Again this should be an imported Java class generated by the JZOS tooling.

Return Values:
• Returns true if the link succeeded, otherwise false.

Errors/Exceptions:
• Produces an E_WARNING for any errors detected in the input data, and returns false.
• Throws a CICSException if an error occurs during execution of the CICS program.

boolean CICSProgram->link_sync([object $inputCommArea [, object
$outputCommArea]])

Description:
Call the CICS program. If the program is remote, a SYNCPOINT will be performed when the
program returns.

Parameters:
• inputCommArea: a commarea that will be passed to the CICS program as input data. This object

should be an imported Java class that has a public method with signature: byte[] getByteBuffer()
(such as generated by the JZOS tooling). If no output commarea is supplied, the results of calling
the CICS program will be overwritten into this object.

• outputCommArea: a commarea that will have the output from the CICS program written into it.
Again this should be an imported Java class generated by the JZOS tooling.

Return Values:
• Returns true if the link succeeded, otherwise false.

Errors/Exceptions:
• Produces an E_WARNING for any errors detected in the input data, and returns false.
• Throws a CICSException if an error occurs during execution of the CICS program.

CICSException Class

object CICSException->getCause()
Description:
get the underlying Java exception that caused this CICSException

Return Values:
The underlying Java exception if one exists, or null otherwise.

The following example shows how to display the abend code included in an underlying Java AbendError:

try {
$program->link($commArea);

} catch (CICSException $e) {
echo $e->getCause()->getABCODE();
exit;

}

CICS TS for z/OS: REST support in CICS using PHP 19

http://publib.boulder.ibm.com/infocenter/cicsts/v3r2/index.jsp?topic=/com.ibm.cics.ts.jcics.javadoc/com/ibm/cics/server/AbendError.html

 6.4 Sample Application

To illustrate these features, a simple PHP front-end to the CICS catalog example program is supplied under
ca1s/work/examples/CICS/catalog/. You can examine the code to learn how PHP scripts interact
with CICS programs.

To use the sample:

• Ensure the catalog CICS program is installed and available to your CICS environment. It must be
named DFH0XCMN. For more information on setting up the catalog CICS program, please refer to
chapter 14 of the Web Services Guide in the CICS TS 3.2 InfoCenter.

• Add ca1s/work/examples/jars/catalog.jar to the Java CLASSPATH by appending it to
CLASSPATH_SUFFIX in your JVMProfile. This jar file contains the catalog commarea classes that
were generated from the catalog ADATA using JZOS.

• Optional: Alternatively, instead of using the supplied jar, you could generate and compile the
classes from the catalog program's ADATA yourself, specifying 'sample' as the package name. For
example, generate the source using the following command (all on one line):

java -cp jzos_recgen.jar com.ibm.jzos.recordgen.cobol.RecordClassGenerator
genCache=false adataFile=DFH0XCMN symbol=DFHCOMMAREA class=DFH0XCMN
package=sample outputDir=.

This will create a directory named sample containing a Java source file. Compile it like this:

javac -cp jzos_recgen.jar sample/*

The resulting sample directory, which will now include 2 .class files, should be placed inside a
directory that is in CLASSPATH_SUFFIX in your JVMProfile. If you are using the supplied
JVMProfile (CA1SJVMP), you can use the directory ca1s/work/classes/, which already is set up
to be on the CLASSPATH.

• Phase out your JVMs to ensure the JVMProfile change is picked up.

• Navigate to catalog.php in your browser. With the default setup, this will be located at:
http://<host>:<port>/ca1s/cics/catalog/catalog.php

 7. Accessing DB2® Databases from PHP

 7.1 Getting Started

The following steps describe how to access DB2 databases from PHP using the PDO extension:

1. Edit php.ini and locate the section where the PHP extensions are configured. Uncomment the
following two lines:

extension = com.ibm.p8.library.pdo.PdoLibrary
extension = com.ibm.p8.library.pdo.PdoJdbcDb2Library

These lines ensure the PDO extension and the PDO/DB2 driver are loaded into the runtime for PHP.

2. Ensure the following DB2 runtime JARs are on the Java CLASSPATH by adding them to
CLASSPATH_SUFFIX in the CA1SJVMP JVMProfile:

db2jcc.jar

CICS TS for z/OS: REST support in CICS using PHP 20

http://publib.boulder.ibm.com/infocenter/cicsts/v3r2/index.jsp
http://publib.boulder.ibm.com/infocenter/cicsts/v3r2/index.jsp
http://publib.boulder.ibm.com/infocenter/cicsts/v3r2/topic/com.ibm.cics.ts.webservices.doc/pdf/dfhwsc00.pdf

db2jcc_javax.jar
db2jcc_license_cisuz.jar

These can normally be found in the classes subdirectory of the DB2 installation.

3. A suitable DB2 instance must be available to CICS, and an active DB2 connection must be installed
and connected within the CICS region.

4. Copy and save the following sample code into a PHP script available to the CICS environment:

<?php

$db = new PDO("jdbc:default:connection");
if ($db == FALSE) {

die("Could not create PDO object!");
}

$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_WARNING);
$db->setAttribute(PDO::ATTR_CASE, PDO::CASE_LOWER);
$db->setAttribute(PDO::ATTR_STRINGIFY_FETCHES, true);

$tablename = "PDODB2Test";

$savedErrorMode = $db->getAttribute(PDO::ATTR_ERRMODE);
$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_SILENT);
$db->exec("DROP TABLE $tablename");
$db->setAttribute(PDO::ATTR_ERRMODE, $savedErrorMode);

$db->exec("CREATE TABLE $tablename(id int NOT NULL PRIMARY KEY, val
VARCHAR(10))");
$db->exec("INSERT INTO $tablename VALUES(1, 'A')");
$db->exec("INSERT INTO $tablename VALUES(2, 'B')");
$db->exec("INSERT INTO $tablename VALUES(3, 'C')");

$stmt = $db->prepare("SELECT * from $tablename ORDER BY id");
$stmt->execute();
var_dump($stmt->fetchAll(PDO::FETCH_ASSOC));

?>

5. Point a web browser at the PHP script.

6. The following output should be displayed:

array(3) {
 [0]=>
 array(2) {
 ["id"]=>
 string(1) "1"
 ["val"]=>
 string(1) "A"
 }
 [1]=>
 array(2) {
 ["id"]=>
 string(1) "2"
 ["val"]=>
 string(1) "B"
 }

CICS TS for z/OS: REST support in CICS using PHP 21

 [2]=>
 array(2) {
 ["id"]=>
 string(1) "3"
 ["val"]=>
 string(1) "C"
 }
}

 7.2 Supported Functions

Method Currently Supported? Notes
(see below)Yes No

PDO::beginTransaction ✘
PDO::commit ✘
PDO::__construct ✔ 1

PDO::errorCode ✘ 2

PDO::errorInfo ✘ 2

PDO::exec ✔
PDO::getAttribute ✔ 3

PDO::getAvailableDrivers ✔ 4

PDO::lastInsertId ✔
PDO::prepare ✔ 5, 7

PDO::query ✔
PDO::quote ✔
PDO::rollBack ✘
PDO::setAttribute ✔ 3

PDOStatement::bindColumn ✘
PDOStatement::bindParam ✘
PDOStatement::bindValue ✔ 5

PDOStatement::closeCursor ✔
PDOStatement::columnCount ✘
PDOStatement::errorCode ✘ 2

PDOStatement::errorInfo ✘ 2

PDOStatement::execute ✔ 5

PDOStatement::fetch ✔ 6

PDOStatement::fetchAll ✔ 6

PDOStatement::fetchColumn ✘
PDOStatement::fetchObject ✘
PDOStatement::getColumnMeta ✘
PDOStatement::nextRowset ✘
PDOStatement::rowCount ✔
PDOStatement::setAttribute ✘
PDOStatement::setFetchMode ✘

CICS TS for z/OS: REST support in CICS using PHP 22

Notes:

1. The format of the Data Source Name provided to the constructor is the same as that required by the
underlying JDBC driver being used.

2. The only supported manner to programatically interrogate and recover from database-originated
errors is to set the attribute PDO::ATTR_ERRMODE to PDO::ERRMODE_EXCEPTION, using the
method PDO::setAttribute, which will cause a PDOException to be thrown when any database-
originated error is found. This exception may then be caught and handled in the standard manner.

3. The currently supported attributes on the PDO object are PDO::ATTR_CASE and
PDO::ATTR_ERRMODE. In addition, PDO::ATTR_STRINGIFY_FETCHES is handled without error,
but not currently honoured.

4. The list of drivers returned reflect the PDO driver-specific (Java) extension libraries that have been
loaded - they do not necessarily reflect the existence of the supporting JDBC driver libraries required
to use the driver successfully.

5. Positional SQL IN parameters are supported; named parameters, IN/OUT and OUT parameters are
currently unsupported. Date fields must be set by a string of the form "yyyy-MM-dd"; Time fields by a
string of the form "HH:mm:ss"; and Timestamp fields by a string of the form "yyyy-MM-dd
HH:mm:ss". The setting of parameters for database fields mapping to the following JDBC datatypes
(java.sql.Types) are not currently supported: ARRAY, BLOB, CLOB, DATALINK, JAVA_OBJECT,
OTHER, REF, STRUCT.

6. The following fetch styles are supported: PDO::FETCH_ASSOC, PDO::FETCH_NUM and
PDO::FETCH_BOTH. In addition, the following fetch style modifiers are supported on calls to
PDOStatement::fetchAll: PDO::FETCH_UNIQUE and PDO::FETCH_GROUP. All other fetch styles
are not currently supported.

7. The syntax for standard and precompiled SQL statements (i.e. JDBC PreparedStatements) is
supported; the syntax for SQL stored procedures (i.e. JDBC CallableStatements) is not currently
supported.

 8. Managing Units of Work

 8.1 Explicitly Committing and Rolling Back Units of Work from PHP

PHP scripts can commit and roll back units of works using the class CICSTask, which provides two static
methods: CICSTask::commit() and CICSTask::rollback(). This class cannot be instantiated.

class CICSTask {
public static function commit()
public static function rollback()

}

CICSTask::commit()
• Commit the work done as part of the request.
• Arguments: None
• Return value: NULL
• Errors conditions: throws CICSException if the commit request could not be successfully

completed and the current Unit of Work has been rolled back.

CICSTask::rollback()
• Roll back the work done as part of the request.
• Arguments: None

CICS TS for z/OS: REST support in CICS using PHP 23

• Return value: NULL

An example usage scenario:

<?php

do_some_work();

if (!verify_state()) {
 CICSTask::rollback();
 return;
}

try {
 CICSTask::commit();
} catch (CICSException $e) {
 // Commit failed - LUW has been rolled back! Handle as appropriate.
 do_severe_issue_handling($e);
 return;
}
?>

 8.2 Implicit Commits and Rollbacks

A commit is implicitly issued after a script ends without failure.

A rollback is implicitly issued in the following cases:
� If the PHP engine fails during the execution of the script, for example because of a JVM crash.
� If an error in PHP code causes the script execution to halt, for example because a PHP fatal error is

triggered, or a PHP exception is thrown and not caught.

Note: only errors that halt the script trigger a rollback. Therefore, Warnings and Notices do not trigger a
rollback. See the php.net manual entry on error types for more information on PHP errors.

 9. Encoding Considerations
EBCDIC, which stands for Extended Binary-Coded-Decimal Interchange Code, is the code set used on z/OS
UNIX. By contrast, ASCII is the dominant code set on almost all other platforms. Scripts written for ASCII
platforms without an awareness of code set independent coding practices can run incorrectly on z/OS UNIX.
The following sections discuss some of these issues.

For a general overview of character sets and code pages, refer to National Language Support Reference
Manual, Volume 2, SE09-8002.

 9.1 PHP Script File Encoding and php.ini Directives
There are two directives in php.ini that relate to encoding:

• unicode.script_encoding: Script encoding describes the encoding of the PHP script files to be
read. This must be correctly set in order for string literals and PHP names, such as function, variable
and class names, to be correctly parsed by the runtime. The default is UTF-8. If this is set
incorrectly, the script will not parse.

• unicode.runtime_encoding: Runtime encoding is used when a PHP string is converted into a Java
string. Internally, the runtime preserves the ability to store binary data in a PHP string, which is

CICS TS for z/OS: REST support in CICS using PHP 24

http://php.net/manual/en/errorfunc.constants.php

essential for full support of the PHP 5 language. This setting must match LOCALCCSID (which will
typically be either 1047 or 037), except it must include the prefix “IBM-” (i.e. “IBM-1047” or “IBM-
037”). Due to changes in the iconv library, on z/OS v1.9 it is acceptable to specify the code page
name in php.ini without a dash, i.e. “IBM037” or “IBM1047”. However, note that on z/OS v1.8, the
dash is required: “IBM-037” or “IBM-1047”. Script output will automatically be transcoded by CICS
from the runtime encoding to UTF-8 when it is returned to the client.

 9.2 Transferring PHP Scripts over FTP
When transferring scripts over FTP, ensure the correct transfer mode is enabled:

• Binary mode will preserve a script's encoding when it is transferred between systems. This is useful
for keeping scripts in ASCII on both the z/OS system and your workstation.

• Text mode may convert the script between ASCII and EBCDIC depending on the source and
destination systems. This can be used to edit scripts on your workstation in ASCII, then deploy them
to z/OS in EBCDIC.

 9.3 Sort Order Differences
The default sort order for text differs between ASCII and EBCDIC platforms. When using the PHP sort()
function, you should be aware of these differences. They can cause unexpected behaviour in your scripts.
The following table demonstrates how the sort order for text varies. The “Orig” column shows a random
assortment of characters. The following columns show the different sort orders generated by the PHP sort()
function on both z/OS UNIX and Linux platforms:

Orig z/OS Linux
=
A : 0
0 = 9
Z a :
: z =

A A
z Z Z
9 0 z
Z 9 z

Other PHP functions affected by sort order differences between EBCDIC and ASCII are:
• strcmp()
• strncmp()
• strnatcmp()

 9.4 Characters versus Code Points
One of the most common problems when porting scripts from other platforms to z/OS is caused by the
technique of referring to characters using their code point (ordinal) value rather than their symbolic value. For
example, consider the following code:

$x=ord(’A’);
if ($x == 0x41) {
 print "x is 'A' \n";
} else {
 print "x is not 'A' \n";
}

CICS TS for z/OS: REST support in CICS using PHP 25

The if statement would only be true on an ASCII platform where the ordinal value of the character A is
0x41. If this code were run on z/OS UNIX, it would print x is not 'A' because the ordinal value of A on
an EBCDIC code page is 0xC1.

Other PHP functions affected are:
• chr()
• count_chars()
• bin2hex()
• md5(), sha1(), crc32() hashing functions
• printf(), vsprintf(), vprintf(), fprintf(), sprintf() functions when printing using the %c format modifier

 9.5 Newline (″\n″)
The ordinal value of the newline (\n) character is different between EBCDIC and ASCII. So, the symbolic″ ″
representation of this character should always be used rather than the ordinal values. The following are
incorrect and correct examples:

<?php
 print "Hello World \012"; # incorrect
 print "Hello World \n"; # correct
?>

The following table shows the ordinal value of the newline character in both EBCDIC and ASCII:

Dec Octal hex
EBCDIC 21 025 0x15
ASCII 10 012 0xA

 9.6 Non-contiguous Character Ranges
The EBCDIC code set does not have the alphabet arranged in a contiguous manner - there are gaps. For
example, in ASCII, “A” to “Z” occupy 26 contiguous code points from 0x41 to 0x5A however in EBCDIC
there are gaps in the sequence as follows:

• A-I occupy 0xC1 to 0xC9
• J-R occupy 0xD1 to 0xD9
• S-Z occupy 0xE2 to 0xE9

Similar gaps occur for the lower case characters too and the ordering of special characters is also different.
Consequently, any PHP functions which accept a range will produce different results on z/OS UNIX, an
EBCDIC-based platform, to other platforms which are ASCII based.

PHP Functions affected:
• trim(), ltrim(), and rtrim() when supplied a range (for example, trim($string, "a..z") will trim more than

just the lower case characters “a” to “z” when run on EBCDIC)
• addcslashes() when supplied a range
• array range() function

 9.7 Hash Function
PHP supports many hash functions. Some examples include MD5, SHA1, BASE64, CRC32, among others.
For more information on these hash functions, consult the following RFCs:

Function
name

Corresponding RFC file

MD5 RFC 1321 – The MD5 Message-Digest Algorithm

CICS TS for z/OS: REST support in CICS using PHP 26

SHA1 RFC 3174 – US Secure Hash Algorithm (SHA1)
CRC32
BASE64 RFC 2045 – Multipurpose Internet Mail Extensions

(MIME) Part One:format of Internet Message Bodies

As previously mentioned the binary value of a string on z/OS UNIX is not equal to what it would be on a
generic ASCII platform so the output from these hashing functions will differ. Consider the following simple
example:

<?php
$str = 'apple';
var_dump(sha1($str1));
?>

On a Linux system the result is:

string(40) "d0be2dc421be4fcd0172e5afceea3970e2f3d940"

On a z/OS UNIX system the result is:

string(40) "cfdc0cb96f77e4272807cf2c1908b2da6b576898"

 9.8 JSON Functions
On ASCII-based platforms such as Linux, the JSON functions json_encode() and json_decode() only work
with UTF-8 (an ASCII superset code page) data. On z/OS UNIX however, these functions have been
modified to work with both EBCDIC and UTF-8 data by adding a new optional flag to each command as
follows:

string json_encode (mixed $value [, string $input_encoding])
By default any input is assumed to be EBCDIC-encoded, i.e. IBM-1047 or IBM-037 code page. However, if
the optional string argument $input_encoding is set to "UTF8", then all input is assumed to be UTF-8
encoded as on ASCII based platforms. All output is in EBCDIC.

mixed json_decode (string $json [, bool $assoc, string $output_encoding])
All input is assumed to be EBCDIC encoded and by default all output is also EBCDIC. However, if the
optional string argument $output_encoding is set to "UTF8", then all output will be UTF-8 encoded.

Note that "UTF8" is currently the only value supported by the optional arguments $input_encoding and
$output_encoding.

 9.9 XML Parser Functions
On z/OS UNIX, the XML parser functions will only correctly process input in EBCDIC. It will not understand
iso-8859-1 or utf-8 documents, and the encoding tag in an XML document becomes meaningless.

Also, the functions utf8_encode() and utf8_decode() are not supported.

 9.10 POSIX functions
Due to differences in the implementation of certain C library functions on z/OS UNIX, the output of some
POSIX functions will be different to that on other platforms such as Linux:

CICS TS for z/OS: REST support in CICS using PHP 27

http://uk.php.net/manual/es/language.pseudo-types.php#language.types.mixed
http://uk.php.net/manual/es/language.pseudo-types.php#language.types.mixed

• gr_passwd is not defined in the grp.h structure returned by the getgrnam_r() and
getgrgid_r() system functions, so the arrays returned by the PHP functions
posix_getgrnam() and posix_getgrgid() do not contain "passwd" entries.

• pw_passwd and pw_gecos are not defined in the pwd.h structure retuned by the getpwnam_r()
system function, so the arrays returned by PHP functions posix_getpwnam() and
posix_getpwuid() do not contain "passwd" or "gecos" entries.

 9.11 Network Functions
The following pre-defined PHP constants are not available on z/OS UNIX:

• LOG_AUTHPRIV
• LOG_SYSLOG
• LOG_PERROR

 9.12 File System Functions and Streams
The file system functions work with streams not just files. Streams can come from file systems or the network
such as http servers, which are likely to provide data in UTF-8 or some other ASCII superset code page.
Some of the file system functions parse the stream data. For example fgets() will look for EOL characters
and only return information up to that EOL. fgetcsv() looks for EOL and also recognises white-space and
meta-characters such as quotes and an escape character. There are 2 issues here:

• Stream data could not be EBCDIC, in which case it cannot be echoed directly or passed to
extension functions that expect the data to be in runtime encoding. The script writer must perform a
conversion on the data to ensure it is suitable. An example of how to convert is shown here:

<?php
// Use ini_get("unicode.runtime_encoding") to easily determine the runtime
encoding that is needed.
echo mb_convert_encoding(file_get_contents("http://www.example.com"),
ini_get("unicode.runtime_encoding"), "UTF-8");
?>

• This also affects the php://input stream, which is used for reading raw PUT and POST data from the
HTTP request. Convert the data to the runtime encoding as shown below, or simply use
zget('/request/input/transcoded').

<?php
// Use $_SERVER['REQUEST_BODY_CHARSET'] to determine the charset of the
request body, as specified by the client. Defaults to "UTF-8".
echo mb_convert_encoding(file_get_contents("php://input"),
ini_get("unicode.runtime_encoding"), $_SERVER['REQUEST_BODY_CHARSET']);
?>

• In our current implementation, file system functions that perform a parsing operation will only work
on the data in EBCDIC format (These APIs access the stream directly so there is no way to intercept
and alter the stream data currently). The following functions are affected:
• fgets()
• fgetcsv()
• file()
• parse_ini_file()

• Some file system functions will also write runtime_encoding bytes out on your behalf which will make
the creation of ASCII files problematic. This affects:
• fputcsv()

CICS TS for z/OS: REST support in CICS using PHP 28

 9.13 System Functions
PHP calls system functions to implement some basic functions, such as mkdir(), fopen(), popen() and so on.
Because z/OS UNIX is a UNIX standard compatible system, you should not encounter problems when using
these functions except for EBCDIC to ASCII situations. It is possible, however, that you may encounter some
difficulties if you attempt to implement some programming tricks. The following is an example:

#include <unistd.h>
int main(int argc, char *argv[]) {
 int c;
 extern char *optarg;
 while((c=getopt(argc,argv,"d:m:j:vht"))!=-1) {
 printf("%c-%s\n",c,optarg);
 }
}

Compile this program in Linux and z/OS UNIX and ensure that Tgetopt is the name of executable file:

Linux:
./Tgetopt -d 1 -m 2 -h 3
d-1
m-2
h-(null)

z/OS UNIX:
./Tgetopt -d 1 -m 2 -h 3
d-1
m-2
h-2

This inconsistency is due to differences in the implementation of the system function getopt(); you may get
the same result when you try to use the PHP function getopt().

 10. Debugging PHP Scripts

 10.1 Logging Script Activity to File
Logging data or messages to a file is a simple way to track script behaviour without requiring a debug client
and without contaminating the output of the script.

The function logToFile() below illustrates how to dump the contents of a variable to file, along with a
timestamp and the file and line number on which logToFile() was called.

Note that the PHP function var_dump() usually writes its output straight to the response body. To catch the
output in a variable, so we can write it to a file, we use PHP’s output buffering functionality.

CICS TS for z/OS: REST support in CICS using PHP 29

logToFile.php
<?php
date_default_timezone_set('UTC');

function logToFile($var) {
// Dump $var into a string
ob_start();
var_dump($var);
$data = ob_get_contents();
ob_end_clean();

 // Gather calling filename and line number
$backtrace = debug_backtrace();
$file = $backtrace[0]['file'];
$line = $backtrace[0]['line'];

// Format message with timestamp
$timeStamp = date('Ymd@H:m:s');
$message = "$timeStamp - $file($line): $data";

// Append message to log file
file_put_contents("log.txt", $message, FILE_APPEND);

}
?>

It could be used as follows:

test.php
<?php
include('logToFile.php');
logToFile('Hello World');
logToFile(123);
?>

After executing test.php above, a file log.txt will be in the JVM’s working directory with content like:
20081103@18:11:33 - /u/robinf/scripts/test.php(3): string(11) "Hello World"
20081103@18:11:33 – /u/robinf/scripts/test.php(4): int(123)

 10.2 Debugging with Eclipse™ PDT

It is possible to remotely attach the Eclipse PDT XDebug client to the PHP engine. This allows the user to
stop at breakpoints, step, evaluate expressions, inspect stack frames and inspect variable values from a
development machine while a script executes on the server.

To debug with Eclipse PDT:

1. Download and install Eclipse PDT 2.0 or later: http://www.eclipse.org/pdt/downloads

2. Start eclipse PDT and load the scripts you wish to debug into the workspace. Place breakpoints as
required.

3. Enable debug mode on the server by setting the JVM option below in your JVM profile, changing
<client_ip> and <client_port > as appropriate (by default, the port used by PDT for XDebug is 9000,
but this can be configured through Eclipse’s preferences). Remember to phase out your JVMs so
that the change to the JVM profile is picked up.

-Dp8.debug=idekey=ECLIPSE_DBGP&remotePort=<client_port>&remoteHost=<client_ip>

CICS TS for z/OS: REST support in CICS using PHP 30

http://www.eclipse.org/pdt/downloads
http://www.eclipse.org/pdt/

4. In the PHP debug preferences, set the "Debug Transfer Encoding” option to match match your
unicode.runtime_encoding php.ini setting (which by default is is IBM-1047). This ensures string
variable values will be displayed correctly by the debugger:

5. Create a PHP Web Page debug launcher with “Server Debugger” set to XDebug and the File and
URL set as appropriate. For example:

CICS TS for z/OS: REST support in CICS using PHP 31

6. Click “debug”. This issues a request to the server by opening a browser at the specified URL.
Eclipse PDT will then show the engine’s state in the PHP Debug perspective as breaks are
encountered during execution on the server.

7. After the first request, the debug session will remain open. Requests will continue to communicate
with the debug client until the session is explicitly ended (so even requests issued from clients other
than the browser started by PDT can be debugged).

CICS TS for z/OS: REST support in CICS using PHP 32

 11. Troubleshooting

 11.1 SupportPac User Forum

An online forum is provided so that users of CA1S can interact with each other and the CICS PHP
development team:
http://www-128.ibm.com/developerworks/forums/forum.jspa?forumID=1537

Use it to better understand PHP in CICS, to debug problems, to make requests and to get answers. This
forum is moderated by CICS PHP architects, developers, and testers.

When reporting unexpected behaviour, it may be useful to supply the contents of standard error and
standard out, any error messages reported by the engine (including abend codes), as well as internal engine
trace files for the requests that engendered the problem. The following sections explain how to collect this
data.

 11.2 Standard Out and Standard Error
The JVM’s standard out and standard error streams will be redirected as defined in the JVM profile. For
example, add the following to your JVM profile to write them to file under the JVM working directory, in
directory logs:

STDOUT=logs/dfhjvmout -generate
STDERR=logs/dfhjvmerr -generate

The JVM working directory can also be configured in the JVM profile, by setting e.g.:
WORK_DIR=/my/working/directory

 11.3 Abend Codes
The PHP handler will trigger a CICS abend when unexpected behaviour occurs. In the event of such a
failure, an abend code may be reported in an HTTP 500 error message, and can be found in the JVM
standard error log.

• P8HA: Error while reading the pipeline configuration from container DFH-HANDLERPLIST.
• P8HB: Error while encoding cookie data.
• P8HC: Task.getCurrentChannel() returned null, was expecting current Channel; unable to access

pipeline configuration data or set HTTP response data.
• P8HD: Error retrieving HTTP method from the HTTP request object supplied by JCICS.
• P8HE: Error while attempting to notify client that the requested script was not found.
• P8HF: Fatal internal error while executing the script, or exception while starting or ending request.
• P8HG: Error while preparing response in containers DFHHTTPSTATUS, DFHMEDIATYPE and

DFHRESPONSE.
• P8HH: Error retrieving data from the HTTP request object supplied by JCICS.
• P8HI: Error preparing HTTP request input data for consumption by PHP engine
• P8HH: Error retrieving request path from the HTTP request object supplied by JCICS.
• P8HK: Error while configuring XML parser before reading pipeline configuration.
• P8HL: Error while parsing pipeline configuration XML data.
• P8HM: Error while preparing PHP request based on pipeline configuration and HTTP request object

supplied by JCICS.
• P8HO: Invalid request error while retrieving content from HTTP request object supplied by JCICS.
• P8HP: Request body not found while retrieving content from HTTP request object supplied by JCICS.
• P8HQ: Request body not HTTP data while retrieving content from HTTP request object supplied by

JCICS.

CICS TS for z/OS: REST support in CICS using PHP 33

http://www-128.ibm.com/developerworks/forums/forum.jspa?forumID=1537

• P8HR: Invalid request error while retrieving body character set from HTTP request object supplied by
JCICS.

• P8HS: Bad request body encoding while decoding request input data.
• P8HT: Invalid request error while retrieving request content type to decode PUT data.
• P8HU: Invalid request error while attempting to roll back.
• P8HV: Invalid request error while attempting to commit
• P8HZ: Uncaught exception in the PHP handler.

 11.4 Collecting PHP Engine Internal Trace Data
Internal tracing produces a set of binary files that describe the behaviour of the PHP engine over the course
of one or more requests. When reporting a failure or unexpected behaviour, it is useful to include these files
along with the JVM standard error and standard out logs.

While trace data is automatically dumped to file in the event of an internal engine failure, tracing can also be
enabled manually. This is achieved via the properties file p8logging.properties, which must be ASCII
encoded and reside on the Java CLASSPATH. The following table defines the properties that can be set in
this file. Keys are case sensitive. If no p8logging.properties file is found on the class path, then all the
defaults apply.

Key Description Default
traceFilePrefix Prefix to use for trace file names p8Trace
traceCycleCount Total number of trace files which are cycled. File .0 is the

newest
100

traceRecordLimit Number of trace records per file 10000
traceToFile Send trace directly to file, bypassing the memory buffer false
tracePushLevel Trace level that automatically triggers the memory buffer

to write out to a trace file
PHP_ERROR

javaDump Whether a Java dump should be taken when an uncaught
throwable trigger occurs

true

systemDumpLevel trace level that triggers a J9 system dump SEVERE
memoryRecordLimit Number of trace records to be held in the cyclic memory

buffer
1000

traceLevel Level of trace records for all components to hold in
memory or send to trace file. Valid values include
DEBUG, INFO, WARNING and SEVERE.

INFO

For example, to consistently write the highest level of trace detail to file, set traceLevel to DEBUG and
enable traceToFile by creating a p8logging.properties file on the CLASSPATH containing:

traceLevel = DEBUG
traceToFile = true

The above settings will significantly impact performance, so it is recommended to enable them only when
gathering diagnostic data.

Note that changes to p8logging.properties will only be picked up after a JVM restart.

 12. Known Issues and Limitations

• Symptom: Scripts that generate no content return responses with HTTP status code 200 OK, even
though a different status is set in the script.
Explanation: When the PHP handler attempts to send a response with an empty body to the client, any
response HTTP status code set in the script is erroneously ignored. Instead, the response is always sent
with HTTP 200 OK.

CICS TS for z/OS: REST support in CICS using PHP 34

http://stlzin1.torolab.ibm.com/wiki/bin/view/Development/PhpTracing?skin=zero.nat%2Cnat&sortcol=0;table=2;up=0#sorted_table

Resolution: This occurs only when the script generates no content, so it may be acceptable to
temporarily work around the problem by adding white space to the output. This issue will be resolved in
CICS TS 3.2 in APAR PK76485.

• Symptom: Attempting to return binary data from a script to the client in the response body results in the
client receiving corrupt data.
Explanation: All output from PHP scripts is treated as text data by the CICS pipeline process, regardless
of the media type set in the Content-Type response header. Therefore, all script output is transcoded
from the LOCALCCSID to UTF-8 before being sent to the client – including binary data.
Resolution: As a temporary workaround, it may be possible to obtain the desired results by transcoding
the data before sending it, with the expectation that CICS will transcode it again. This issue will be
resolved in a future version of this SupportPac; the fix may require APAR PK76485.

• Symptom: Stale data is seen when calling getter methods on a commarea data structure.
Explanation: The JZOS generated classes used to represent commarea data structures must be
generated with the correct options.
Resolution: Re-generate and recompile the Java class representing your data structure, ensuring that
the following option is used: genCache=false

• Symptom: The commarea passed to the target CICS program contains low-values for fields which have
not been set by the application, even though VALUE clauses are present in the COBOL source for those
fields.
Explanation: The JZOS generated classes do not contain initializers for the fields in a commarea if it is
derived from a level 01 structure in the LINKAGE section of the source COBOL program.
Resolution: Modify the COBOL program so that the required record structure is defined in the
WORKING-STORAGE section of the source. Re-compile the program to create a new ADATA file. Re-
generate and recompile the Java class representing your data structure.
N.B. In this situation, it will probably be preferable to create a dummy COBOL program skeleton and
insert or COPY the definition for the record, ensuring that the level 01 data definition for the record is in
the WORKING-STORAGE section of the dummy program.

• Symptom: Real storage in subpool 2 key 8 progressively grows as HTTP requests are processed.
Explanation: There is a known, minor memory leak in JCICS HttpRequest, which is used by this
SupportPac.
Resolution: The memory leak will be fixed in CICS TS 3.2 in APAR PK77018.

 13. PHP Language Support Reference
Support for the PHP language is provided by a Java-based runtime package. The runtime supports almost
all the language features of PHP 5.2 and a subset of the functions provided by PHP extensions.

 13.1 Core Functions

The tables below list the extension functions supported in the runtime for PHP included in CA1S. The
complete list of available functions and classes can be accessed programmatically with functions
get_defined_functions() and get_declared_classes().

Array Functions
array array_pop current

array_change_key_case array_product each

array_chunk array_push end

array_combine array_rand extract

array_count_values array_reduce in_array

CICS TS for z/OS: REST support in CICS using PHP 35

http://php.net/in_array
http://php.net/array_reduce
http://php.net/array_count_values
http://php.net/extract
http://php.net/array_rand
http://php.net/array_combine
http://php.net/end
http://php.net/array_push
http://php.net/array_chunk
http://php.net/each
http://php.net/array_product
http://php.net/array_change_key_case
http://php.net/current
http://php.net/array_pop
http://php.net/array
http://php.net/get_declared_classes
http://php.net/get_declared_classes
http://php.net/get_defined_functions

array_diff array_reverse key

array_diff_assoc array_search key_exists

array_diff_key array_shift krsort

array_diff_uassoc array_slice ksort

array_diff_ukey array_splice list

array_fill array_sum natcasesort

array_fill_keys array_udiff natsort

array_filter array_udiff_assoc next

array_flip array_udiff_uassoc pos

array_intersect array_uintersect prev

array_intersect_assoc array_uintersect_assoc range

array_intersect_key array_uintersect_uassoc reset

array_intersect_uassoc array_unique rsort

array_intersect_ukey array_unshift shuffle

array_key_exists array_values sizeof

array_keys array_walk sort

array_map array_walk_recursive uasort

array_merge arsort uksort

array_merge_recursive asort usort

array_multisort compact

array_pad count

CICS Specific Functions
(these functions are specific to this SupportPac – see previous sections for more information)

CICSProgram::link CICSTask::commit zget

CICSProgram::link_sync CICSTask::rollback zlist

Class & Object Functions
call_user_method get_class_vars interface_exists

call_user_method_array get_declared_classes is_a

class_exists get_declared_interfaces is_subclass_of

get_class get_object_vars method_exists

get_class_methods get_parent_class property_exists

Date & Time Functions
checkdate date_sunset localtime

date getdate microtime

date_create gettimeofday mktime

date_default_timezone_get gmdate strftime

date_default_timezone_set gmmktime strtotime

CICS TS for z/OS: REST support in CICS using PHP 36

http://php.net/strtotime
http://php.net/gmmktime
http://php.net/date_default_timezone_set
http://php.net/strftime
http://php.net/gmdate
http://php.net/date_default_timezone_get
http://php.net/mktime
http://php.net/gettimeofday
http://php.net/date_create
http://php.net/microtime
http://php.net/getdate
http://php.net/date
http://php.net/localtime
http://php.net/date_sunset
http://php.net/checkdate
http://php.net/property_exists
http://php.net/get_parent_class
http://php.net/get_class_methods
http://php.net/method_exists
http://php.net/get_object_vars
http://php.net/get_class
http://php.net/is_subclass_of
http://php.net/get_declared_interfaces
http://php.net/class_exists
http://php.net/is_a
http://php.net/get_declared_classes
http://php.net/call_user_method_array
http://php.net/interface_exists
http://php.net/get_class_vars
http://php.net/call_user_method
http://php.net/count
http://php.net/array_pad
http://php.net/compact
http://php.net/array_multisort
http://php.net/usort
http://php.net/asort
http://php.net/array_merge_recursive
http://php.net/uksort
http://php.net/arsort
http://php.net/array_merge
http://php.net/uasort
http://php.net/array_walk_recursive
http://php.net/array_map
http://php.net/sort
http://php.net/array_walk
http://php.net/array_keys
http://php.net/sizeof
http://php.net/array_values
http://php.net/array_key_exists
http://php.net/shuffle
http://php.net/array_unshift
http://php.net/array_intersect_ukey
http://php.net/rsort
http://php.net/array_unique
http://php.net/array_intersect_uassoc
http://php.net/reset
http://php.net/array_uintersect_uassoc
http://php.net/array_intersect_key
http://php.net/range
http://php.net/array_uintersect_assoc
http://php.net/array_intersect_assoc
http://php.net/prev
http://php.net/array_uintersect
http://php.net/array_intersect
http://php.net/pos
http://php.net/array_udiff_uassoc
http://php.net/array_flip
http://php.net/next
http://php.net/array_udiff_assoc
http://php.net/array_filter
http://php.net/natsort
http://php.net/array_udiff
http://php.net/array_fill_keys
http://php.net/natcasesort
http://php.net/array_sum
http://php.net/array_fill
http://php.net/list
http://php.net/array_splice
http://php.net/array_diff_ukey
http://php.net/ksort
http://php.net/array_slice
http://php.net/array_diff_uassoc
http://php.net/krsort
http://php.net/array_shift
http://php.net/array_diff_key
http://php.net/key_exists
http://php.net/array_search
http://php.net/array_diff_assoc
http://php.net/key
http://php.net/array_reverse
http://php.net/array_diff

date_sun_info gmstrftime time

date_sunrise idate

Error Handling and Logging Functions
debug_backtrace error_reporting set_exception_handler

debug_print_backtrace restore_error_handler trigger_error

error_get_last restore_exception_handler user_error

error_log set_error_handler

Filesystem Functions
basename filemtime is_writeable

chgrp fileowner link

chmod fileperms linkinfo

chown filesize lstat

clearstatcache filetype mkdir

copy flock move_uploaded_file

dirname fopen parse_ini_file

disk_free_space fpassthru pathinfo

diskfreespace fputcsv pclose

fclose fputs popen

feof fread readfile

fflush fseek readlink

fgetc ftell realpath

fgetcsv ftruncate rename

fgets fwrite rewind

file glob rmdir

file_exists is_dir stat

file_get_contents is_executable symlink

file_put_contents is_file tempnam

fileatime is_link touch

filectime is_readable umask

filegroup is_uploaded_file unlink

fileinode is_writable

Function Handling Functions
call_user_func func_get_args register_shutdown_function

call_user_func_array func_num_args register_tick_function

create_function function_exists unregister_tick_function

func_get_arg get_defined_functions

CICS TS for z/OS: REST support in CICS using PHP 37

http://php.net/get_defined_functions
http://php.net/func_get_arg
http://php.net/unregister_tick_function
http://php.net/function_exists
http://php.net/create_function
http://php.net/register_tick_function
http://php.net/func_num_args
http://php.net/call_user_func_array
http://php.net/register_shutdown_function
http://php.net/func_get_args
http://php.net/call_user_func
http://php.net/is_writable
http://php.net/fileinode
http://php.net/unlink
http://php.net/is_uploaded_file
http://php.net/filegroup
http://php.net/umask
http://php.net/is_readable
http://php.net/filectime
http://php.net/touch
http://php.net/is_link
http://php.net/fileatime
http://php.net/tempnam
http://php.net/is_file
http://php.net/file_put_contents
http://php.net/symlink
http://php.net/is_executable
http://php.net/file_get_contents
http://php.net/stat
http://php.net/is_dir
http://php.net/file_exists
http://php.net/rmdir
http://php.net/glob
http://php.net/file
http://php.net/rewind
http://php.net/fwrite
http://php.net/fgets
http://php.net/rename
http://php.net/ftruncate
http://php.net/fgetcsv
http://php.net/realpath
http://php.net/ftell
http://php.net/fgetc
http://php.net/readlink
http://php.net/fseek
http://php.net/fflush
http://php.net/readfile
http://php.net/fread
http://php.net/feof
http://php.net/popen
http://php.net/fputs
http://php.net/fclose
http://php.net/pclose
http://php.net/fputcsv
http://php.net/diskfreespace
http://php.net/pathinfo
http://php.net/fpassthru
http://php.net/disk_free_space
http://php.net/parse_ini_file
http://php.net/fopen
http://php.net/dirname
http://php.net/move_uploaded_file
http://php.net/flock
http://php.net/copy
http://php.net/mkdir
http://php.net/filetype
http://php.net/clearstatcache
http://php.net/lstat
http://php.net/filesize
http://php.net/chown
http://php.net/linkinfo
http://php.net/fileperms
http://php.net/chmod
http://php.net/link
http://php.net/fileowner
http://php.net/chgrp
http://php.net/is_writeable
http://php.net/filemtime
http://php.net/basename
http://php.net/set_error_handler
http://php.net/error_log
http://php.net/user_error
http://php.net/restore_exception_handler
http://php.net/error_get_last
http://php.net/trigger_error
http://php.net/restore_error_handler
http://php.net/debug_print_backtrace
http://php.net/set_exception_handler
http://php.net/error_reporting
http://php.net/debug_backtrace
http://php.net/idate
http://php.net/date_sunrise
http://php.net/time
http://php.net/gmstrftime
http://php.net/date_sun_info

Mathematical Functions
abs deg2rad min

acos exp mt_getrandmax

acosh expm1 mt_rand

asin floor mt_srand

asinh fmod octdec

atan getrandmax pi

atan2 hexdec pow

atanh hypot rad2deg

base_convert is_finite rand

bindec is_infinite round

ceil is_nan sin

cos lcg_value sinh

cosh log sqrt

decbin log10 srand

dechex log1p tan

decoct max tanh

Multi-byte String Functions
mb_convert_encoding mb_split mb_strrpos

mb_decode_mimeheader mb_stripos mb_strstr

mb_encode_mimeheader mb_stristr mb_strtolower

mb_ereg mb_strlen mb_strtoupper

mb_ereg_replace mb_strpos mb_substitute_character

mb_internal_encoding mb_strrchr mb_substr

mb_regex_encoding mb_strrichr mb_substr_count

mb_regex_set_options mb_strripos

Network Functions
closelog header setcookie

define_syslog_variables headers_list setrawcookie

fsockopen headers_sent socket_get_status

gethostbyaddr ip2long socket_set_blocking

gethostbyname long2ip socket_set_timeout

gethostbynamel pfsockopen syslog

Output Control Functions
flush ob_get_clean ob_get_status

ob_clean ob_get_contents ob_implicit_flush

CICS TS for z/OS: REST support in CICS using PHP 38

http://php.net/ob_implicit_flush
http://php.net/ob_get_contents
http://php.net/ob_clean
http://php.net/ob_get_status
http://php.net/ob_get_clean
http://php.net/flush
http://php.net/syslog
http://php.net/pfsockopen
http://php.net/gethostbynamel
http://php.net/socket_set_timeout
http://php.net/long2ip
http://php.net/gethostbyname
http://php.net/socket_set_blocking
http://php.net/ip2long
http://php.net/gethostbyaddr
http://php.net/socket_get_status
http://php.net/headers_sent
http://php.net/fsockopen
http://php.net/setrawcookie
http://php.net/headers_list
http://php.net/define_syslog_variables
http://php.net/setcookie
http://php.net/header
http://php.net/closelog
http://php.net/mb_strripos
http://php.net/mb_regex_set_options
http://php.net/mb_substr_count
http://php.net/mb_strrichr
http://php.net/mb_regex_encoding
http://php.net/mb_substr
http://php.net/mb_strrchr
http://php.net/mb_internal_encoding
http://php.net/mb_substitute_character
http://php.net/mb_strpos
http://php.net/mb_ereg_replace
http://php.net/mb_strtoupper
http://php.net/mb_strlen
http://php.net/mb_ereg
http://php.net/mb_strtolower
http://php.net/mb_stristr
http://php.net/mb_encode_mimeheader
http://php.net/mb_strstr
http://php.net/mb_stripos
http://php.net/mb_decode_mimeheader
http://php.net/mb_strrpos
http://php.net/mb_split
http://php.net/mb_convert_encoding
http://php.net/tanh
http://php.net/max
http://php.net/decoct
http://php.net/tan
http://php.net/log1p
http://php.net/dechex
http://php.net/srand
http://php.net/log10
http://php.net/decbin
http://php.net/sqrt
http://php.net/log
http://php.net/cosh
http://php.net/sinh
http://php.net/lcg_value
http://php.net/cos
http://php.net/sin
http://php.net/is_nan
http://php.net/ceil
http://php.net/round
http://php.net/is_infinite
http://php.net/bindec
http://php.net/rand
http://php.net/is_finite
http://php.net/base_convert
http://php.net/rad2deg
http://php.net/hypot
http://php.net/atanh
http://php.net/pow
http://php.net/hexdec
http://php.net/atan2
http://php.net/pi
http://php.net/getrandmax
http://php.net/atan
http://php.net/octdec
http://php.net/fmod
http://php.net/asinh
http://php.net/mt_srand
http://php.net/floor
http://php.net/asin
http://php.net/mt_rand
http://php.net/expm1
http://php.net/acosh
http://php.net/mt_getrandmax
http://php.net/exp
http://php.net/acos
http://php.net/min
http://php.net/deg2rad
http://php.net/abs

ob_end_clean ob_get_flush ob_list_handlers

ob_end_flush ob_get_length ob_start

ob_flush ob_get_level

JSON Functions
json_decode json_encode

PDO Functions (See also the PDO section of this document)

pdo::construct pdo::prepare pdostatement::closecursor

pdo::exec pdo::query pdostatement::execute

pdo::getattribute pdo::quote pdostatement::fetch

pdo::getavailabledrivers pdo::setattribute pdostatement::fetchall

pdo::lastinsertid pdostatement::bindvalue pdostatement::rowcount

Reflection Classes (not all methods are available on all classes)

ReflectionClass ReflectionProperty ReflectionParameter

ReflectionObject ReflectionMethod ReflectionFunction

SPL Classes
ArrayAccess BadFunctionCallException OutOfRangeException

ArrayIterator BadMethodCallException OverflowException

ArrayObject InvalidArgumentException RangeException

Countable LengthException RuntimeException

Iterator LengthException UnderflowException

Serializable LogicException UnexpectedValueException

Traversable OutOfBoundsException

String Functions
addcslashes nl_langinfo stripos

addslashes number_format stripslashes

bin2hex ord stristr

chop parse_str strlen

chr print strnatcasecmp

chunk_split printf strnatcmp

convert_cyr_string quoted_printable_decode strncasecmp

convert_uudecode quotemeta strncmp

convert_uuencode rtrim strpbrk

count_chars setlocale strpos

crc32 sha1 strrchr

CICS TS for z/OS: REST support in CICS using PHP 39

http://php.net/strrchr
http://php.net/sha1
http://php.net/crc32
http://php.net/strpos
http://php.net/setlocale
http://php.net/count_chars
http://php.net/strpbrk
http://php.net/rtrim
http://php.net/convert_uuencode
http://php.net/strncmp
http://php.net/quotemeta
http://php.net/convert_uudecode
http://php.net/strncasecmp
http://php.net/quoted_printable_decode
http://php.net/convert_cyr_string
http://php.net/strnatcmp
http://php.net/printf
http://php.net/chunk_split
http://php.net/strnatcasecmp
http://php.net/print
http://php.net/chr
http://php.net/strlen
http://php.net/parse_str
http://php.net/chop
http://php.net/stristr
http://php.net/ord
http://php.net/bin2hex
http://php.net/stripslashes
http://php.net/number_format
http://php.net/addslashes
http://php.net/stripos
http://php.net/nl_langinfo
http://php.net/addcslashes
http://www.php.net/~helly/php/ext/spl/
http://uk.php.net/oop5.reflection
http://uk.php.net/pdo
http://php.net/json_encode
http://php.net/json_decode
http://php.net/ob_get_level
http://php.net/ob_flush
http://php.net/ob_start
http://php.net/ob_get_length
http://php.net/ob_end_flush
http://php.net/ob_list_handlers
http://php.net/ob_get_flush
http://php.net/ob_end_clean

echo sha1_file strrev

explode similar_text strripos

fprintf soundex strrpos

get_html_translation_table sprintf strspn

hebrev sscanf strstr

hebrevc str_ireplace strtok

html_entity_decode str_pad strtolower

htmlentities str_repeat strtoupper

htmlspecialchars str_replace strtr

htmlspecialchars_decode str_rot13 substr

implode str_shuffle substr_compare

join str_split substr_count

levenshtein str_word_count substr_replace

localeconv strcasecmp trim

ltrim strchr ucfirst

md5 strcmp ucwords

md5_file strcoll vfprintf

metaphone strcspn vprintf

money_format strip_tags vsprintf

nl2br stripcslashes wordwrap

Variable Handling Functions
debug_zval_dump is_double is_string

doubleval is_float isset

empty is_int print_r

floatval is_integer serialize

get_defined_vars is_long settype

get_resource_type is_null strval

gettype is_numeric unserialize

intval is_object unset

is_array is_real var_dump

is_bool is_resource var_export

is_callable is_scalar

XML Parser Functions
xml_error_string xml_parser_set_option

xml_get_current_byte_index xml_set_character_data_handler

xml_get_current_column_number xml_set_default_handler

xml_get_current_line_number xml_set_element_handler

xml_get_error_code xml_set_end_namespace_decl_handler

CICS TS for z/OS: REST support in CICS using PHP 40

http://php.net/xml_set_end_namespace_decl_handler
http://php.net/xml_get_error_code
http://php.net/xml_set_element_handler
http://php.net/xml_get_current_line_number
http://php.net/xml_set_default_handler
http://php.net/xml_get_current_column_number
http://php.net/xml_set_character_data_handler
http://php.net/xml_get_current_byte_index
http://php.net/xml_parser_set_option
http://php.net/xml_error_string
http://php.net/is_scalar
http://php.net/is_callable
http://php.net/var_export
http://php.net/is_resource
http://php.net/is_bool
http://php.net/var_dump
http://php.net/is_real
http://php.net/is_array
http://php.net/unset
http://php.net/is_object
http://php.net/intval
http://php.net/unserialize
http://php.net/is_numeric
http://php.net/gettype
http://php.net/strval
http://php.net/is_null
http://php.net/get_resource_type
http://php.net/settype
http://php.net/is_long
http://php.net/get_defined_vars
http://php.net/serialize
http://php.net/is_integer
http://php.net/floatval
http://php.net/print_r
http://php.net/is_int
http://php.net/empty
http://php.net/isset
http://php.net/is_float
http://php.net/doubleval
http://php.net/is_string
http://php.net/is_double
http://php.net/debug_zval_dump
http://php.net/wordwrap
http://php.net/stripcslashes
http://php.net/nl2br
http://php.net/vsprintf
http://php.net/strip_tags
http://php.net/money_format
http://php.net/vprintf
http://php.net/strcspn
http://php.net/metaphone
http://php.net/vfprintf
http://php.net/strcoll
http://php.net/md5_file
http://php.net/ucwords
http://php.net/strcmp
http://php.net/md5
http://php.net/ucfirst
http://php.net/strchr
http://php.net/ltrim
http://php.net/trim
http://php.net/strcasecmp
http://php.net/localeconv
http://php.net/substr_replace
http://php.net/str_word_count
http://php.net/levenshtein
http://php.net/substr_count
http://php.net/str_split
http://php.net/join
http://php.net/substr_compare
http://php.net/str_shuffle
http://php.net/implode
http://php.net/substr
http://php.net/str_rot13
http://php.net/htmlspecialchars_decode
http://php.net/strtr
http://php.net/str_replace
http://php.net/htmlspecialchars
http://php.net/strtoupper
http://php.net/str_repeat
http://php.net/htmlentities
http://php.net/strtolower
http://php.net/str_pad
http://php.net/html_entity_decode
http://php.net/strtok
http://php.net/str_ireplace
http://php.net/hebrevc
http://php.net/strstr
http://php.net/sscanf
http://php.net/hebrev
http://php.net/strspn
http://php.net/sprintf
http://php.net/get_html_translation_table
http://php.net/strrpos
http://php.net/soundex
http://php.net/fprintf
http://php.net/strripos
http://php.net/similar_text
http://php.net/explode
http://php.net/strrev
http://php.net/sha1_file
http://php.net/echo

xml_parse xml_set_external_entity_ref_handler

xml_parse_into_struct xml_set_notation_decl_handler

xml_parser_create xml_set_object

xml_parser_create_ns xml_set_processing_instruction_handler

xml_parser_free xml_set_start_namespace_decl_handler

xml_parser_get_option xml_set_unparsed_entity_decl_handler

 13.2 php.ini Directives

A number of configuration directives are supported in the php.ini file which can be set to alter behaviour
when executing PHP scripts.

If a directive is in the list but is not supported, then you cannot change that directive in the php.ini file, and
only the default behaviour is provided.

Directive Explanation Supp
orted

Default
Value Differences

zend.ze1_compati
bility_mode

Enable compatibility mode with older versions of
PHP (PHP 4.x) No Off

short_open_tag

Allow the <? tag. Otherwise, only <?php and
<script> tags are recognized. NOTE: Using short
tags should be avoided when developing
applications or libraries that are meant for
redistribution, or deployment on PHP servers
which are not under your control, because short
tags may not be supported on the target server.
For portable, redistributable code, be sure not to
use short tags.

Yes Off

asp_tags Allow ASP-style <% %> tags. Yes Off
The number of significant digits displayed in
floating point numbers. Yes 14

y2k_compliance Enforce year 2000 compliance (will cause
problems with non-compliant browsers) No On

output_buffering

Output buffering allows you to send header lines
(including cookies) even after you send body
content, at the price of slowing PHP's output
layer a bit. You can enable output buffering
during runtime by calling the output buffering
functions. You can also enable output buffering
for all files by setting this directive to On. If you
wish to limit the size of the buffer to a certain size
- you can use a maximum number of bytes
instead of 'On', as a value for this directive (e.g.,
output_buffering=4096).

No Off

output_handler

You can redirect all of the output of your scripts
to a function. Setting any output handler
automatically turns on output buffering. Note:
People who wrote portable scripts should not
depend on this ini directive. Instead, explicitly set
the output handler using ob_start(). Using this ini
directive may cause problems unless you know
what script is doing.

No Off

implicit_flush Implicit flush tells PHP to tell the output layer to No Off

CICS TS for z/OS: REST support in CICS using PHP 41

http://php.net/xml_set_unparsed_entity_decl_handler
http://php.net/xml_parser_get_option
http://php.net/xml_set_start_namespace_decl_handler
http://php.net/xml_parser_free
http://php.net/xml_set_processing_instruction_handler
http://php.net/xml_parser_create_ns
http://php.net/xml_set_object
http://php.net/xml_parser_create
http://php.net/xml_set_notation_decl_handler
http://php.net/xml_parse_into_struct
http://php.net/xml_set_external_entity_ref_handler
http://php.net/xml_parse

Directive Explanation Supp
orted

Default
Value Differences

flush itself automatically after every output block.
This is equivalent to calling the PHP function
flush() after each and every call to print() or
echo() and each and every HTML block. Turning
this option on has serious performance
implications and is generally recommended for
debugging purposes only.

unserialize_callbac
k_func

The unserialize callback function will be called
(with the undefined class' s name as parameter),
if the unserializer finds an undefined class which
should be instantiated. A warning appears if the
specified function is not defined, or if the function
doesn't include/implement the missing class. So
only set this entry if you really want to implement
such a callback-function.

Yes

serialize_precision

When floats & doubles are serialized, store
serialize_precision significant digits after the
floating point. The default value ensures that
when floats are decoded with unserialize, the
data will remain the same.

Yes Off

allow_call_time_pa
ss_reference

Whether to enable the ability to force arguments
to be passed by reference at function call time.
This method is deprecated and is likely to be
unsupported in future versions of PHP. The
encouraged method of specifying which
arguments should be passed by reference is in
the function declaration. You're encouraged to try
and turn this option Off and make sure your
scripts work properly with it in order to ensure
they will work with future versions of the
language (you will receive a warning each time
you use this feature, and the argument will be
passed by value instead of by reference).

No Off
Call time pass by
reference is not
supported.

safe_mode Safe Mode No Off

safe_mode_gid
By default, Safe Mode does a UID compare
check when opening files. If you want to relax this
to a GID compare, then turn on safe_mode_gid.

No Off

safe_mode_includ
e_dir

When safe_mode is on, UID/GID checks are
bypassed when including files from this directory
and its subdirectories. (directory must also be in
include_path or full path must be used when
including)

No

safe_mode_exec_
dir

When safe_mode is on, only executables located
in the safe_mode_exec_dir will be allowed to be
executed via the exec family of functions.

No

safe_mode_allowe
d_env_vars

Setting certain environment variables may be a
potential security breach. This directive contains
a comma-delimited list of prefixes. In Safe Mode,
the user may only alter environment variables
whose names begin with the prefixes supplied
here. By default, users will only be able to set
environment variables that begin with PHP_ (e.g.
PHP_FOO=BAR). Note: If this directive is empty,
PHP will let the user modify ANY environment
variable!

No

putenv() is not
supported so no
environment
variables can be
changed.

safe_mode_protec This directive contains a comma-delimited list of No putenv() is not

CICS TS for z/OS: REST support in CICS using PHP 42

Directive Explanation Supp
orted

Default
Value Differences

ted_env_vars

environment variables that the end-user won't be
able to change using putenv(). These variables
will be protected even if
safe_mode_allowed_env_vars is set to allow to
change them.

supported so no
environment
variables can be
changed

open_basedir

open_basedir, if set, limits all file operations to
the defined directory and below. This directive
makes most sense if used in a per-directory or
per-virtualhost web server configuration file. This
directive is *NOT* affected by whether Safe
Mode is turned On or Off.

Yes

disable_functions

This directive allows you to disable certain
functions for security reasons. It receives a
comma-delimited list of function names. This
directive is *NOT* affected by whether Safe
Mode is turned On or Off.

No

disable_classes

This directive allows you to disable certain
classes for security reasons. It receives a
comma-delimited list of class names. This
directive is *NOT* affected by whether Safe
Mode is turned On or Off.

No

highlight.string
Colors for Syntax Highlighting mode. Anything
that's acceptable in <span
style="color: ???????"> would work.

Yes #DD0000

highlight.comment
Colors for Syntax Highlighting mode. Anything
that's acceptable in <span
style="color: ???????"> would work.

Yes #FF8800

highlight.keyword
Colors for Syntax Highlighting mode. Anything
that's acceptable in <span
style="color: ???????"> would work.

Yes #007700

highlight.bg
Colors for Syntax Highlighting mode. Anything
that's acceptable in <span
style="color: ???????"> would work.

Yes #FFFFFF

highlight.default
Colors for Syntax Highlighting mode. Anything
that's acceptable in <span
style="color: ???????"> would work.

Yes #0000BB

highlight.html
Colors for Syntax Highlighting mode. Anything
that's acceptable in <span
style="color: ???????"> would work.

Yes #000000

ignore_user_abort

If enabled, the request will be allowed to
complete even if the user aborts the request.
Consider enabling it if executing long request,
which may end up being interrupted by the user
or a browser timing out.

No On

expose_php

Decides whether PHP may expose the fact that it
is installed on the server (e.g. by adding its
signature to the Web server header). It is no
security threat in any way, but it makes it possible
to determine whether you use PHP on your
server or not.

No Off

max_execution_ti
me

Maximum execution time of each script, in
seconds Yes 30

max_input_nesting
_level

Maximum nesting of arrays created from
POST/GET data Yes 64

error_reporting error_reporting is a bit-field. “Or” up each number Yes

CICS TS for z/OS: REST support in CICS using PHP 43

Directive Explanation Supp
orted

Default
Value Differences

to get desired error reporting level.

• E_ALL - All errors and warnings (doesn't
include E_STRICT)

• E_ERROR - fatal run-time errors
E_RECOVERABLE_ERROR - almost
fatal run-time errors

• E_WARNING - run-time warnings (non-
fatal errors)

• E_PARSE - compile-time parse errors
• E_NOTICE - run-time notices (these are

warnings which often result from a bug in
your code, but it's possible that it was
intentional (e.g., using an uninitialized
variable and relying on the fact it's
automatically initialized to an empty
string)

• E_STRICT - run-time notices, enable to
have PHP suggest changes to your code
which will ensure the best interoperability
and forward compatibility of your code

• E_CORE_ERROR - fatal errors that
occur during PHP's initial startup

• E_CORE_WARNING - warnings (non-
fatal errors) that occur during PHP's
initial startup

• E_COMPILE_ERROR - fatal compile-
time errors

• E_COMPILE_WARNING - compile-time
warnings (non-fatal errors)

• E_USER_ERROR - user-generated error
message

• E_USER_WARNING - user-generated
warning message

• E_USER_NOTICE - user-generated
notice message

Examples:

Show all errors, except for notices and coding
standards warnings:
error_reporting = E_ALL & ~E_NOTICE

Show all errors, except for notices:
error_reporting = E_ALL & ~E_NOTICE |
E_STRICT

Show only errors:
error_reporting = E_COMPILE_ERROR|
E_RECOVERABLE_ERROR|E_ERROR|
E_CORE_ERROR

E_ALL &
~E_NOTI
CE &
~E_STRI
CT

display_errors Print out errors (as a part of the output). For
production web sites, you're strongly encouraged
to turn this feature off, and use error logging
instead (see below). Keeping display_errors
enabled on a production web site may reveal
security information to end users, such as file

Yes On Value of stderr is
not supported.

CICS TS for z/OS: REST support in CICS using PHP 44

Directive Explanation Supp
orted

Default
Value Differences

paths on your Web server, your database
schema or other information. possible values for
display_errors: Off - Do not display any errors
stderr - Display errors to STDERR (affects only
CGI/CLI binaries!)display_errors = "stderr" stdout
(On) - Display errors to STDOUT

display_startup_err
ors

Even when display_errors is on, errors that occur
during PHP's startup sequence are not displayed.
It's strongly recommended to keep
display_startup_errors off, except for when
debugging.

Yes Off

log_errors

Log errors into a log file (server-specific log,
stderr, or error_log) As stated above, you're
strongly advised to use error logging in place of
error displaying on production web sites.

Yes Off

log_errors_max_le
n

Set maximum length of log_errors. In error_log
information about the source is added. The
default is 1024 and 0 allows to not apply any
maximum length at all.

Yes 1024

ignore_repeated_e
rrors

Do not log repeated messages. Repeated errors
must occur in same file on same line until
ignore_repeated_source is set true.

Yes Off

ignore_repeated_s
ource

Ignore source of message when ignoring
repeated messages. When this setting is On you
will not log errors with repeated messages from
different files or source lines.

Yes Off

track_errors Store the last error/warning message in
$php_errormsg (boolean). Yes Off

html_errors
Disable the inclusion of HTML tags in error
messages. Note: Never use this feature for
production boxes.

Yes On

docref_root

If html_errors is set On PHP produces clickable
error messages that direct to a page describing
the error or function causing the error in detail.
You can download a copy of the PHP manual
from http://www.php.net/docs.php and change
docref_root to the base URL of your local copy
including the leading '/'. You must also specify
the file extension being used including the dot.
Note: Never use this feature for production
boxes.

Yes

docref_ext

If html_errors is set On PHP produces clickable
error messages that direct to a page describing
the error or function causing the error in detail.
You must specify the file extension being used
including the dot.

Yes

error_prepend_stri
ng String to output before an error message. Yes

error_append_strin
g String to output after an error message. Yes

error_log Log errors to specified file. Yes A value of syslog is
not supported.

arg_separator.outp
ut

The separator used in PHP generated URLs to
separate arguments. Yes &

arg_separator.inpu List of separator(s) used by PHP to parse input Yes &

CICS TS for z/OS: REST support in CICS using PHP 45

Directive Explanation Supp
orted

Default
Value Differences

t URLs into variables. NOTE: Every character in
this directive is considered as separator!

register_globals

Whether or not to register the EGPCS variables
as global variables. You may want to turn this off
if you don't want to clutter your scripts' global
scope with user data. This makes most sense
when coupled with track_vars - in which case you
can access all of the GPC variables through the
$HTTP_*_VARS[], variables. You should do your
best to write your scripts so that they do not
require register_globals to be on; Using form
variables as globals can easily lead to possible
security problems, if the code is not very well
thought of.

No Off

register_long_arra
ys

Whether or not to register the old-style input
arrays, HTTP_GET_VARS and friends. If you're
not using them, it's recommended to turn them
off, for performance reasons.

No Off

register_argc_argv

This directive tells PHP whether to declare the
argv&argc variables (that would contain the GET
information). If you don't use these variables, you
should turn it off for increased performance.

No Off

auto_globals_jit

When enabled, the SERVER and ENV variables
are created when they're first used (Just In Time)
instead of when the script starts. If these
variables are not used within a script, having this
directive on will result in a performance gain. The
PHP directives register_globals,
register_long_arrays, and register_argc_argv
must be disabled for this directive to have any
affect.

No On

include_path Path to search for include files LINIX:
"/path1:/path2" Windows: "\path1;\path2" Yes

user_dir The directory under which PHP opens the script
using /~username used only if nonempty. No

extension_dir

Directory in which the native loadable extensions
(modules) reside. The JVM variable
java.library.path is also searched for native
loadable extensions. Java loadable extensions
are found using the classpath and not this
directive.

Yes

Only used to find
native loadable
extensions (dll, so,
dylib) and not
extensions written
in Java. Native
loadable extensions
can also be in a
directory specified
on the
java.library.path.

enable_dl Whether or not to enable the dl() function. Yes On
file_uploads Whether to allow HTTP file uploads. No On

upload_tmp_dir Temporary directory for HTTP uploaded files (will
use system default if not specified). No

upload_max_filesiz
e Maximum allowed size for uploaded files. Yes 2M

extension Specifies extensions to be loaded on startup.

For extensions written in Java, use:

Yes

CICS TS for z/OS: REST support in CICS using PHP 46

Directive Explanation Supp
orted

Default
Value Differences

extension=package.java_class_name
For extensions written in C, use:
extension=extension_name
For example: extension=php_gd

The appropriate filesystem extension (.dll, .so)
will automatically be appended. Note that it
should be the name of the module only; no
directory information needs to go here. Specify
the location of the extension with the
extension_dir directive above.

unicode.script_enc
oding

Script encoding defines how the PHP file is
encoded. This must be correctly set in order for
string literals and PHP names, such as function,
variable and class names, to be correctly parsed
by the runtime.

Yes UTF-8

unicode.runtime_e
ncoding

Runtime encoding is used when a PHP string is
converted into a Java string. Internally, the
runtime preserves the ability to store binary data
in a PHP string, which is essential for full support
of the PHP 5 language.

Yes UTF-8
Must match
LOCALCCSID, with
“IBM-” prefix.

date.timezone Defines the default timezone used by the date
functions Yes

date.default_longit
ude Yes

date.default_latitud
e Yes 31.77

date.sunset_zenith Yes
date.sunrise_zenit
h Yes 90.58

iconv.output_enco
ding Default output encoding for iconv. No iconv not available

on CICS.
iconv.input_encodi
ng Default input encoding for iconv. No iconv not available

on CICS.
iconv.internal_enc
oding Default internal encoding for iconv. no iconv not available

on CICS.
pcre.backtrack_lim
it PCRE library backtracking limit. Yes

pcre.recursion_limi
t

PCRE library recursion limit. Please note that if
you set this value to a high number you may
consume all the available process stack and
eventually crash PHP (due to reaching the stack
size limit imposed by the Operating System).

Yes

mysql.allow_persis
tent Allow or prevent persistent links. No

The MySQL
extension is not
supported on CICS.

mysql.max_persist
ent

Maximum number of persistent links. -1 means
no limit. No

mysql.max_links Maximum number of links (persistent + non-
persistent). -1 means no limit. No

mysql.default_port

Default port number for mysql_connect(). If
unset, mysql_connect() will use the
$MYSQL_TCP_PORT or the mysql-tcp entry in /
etc/services or the compile-time value defined

No

CICS TS for z/OS: REST support in CICS using PHP 47

Directive Explanation Supp
orted

Default
Value Differences

MYSQL_PORT (in that order). Win32 will only
look at MYSQL_PORT.

mysql.default_sock
et

Default socket name for local MySQL connects. If
empty, uses the built-in MySQL defaults. No

mysql.default_host Default host for mysql_connect() (doesn't apply in
safe mode). No

mysql.default_user Default user for mysql_connect() (doesn't apply in
safe mode). No

mysql.default_pas
sword

Default password for mysql_connect() (doesn't
apply in safe mode). Note that this is generally a
bad idea to store passwords in this file. *Any*
user with PHP access can run 'echo
get_cfg_var("mysql.default_password") and
reveal this password! And of course, any users
with read access to this file will be able to reveal
the password as well.

No

mysql.connect_tim
eout

Maximum time (in seconds) for connect timeout. -
1 means no limit No

mysql.trace_mode
Trace mode. When trace_mode is active (=On),
warnings for table/index scans and SQL-Errors
will be displayed.

No

session.* Sessions are not supported on CICS. No

mbstring.internal_e
ncoding

internal/script encoding. Some encoding cannot
work as internal encoding. (e.g. SJIS, BIG5, ISO-
2022-*)

Yes

gd.jpeg_ignore_wa
rning

Tell the jpeg decode to libjpeg warnings and try
to create a gd image. The warning will then be
displayed as notices disabled by default.

No GD not available on
CICS

optimization_level

This sets the level of optimization performed on
the PHP code when it is compiled for execution.
The default value provides the best performance
while, at the same time, being safe for all
applications. It may be set to "int" to force
interpreted execution which performs more
slowly.

Yes

code_cache

Enables the use of an in memory cache of
compiled PHP code. This eliminates the parsing
and compilation step for the second and
subsequent run of a PHP file. It provides a
performance improvement for repeatedly
executed files. Additional heap space is required
to hold this cache. The space required is
dependant on the number and complexity of files
that it holds.

Yes On

code_cache_limit

Sets a limit on the number of files that will be held
in the code cache. When this limit is reached
entries are removed on a least recently used
basis in order to accommodate new entries.

Yes 400

persistent_code_c
ache

Enables the use of a filesystem store of compiled
PHP code, this is an extension of the memory
based code cache, however it is not limited in
size and persists between JVM restarts.

Yes Off

persistent_code_c
ache_dir

Specifies the directory in which the persistent
code cache is written. Yes .

CICS TS for z/OS: REST support in CICS using PHP 48

 13.3 Superglobals

Magic Quotes
The magic_quotes_gpc setting is not supported in the CICS environment. Instead, GET/POST/COOKIE
data should be explicitly sanitized in the application code.

Supported Superglobals
The following superglobals are available to PHP scripts running in the CICS environment:

• $GLOBALS
• $_ENV
• $_GET : See note on Magic Quotes above.
• $_POST : See note on Magic Quotes above.
• $_COOKIE : See note on Magic Quotes above.
• $_REQUEST
• $_SERVER : Contains information about the server and the request. The following elements are

supported:
• SERVER_ADDR
• SERVER_NAME
• SERVER_SOFTWARE
• SERVER_PROTOCOL
• SERVER_PORT
• REQUEST_METHOD
• REQUEST_TIME
• REQUEST_BODY_CHARSET – this is specific to CICS. Contains the encoding of the raw

PUT or POST data as defined in the request. If the encoding is not specified in the request,
defaults to "ISO-8859-1" as per rfc2616 section 3.7.1.

• SAPI_VERSION – this is specific to CICS. Contains the CA1S version string.
• CONTENT_TYPE
• CONTENT_LENGTH
• HTTP_ACCEPT
• HTTP_ACCEPT_CHARSET
• HTTP_ACCEPT_ENCODING
• HTTP_ACCEPT_LANGUAGE
• HTTP_CONNECTION
• HTTP_HOST
• HTTP_USER_AGENT
• HTTP_REFERER
• HTTPS
• REMOTE_ADDR
• REMOTE_HOST
• QUERY_STRING
• DOCUMENT_ROOT
• SCRIPT_FILENAME
• SCRIPT_NAME
• PHP_SELF
• REQUEST_URI
• argv
• argc

Note that the $_SESSION superglobal and the related session functions are not supported.

CICS TS for z/OS: REST support in CICS using PHP 49

http://uk.php.net/manual/en/ref.session.php
http://uk.php.net/manual/en/reserved.variables.session.php
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.7.1
http://php.net/manual/en/reserved.variables.server.php
http://php.net/manual/en/reserved.variables.request.php
http://php.net/manual/en/reserved.variables.cookies.php
http://php.net/manual/en/reserved.variables.post.php
http://php.net/manual/en/reserved.variables.get.php
http://php.net/manual/en/reserved.variables.environment.php
http://php.net/manual/en/reserved.variables.globals.php
http://php.net/manual/en/language.variables.superglobals.php
http://uk2.php.net/manual/en/info.configuration.php#ini.magic-quotes-gpc

 13.4 General Differences in Behaviour

There are some differences between the behaviour of the PHP language support provided in this
SupportPac and the behaviour of running a PHP script on the runtime available from http://php.net.

Description Behaviour in php.net Behaviour in CICS Notes
Notice on array to
string conversion

Behaviour is inconsistent
(5.2.1). Always outputs notice.

Modifying array
during foreach loop
while using
&$value syntax

Behaviour is inconsistent
(5.2.1).

Changes to array always reflect
upon $value.

Expansion of
complex variables
inside strings

$a[0] expands to the
value of $a[0], but
$a[0][0] expands to
Array[0].

Expands to the value of the
variable in both cases.

Parsing invalid
UTF-8 strings
htmlentities("
Le CafÎ˜<
CafÎ˜ <");.

Ignores just the first xE9
character (e acute in
cp1252).

Both xE9 character are ignored.

var_dump of array
containing a
reference to a
value, where there
are no longer any
other references to
that value.

array(1) {
 [0]=>
 &int(123456789)
}

(note the ampersand)

array(1) {
 [0]=>
 int(123456789)
}

This is a trivial example
of a consequence of a
garbage-collection
model over reference
counting. Reference
counting here allows
php.net to demote a
reference to a value
when its reference count
falls to one, whereas in
the runtime for PHP in
this SupportPac, there is
no way of knowing that
there is only one
reference to the value.
This also affects
backtrace dumps from
Exception objects.

Difference in object
handle in output of
var_dump.

object(stdClass)#1
(1) {
 ["a"]=>
 int(0)
}

object(stdClass)#2 (1)
{
 ["a"]=>
 int(0)
}

Each object has a
handle/ID which is
exposed by
var_dump($object)
after the # sign. In the
runtime for PHP in this
SupportPac, we cannot
guarantee to use the
same ID as php.net,
where this ID is derived
from the way the object
is allocated in memory.

Using
__FUNCTION__
within an include
within a function
declaration.

__FUNCTION__
evaluates to "" (5.2.1).

__FUNCTION__ evaluates to
the name of the declaring
function.

php.net's behaviour
contradicts the manual
entry for include:
If the include occurs

CICS TS for z/OS: REST support in CICS using PHP 50

Description Behaviour in php.net Behaviour in CICS Notes
inside a function within
the calling file, then all
of the code contained in
the called file will
behave as though it had
been defined inside that
function.

Superglobals,
ampersands,
var_dump and
$GLOBALS.

Superglobals are not
preceded by & in
$GLOBALS (they are not
shown as references)
(5.2.1).

Superglobals are preceded by &
in $GLOBALS (they are shown
as references)

The runtime for PHP in
this SupportPac handles
superglobals by injecting
references to them at all
scopes, including global
scope. Therefore,
superglobals are shown
as references in
$GLOBALS.

Strict warnings
when implicitly
initialising objects.

$obj->b=1; emits a
strict warning but $obj-
>b[0]=1; does not
(5.2.3).

Both $obj->b=1; and $obj-
>b[0]=1; emit a strict warning.

$obj->b=X and $obj-
>b[0]=X both implicitly
initialise $obj to an
instance of stdClass,
but in php.net only the
first emits the warning:
Strict Standards:
Creating default
object from empty
value.

Reference counts
off by one.

$a=array(1);
Reference count of
element will be one.

The reference count will be two.

This happens because a
variable is created in the
data section of the script
and has an initial
reference count of one.
When this is assigned
into an array, the
reference count is
incremented to two.

Size of integers.
32 bit integers on 32 bit
platforms. 64 bit integers
on 64 bit platforms.

32 bit integers on all platforms.

The runtime for
PHP in this
SupportPac does
not support short
tags and <script>
tags.

Passing temporary
value by reference
to extension
functions.

In php.net, attempting to
pass a temporary value
by reference to either a
userspace or extension
function causes a fatal
error before execution of
the script begins.

Consistent with this behaviour
for userspace functions, but for
extension functions the fatal
error is not raised until the
function call is reached.

Parse error
messages will
include language
construct not token

Parse error: syntax
error, unexpected
T_FOR in <testcase
path> on line 3

Parse error: syntax
error, unexpected 'for'
in <testcase path> on
line 3

CICS TS for z/OS: REST support in CICS using PHP 51

Description Behaviour in php.net Behaviour in CICS Notes
names.

property_exist
s behaviour.

php.net 5.2 tries to
respect visibility of
properties and has bugs.
php.net 5.3 ignores scope
and visibility.

Matches php.net 5.3 behaviour
and matches logic for
method_exists function.

CICS TS for z/OS: REST support in CICS using PHP 52

 14. Version History

SupportPac CA1S v1.1

• Removed dependency on z/OS v1.9 to allow compatibility with z/OS v1.8.
• Performance enhancement to json_encode() and json_decode() which reduces IO operations during

code-page conversions within those functions.
• Fix to ensure line endings are encoded correctly in responses which include a content-type header

starting with "application/" and a charset parameter suffix.
• Several minor improvements and corrections to the documentation.

SupportPac CA1S v1.0

• Initial release

CICS TS for z/OS: REST support in CICS using PHP 53

 15. Legal Notices
The provisions set out in the following two paragraphs do not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore this statement may not apply to you.

Information contained and techniques described in this publication have not been submitted to any formal
IBM test and are distributed on an ″AS IS″ basis.

The use or implementation of any information contained and/or of any technique described in this document
is the user’s responsibility and depends on the user’s ability to evaluate and integrate the information and/or
technique into the user’s operational environment. While IBM has reviewed each item for accuracy in a
specific situation, IBM offers no guarantee or warranty that the same or similar results will be obtained
elsewhere. Users attempting to adapt any technique described in this document to their own environments
do so at their own risk.

The information contained in this publication could include technical inaccuracies or typographical errors.

Changes are periodically made to the information contained herein; these changes will be incorporated in
new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any reference in this publication to an IBM licensed program or another IBM product is not intended to state
or imply that only IBM’s program or other product may be used. Any functionally equivalent program that
does not infringe applicable intellectual property rights may be used instead of the referenced IBM licensed
program or other IBM product.

The user is responsible for evaluating and verifying the operation of the material supplied in conjunction with
this publication in conjunction with other products, except those expressly designated by IBM.

International Business Machines Corporation may have patents or pending patent applications covering
subject-matter described in this document. The furnishing of this document does not give you any license to
any such patent. You can send license inquiries, in writing, to:

The IBM Director of Licensing
International Business Machines Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Within this document, in Section 13.2 "php.ini Directives", the text in the "Explanation" column incorporates
material from the PHP documentation provided at http://www.php.net/manual.
The PHP documentation is covered by the Creative Commons Attribution 3.0 license (full text at
http://creativecommons.org/licenses/by/3.0/legalcode), copyright © the PHP Documentation Group.

 15.1 Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States, or
other countries, or both:

• CICS®
• DB2®

CICS TS for z/OS: REST support in CICS using PHP 54

http://creativecommons.org/licenses/by/3.0/legalcode
http://www.php.net/manual

• IBM®
• IBM (logo)®
• MQSeries®
• RACF®
• WebSphere®
• z/OS®

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks
of Adobe Systems Incorporated in the United States, and/or other countries.

‘Eclipse’, ‘Built on Eclipse’ and ‘Eclipse Ready’, ‘BIRT’, ‘Higgins’ are trademarks of Eclipse Foundation, Inc.

'Firefox' and the Firefox logo are a registered trademarks of the Mozilla Foundation.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel
SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries. Intel Trademark Information

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries. Other company,
product, and service names may be trademarks or service marks of others.

CICS TS for z/OS: REST support in CICS using PHP 55

	 1. Introduction
	 1.1 What this book is about
	 1.2 What you need to know to understand this book
	 1.3 Introduction to PHP on CICS
	 1.4 Introduction to REST

	 2. Installation and Configuration
	 2.1 Getting Started with PHP in CICS
	 2.2 Prerequisites
	 2.3 Setting up the SupportPac Files
	 2.4 Pipeline Configuration
	 2.5 Pipeline Configuration Examples

	 3. Accessing Request Information with zget() and zlist()
	 3.1 Overview
	 3.2 Limitations and Differences Compared to IBM WebSphere sMash

	 4. RESTful Events and Event Handlers
	 4.1 RESTful Events
	 4.2 Event Handler Methods

	 5. An Example RESTful Service
	 5.1 Overview
	 5.2 How to Use the Example Service

	 6. Calling CICS Programs from PHP
	 6.1 Using the CICS Extension to Call a CICS Program
	 6.2 Representing Commarea Data Structures in PHP
	 6.3 API Documentation
	 6.4 Sample Application

	 7. Accessing DB2® Databases from PHP
	 7.1 Getting Started
	 7.2 Supported Functions

	 8. Managing Units of Work
	 8.1 Explicitly Committing and Rolling Back Units of Work from PHP
	 8.2 Implicit Commits and Rollbacks

	 9. Encoding Considerations
	 9.1 PHP Script File Encoding and php.ini Directives
	 9.2 Transferring PHP Scripts over FTP
	 9.3 Sort Order Differences
	 9.4 Characters versus Code Points
	 9.5 Newline (″\n″)
	 9.6 Non-contiguous Character Ranges
	 9.7 Hash Function
	 9.8 JSON Functions
	 9.9 XML Parser Functions
	 9.10 POSIX functions
	 9.11 Network Functions
	 9.12 File System Functions and Streams
	 9.13 System Functions

	 10. Debugging PHP Scripts
	 10.1 Logging Script Activity to File
	 10.2 Debugging with Eclipse™ PDT

	 11. Troubleshooting
	 11.1 SupportPac User Forum
	 11.2 Standard Out and Standard Error
	 11.3 Abend Codes
	 11.4 Collecting PHP Engine Internal Trace Data

	 12. Known Issues and Limitations
	 13. PHP Language Support Reference
	 13.1 Core Functions
	 13.2 php.ini Directives
	 13.3 Superglobals
	 13.4 General Differences in Behaviour

	 14. Version History
	 15. Legal Notices
	 15.1 Trademarks

