
CICS VSAM Transparency for z/OS
Version 2 Release 1

Data Reengineering and Customization
Guide

SC34-7250-01

���

CICS VSAM Transparency for z/OS
Version 2 Release 1

Data Reengineering and Customization
Guide

SC34-7250-01

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 95.

This edition applies to Version 2 Release 1 of the CICS VSAM Transparency for z/OS, program number 5655-Y01,
and to all subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using
the correct edition for the level of the product.

© Copyright IBM Corporation 2004, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface v
Who should use this manual? v
Who this book is for. v
Abstract v
Other product publications vi
Notes on terminology vi
Conventions used in this book vi

Chapter 1. Introduction to CICS VT . . . 1
Why reengineer your data? 1

Chapter 2. Mapping a VSAM file to CICS
VT 3
Automated mapping facility 3
Manual mapping facility 3
Choosing the appropriate mapping method 3
Simplifying automated mapping by copybook editing 4

Chapter 3. Field level data reengineering
by mapping 5
How to enable automatic reengineering 5

Specifying the VSAM field type 5
Mapping fields to columns 6
No data reengineering 6
Data reengineering 7
Date and time fields 7

Built-in conversion routines 9

Chapter 4. Overview of CICS VT exits 11
FBEs and IRDs – differences and similarities . . . 11

Data migration considerations 12
Establishing when exits are required 12

Copybook analysis 12
Data analysis 13
Data conversion errors during initial data
migration 13
Runtime data conversion errors. 13

Mapping an FBE 14
Mapping an IRD 15
What do I code first? 15

Chapter 5. Coding FBEs for field level
reengineering 17
Converting between Julian and Gregorian date
formats 17
Using a nullable column in DB2 19
Reformatting a date field 20
General notes for FBEs 22

Mixing exit languages 22
Coding PL/I exits 22
Exits that include SQL 22
Calling other CICS VT routines 23
Processing errors in an FBE 23

Successful completion and continue processing
the call 24
Successful completion and the call is complete . 24
Unsuccessful completion and return control to
application 25
Unsuccessful completion and abnormally
terminate 26
User generated error messages 26
Processing DATE columns in CICS VT exits . . 26
Working with variable length data. 26
Terminating an LE/370 enclave. 26
Passing data between exits 27
Performance implications of FBEs 27
IOAREA building in CICS VT 27
Handling multiple fields in an FBE 27
FBE for a key or IBM AIX field 27

Other potential uses for FBEs 28
Assembler exit coding rules 29

Register usage in assembler 29

Chapter 6. FBE for managing a control
record 31
Definition of solution 31

Field level reengineering 33
Notes for CTLRECF 33

Error processing 34
COBOL code 34

Chapter 7. Record level reengineering 41
Relationship between an IRD and an FBE 41
DB2 table design 41

DB2 primary table 42
DB2 secondary tables 42

Recommended approach 43
Multiple record type solution 43

Mapping for APPLCTL 43
Mapping for IRD exit 44

MULTIRD exit 44
WORKING STORAGE SECTION 44
LINKAGE SECTION 45
Main logic 45
Test for the call type being processed 45
Error handling 46
Build a load record 46
General notes for MULTIRD 46
Running VIDLOAD 47
Loading the DB2 data 47
Loading large tables 47

MULTFBE exit 48
WORKING STORAGE SECTION 48
LINKAGE SECTION 48
Main Logic 49
Error handling 49
General notes for MULTFBE 49

Testing exits like MULTIRD and MULTFBE. . . . 50

© Copyright IBM Corp. 2004, 2014 iii

Handling repeating groups 51
Implementing a normalized DB2 design 51
MULTIRD variations 52
MULTFBE variations 53

Exit work area 54
Other IRD considerations 54

IRDTYPE parameter 54
Generating records for multiple secondary table
records 55
Handling nullable columns in an IRD 56

Chapter 8. Exit parameter lists 57
Accessing exit parameters 57
FBE parameter list 57

Description and usage of FBE parameters . . . 58
IRD parameter list 62

Description and usage of IRD parameters . . . 63
IRD parameters for data migration 64

Chapter 9. Generic assembler FBEs . . 67
PACKC2F 67
PACKDEC. 68
NULLCOL 68
NULLCOLS 69
BIT2CHAR 71
JULGREG 71

Chapter 10. Built-in conversion
routines 73
Calling a VT conversion routine in COBOL. . . . 73

Sample COBOL working storage variables . . . 73
Using conversion routines 74
Converting from VSAM to DB2. 74
Converting from DB2 to VSAM. 75

Chapter 11. Supplementary information 77
CICS VT transactions 77
CICS VT utilities and samples 77
JCL to compile COBOL exit 78
Copybook and DDL for APPLCTL. 79

Chapter 12. Glossary 83

Appendix A. JCL to compile COBOL
exit 87

Appendix B. Copybook and DDL for
APPLCTL 89

Accessibility 93

Notices 95
Trademarks 96

iv CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

Preface

This book explains how to exploit the capabilities of IBM® CICS® VSAM
Transparency reengineering to maximize the value of your data in IBM DB2®.

To gain the maximum benefit from this manual, you must be familiar with all
aspects of CICS VT, especially manual and automated mapping. You must
understand the the built-in data reengineering capabilities provided by the
product.

If you intend to write your own CICS VT exits, you should be aware that exits add
additional processing overhead.

Who should use this manual?
This manual is aimed at IBM z/OS® application programmers and DB2 database
administrators.

Who this book is for
You must have practical experience of CICS VT manual and automated mapping
to use this book effectively. The book also assumes a reasonable knowledge of
application programming, ideally in COBOL, as well as DB2 programming
experience.

Abstract
This book explains various ways that VSAM can be reengineered in DB2 using
CICS VT. It is organized into the following chapters:
v Chapter 2, “Mapping a VSAM file to CICS VT,” on page 3 briefly explains the

mapping process and highlights the main differences between the manual and
automated mapping methods.

v Chapter 3, “Field level data reengineering by mapping,” on page 5 explains how
you use the mapping process to exploit the built-in data reengineering
capabilities of CICS VT.

v Chapter 4, “Overview of CICS VT exits,” on page 11 discusses how you identify
the need for exits, their architecture, and the parameter lists that drive the user
exit logic.

v Chapter 5, “Coding FBEs for field level reengineering,” on page 17 provides a
number of typical reengineering challenges and looks at actual working exit
code.

v Chapter 6, “FBE for managing a control record,” on page 31 details how to code
an exit to deal with this common situation in VSAM.

v Chapter 7, “Record level reengineering,” on page 41 examines what you need to
do to manage the migration of a single file to multiple DB2 tables

v Chapter 8, “Exit parameter lists,” on page 57 details the parameters that are
passed to exits and how they are typically used.

v Chapter 9, “Generic assembler FBEs,” on page 67 describes a number of sample
exits available to download.

© Copyright IBM Corp. 2004, 2014 v

v Chapter 10, “Built-in conversion routines,” on page 73 describes the built-in data
conversion capabilities in CICS VT.

Other product publications
The CICS VT documentation includes one other book:

CICS VT User's Guide.

To use CICS VT effectively requires knowledge and experience of DB2 and CICS,
and the following IBM books contain information that the CICS VT user will find
helpful.

DB2 SQL Reference
DB2 Utility Reference
CICS System Definition Guide
CICS DB2 Guide
CICS Performance Guide

It is assumed that whoever is responsible for writing and testing CICS VT user
exits has the appropriate knowledge and experience in the chosen programming
language. The samples in this manual are written in COBOL.

Notes on terminology
In this book, the term CICS, used without any qualification, refers to the CICS
element of IBM CICS Transaction Server for IBM z/OS. The term DB2 refers to
DB2 UDB for z/OS and IBM OS/390®.

Conventions used in this book
The following conventions are used throughout this book:

Bold text is used for:
Emphasis of key parameters

Italic text is used for:
Variable names
Monospace text is used for:
JCL statements
SYSIN control cards
DB2 SQL
Code or syntax examples

vi CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

Chapter 1. Introduction to CICS VT

Using CICS VT, you can migrate KSDS and RRDS data sets to DB2 without having
to rewrite your application programs. You preserve your investment in existing
VSAM-based applications, but open up the data to new uses using regular DB2
SQL calls.

A key element of CICS VT is the ability to reengineer data, enhancing its value to
your business. Reengineering can be at a field or record level. An example of field
level reengineering is converting a numeric date field in a VSAM file to a DATE
column in DB2, automatically adding a century where appropriate. An example of
record level reengineering is where your VSAM data set contains multiple record
types, each with an entirely different record structure. With CICS VT, you can
separate each record structure into a different DB2 table.

Field level reengineering can occur automatically as a result of the mapping
process. More complex reengineering and data verification require user exit
programs that are called by CICS VT at run time. User exits can be written in
assembler or any LE/370 language.

The objective of this manual is to help you understand the reengineering facilities
that are available in CICS VT, and the circumstances in which you use them. A
number of typical reengineering scenarios are included, and sample exits are
provided.

A thorough understanding of CICS VT is a prerequisite to reading this manual.
You should read it with the CICS VT User's Guide.

Why reengineer your data?
Generally, data reengineering achieves a very simple objective: it enhances the
value of the data in DB2 and therefore its value to your business. In some ways it
is analogous to the data transformation that often occurs when you extract data
from your operational databases into a data warehouse.

Prior to migrating a VSAM file, you should consider how you plan to use the data
in DB2 in order to determine the required level of reengineering. For simple files,
you may be able to achieve your required level of data reengineering using the
facilities built into to CICS VT. These are activated as a result of the mapping
process. For other files, you may have to write user exits.

You should also consider the effort that you are prepared to invest in the
conversion. If you want to convert as quickly as possible to improve online
availability, and you are not concerned about the initial DB2 design, the automated
migration facility should meet your needs. This facility provides a degree of
user-driven field level reengineering, but does not support record-level
reengineering. When DB2 design is important, a combination of the manual
mapping method and user exits will be required in many cases.

You can potentially migrate a data set more than once. Initially, you might decide
to migrate with minimal or no reengineering, then at some stage in the future
migrate it again with more complex reengineering. This can often happen with
some of the files that you migrate early in your migration project. As you gain

© Copyright IBM Corp. 2004, 2014 1

more experience and knowledge of CICS VT, you realize that data sets you
migrated previously could provide more business benefit if more reengineering
occurs. CICS VT lets you migrate to a new DB2 design at any time.

Reengineering is not just for improving the value of your data. You can use it for
data validation, and potentially eliminate data exceptions that you might be
experiencing currently with your VSAM application files.

2 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

Chapter 2. Mapping a VSAM file to CICS VT

The process of mapping establishes the relationship between the record structure in
a VSAM file and the definition of the table in DB2.

CICS VT provides an automated mapping facility and a manual mapping facility.
Both use ISPF dialogs and are explained in detail in the CICS VT User's Guide.

Automated mapping facility
There are three steps in the automated mapping facility.

Step 1 Is a batch job or ISPF option that analyzes the VSAM cluster for the file to
be migrated. Information such as the record length, key length and
position, alternate indexes, and number of records are extracted into the
CICS VT mapping tables.

Step 2 Uses ISPF dialogs to analyze the copybook for the file and relate it to the
VSAM record on a field by field basis. Column names are generated from
copybook field names. You can change column names and attributes in the
ISPF dialogs.

Step 3 Generates the mapping data for the base cluster and each alternate index,
and produces the DDL to create the appropriate DB2 tablespace, table and
index objects. The runtime drivers (DIM and DDM) are generated in this
step.

There are commands to enable you to suspend and resume mapping, and to save
the DDL for processing at a later stage if required.

Manual mapping facility
The manual mapping method has four steps.

Step 1 Is a manual analysis of the copybook to determine the DB2 design to be
implemented.

Step 2 Is the manual creation of the DB2 DDL to create the tablespace, table, and
primary index.

Step 3 Requires that each copybook field position and attribute is associated with
the appropriate DB2 column.

Step 4 Generates the runtime driver modules.

Each alternate index path must be mapped using the alternate index manual
mapping utility.

Choosing the appropriate mapping method
You may have to use a combination of the automated and manual mapping
methods. For example, assume that you have a VSAM file containing a single
record type that you want to convert to a single DB2 table.

Typically, you will use the automated mapping method in this case. During the
initial data migration phase, you discover that one or more fields in VSAM file

© Copyright IBM Corp. 2004, 2014 3

contain inconsistent data values that are causing data exception conditions. You
decide to write an FBE to identify and correct the inconsistent values. You use the
manual mapping method to update the mapping and specify the FBE. Any time
you make a change to mapping information, you must generate the driver
modules for the file to enable the changes to take effect. You use the manual
mapping method to generate the driver modules.

The automated mapping facility does not provide the capability to view the
mapping. Always use the manual mapping method to view or change mapping.

Use the manual mapping method in all cases where you are migrating a VSAM
file to multiple DB2 tables.

Simplifying automated mapping by copybook editing
When you use the automated mapping facility, there are cases where you can
reduce or avoid additional manual mapping by creating a version of the file
copybook specifically for VT mapping.

To illustrate this, consider the following extract from a COBOL copybook:
09 OM-HEADDATE.

11 OM-HEADDATE-CC PIC XX.
11 OM-HEADDATE-YY PIC XX.
11 OM-HEADDATE-MM PIC XX.
11 OM-HEADDATE-DD PIC XX.

The automated mapping facility will generate four 2-byte columns for this field. If
you want to map the field to OM-HEADDATE a single DATE column, you will have to
delete the four mapping entries, insert a single 8-byte field, and map it to the
appropriate DB2 column. You can eliminate part of this by updating the copybook
to a single 8-byte field.

4 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

Chapter 3. Field level data reengineering by mapping

Most field level data reengineering is achieved by mapping. To illustrate this, look
at the mapping for the sample VSAM data set provided with CICS VT, called
VIDKSDS.

This is shown in Figure 1.

The data in the fields highlighted in Figure 1 is automatically reengineered due to
the combination of the field attribute and the DB2 column data type.
v The field called VIDF005 is defined in the copybook as zoned decimal. It maps

to column ITEM_REORDER_NO, which is a decimal column in DB2. CICS VT
automatically transforms the data.

v The field called VIDF007 is defined in the copybook as packed decimal and
contains a date. It maps to column ITEM_DATE_FSHIP, which is a DB2 DATE
column. CICS VT automatically transforms the data based on the date field
layout in the copybook, which is specified in the mapping.

The combination of copybook field type and the column type determines when
data transformation occurs.

How to enable automatic reengineering
CICS VT uses built-in conversion routines to perform automatic reengineering. The
specific routine used is based on the combination of the field type and the DB2
column data type.

The full set of built-in routines available in CICS VT is described in Chapter 10,
“Built-in conversion routines,” on page 73.

Specifying the VSAM field type
The names of the fields shown in Figure 1 (VIDKEY, VIDF001, VIDF002, and so
on) are generated by the automated mapping facility. The manual mapping facility

------------------- CICS VT: List of fields for VIDKSDS Row 1 to 10 of 10
Command ===> __ Scroll ===> CSR

VSAM file type : KSDS Creator : CIRDL +
Data set length: 00080 Table name: VID_ITEM +

Actions: S Display, U Update, I Insert, D Delete

A Field Bytes Start Type DB2 column name Exit Pic Par
- -------- ----- ----- ---- ------------------------------ -------- --- ---
_ VIDKEY 00006 00001 C ITEM_NUMBER +
_ VIDF001 00012 00007 C ITEM_NAME +
_ VIDF002 00006 00019 C ITEM_COLOUR +
_ VIDF003 00004 00025 C ITEM_WEIGHT +
_ VIDF004 00004 00029 P ITEM_COST +
_ VIDF005 00003 00033 C ITEM_REORDER_NO +
_ VIDF006 00003 00036 C ITEM_SUPP_CODE +
_ VIDF007 00005 00039 P ITEM_DATE_FSHIP + Y
_ VIDF008 00002 00044 C ITEM_SHELF_LIFE +
_ VIDF009 00035 00046 C ITEM_DESCRIPTION +
******************************* Bottom of data ********************************

Figure 1. CICS VT sample VSAM file mapping

© Copyright IBM Corp. 2004, 2014 5

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

generates field names with the prefix VIDM. VT requires that field names are
unique within each file and are limited to a maximum of 8 characters.

Each field corresponds to a DB2 column. In manual mapping, you specify the field
type that corresponds to the field attribute. For example, a zoned decimal field has
a field type of C. The field types supported by CICS T are character (C), signed
packed decimal (P), unsigned packed decimal (U), hexadecimal (X), halfword (H),
fullword (F), and two fullwords (B).

If a key or alternate index field is a group field that is converted to multiple
columns, there are additional mapping considerations. These are described in the
CICS VT User's Guide .

Mapping fields to columns
You specify the field name, its starting position, and the length and data type of
each field that is mapped to a DB2 column.

The file VIDKSDS in Figure 1 on page 5 is mapped to the table shown in Figure 2.

If you specify a combination of field type and DB2 column type that is not
supported by CICS VT, you receive an error during DIM generation.

Note that each column in Figure 2 has the NOT NULL attribute. You can use
nullable columns with CICS VT using either additional mapping parameters or by
using a user exit. Sample exits in COBOL and assembler are provided to handle
nullable columns.

No data reengineering
Reengineering does not occur if the field type that you specify in the mapping
matches the DB2 column type. For example, no reengineering occurs if a field type
of C is mapped to a CHAR column, or a field type of P is mapped to a DEC
column.

In VIDKSDS shown in Figure 1 on page 5, there is no data reengineering for the
fields that are not highlighted.

Adjacent fields in a VSAM file that map to adjacent columns in DB2 are built in a
single operation in CICS VT, providing that no data reengineering is required.

CREATE TABLE creator.VID_ITEM
(ITEM_NUMBER CHARACTER(6) NOT NULL,

ITEM_NAME CHARACTER(12) NOT NULL,
ITEM_COLOUR CHARACTER(6) NOT NULL,
ITEM_WEIGHT CHARACTER(4) NOT NULL,
ITEM_COST DECIMAL(7,2) NOT NULL,
ITEM_REORDER_NO SMALLINT NOT NULL,
ITEM_SUPP_CODE CHARACTER(3) NOT NULL,
ITEM_DATE_FSHIP DATE NOT NULL,
ITEM_SHELF_LIFE CHARACTER(2) NOT NULL,
ITEM_DESCRIPTION CHARACTER(35) NOT NULL,

PRIMARY KEY (ITEM_NUMBER))
IN db.ts ;

Figure 2. SQL DDL for VIDKSDS

6 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

Data reengineering

Data reengineering is occurring for the two fields that are mapped to the columns
that are highlighted in the DDL in Figure 2 on page 6, as follows:
v The field called VIDF005 is 3 bytes starting at position 33 in the VSAM record.

The field type is C, which means the data in the VSAM file is displayable
alphanumeric. In the copybook, this field is defined as zoned decimal, and maps
to the column ITEM_REORDER_NO. This column is defined in the VID_ITEM
table as SMALLINT, which is a numeric data type in DB2. CICS VT
automatically translates the zoned decimal field values into the appropriate
SMALLINT data value on WRITE/REWRITE calls. For a GET/BROWSE call,
CICS VT performs the data translation in reverse.

v The field called VIDF007 is 5 bytes starting at position 39 and has a field type of
P. This means the data in this field in the VSAM file is packed decimal. It maps
to the DB2 column ITEM_DATE_FSHIP that is defined as DATE in DB2. CICS
VT automatically converts the packed-decimal field value to the appropriate
date value according to the definition of the picture string. This is CCYYMMDD,
as shown in Figure 1 on page 5, and is provided by the user.

In both these cases, data is automatically reengineered by CICS VT as a result of
the combination of the VSAM field type and the DB2 column type in the mapping.

The DB2 column data type is not specified anywhere in the mapping process. CICS
VT gets this information from the DB2 catalog tables during the driver generation
process.

Date and time fields
The mapping in Figure 1 on page 5 shows that the VIDF007 field in VIDKSDS has
the picture string CCYYMMDD. You must always specify a picture string when
you map a field to a DB2 column with a data type of DATE, TIME, or
TIMESTAMP, unless you are using an FBE to perform the reengineering.

DATE columns are the most common. A windowing facility is provided, enabling
transformation to occur for VSAM fields that do not include a century value. For
example, assume you have a 4-byte packed decimal field containing date
information, and you map it to a DATE column. There are two different ways that
you can specify the picture string in the mapping, which are as follows:

YYMMDD
With this picture string, CICS VT adds a century of 19 to every date value
in DB2.

YnMMDD
With this picture string, CICS VT uses date windowing, where n represents
a decade. If n = 4, dates containing a year value less than 40 will have a
century of 20 in DB2. If n ≥ 4, CICS VT uses century = 19.

If your VSAM date field includes the century, such as VIDF0007 in the VIDKSDS
sample file mapping in Figure 1 on page 5, date windowing is not required.

DATE picture strings
When you map a field to a DB2 DATE column, you must supply a picture clause.

A typical picture clause for a DATE column is a series of 2-byte constants, where
CC represents century, YY represents year, MM represents month, and DD
represents day. In the sample VIDKSDS file, the field VIDF007 is mapped to the

Chapter 3. Field level data reengineering by mapping 7

DATE column ITEM_DATE_FSHIP. The mapping for VIDF007 is shown in
Figure 3.

Other characters can be specified in the picture string, and Table 1 shows a number
of examples of the data conversion that is performed with various picture strings.
In this case, the source data is in VSAM: ZZ in the picture string can be any
characters apart from C, Y, M, or D.

Table 1. Picture strings for converting to DB2 DATE columns

Picture Source value Converted value

CCYY/MM/DD 2008/12/31 2008-12-31

CCYY:MM:DD 2008:12:31 2008-12-31

ZZCCMMDD 20081231 1908-12-31

CCZZMMDD 20081231 2000-12-31

CCYYZZDD 20081231 2008-01-31

CCYYMMZZ 20081231 2008-12-01

When data in Table 1 is retrieved from DB2 columns of these types, the effects of
the same picture strings result in the field values in Table 2 being returned to your
application program:

Table 2. Converting DB2 DATE columns back to VSAM format

Picture Source value Converted value

CCYY/MM/DD 2004-12-31 2004/12/31

CCYY:MM:DD 2004-12-31 2004:12:31

CCYYMM01 2004-12-31 20041201

CCZZMMDD 2000-12-31 20ZZ1231

CCYYZZDD 2004-01-31 2004ZZ31

CCYYMMZZ 2004-12-01 200412ZZ

--------------------------- CICS VT: Display field -------------------------
Command ===> __ Scroll ===> CSR

Data set name . : VIDKSDS
Creator : CIRDL +
Table : VID_ITEM +
Data set length : 00080

Field name . . . : VIDF007
Field length . . : 00005
Field type . . . : P
Column name . . : ITEM_DATE_FSHIP +
Starting position: 00039

Picture or FBE . : CCYYMMDD
Parameters . . . :

Special function :
Mapped from table: P
Build order . . : 00008

Press: PF3=Exit PF1=Help

Figure 3. Mapping to a DATE column

8 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

CICS VT always uses the same picture string for converting VSAM to DB2 and
DB2 to VSAM. A simple FBE is required to enable different picture strings for
VSAM to DB2 and DB2 to VSAM conversions.

Other date formats
CICS VT does not provide direct support for Julian date formats, YYDDD or
YYYYDDD. Sample COBOL and assembler exits are available to perform this
transformation.

The COBOL version is explained in detail in “Converting between Julian and
Gregorian date formats” on page 17.

TIME picture strings
Picture clauses in conversions to a TIME column consist of 2-byte constants shown
here.

HH Hours

XX Minutes

SS Seconds

NN Microsecond

String constants in the picture clause, such as a forward slash (/) or colon (:),
shown in Table 1 on page 8, can be used for TIME columns. Picture clauses in
conversions to a TIMESTAMP column are a combination of the constants for DATE
and TIME.

Built-in conversion routines
CICS VT uses a subset of the built-in conversion routines, based on the
combination of the field type specified in the mapping and the data type of the
DB2 columns.

For example, in the field VIDF005 in Figure 1 on page 5, the field type is “C” and
the DB2 column type is SMALLINT. CICSVT uses the CHARSINT routine to
convert the data from VSAM format, and SINTCHAR to convert from DB2 format
toVSAM format. All the routines can be invoked by a user exit. Examples of calling
the built-in routines in COBOL and assembler exits are covered later.

The following table defines the supported conversion combinations that can be
achieved through mapping:

Field type DB2 column type

C CHAR, VARCHAR, SMALLINT, INTEGER, BIGINT, DECIMAL, DATE,
TIME, and TIMESTAMP

P and U SMALLINT, INTEGER, BIGINT, DECIMAL, DATE, TIME, and
TIMESTAMP

H and F DECIMAL

In the CICS VT mapping, field type “X” is treated the same as “C”. VSAM fields
with type “B”, which is two fullwords, are assumed to contain numeric values that
are only valid for the column type BIGINT.

Chapter 3. Field level data reengineering by mapping 9

10 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

Chapter 4. Overview of CICS VT exits

There are two types of data reengineering exits in CICS VT.
v Field build exits (FBEs) translate data from VSAM form into DB2 format and

back again on retrieval. Data in this context can be a single field, a group of
fields or an entire record. FBEs are invoked for all VSAM calls. A parameter list
(VIDFBEP) is passed to the exit, and the exit logic is based on the parameter
values.

v Insert, replace, delete exits (IRDs) operate at a record level and are invoked for a
call that updates a file. A parameter list is passed to the exit (VIDIRDP), and the
exit logic is based on the parameter values.

You specify exits during the mapping process. FBEs are specified at a field level
and IRDs are specified at a file level. Exits are automatically invoked by CICS VT
at run time. The same exits are used by CICS VT for batch and online programs.

FBEs and IRDs are invoked during the initial data migration process by the CICS
VT conversion utility VIDLOAD.

FBEs and IRDs – differences and similarities
When you map a VSAM file, you define the association between the record in its
VSAM and DB2 forms.

In Figure 1 on page 5, each field is mapped to one column in DB2. To process a
GET-type VSAM call, CICS VT performs the following steps:
1. The DDM retrieves a row from DB2.
2. CICS VT takes each column value, transforming it when necessary, and moves

it to the position in the VSAM record according to the mapping.
3. When every byte of the VSAM record is built, it is returned to the requesting

application program.

To process a PUT/WRITE/REWRITE VSAM call, the process is as follows:
1. CICS VT takes each field value according to the mapping, transforming it

where necessary, and moves it to the appropriate position in the DB2 record.
2. When every byte of the VSAM record is processed, the DDM issues the

appropriate SQL UPDATE or INSERT call.

If you have mapped an FBE on a field, it is responsible for building the field
values and performing any data transformation. It must do this for GET-type calls
and PUT/WRITE/REWRITE calls. An example of how to map an FBE is shown in
“Mapping an FBE” on page 14. You can map multiple FBEs in the same file, and
you can use a single FBE to build several fields or columns. When an FBE ends,
CICS VT builds the remaining fields in the record.

An IRD operates at record-level, and is only invoked for PUT/WRITE/REWRITE
calls. You can only have one IRD for any DIM.

An IRD is always processed after the entire DB2 record is built. If you have FBEs
and an IRD on the same file, the FBEs will always have executed before the IRD.

© Copyright IBM Corp. 2004, 2014 11

When you map an IRD, you specify the specific point in the VSAM call that the
exit is invoked. The options are as follows:
v A before IRD is executed before the SQL INSERT/DELETE/UPDATE call is

issued by the DDM.
v An after IRD is executed after the SQL INSERT/DELETE/ UPDATE call is issued

by the DDM.
v A before and after IRD is executed before and after the SQL INSERT/DELETE/

UPDATE call issued by the DDM.

A parameter is passed to the IRD to indicate the point at which it is being invoked.

An example of mapping an IRD is shown in “Mapping an IRD” on page 15.

Data migration considerations
FBEs and IRDs are invoked by CICS VT during the initial data migration process.
In general, an FBE does not need to consider the type of call being processed. It
either builds DB2 data from VSAM data, or the other way around.

In virtually every case, an IRD must include functionality specifically for initial
data migration as well as for PUT/WRITE/REWRITE calls. An IRD is sensitive to
the type of call being processed.

Establishing when exits are required
CICS VT does not provide any facility to help you identify where exits are
required. It is a manual process that needs detailed knowledge of the file, coupled
with CICS VT experience. In some cases, application knowledge is essential,
especially if data cleansing is required.

Because CICS VT experience is a factor of your own usage of the product, where
possible you should start by migrating simple files. Initially, avoid files that need
FBEs and IRDs to migrate to multiple tables. You should also try to avoid files that
require SQL in an exit.

Copybook analysis
Before you convert a VSAM file, you must establish the target DB2 design. One
way to do this is to import your copybook into a spreadsheet. Take each field in
turn and specify the DB2 column name and data type.

There are a number of common things that you should look for during this
process:
1. Highlight the fields that you want to migrate to DATE, TIME, or TIMESTAMP

columns and note how the data is organized with the field. (CCYYMMDD,
YYYYDDD for example).

2. Highlight fields that you know may potentially contain inconsistent field
values.

3. Highlight columns that you want to be nullable.
4. Identify group fields with OCCURS clauses (arrays in PL/I).
5. Identify redefined fields.

In many circumstances, you may have a common reengineering requirement across
a number of different files. For example, you may have a specific format for date
fields that require an exit to convert to DB2 DATE format. You can consider

12 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

writing a generic exit and using it for multiple fields and files. Sample generic
exits are discussed in Chapter 9, “Generic assembler FBEs,” on page 67 .

Data analysis
You should pay particular attention to copybook fields that migrate to DB2 column
types that are value-sensitive, such as numeric and date columns. As part of your
analysis before you start mapping a file, you might consider writing one-off
programs to identify the relative consistency of your VSAM data.

One way to reduce the number of exits you potentially require is to ensure that
your data is as consistent as possible. Uninitialized fields can cause data
conversion problems, so you should consider coding a one-off program to correct
inconsistent field values.

You should also bear in mind that data is sometimes provided within your
application programs. For example, consider a file with a packed decimal key that
is mapped to a decimal column in DB2. A CICS user optionally specifies a value
that your program uses to issue a START BROWSE. If the user leaves the field
blank, your program may use a key of low-values. This will result in a data
conversion error in CICS VT because low-values is not a valid packed decimal
value.

This situation may only emerge during application testing .

Data conversion errors during initial data migration
CICS VT assumes that all VSAM field values are valid.

For example, assume you have a packed decimal date field that you map to a DB2
date column. If the value in the VSAM file is not a valid date value on a
WRITE/REWRITE call, DB2 disallows the SQL INSERT/UPDATE call. CICS VT
interprets the SQL return code and sets an appropriate VSAM error code which is
returned to your application program. The point at which the error occurs varies.
It may be during the initial data migration or during initial DB2 load processing.

A common solution to data issues that arise during data migration is to code an
FBE to perform data validation and correct invalid data values.

Runtime data conversion errors
If an invalid data value is provided by an application program for a key or
alternate index field, no record is retrieved and an appropriate return code or CICS
RESP code is set.

For example, assume that you have a file with a packed decimal key field or
subfield which is mapped to a decimal column in DB2. If your application
program issues a START BROWSE with a key of LOW-VALUES, an error is
returned. DB2 returns SQL code -310 for an invalid decimal value and -181 for an
invalid DATE or TIMESTAMP value. Invalid zoned decimal key data may result in
an S0C7 data exception abend.

This is another scenario where an FBE may be desirable.

Chapter 4. Overview of CICS VT exits 13

Mapping an FBE
You can map an FBE in both manual and automated mapping dialogs. Figure 4
shows how to add an FBE using the manual mapping CICS VT: Update field
screen.

Figure 4 shows that an LE/370 FBE called SUPPFBE has been mapped for the field
VIDF007.

In some cases, virtually the entire record area may be built by a combination of an
FBE and an IRD. This may be for a file containing multiple record types where the
only field that is common to each record type is the key field. The mapping shown
in Figure 5 represents a complex file that is managed by the LE/370 FBE
MULTFBE and IRD MULTIRD.

The field called FILLER refers to a 233-byte area in the VSAM record that is
redefined with four different record types. The other mapped fields are common to
each record.

--------------------------- CICS VT: Update field ---------------------------
Command ===> __ Scroll ===> CSR

DIM name : ITEMFL
Creator : CICSVT +
Table : HLL_ITEM +
Data set length: 00080

Field name : VIDF007
Field length . . . ===> 00003 (In bytes)
Field type ===> C (C,P,U,F,H,B)
Column name . . . ===> ITEM_SUPP_CODE................ + (Look-up available)
Starting position ===> 00036 ("1" = Beginning of data set)
Picture or FBE . . ===> EXITL=SUPPFBE_____________ (example HH.XX.SS.NNNNNN)

(or MMDDYY)
(or EXITx=exit name)

Parameters ===> __________________________ Optional user parameters
Special function . ===> ___ ("KEY", "PTH", "BKY", or blank)
Mapped from table ===> P ("P"=Prim, "X"=Not mapped)
Build order . . . ===> 00007 ("1"=first, "2"=second and so on)

Press: Enter=Update PF3=Exit PF1=Help

Figure 4. Mapping an FBE

------------------- CICS VT: List of fields for APPLCTL -- Row 1 to 7 of 7
Command ===> __ Scroll ===> CSR

VSAM file type : KSDS Creator : CIRSP +
Data set length: 00263 Table name: TB_APPLCTL +

Actions: S Display, U Update, I Insert, D Delete

A Field Bytes Start Type DB2 column name Exit Pic Par
- -------- ----- ----- ---- ------------------------------ -------- --- ---
_ KY 00017 00001 C +
_ OBJECT 00006 00001 C OBJECT_ID +
_ RECTYPE 00003 00007 C REC_TYPE +
_ USERID 00008 00010 C USER_ID +
_ FILLER 00233 00018 C + MULTFBE
_ ULSTCHG 00008 00251 C USER_ID_LAST_CHG +
_ CHGDTE 00005 00259 P LAST_CHG_DATE + DATEFBE
******************************* Bottom of data ********************************

Figure 5. Mapping a complex file

14 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

MULTFBE and MULTIRD are written in COBOL and are explained in Chapter 7,
“Record level reengineering,” on page 41.

The FBE DATEFBE is for a single field and is explained in “Reformatting a date
field” on page 20.

Note that the field names shown in Figure 5 on page 14 are for illustration
purposes. The actual field names used in manual mapping are generated.

Mapping an IRD
You map an IRD by updating the data set information using the manual mapping
dialogs only.

This displays the screen in Figure 6.

The IRD MULTIRD is written in an LE/370 language and is invoked after the
DDM has processed the SQL INSERT/ DELETE/UPDATE call. (The field value for
I/R/D user exit processing order is A.)

When you map an IRD, the exit processing order is the main mapping option to
consider.

What do I code first?
FBEs and IRDs are used in the initial data migration process. There is no
stand-alone exit testing facility with CICS VT so the first time your exits are used
is during the initial data migration.

For files that you are migrating to a single DB2 table, code any FBEs and add them
to the mapping, as shown in Figure 4 on page 14. Generate the CICS VT drivers
and then perform the data migration process.

For files that you are migrating to multiple tables, the following approach is
recommended:
1. Write the FBEs that operate at an individual field level.

--------------------- CICS VT: Update data set mapping -------------------------
Command ===> __

DIM name ===> APPLCTL_

Field build user exit name ===> ________ If selected, you must build
all fields for the data set
with the specified exit

I/R/D user exit name ===> MULTIRD_

I/R/D user exit processing order ===> A (B=Before,A=After,’ ’=Both)

I/R/D user exit language ===> L (A=Assembler,L=LE enabled)

DIM ready to be generated ===> Y

Enter=Update PF3=Exit

Figure 6. Mapping an IRD

Chapter 4. Overview of CICS VT exits 15

2. Write the IRD to handle the initial load process only.
3. Migrate the data to DB2. Note that there is a special DD statement required for

the VIDLOAD utility when a file is mapped to multiple DB2 tables.
4. Write the FBE that processes the additional tables.
5. Using the dual mode facility (DMF), test data retrieval.
6. Add code to the IRD exit to support update calls.
7. Test update calls.

You should use the VIDREAD utility to test data retrieval. Sample JCL is shown in
Figure 7.

Consider coding a simple program to test update calls for files that use FBE and
IRD exits.

//VIDREAD JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//*
//CHECKIT EXEC PGM=VIDREAD,REGION=8M
//STEPLIB DD DSN=appl.EXIT.LOAD,DISP=SHR
// DD DSN=appl.DRIVERS.LOAD,DISP=SHR
// DD DSN=VID.SVIDLODE,DISP=SHR
//FILEIN@ DD DISP=SHR,DSN=vsam.DUMMY.APPLCTL
//FILEIN DD SUBSYS=(vids,db2x,APPLCTL)
//VIDTRCE DD SYSOUT=*
//VIDTRCEP DD *
TRACE P01,P03,P04,P05,P06,P08,DIM=APPLCTL
TRACSET CALLS=50

Figure 7. Sample JCL for VIDREAD CICS

16 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

Chapter 5. Coding FBEs for field level reengineering

This section looks at a number of simple scenarios where the solution is an FBE.
They all operate at a single field level and do not include SQL. They are written in
COBOL.
v CJULGRG converts between Julian date and DB2 date formats using intrinsic

functions.
v CNULLCL enables a predefined VSAM field value to be stored as a null value in

DB2.
v DATEFBE formats a VSAM date field and converts it to DB2 DATE format by

calling CICS VT built-in conversion routines.

This is not intended to be an exhaustive list of all possible situations where an FBE
is required, but an illustration of actual customer situations and the type of FBE
that was used. Some other potential scenarios requiring exits are discussed in
“Other potential uses for FBEs” on page 28.

There are additional sample exits in the appendices.

You can also download sample CICS VT COBOL and assembler exits from: This
link opens in a new window

Converting between Julian and Gregorian date formats
DB2 supports a combination of industry and IBM standard date formats. A local
date format can be supported by a user-written exit routine. It is possible that the
format you used when your VSAM files were designed may not match your
chosen DB2 format.

A common requirement with CICS VT customers is to convert Julian date fields to
DB2 DATE columns.In the context of this manual, Julian and Gregorian date
formats are defined as follows:

Julian date
This format of date is a combination of year plus a relative day number
within the year, which is more correctly called an ordinal date. A typical
example is 2013-348 in the format YYYYDDD. This is equivalent to a
calendar date of December 14th 2013.

Gregorian date
This format of date corresponds to any of the industry or IBM standard
date formats supported by DB2. For example, the International
Organization for Standardization (ISO) format is CCYY-MM-DD. 2013-12-14
is equivalent to the calendar date December 14th 2013.

There is a sample assembler exit called JULGREG which is available for converting
between Julian and Gregorian dates. It supports a VSAM field format of
YYDDDHHMM. The COBOL exit CJULGRG that follows converts a 7-byte
unsigned zoned decimal field with the format YYYYDDD into a DB2 date. It also
performs the reverse.

© Copyright IBM Corp. 2004, 2014 17

http://www-01.ibm.com/support/docview.wss?rs=1083&uid=swg24021465
http://www-01.ibm.com/support/docview.wss?rs=1083&uid=swg24021465

COBOL code
CBL LIB
IDENTIFICATION DIVISION.
PROGRAM-ID. CJULGRG.
*
* THIS FBE CONVERTS A 7-BYTE UNSIGNED ZONED DECIMAL FIELD IN
* VSAM TO A DB2 DATE COLUMN. NO DATA VERIFICATION IS PERFORMED.
*
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION .
01 WS-DB2-FIELD PIC 9(8) .
01 WS-VSAM-FIELD PIC 9(7) .
*
01 WS-DB2-TEMP-FIELD .

02 TEMP-YYYY PIC 9(4) .
02 TEMP-MM PIC 9(2) .
02 TEMP-DD PIC 9(2) .

01 WS-DB2-TEMP REDEFINES
WS-DB2-TEMP-FIELD PIC 9(8) .

*
LINKAGE SECTION .
01 VSAM-FIELD PIC 9(7) .
01 DB2-FIELD .

02 DB2-YYYY PIC 9(4) .
02 FILLER PIC X .
02 DB2-MM PIC 9(2) .
02 FILLER PIC X .
02 DB2-DD PIC 9(2) .
COPY VIDFBEC .

*
PROCEDURE DIVISION USING VSAM-FIELD, DB2-FIELD, EXITPARMS .
MAIN-SECTION.

SET ADDRESS OF VSAM-FIELD TO EXVSAFLD.
SET ADDRESS OF DB2-FIELD TO EXDB2FLD.
EVALUATE EXFUNCT

WHEN ’D’ PERFORM BUILD-DB2-FIELD
WHEN ’V’ PERFORM BUILD-VSAM-FIELD

END-EVALUATE .
MAIN-SECTION-END.

GOBACK.
EXIT.

BUILD-VSAM-FIELD SECTION.
10-BUILD-VSAM-FIELD.

MOVE DB2-YYYY TO TEMP-YYYY .
MOVE DB2-MM TO TEMP-MM .
MOVE DB2-DD TO TEMP-DD .
COMPUTE WS-VSAM-FIELD =

FUNCTION INTEGER-OF-DATE(WS-DB2-TEMP) .
COMPUTE VSAM-FIELD =

FUNCTION DAY-OF-INTEGER(WS-VSAM-FIELD).
10-BUILD-VSAM-FIELD-END.

EXIT.
BUILD-DB2-FIELD SECTION.
10-BUILD-DB2-FIELD.

COMPUTE WS-DB2-FIELD =
FUNCTION INTEGER-OF-DAY(VSAM-FIELD).

COMPUTE WS-DB2-TEMP =
FUNCTION DATE-OF-INTEGER(WS-DB2-FIELD).

MOVE TEMP-YYYY TO DB2-YYYY .
MOVE TEMP-MM TO DB2-MM .
MOVE TEMP-DD TO DB2-DD .

10-BUILD-DB2-FIELD-END.
EXIT.

18 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

Notes for CJULGRG

This is a very simple exit that uses COBOL intrinsic functions to handle the data
conversion between Julian and Gregorian date formats. No verification of VSAM
field values is performed.

Using a nullable column in DB2
The classic definition of a null value is a value that is not known at this time. There
is no standard concept of a null value in VSAM and from a CICS VT perspective
every VSAM field has a value. Using a nullable column in DB2 is a common way
to manage VSAM fields with default values that are inconsistent with the field
attribute, such as SPACES in a packed decimal field.

Null values are controlled in DB2 using null indicator variables. CICS VT provides
mapping support for nullable columns for fields with repeating predefined
characters. You should note that DB2 columns that correspond to either the whole
or part of the VSAM file key or an alternate index path cannot be nullable.

There may be situations when the mapping support for nullable columns is
inadequate. In these cases, the solution is to write an FBE. An example of a
COBOL FBE called CNULLCL follows:

COBOL code
CBL LIB RMODE(ANY)
IDENTIFICATION DIVISION.
PROGRAM-ID. CNULLCL.
*
* THIS FBE PROCESSES A 2-BYTES PACKED DECIMAL COLUMN THAT IS
* NULLABLE. IF THE VSAM FIELD VALUE IS SPACES, THE EXIT SETS
* THE COLUMN VALUE TO NULL. THE REVERSE IS PERFORMED.
*
* WHEN THE VSAM FIELD VALUE IS SPACES, THE NULL-INDICATOR VARIABLE
* IS SET TO ON AND A VALUE OF ’@@’ IS MOVED TO THE DB2 COLUMN.
* THE DB2 LOAD CONTROL CARD SPECIFIES NULLIF POS1:POS1 = ’@’
* SO THAT THE INITIAL DATA LOAD SETS THE VALUE IN DB2 TO NULL.
*
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION .
01 ADDR-OF-NULL POINTER.
01 ADDR-OF-NULL2 REDEFINES ADDR-OF-NULL PIC S9(9) COMP-5.
LINKAGE SECTION .
01 VSAM-FIELD PIC S9(3) COMP-3.
01 VSAM-FIELD-NULL REDEFINES VSAM-FIELD PIC X(2) .
01 DB2-FIELD PIC S9(3) COMP-3.
01 DB2-FIELD-NULL REDEFINES DB2-FIELD PIC X(2) .
COPY VIDFBEC .
01 NULL-IND PIC S9(5) COMP-5.
*
PROCEDURE DIVISION USING VSAM-FIELD, DB2-FIELD, EXITPARMS.
MAIN-SECTION.

SET ADDRESS OF VSAM-FIELD TO EXVSAFLD.
SET ADDRESS OF DB2-FIELD TO EXDB2FLD.
SET ADDR-OF-NULL TO EXNULLS .
COMPUTE ADDR-OF-NULL2 =

ADDR-OF-NULL2 + EXNULOFF .
SET ADDRESS OF NULL-IND TO ADDR-OF-NULL.

EVALUATE EXFUNCT
WHEN ’D’ PERFORM BUILD-DB2-FIELD
WHEN ’V’ PERFORM BUILD-VSAM-FIELD

END-EVALUATE .

Chapter 5. Coding FBEs for field level reengineering 19

MAIN-SECTION-END.
GOBACK.
EXIT.

BUILD-VSAM-FIELD SECTION.
10-BUILD-VSAM-FIELD.

IF NULL-IND NOT = 0 MOVE SPACES TO VSAM-FIELD-NULL
ELSE MOVE DB2-FIELD TO VSAM-FIELD.

10-BUILD-VSAM-FIELD-END.
EXIT.

BUILD-DB2-FIELD SECTION.
10-BUILD-DB2-FIELD.

IF VSAM-FIELD NOT NUMERIC THEN
MOVE -1 TO NULL-IND
MOVE ’@@’ TO DB2-FIELD-NULL

ELSE MOVE VSAM-FIELD TO DB2-FIELD.
10-BUILD-DB2-FIELD-END.

EXIT.

Notes for CNULLCL

CICS VT maintains a pool of null indicators with an entry for every column in the
table that is mapped to the VSAM file. The address of the null pool is in the
parameter EXNULLS. For each field, the NULLOFF parameter is the offset in the
null pool for a specific field. The exit calculates the address of the null pool
variable for the DB2 column by adding the null pool offset to the null pool
address.

CNULLCL depends on the column name being specified in the mapping of the
field. Use the mapping example in Figure 4 on page 14 for field VIDF007.

The statement MOVE '@@' TO DB2-FIELD-NULL in 10-BUILD-DB2-FIELD is
specifically to handle initial data migration with the VIDLOAD utility. When the
exit detects a non-numeric VSAM field value, it sets the null indicator on and
moves @@' to the DB2 column. For a PUT/REWRITE/CALL, the null indicator is
on so the column value is disregarded. For the initial data load, you add the
following in the input statement for the DB2 LOAD utility:
NULLIF (start_pos:end-pos) = ’@’

The test performed by the exit to establish if the VSAM field value is null is the
statement IF VSAM-FIELD NOT NUMERIC. The values SPACES, low-values, and
high-values will become a null value in DB2. On retrieval, if the DB2 column is
null, the value built in the field is SPACES. Ensure you don't have any program
logic that tests this field for a specific field value such as LOW-VALUES.

Reformatting a date field
This exit DATEFBE processes a date field defined as PIC S9(9) COMP-3. There are
6 significant digits in the date, which has a picture string of YYMMDD.

Without the exit, CICS VT would assume that the first byte of the field contains a
valid value. For example, a field value of X'000081231C' would be converted
incorrectly to a DB2 date value of 2000-08-12.

To build a DB2 value, this exit strips off the first byte, and then calls the CICS VT
built-in conversion routine PACKDATE to convert to a DB2 date value. To build a
VSAM field value, the exits calls the DATEPACK built-in conversion routine.

20 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

The parameter list that the exit passes to the built-in conversion routine includes
the picture field Y5MMDD to exploit date windowing. This means that YY values
greater than or equal to 50 become 19nn-MM-DD in DB2. Year values less than 50
become 20nn-MM-DD.

COBOL code
CBL LIB
IDENTIFICATION DIVISION.
PROGRAM-ID. DATEFBE.
*
* THIS EXIT PROCESSES A PIC S9(9) COMP-3 DATE FIELD THAT HAS
* 6 SIGNIFICANT DIGITS (YYMMDD). VT WILL PROCESS THIS FIELD
* FROM LEFT TO RIGHT, SO A FIELD VALUE OF X’000081231C’ WOULD BE
* ERRONEOUSLY CONVERTED TO 2000-08-12 IN DB2.
*
* THE EXIT STRIPS THE FIRST BYTE AND THEN CALLS VIDCONV TO
* CONVERT THE PACKED DECIMAL VALUE TO A DB2 DATA VALUE. IT ALSO
* PERFORMS THE CONVERSION IN REVERSE.
*
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION .
01 VIDCONV PIC X(8) VALUE ’VIDCONV ’ .
01 DB2-TO-VSAM-PARMLIST .

02 DB2-ROUTINE-NO PIC S9(8) COMP VALUE 49 .
02 DB2-SOURCE-FIELD PIC X(10) .
02 DB2-SOURCE-FIELD-LEN PIC S9(8) COMP VALUE 10.
02 DB2-SPICTURE-FIELD PIC S9(8) COMP VALUE 0.
02 DB2-DEST-FIELD PIC S9(9) COMP-3 .
02 DB2-DEST-FIELD-LEN PIC S9(8) COMP VALUE 5.
02 DB2-DPICTURE-FIELD-LEN PIC S9(8) COMP VALUE 6.
02 DB2-DPICTURE-FIELD PIC X(6) VALUE ’Y5MMDD’.

01 VSAM-TO-DB2-PARMLIST .
02 VS-ROUTINE-NO PIC S9(8) COMP VALUE 19.
02 VS-SOURCE-FIELD PIC S9(7) COMP-3 .
02 VS-SOURCE-FIELD-LEN PIC S9(8) COMP VALUE 4.
02 VS-SPICTURE-FIELD PIC X(6) VALUE ’Y5MMDD’.
02 VS-DEST-FIELD PIC X(10) .
02 VS-DEST-FIELD-LEN PIC S9(8) COMP VALUE 10.
02 VS-DPICTURE-FIELD PIC S9(8) COMP VALUE 0.

LINKAGE SECTION .
01 VSAM-FIELD PIC S9(9) COMP-3.
01 DB2-FIELD PIC X(10) .

COPY VIDFBEC .
PROCEDURE DIVISION USING VSAM-FIELD, DB2-FIELD, EXITPARMS .
MAIN-SECTION.

SET ADDRESS OF VSAM-FIELD TO EXVSAFLD.
SET ADDRESS OF DB2-FIELD TO EXDB2FLD.
EVALUATE EXFUNCT

WHEN ’D’ PERFORM BUILD-DB2-FIELD
WHEN ’V’ PERFORM BUILD-VSAM-FIELD

END-EVALUATE .
MAIN-SECTION-END.

GOBACK.
EXIT.

BUILD-VSAM-FIELD SECTION.
10-BUILD-VSAM-FIELD.

MOVE DB2-FIELD TO DB2-SOURCE-FIELD.
CALL VIDCONV USING DB2-ROUTINE-NO

DB2-SOURCE-FIELD
DB2-SOURCE-FIELD-LEN
DB2-SPICTURE-FIELD
DB2-DEST-FIELD
DB2-DEST-FIELD-LEN
DB2-DPICTURE-FIELD.

MOVE DB2-DEST-FIELD TO VSAM-FIELD.

Chapter 5. Coding FBEs for field level reengineering 21

10-BUILD-VSAM-FIELD-END.
EXIT.

BUILD-DB2-FIELD SECTION.
10-BUILD-DB2-FIELD.

MOVE VSAM-FIELD TO VS-SOURCE-FIELD.
CALL VIDCONV USING VS-ROUTINE-NO

VS-SOURCE-FIELD
VS-SOURCE-FIELD-LEN
VS-SPICTURE-FIELD
VS-DEST-FIELD
VS-DEST-FIELD-LEN
VS-DPICTURE-FIELD.

MOVE VS-DEST-FIELD TO DB2-FIELD.
10-BUILD-DB2-FIELD-END.

EXIT.

Notes for DATEFBE

The mapping for DATEFBE is shown in Figure 5 on page 14.

The exit illustrates how to call the VIDCONV utility, which is the CICS VT module
that includes all of the built-in conversion routines shown in Chapter 10, “Built-in
conversion routines,” on page 73. This is the standard parameter list to call
VIDCONV in COBOL.

Not all parameters are used each time you call VIDCONV. For example, the 4th

parameter specifies the picture for the source field. There must be a valid value for
this parameter when the source field is VSAM. A value is not required if the
source field is DB2.

The first byte of the VSAM field is stripped off by moving the PIC S9(9) COMP-3
field VSAM-FIELD in the linkage section to the working storage field
VS-SOURCE-FIELD, which is defined as PIC S9(7) COMP-3. There are other techniques
to do this in COBOL.

VIDCONV should always be invoked dynamically and must not be statically
linked. You must include the CICS VT module VIDHIPLI in the linkage edit when
an FBE calls VIDCONV.

General notes for FBEs
This section defines a number of factors that you should consider when coding
FBEs. Unless stated otherwise, they apply to FBEs in any supported language.

Mixing exit languages
You can code multiple exits on the same DIM in different LE/370 languages.

Coding PL/I exits
To enable PL/I exits to be called by CICS VT, code the procedure statement as
follows:
PLIFBE: PROC(vsam_field, db2-field, parm_list)

OPTIONS(FETCHABLE BYVALUE) ;

Exits that include SQL
There are a number of additional factors to consider when you code an exit that
includes SQL statements.

22 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

Program preparation

As with any program that contains SQL statements, the DB2 precompiler must be
used. In the COBOL sample exits included in this manual, the precompiler is
invoked by the language compiler. You can use any of your own procedures to
compile the exits.

The DB2 package should be bound into the same DB2 collection as your DDM
driver module.

Linkage-edit

When your exit includes SQL calls, you must include the CICS VT module
VIDHLIPI in your linkage edit step. Sample compile/link/bind JCL for a COBOL
exit is shown in “JCL to compile COBOL exit” on page 78.

VIDDMPD DD statement

Your exit must include code to handle unexpected SQL return codes. Based on
parameter values you specify, you can cause a call to abend or pass an
unsuccessful return code back to your application program. These options are
discussed in “Processing errors in an FBE.”

Performance

FBEs that contain SQL may add a measurable processing overhead, depending on
the number of SQL calls processed. It is essential that the SQL is as efficient as
possible. For example, if your exit has to retrieve a single row from a table, it is
more efficient to use a singleton select than a cursor declare/open/fetch/close. You
must ensure that the SQL access path is efficient and always uses an index. Your
SQL should not perform a tablespace scan or any sorting. Additional DB2 indexes
are often required to support FBEs that issue SQL calls.

Calling other CICS VT routines
CICS VT establishes an LE/370 enclave for high-level language exits. Internal VT
services support calls to routines outside the enclave, such as SQL or calls to the
conversion routine VIDCONV.

If a failure occurs in an internal service, a return code of 16 is passed to the user
exit.

Processing errors in an FBE
There are two parameters in the CICS VT FBE parameter list that you use to
perform error processing.

There are four possible outcomes that you can choose:
1. The exit has completed successfully.
2. The exit has completed successfully and the call should be marked as complete.
3. The exit has not completed successfully and an invalid return code is passed to

the application program.
4. The exit has not completed successfully and the call ends abnormally.

Chapter 5. Coding FBEs for field level reengineering 23

You set these conditions in your exit using the parameter EXRET. Each time an
FBE is invoked, EXRET is set to SPACE. If you are reporting an SQL error, also set
EXSQLCA to the address of the SQLCA in your exit.

Successful completion and continue processing the call
Assume that you have an exit called NUMVALF as shown in Figure 8. Its purpose
is to validate that a numeric field value is valid. After your exit completes, CICS
VT has to build the remaining fields before the call is complete.

On invocation of an FBE, the parameter field EXRET always is set to SPACE and
the field can ignored if the exit is successful. Any value in EXSQLCA is ignored if
EXRET is SPACE.

Successful completion and the call is complete
In some cases, your exit needs to override CICS VT.

An illustration of this is the exit sample CTLRECF exit, which is described in
Chapter 6, “FBE for managing a control record,” on page 31 . The mapping for this
exit is shown in Figure 9 on page 25 .

------------------- CICS VT: List of fields for ITEMFL Row 1 to 10 of 10
Command ===> __ Scroll ===> CSR

VSAM file type : KSDS Creator : CICSVT +
Data set length: 00080 Table name: HLL_ITEM +

Actions: S Display, U Update, I Insert, D Delete

A Field Bytes Start Type DB2 column name Exit Pic Par
- -------- ----- ----- ---- ------------------------------ -------- --- ---
_ F01 00006 00001 C ITEM_NUMBER +
_ F02 00012 00007 C ITEM_NAME +
_ F03 00006 00019 C ITEM_COLOUR +
_ F04 00004 00025 C ITEM_WEIGHT +
_ F05 00004 00029 P ITEM_COST + NUMVALF
_ F06 00003 00033 C ITEM_REORDER_NO +
_ F07 00003 00036 C ITEM_SUPP_CODE +
_ F08 00005 00039 P ITEM_DATE_FSHIP + Y
_ F09 00002 00044 C ITEM_SHELF_LIFE +
_ F10 00035 00046 C ITEM_DESCRIPTION +
******************************* Bottom of data *******************************

Figure 8. Error processing in an FBE

24 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

The purpose of CTLRECF is to recognize that a call processes the control record,
which exists in a separate DB2 table. The key of the control record is assumed to
be the lowest key value in the file, in this case low values.

When CTLRECF processes a call for a regular record, it builds the appropriate field
for the key, and then returns control to CICS VT to continue building the
remainder of the record. In this case, EXRET is SPACE.

Now assume that there is a call to retrieve the control record. CTLRECF recognizes
the key is low values, retrieves the row from the control table and builds the
record area to be returned to the application. If CTLRECF ends and EXRET is
SPACE, CICS VT assumes that the remaining fields in the file are to be built. This
would overwrite the record area built by CTLRECF.

To prevent this, your exit must set EXRET = Y. This signals to CICS VT that the
record area is fully built. CICS VT will not build the remaining fields.

When your exit sets EXRET = Y, any value in EXSQLCA is ignored.

Unsuccessful completion and return control to application
Your application may handle certain error conditions returned in VSAM. You can
simulate this in an FBE by setting EXRET = P. This will result in return code = 08
being passed to your application program.

If your exit sets EXRET = P as a result of an unacceptable SQL code, it should also
set the address of the SQLCA to EXSQLCA to ensure that details of the SQL error
are reported. The following COBOL statement will cause CICS VT to produce a
formatted SQL error message:
SET EXSQLCA TO ADDRESS OF SQLCA.

The formatted SQL error message is written to the DD statement VIDDMP in CICS
and VIDDMPD in a batch job.

No data is returned to your application program when your exit sets EXRET = P. If
CICS VT tracing is active, a return code of 0020 is shown in the trace point 8
record.

------------------- CICS VT: List of fields for ITEMFL Row 1 to 10 of 10
Command ===> __ Scroll ===> CSR

VSAM file type : KSDS Creator : CICSVT +
Data set length: 00080 Table name: HLL_ITEM +

Actions: S Display, U Update, I Insert, D Delete

A Field Bytes Start Type DB2 column name Exit Pic Par
- -------- ----- ----- ---- ------------------------------ -------- --- ---
_ F01 00006 00001 C ITEM_NUMBER + CTLRECF
_ F02 00012 00007 C ITEM_NAME +
_ F03 00006 00019 C ITEM_COLOUR +
_ F04 00004 00025 C ITEM_WEIGHT +
_ F05 00004 00029 P ITEM_COST + NUMVALF
_ F06 00003 00033 C ITEM_REORDER_NO +
_ F07 00003 00036 C ITEM_SUPP_CODE +
_ F08 00005 00039 P ITEM_DATE_FSHIP + Y
_ F09 00002 00044 C ITEM_SHELF_LIFE +
_ F10 00035 00046 C ITEM_DESCRIPTION +
******************************* Bottom of data ********************************

Figure 9. Signalling a call is complete

Chapter 5. Coding FBEs for field level reengineering 25

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

CICS VT builds the RPLFDBWD, which is translated by your application program
into language specific return and reason codes. EXRET=P will result in return code
08 and reason code DB in your application program.

Unsuccessful completion and abnormally terminate
If your exit sets EXRET = E, a U3107 abend is issued in batch. In CICS, the
transaction abend code is 3107.

In both cases, a formatted SQL error message is produced if EXSQLCA is set to the
address of the SQLCA in your exit.

User generated error messages
Optionally, your exit can produce messages.

If you use DISPLAY in COBOL exits, the messages are written to SYSOUT in batch
and to VIDPIPI in CICS. PUT statements in PL/I exits are written to SYSPRINT in
CICS and batch.

Processing DATE columns in CICS VT exits
The CICS VT SQL driver modules are precompiled with DATE and TIME options
set to ISO.

This means that DATE and TIME column data is retrieved by CICS VT in the
following formats:

Format Example

DATE YYYY-MM-DD 2008-12-31

TIME HH:MM:SS 23:59:39

If you develop any CICS VT exits that process DATE or TIME column data
retrieved by an SQL driver, the data will be in ISO format. This can be changed by
updating the JCL used by the driver generation job. See member VIDPRE in
my.SVIDCNFG.custom.

Working with variable length data
FBEs and IRDs do not help to manage a VSAM file that contains varying length
records. The options for this type of VSAM file are discussed in the CICS VT User's
Guide.

Terminating an LE/370 enclave
High-level language (HLL) exits run in an LE/370 enclave which CICS VT
establishes with CEEPIPI. This places certain restrictions on the semantics of how
your exit ends.

In the IBM Language Environment® Programming Guide manual, terminating a
program in any of the following ways will result in an abnormal termination:

C exit(), abort(), or signal handling function specifying a normal or abnormal
termination

COBOL
STOP RUN statement

PL/I STOP or EXIT

26 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

A U313x in module VIDIPIPI abend is the likeliest outcome.

Passing data between exits
CICS VT provides a 16k work area for passing data between exits. The address of
the work area is in EXWRKA. In an IRD, the address is in IRDWRKA. Use this as
a scratch pad area.

The work area is shared by all exits in the same DIM. For example, if your file has 3
FBEs and one IRD, the same 16k area is shared by all 4 exits.

If you use the work area to pass data between exits, ensure that you implement a
technique to avoid one exit overwriting an area that is required by another exit.
One technique to do this is to have a single copybook which describes the entire
area and is used in every exit.

Performance implications of FBEs
In general, FBEs that manipulate bits and bytes in storage do not add any
significant overhead.

The overhead in FBEs that include SQL calls is always likely to be more significant.
In all cases, it is important to understand how CICS VT builds field and record
areas in order to establish the optimum design for your FBEs. This is explained
next.

IOAREA building in CICS VT
CICS VT optimizes IO area building by grouping fields together and processing
them as a single field.

For example, assume you have a file whose fields map to DB2 columns with the
equivalent DB2 column types (signed packed decimal to DEC, PIC 9 and PIC X to
CHAR). Additionally, the field positions within your VSAM record correspond to
the positions of the columns within your DB2 table. In this case, data
transformation is not required and CICS VT builds the appropriate DB2 and VSAM
fields in a single operation.

If a field is being transformed by CICS VT, such as a packed decimal field mapped
to a DB2 DATE column, or an unsigned packed decimal field to a DEC column,
multiple build operations are performed.

Handling multiple fields in an FBE
The sample FBEs process individual fields. An FBE can build multiple fields at the
same time.

FBEs are invoked for each field that they map to. If you decide to build more than
one field in an FBE, map the FBE on the first field only and leave the other fields it
builds unmapped.

FBE for a key or IBM AIX field
Each SQL call that is issued by a CICS VT DDM has a predicate. The predicate
columns are the DB2 primary key columns for regular call or the alternate index
columns if you are using an alternate index path. Your FBE may have to take this
into consideration.

Chapter 5. Coding FBEs for field level reengineering 27

Your FBE uses EXFUNCT to decide if it is building a VSAM field value or a DB2
column value. If your FBE operates on a single field, the exit code is the same for a
key and non-key field. An example is DATEFBE which is explained in
“Reformatting a date field” on page 20.

More complex FBEs on a key or an IBM AIX® field may have to use the fields
EXVSABLD and EXDB2BLD in conjunction with EXFUNCT. An example of a more
complex FBE is CTLRECF, which is explained in Chapter 6, “FBE for managing a
control record,” on page 31.

To illustrate this, consider the case where an application program issues a direct
call, such as a START BROWSE, and the key field is managed by an FBE. When
the call is processed in CICS VT, the exit is executed at multiple points in the call.
1. A key value is supplied by the application program. For the first invocation of

the FBE, the key value must be transformed from its VSAM format into a DB2
format. In this case, EXFUNCT=D signifies that a DB2 field is being built and
EXDB2BLD=N signifies that the entire DB2 record is not being built.

2. When the DDM retrieves a record from DB2, the exit is invoked for a second
time to transform the DB2 column value to a VSAM format. This enables CICS
VT to compare the specified key value with the retrieved key value.
EXFUNCT=V signifies a VSAM field is being built and EXVSABLD=N signifies
that the entire VSAM record area in not being built.

3. If the converted key matches the key value that is specified in the application
call, the remainder of the VSAM record is built. EXFUNCT=V and
EXVSABLD=Y in this case.

Your exit must taken account of the values of EXFUNCT, EXVSABLD, and
EXDB2BLD to drive the appropriate logic.

Other potential uses for FBEs
FBEs for data transformation or validation are typically used where a VSAM field
is mapped to either numeric or DATE/TIME columns in DB2. Common scenarios
are discussed next. There are no generic exits available for these scenarios.
However, they are all real customer situations that have been resolved by exits.

Scenario 1:

Assume you have a date field that is defined in your copybook as packed decimal
and you map it to a DATE column in DB2. A user via a CICS screen inserts a new
record, but the value of the date field is optional. Possible error scenarios are as
follows:
v The user leaves the field blank and the program provides a default value of

blanks.
v The user specifies an invalid date value, such as 31 April 2011.

In the first case, CICS VT gets an S0C7 abend trying to convert an invalid packed
decimal value of blanks. In the second case, CICS VT gets a -181 SQL error trying
to insert an invalid date into DB2.

In both cases, the error could be avoided by a simple FBE.

28 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

Scenario 2:

For this illustration, you have a zoned decimal field that is mapped to a DB2
SMALLINT column. To convert a zoned decimal value to a binary value, the CICS
VT CHARSINT routine must initially convert the field value to a decimal number.
If the zoned decimal field has a value of blanks, the initial conversion to packed
decimal will result in a S0C7 abend. A simple FBE is needed to convert the blanks
to a valid zoned decimal value such as 0. (x'F0')

In scenarios 1 and 2, data is reengineered. The conversion routines that are part of
CICS VT can be called from within a user FBE. Sample code to do this is provided.

Scenario 3:

A data set in a banking application has a key field defined is as PIC S9(13)
COMP-3 in COBOL or FIXED DEC(13) in PL/I. The field contains a 6-digit branch
code and a 7-digit account number. To map the key field to a single DEC (13,0)
column does not require an exit. To map it to two numeric columns requires an
FBE.

Assembler exit coding rules
Exits are assembler and must be written as reentrant and reusable. A 16k work
area is provided for and FBE and for IRD exits. Use the exit work area for your
program save area. The work area is not changed by CICS VT and the same area is
shared by FBE and IRD exits. This allows you to pass it between FBE and IRD
exits.

Exits that contain SQL calls should use an EXEC SQL INCLUDE member
containing a DSECT defining the SQL host variables. Alternatively, you can use a
DSECT that is based on the 16K exit work area EXWRKA (and IRDWRKA).

For IRDs that include SQL, include the module VIDHLI in your linkage edit. This
is to enable the exit to be shared between CICS and batch programs.

Register usage in assembler
If you are coding exits in assembler, you should not have any register issues with
FBEs and IRDs that do not include SQL statements. A single base register is
adequate in most circumstances. More that one base register may be required when
exits include SQL.

Be aware that you have no influence over the assembler produced by the DB2
precompiler, and you may discover at assembly time that you have addressability
issues. Complex exits may have to be designed as multiple routines and linked
together.

You should avoid using register 12 if your exit includes SQL calls or calls to
VIDCONV.

Chapter 5. Coding FBEs for field level reengineering 29

30 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

Chapter 6. FBE for managing a control record

VSAM files often have a control record that is used to control update programs.
The control record structure is entirely different to the structure of the remaining
records in the file.

This section defines how this can be solved within CICS VT.

Definition of requirement

A control record is a technique that is often used to control integrity of updates in
batch programs. For example, assume that two programs PROGA and PROGB
update FILEA. The first thing each program does is to read the control record to
check the status of the UPDATE-IN-PROGRESS switch.

When PROGA starts, the UPDATE-IN-PROGRESS switch is off, and therefore the
file is eligible for updating. PROGA sets the switch on, updates some records but
abnormally terminates. PROGB starts, but the UPDATE-IN-PROGRESS switch is
on, so PROGB ends because the file is ineligible for updating.

Because the control record structure is completely different to the structure of the
other records in the file, the typical solution in CICS VT is to have the control
record in its own table.

Definition of solution
A VSAM file that is migrated to more than one DB2 table normally requires a
combination of an IRD and FBE exit. A file containing a control record can be
migrated to two DB2 tables with just an FBE.

The FBE accesses the control table and the DDM accesses the main table.

The main record in the file is mapped to DB2, using either mapping method.
Fields in these records can be reengineered using CICS VT or user FBEs.

To illustrate the solution, consider a file called ITEMFL, which contains a control
record. The mapping is shown in Figure 10 on page 32.

© Copyright IBM Corp. 2004, 2014 31

The FBE to manage the control record is called CTLRECF, as shown in Figure 10.
The COBOL copybook for the file is:

01 ITEM-FILE-RECORD .
02 ITEM-FILE-KEY .

03 ITEM-FILE-NUM PIC 9(6) .
02 ITEM-FILE-DATA .

03 ITEM-FILE-NAME PIC X(12) .
03 ITEM-FILE-CLR PIC X(6) .
03 ITEM-FILE-WT PIC X(4) .
03 ITEM-FILE-COST PIC S9(5)V99 COMP-3.
03 ITEM-FILE-REORDER-NUM PIC 9(3) .
03 ITEM-FILE-SUPPLIER-CD PIC X(3) .

YYYYMMDD 03 ITEM-FILE-FSHIP-DT PIC S9(9) COMP-3 .
03 ITEM-FILE-SHELFLIFE PIC X(2) .
03 ITEM-FILE-DESC PIC X(35) .

02 ITEM-FILE-CONTROL-RECORD
REDEFINES ITEM-FILE-DATA .
03 ITEM-UPDATE-IN-PROGRESS PIC X .

88 COMPLETE VALUE ’0’ .
88 INCOMPLETE VALUE ’1’ .

03 ITEM-FILE-UPDATE-PROG PIC X(8) .
03 ITEM-FILE-UPDATE-JOB-NM PIC X(8) .

YYYYDDD 03 ITEM-FILE-LAST-UPDATE-DT PIC S9(7) COMP-3 .
HHMMSS 03 ITEM-FILE-LAST-UPDATE-TM PIC S9(7) COMP-3 .

03 ITEM-FILE-RECORDS-DELETED PIC S9(7) COMP-3 .
03 ITEM-FILE-RECORDS-INSERTD PIC S9(7) COMP-3 .
03 ITEM-FILE-RECORDS-UPDATED PIC S9(7) COMP-3 .
03 ITEM-FILE-CONTROL-REMARKS PIC X(37) .

The DDL for the two tables is:
CREATE TABLE CICSVT.HLL_ITEM

(ITEM_NUMBER CHARACTER(6) NOT NULL,
ITEM_NAME CHARACTER(12) NOT NULL,
ITEM_COLOUR CHARACTER(6) NOT NULL,
ITEM_WEIGHT CHARACTER(4) NOT NULL,
ITEM_COST DECIMAL(7,2) NOT NULL,
ITEM_REORDER_NO SMALLINT NOT NULL,
ITEM_SUPP_CODE CHARACTER(3) NOT NULL,
ITEM_DATE_FSHIP DATE NOT NULL,
ITEM_SHELF_LIFE CHARACTER(2) NOT NULL,
ITEM_DESCRIPTION CHARACTER(35) NOT NULL,
PRIMARY KEY (ITEM_NUMBER))
IN CVTDB.ITEMFIL1 ;

------------------- CICS VT: List of fields for ITEMFL Row 1 to 10 of 10
Command ===> __ Scroll ===> CSR

VSAM file type : KSDS Creator : CICSVT +
Data set length: 00080 Table name: HLL_ITEM +

Actions: S Display, U Update, I Insert, D Delete

A Field Bytes Start Type DB2 column name Exit Pic Par
- -------- ----- ----- ---- ------------------------------ -------- --- ---
_ F01 00006 00001 C ITEM_NUMBER + CTLRECF
_ F02 00012 00007 C ITEM_NAME +
_ F03 00006 00019 C ITEM_COLOUR +
_ F04 00004 00025 C ITEM_WEIGHT +
_ F05 00004 00029 P ITEM_COST + NUMVALF
_ F06 00003 00033 C ITEM_REORDER_NO +
_ F07 00003 00036 C ITEM_SUPP_CODE +
_ F08 00005 00039 P ITEM_DATE_FSHIP + Y
_ F09 00002 00044 C ITEM_SHELF_LIFE +
_ F10 00035 00046 C ITEM_DESCRIPTION +
******************************* Bottom of data ********************************

Figure 10. Mapping for a VSAM file with a control record

32 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

CREATE TABLE CICSVT.HLL_ITEM_CONTROL
(ITEMUP_NUMBER CHARACTER(6) NOT NULL,
ITEMUP_COMPLETE CHARACTER(3) NOT NULL,
ITEMUP_PROGRAM CHARACTER(8) NOT NULL,
ITEMUP_JOBNAME CHARACTER(8) NOT NULL,
ITEMUP_LAST_DATE DATE NOT NULL,
ITEMUP_LAST_TIME TIME NOT NULL,
ITEMUP_REC_DELETES INTEGER NOT NULL,
ITEMUP_REC_INSERTS INTEGER NOT NULL,
ITEMUP_REC_UPDATES INTEGER NOT NULL,
ITEMUP_REMARKS CHARACTER(37) NOT NULL,
PRIMARY KEY (ITEMUP_NUMBER))
IN VS2DB.ITEMFIL2 ;

Field level reengineering
The field ITEM-UPDATE-IN-PROGRESS in the control record is a 1-byte character field
with a value of 0 or 1. It maps to a CHAR(3) DB2 column which will have a value
of YES or NO. The transformation is performed by CTLRECF.

The field ITEM-FILE-LAST-UPDATE-DT in the control record is a packed decimal date
field in Julian format – YYYYDDD. The exit CTLRECF converts it to DB2 DATE
format using COBOL intrinsic functions.

The field ITEM-FILE-LAST-UPDATE-TM in the control record is a packed decimal time
field in the format HHMMSS. CTLRECF converts it to a DB2 TIME column using
the appropriate built-in CICS VT conversion routines (VIDCONV).

Limitations of this solution
A number of minor operational limitations are imposed by this solution.
v The control record must be the very first record in the file. The exit assumes the

key is LOW-VALUES.
v The control record is never deleted. It is only read or updated.
v The control record must be manually migrated to the control record table.

Ideally, DB2 RI should be used to ensure that neither the dummy control record
in HLL_ITEM nor the actual control record in HLL_ITEM_CONTROL is deleted.

v A record with a key of LOW-VALUES must exist in the main table (HLL_ITEM).
The record is generated by the exit during the initial data migration.

Notes for CTLRECF
The exit must build the key field every time it is called, regardless of whether the
call is to process the control record or a record in the HLL_ITEM table. It also has
to consider that it may be invoked several times in the same call.

This is described in “FBE for a key or IBM AIX field” on page 27.

Several other points should be noted:
v No data verification is performed in the exit. It assumes that all field values are

correct.
v The three fields in the control record table that are reengineered are typical

examples of reengineering fields.
v A different technique is used for each reengineered field to demonstrate that

there are different ways to reengineer a field.

Chapter 6. FBE for managing a control record 33

v Note the use of EXRET. When the exit is processing a request for the control
record, EXRET is set to Y to prevent CICS VT from processing the fields that are
mapped to the HLL_ITEM table.

There are more efficient ways to code this program but a key objective is to make
it easy to understand.

Error processing
The only error handling is associated with the two SQL statements. Any non-zero
SQL code will result in the formatted SQLCA being written to VIDDMPD in batch
and VIDDMP in CICS. The error messages from the DISPLAY statements will go to
the DD SYSOUT in batch and VIDPIPI in CICS. EXRET is set to E if an invalid
SQL code is encountered and this causes a U3107 abend.

COBOL code
CBL SQL(’HOST(COB2),APOSTSQL,SOURCE,XREF’),LIB,TEST(SYM)
IDENTIFICATION DIVISION.
PROGRAM-ID. CTLRECF.
**
* *
* THIS IS A CICS/VT FBE EXIT TO MANAGE VSAM FILE THAT CONTAINS *
* A CONTROL RECORD WITH A 6-BYTE KEY OF LOW-VALUES, WHICH IS *
* STORED IN ITS OWN TABLE. THE FILE IS MAPPED IN CICS VT TO THE*
* TABLE THAT CONTAINS ALL POF THE OTHER FILE RECORDS. *
* *
* IN THE APPLICATION, THE CONTROL RECORD IS ALWAYS ACCESSED BY *
* A DIRECT READ SPECIFYING THE LOW-VALUES KEY. *
* *
* THE EXIT IS MAPPED ON THE KEY FIELD. IF A REGULAR RECORD IS *
* ACCESSED, THE EXIT BUILDS THE KEY VALUE AND ENDS. IF THE *
* CONTROL RECORD IS BEING ACCESSED, THE EXIT RETRIEVES IT FROM *
* THE CONTROL RECORD TABLE. *
* *
* IN THE APPLICATION, THE CONTROL RECORD IS NEVER DELETED. IT *
* IS ONLY RETRIEVED OR UPDATED. *
* *
* THE KEY IS 6-BYTES AND IS CHARACTER DATA IN BOTH VSAM AND DB2*
* *
* NOTE 1: *
* THE EXIT REQUIRES THAT A DUMMY CONTROL RECORD MUST EXIST IN *
* THE MAIN RECORD TABLE. THE EXIT BUILDS A DUMMY RECORD WHEN *
* THE FILE IS INTIALLY MIGRATED. *
* *
* NOTE 2: *
* THE CONTROL RECORD MUST BE MANUALLY INSERTED INTO THE CONTROL*
* RECORD TABLE AT INITIAL DATA MIGRATION. *
* *
**
ENVIRONMENT DIVISION.
*
DATA DIVISION.
*

WORKING-STORAGE SECTION .
01 WS-UPDATE-IN-PROGRESS PIC X(3) .
01 WS-DB2-FIELD PIC 9(8) .
01 WS-VSAM-FIELD PIC 9(7) .
01 WS-DB2-TEMP-FIELD .

02 TEMP-YYYY PIC 9(4) .
02 TEMP-MM PIC 9(2) .
02 TEMP-DD PIC 9(2) .

01 WS-DB2-TEMP REDEFINES
WS-DB2-TEMP-FIELD PIC 9(8) .

01 WS-FILE-LAST-UPDATE-DT-TEMP .

34 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

02 DB2-YYYY PIC X(4) .
02 DASH1 PIC X .
02 DB2-MM PIC X(2) .
02 DASH2 PIC X .
02 DB2-DD PIC X(2) .

01 WS-FILE-LAST-UPDATE-DT REDEFINES
WS-FILE-LAST-UPDATE-DT-TEMP PIC X(10).

**
* VARIABLES USED IN ERROR MESSAGES
**
01 WS-DATE.

02 WS-CENTURY PIC 99.
02 WS-YEAR PIC 99.
02 WS-MONTH PIC 99.
02 WS-DAY PIC 99.

01 WS-TIME.
02 WS-HOUR PIC 99.
02 WS-MINUTE PIC 99.
02 WS-SECOND PIC 99.
02 WS-HUNDREDTH PIC 99.

01 ER-DATE.
02 ER-CENTURY PIC 99.
02 ER-YEAR PIC 99.
02 FILLER PIC X VALUE ’/’.
02 ER-MONTH PIC 99.
02 FILLER PIC X VALUE ’/’.
02 ER-DAY PIC 99.
02 FILLER PIC X(4) VALUE ’ ’.

01 ER-TIME.
02 ER-HOUR PIC 99.
02 FILLER PIC X VALUE ’:’.
02 ER-MINUTE PIC 99.
02 FILLER PIC X VALUE ’:’.
02 ER-SECOND PIC 99.
02 FILLER PIC X VALUE ’:’.
02 ER-HUNDREDTH PIC 99.

**
* VIDCONV AND PARAMETER LIST VARIABLES
**
01 VIDCONV PIC X(8) VALUE ’VIDCONV ’ .
01 WS-FILE-LAST-UPDATE-TM PIC X(10) .
01 DB2-TO-VSAM-PARMLIST .

02 DB2-ROUTINE-NO PIC S9(8) COMP VALUE 50.
02 DB2-SOURCE-FIELD PIC X(8) .
02 DB2-SOURCE-FIELD-LEN PIC S9(8) COMP VALUE 8.
02 DB2-SOURCE-FIELD-PIC PIC S9(8) COMP VALUE 0.
02 DB2-DEST-FIELD PIC S9(7) COMP-3 .
02 DB2-DEST-FIELD-LEN PIC S9(8) COMP VALUE 4.
02 DB2-DEST-FIELD-PIC PIC X(6) VALUE ’HHXXSS’.
02 DB2-PIC-FIELD-LEN PIC S9(8) COMP VALUE 6.

01 VSAM-TO-DB2-PARMLIST .
02 VS-ROUTINE-NO PIC S9(8) COMP VALUE 20.
02 VS-SOURCE-FIELD PIC S9(7) COMP-3 .
02 VS-SOURCE-FIELD-LEN PIC S9(8) COMP VALUE 4.
02 VS-SOURCE-FIELD-PIC PIC X(6) VALUE ’HHXXSS’ .
02 VS-DEST-FIELD PIC X(08) .
02 VS-DEST-FIELD-LEN PIC S9(8) COMP VALUE 8.
02 VS-DEST-FIELD-PIC PIC S9(8) COMP VALUE 0.
02 VS-PIC-FIELD-LEN PIC S9(8) COMP VALUE 6.

* DB2 COMUNICATION AREA

EXEC SQL
INCLUDE SQLCA

END-EXEC.

* DB2 TABLES GENERATED BY DCLGEN

Chapter 6. FBE for managing a control record 35

COPY ITEMFLTC .

LINKAGE SECTION .
01 VSAM-FIELD PIC X(6) .
01 DB2-FIELD PIC X(6) .
COPY VIDFBEC .
COPY ITEMFL .
COPY ITEMFLTB .
01 DB2-RECORD-KEY PIC X(6) .
*

PROCEDURE DIVISION USING VSAM-FIELD, DB2-FIELD, EXITPARMS.
MAIN-SECTION.

SET ADDRESS OF ITEM-FILE-RECORD TO EXVSAIO .
SET ADDRESS OF DB2-RECORD-KEY TO EXDB2IO .
SET ADDRESS OF VSAM-FIELD TO EXVSAFLD .
SET ADDRESS OF DCLHLL-ITEM TO EXDB2IO .

EVALUATE EXFUNCT
WHEN ’V’ PERFORM BUILD-VSAM-FIELD
WHEN ’D’ PERFORM BUILD-DB2-FIELD

END-EVALUATE .
MAIN-SECTION-END.

GOBACK.
EXIT.

BUILD-VSAM-FIELD SECTION.
10-BUILD-VSAM-FIELD.

IF DB2-FIELD NOT = LOW-VALUES THEN
MOVE DB2-FIELD TO VSAM-FIELD
GO TO 10-BUILD-VSAM-FIELD-END

END-IF.

IF EXVSABLD NOT = ’Y’ THEN
MOVE DB2-FIELD TO VSAM-FIELD
GO TO 10-BUILD-VSAM-FIELD-END

END-IF.

* WE DROP THROUGH HERE IF WE ARE PROCESSING A GET TYPE CALL
* FOR THE CONTROL RECORD (EXFUNCT=V & EXVSABLD = Y).

EXEC SQL
SELECT

ITEMUP_NUMBER
,ITEMUP_COMPLETE
,ITEMUP_PROGRAM
,ITEMUP_JOBNAME
,ITEMUP_LAST_DATE
,ITEMUP_LAST_TIME
,ITEMUP_REC_DELETES
,ITEMUP_REC_INSERTS
,ITEMUP_REC_UPDATES
,ITEMUP_REMARKS

INTO
:ITEMUP-NUMBER
,:ITEMUP-COMPLETE
,:ITEMUP-PROGRAM
,:ITEMUP-JOBNAME
,:WS-FILE-LAST-UPDATE-DT
,:ITEMUP-LAST-TIME
,:ITEMUP-REC-DELETES
,:ITEMUP-REC-INSERTS
,:ITEMUP-REC-UPDATES
,:ITEMUP-REMARKS

FROM HLL_ITEM_CONTROL
WHERE ITEMUP_NUMBER = :DB2-FIELD

END-EXEC.

36 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

IF SQLCODE NOT = 0 THEN PERFORM SQL-ERROR .

MOVE ITEMUP-NUMBER TO ITEM-FILE-KEY .
MOVE ITEMUP-PROGRAM TO ITEM-FILE-UPDATE-PROG .
MOVE ITEMUP-JOBNAME TO ITEM-FILE-UPDATE-JOB-NM .
MOVE ITEMUP-REC-DELETES TO ITEM-FILE-RECORDS-DELETED.
MOVE ITEMUP-REC-INSERTS TO ITEM-FILE-RECORDS-INSERTD.
MOVE ITEMUP-REC-UPDATES TO ITEM-FILE-RECORDS-UPDATED.
MOVE ITEMUP-REMARKS TO ITEM-FILE-CONTROL-REMARKS.

IF ITEMUP-COMPLETE = ’YES’ THEN
MOVE ’0’ TO ITEM-UPDATE-IN-PROGRESS

ELSE MOVE ’1’ TO ITEM-UPDATE-IN-PROGRESS
END-IF.

* CONVERT DB2 DATE FORMAT TO JULIAN DATE FORMAT YYYYDDD

MOVE DB2-YYYY TO TEMP-YYYY .
MOVE DB2-MM TO TEMP-MM .
MOVE DB2-DD TO TEMP-DD .
COMPUTE WS-VSAM-FIELD =

FUNCTION INTEGER-OF-DATE(WS-DB2-TEMP)
COMPUTE ITEM-FILE-LAST-UPDATE-DT =

FUNCTION DAY-OF-INTEGER(WS-VSAM-FIELD).

* CONVERT DB2 TIME FORMAT TO PACKED DECIMAL

MOVE ITEMUP-LAST-TIME TO DB2-SOURCE-FIELD.
CALL VIDCONV USING DB2-ROUTINE-NO

DB2-SOURCE-FIELD
DB2-SOURCE-FIELD-LEN
DB2-SOURCE-FIELD-PIC
DB2-DEST-FIELD
DB2-DEST-FIELD-LEN
DB2-DEST-FIELD-PIC
DB2-PIC-FIELD-LEN.

MOVE DB2-DEST-FIELD TO ITEM-FILE-LAST-UPDATE-TM.
MOVE ’Y’ TO EXRET .

10-BUILD-VSAM-FIELD-END.
EXIT.

*
BUILD-DB2-FIELD SECTION.
10-BUILD-DB2-FIELD .

IF VSAM-FIELD NOT = LOW-VALUES THEN
MOVE VSAM-FIELD TO DB2-FIELD
GO TO 10-BUILD-DB2-FIELD-END

END-IF.

IF EXDB2BLD = ’N’ THEN
MOVE VSAM-FIELD TO DB2-FIELD
GO TO 10-BUILD-DB2-FIELD-END

END-IF.
IF EXCALL = ’LOAD’ GO TO DUMMY-CONTROL-RECORD.

* WE CAN ONLY GET HERE IF WE ARE PROCESSING AN UPDATE CALL
* FOR THE CONTROL RECORD (EXFUNCT=D & EXDB2BLD = Y)

IF ITEM-UPDATE-IN-PROGRESS = ’0’ THEN
MOVE ’YES’ TO WS-UPDATE-IN-PROGRESS

ELSE MOVE ’NO ’ TO WS-UPDATE-IN-PROGRESS
END-IF.

* CONVERT JULIAN DATE FORMAT YYYYDDD TO DB2 DATE FORMAT

COMPUTE WS-DB2-FIELD =

Chapter 6. FBE for managing a control record 37

FUNCTION INTEGER-OF-DAY(ITEM-FILE-LAST-UPDATE-DT)
COMPUTE WS-DB2-TEMP =

FUNCTION DATE-OF-INTEGER(WS-DB2-FIELD).
MOVE TEMP-YYYY TO DB2-YYYY .
MOVE TEMP-MM TO DB2-MM .
MOVE TEMP-DD TO DB2-DD .
MOVE ’-’ TO DASH1 OF

WS-FILE-LAST-UPDATE-DT-TEMP.
MOVE ’-’ TO DASH2 OF

WS-FILE-LAST-UPDATE-DT-TEMP.

* CONVERT PACKED DECIMAL TIME VALUE TO DB2 TIME FORMAT

MOVE ITEM-FILE-LAST-UPDATE-TM TO VS-SOURCE-FIELD.
CALL VIDCONV USING VS-ROUTINE-NO

VS-SOURCE-FIELD
VS-SOURCE-FIELD-LEN
VS-SOURCE-FIELD-PIC
VS-DEST-FIELD
VS-DEST-FIELD-LEN
VS-DEST-FIELD-PIC
VS-PIC-FIELD-LEN .

MOVE VS-DEST-FIELD TO WS-FILE-LAST-UPDATE-TM.
EXEC SQL

UPDATE HLL_ITEM_CONTROL
SET

ITEMUP_COMPLETE = :WS-UPDATE-IN-PROGRESS
,ITEMUP_PROGRAM = :ITEM-FILE-UPDATE-PROG
,ITEMUP_JOBNAME = :ITEM-FILE-UPDATE-JOB-NM
,ITEMUP_LAST_DATE = :WS-FILE-LAST-UPDATE-DT
,ITEMUP_LAST_TIME = :WS-FILE-LAST-UPDATE-TM
,ITEMUP_REC_DELETES = :ITEM-FILE-RECORDS-DELETED
,ITEMUP_REC_INSERTS = :ITEM-FILE-RECORDS-INSERTD
,ITEMUP_REC_UPDATES = :ITEM-FILE-RECORDS-UPDATED
,ITEMUP_REMARKS = :ITEM-FILE-CONTROL-REMARKS

WHERE ITEMUP_NUMBER = :VSAM-FIELD
END-EXEC.
IF SQLCODE NOT = 0 THEN PERFORM SQL-ERROR
ELSE MOVE ’Y’ TO EXRET
END-IF .

10-BUILD-DB2-FIELD-END .
GOBACK .
EXIT.

*

DUMMY-CONTROL-RECORD SECTION.
10-DUMMY-CONTROL-RECORD.

* THIS SECTION IS ONLY EXECUTED AT INITIAL DATA MIGRATION AND
* BUILDS THE DUMMY CONTROL RECORD WHICH MUST EXIST IN THE MAIN
* DB2 TABLE. (THE ACTUAL CONTROL RECORD MUST BE MANUALLY
* INSERTED INTO THE CONTROL TABLE).

INITIALIZE DCLHLL-ITEM .
MOVE LOW-VALUES TO DB2-FIELD .
MOVE ’0001-01-01’ TO ITEM-DATE-FSHIP .
MOVE ’Y’ TO EXRET.

10-DUMMY-CONTROL-RECORD-END.
GOBACK .
EXIT.

SQL-ERROR SECTION.
99-SQL-ERROR .

ACCEPT WS-DATE FROM DATE YYYYMMDD .
ACCEPT WS-TIME FROM TIME .
MOVE WS-CENTURY TO ER-CENTURY .
MOVE WS-YEAR TO ER-YEAR .
MOVE WS-MONTH TO ER-MONTH .
MOVE WS-DAY TO ER-DAY .

38 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

MOVE WS-HOUR TO ER-HOUR .
MOVE WS-MINUTE TO ER-MINUTE .
MOVE WS-SECOND TO ER-SECOND .
MOVE WS-HUNDREDTH TO ER-HUNDREDTH .
DISPLAY ’***’
DISPLAY ’CICS VT: ’ ER-DATE, ’ ’ ER-TIME
DISPLAY ’CICS VT: INVALID SQL CODE FOR DIM ’ EXDIMNAM
DISPLAY ’CICS VT: PROCESSING ITEM CONTROL TABLE’
DISPLAY ’CICS VT: SEE VIDDMPD DD STATEMENT FOR DETAILS’
DISPLAY ’***’
MOVE ’E’ TO EXRET.
SET EXSQLCA TO ADDRESS OF SQLCA.

99-SQL-ERROR-END .
GOBACK .
EXIT.

Chapter 6. FBE for managing a control record 39

40 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

Chapter 7. Record level reengineering

You need to write an IRD to migrate a VSAM file to more than one DB2 table.

There are two typical cases where this is required:
v When a VSAM file contains multiple records types that you want to migrate to

multiple tables.
v To enable you to create multiple rows in the same table from the same VSAM

record. This is a solution to a multi-dimension array, such as a group field with
an OCCURS clause.

These two scenarios are the most commonly used in CICS VT. There are sample
exits to handle multiple tables for multiple record types. There is also a description
of the variations in MULTFBE and MULTIRD that are required to handle other
circumstances.

Relationship between an IRD and an FBE
There are three particular aspects to consider for IRDs:
v It is very seldom that an IRD is a complete solution, and you nearly always

require an FBE in conjunction with an IRD.
v When you are migrating to multiple DB2 tables, your IRD must include code to

handle the initial data migration process.
v One table must be mapped in CICS VT, and this table must contain one DB2

record for every record in the VSAM file. In some cases, a DB2 table containing
just key columns may be required.

For a multiple table solution, you write the IRD before the FBE. This reasons for
this become clear as you read this section.

There is potential overlap between the functionality in an FBE and an IRD for a
multiple table migration but there are two important facts to keep in mind:
v An FBE is invoked for every VSAM call
v An IRD is only invoked for an update-type call

Because an IRD is not involved in a retrieval call, the conversion of data from its
DB2 form to the equivalent VSAM form must be handled by the FBE. For update
calls, conversion from VSAM form to DB2 form can be done in either the FBE or
the IRD.

In general, the FBE includes SQL SELECT statements, sometimes using a cursor.
The IRD includes INSERT and UPDATE SQL statements, and in some occasions
SELECT statements. DELETE processing is normally achieved by DB2 referential
integrity cascading deletes.

DB2 table design
Every VSAM file that you migrate must be mapped in CICS VT to a DB2 table.

© Copyright IBM Corp. 2004, 2014 41

When a file is migrated to a single table, CICS VT performs all the appropriate
SQL calls. When you map a file to multiple tables, the CICS VT DDM performs the
appropriate SQL calls to the table that you map to the file. All SQL calls to the
additional tables must be performed in your FBE and IRD.

DB2 primary table
When CICS VT intercepts a retrieval call in your program, the DDM accesses the
DB2 table that the file maps to. This table is referred to as the primary table.

Figure 11 shows the mapping for a file called VSAM01, and the primary table is
called CICSVT.TB_VSAM01.

Assume that an application program issues a START BROWSE for VSAM01. The
DDM issues an SQL call to retrieve the appropriate row from DB2. If the row
doesn't exist, CICS VT returns an appropriate not found condition to your
application. The FBE called MYFBE won't be invoked in this case.

This means that the primary table must contain one DB2 row for every record in
the VSAM file.

In some cases, the primary table may contain just those columns that correspond to
the VSAM key field. This is the case when your VSAM file copybook redefines the
entire record, excluding the key field. The table CICSVT.TB_VSAM01 in Figure 12
is an example and just contains the columns DB2_RECORD_KEY and
DB2_RECORD_TYPE.

DB2 secondary tables
When a START BROWSE for VSAM01 in Figure 11 specifies a key which does
exist, CICS VT invokes MYFBE. The tables accessed by your FBE and IRD are
referred to as secondary tables. MYFBE uses the DB2_RECORD_TYPE column
value to decide which secondary to access. It also uses both key columns from the
primary table to access the appropriate row in the secondary table.

This means that the primary key columns in the primary table must exist in each
secondary table. The primary table is effectively the parent of the secondary tables.
You should enforce this relationship using DB2 referential integrity.

------------------- CICS VT: List of fields for VSAM01 Row 1 to 4 of 4
Command ===> __ Scroll ===> CSR

VSAM file type : KSDS Creator : CICSVT +
Data set length: 00074 Table name: TB_VSAM01 +

Actions: S Display, U Update, I Insert, D Delete

A Field Bytes Start Type DB2 column name Exit Pic Par
- -------- ----- ----- ---- ------------------------------ -------- --- ---
_ VSAMKEY 00025 00001 C +
_ KEYPART1 00020 00001 C DB2_RECORD_KEY +
_ KEYPART2 00005 00021 C DB2_RECORD_TYPE +
_ VSAMDATA 00049 00026 C + MYFBE
******************************* Bottom of data ********************************

Figure 11. Primary table mapping

42 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Recommended approach
Exits on a file play a key part in the initial migration of data from VSAM to DB2.
The CICS VT migration utility VIDLOAD assumes that each VSAM record
becomes a single record in DB2. For a file containing multiple record types, there
are normally at least two DB2 records for each VSAM record. One record is for the
primary table and one is for the appropriate secondary table.

Assume that a file has a group OCCURS field and you want each occurrence to
become a separate row in DB2. There are potentially many DB2 secondary table
records for each record in VSAM.

In both situations, CICS VT relies on parameters provided by IRD to create the
records for loading to DB2. You must code the IRD before you can perform initial
data migration.

Code the IRD first and include functionality to perform any data transformation
between VSAM and DB2. This approach means that you don't necessarily need to
code an FBE prior to data migration. Testing is simplified because you can separate
IRD testing from FBE testing.

Multiple record type solution
A sample IRD and FBE to handle migration to multiple tables is provided.

The file is called APPLCTL and the field mapping is shown in Figure 12. There are
four different record types in the copybook, and five DB2 tables are required to
implement this in CICS VT. The copybook and DDL for the five tables is shown in
“Copybook and DDL for APPLCTL” on page 79.

These exits are described in detail in the sections that follow.

Mapping for APPLCTL
Figure 12 shows the field mapping for APPLCTL. The record length of the file is
263 bytes and it has a 17-byte key. The field called FILLER in the mapping
corresponds to a 233-byte redefined area. It is managed by the exit MULTFBE.

------------------- CICS VT: List of fields for APPLCTL -- Row 1 to 7 of 7
Command ===> __ Scroll ===> CSR

VSAM file type : KSDS Creator : CIRSP +
Data set length: 00263 Table name: TB_APPLCTL +

Actions: S Display, U Update, I Insert, D Delete

A Field Bytes Start Type DB2 column name Exit Pic Par
- -------- ----- ----- ---- ------------------------------ -------- --- ---
_ KY 00017 00001 C +
_ OBJECT 00006 00001 C OBJECT_ID +
_ RECTYPE 00003 00007 C REC_TYPE +
_ USERID 00008 00010 C USER_ID +
_ FILLER 00233 00018 C + MULTFBE
_ ULSTCHG 00008 00251 C USER_ID_LAST_CHG +
_ CHGDTE 00005 00259 P LAST_CHG_DATE + DATEFBE
******************************* Bottom of data ********************************

Figure 12. Field mapping for sample file APPLCTL

Chapter 7. Record level reengineering 43

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

The 17-byte key is split into three fields. The middle field is mapped to the DB2
column REC_TYPE. The value in this field indicates the record type, and therefore
the layout of the record.

All four record types have two common fields, and these are mapped to columns
USER_ID_LAST_CHG and LAST_CHG_DATE. These columns are in the table
CICSVT.TB_APPLCTL. The FBE DATEFBE builds the final field. This exit is
detailed in “Reformatting a date field” on page 20.

The table CICSVT.TB_APPLCTL contains only the columns shown in the mapping
in Figure 12 on page 43. The FBE MULTFBE builds the bytes 18 to 250 of the
VSAM record from one of four DB2 tables, based on the value of REC_TYPE.

Mapping for IRD exit
The IRD for the APPLCTL file is called MULTIRD.

The mapping of the IRD is shown in Figure 13 .

MULTIRD is a COBOL after exit.

MULTIRD exit
This section looks at the processing performed by MULTIRD.

You can download the entire exit from the following link: This link opens in a new
window

WORKING STORAGE SECTION
Because MULTIRD contains SQL, the SQLCA and the DB2 tables accessed by the
exit are defined in working storage as follows:
EXEC SQL

INCLUDE SQLCA
END-EXEC.

-------------------- CICS VT: Update data set information -------------------
Command ===> ___

DIM name ===> APPLCTL_

Field build user exit name ===> ________ If selected, you must build all
fields for the data set with
the specified exit

I/R/D user exit name ===> MULTIRD_

I/R/D user exit processing order ===> A (B=Before,A=After,’ ’=Both)

I/R/D user exit language ===> L (A=Assembler,L=LE enabled)

DIM ready to be generated ===> Y

Enter=Update PF3=Exit

Figure 13. IRD mapping for APPLCTL

44 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

http://www-01.ibm.com/support/docview.wss?rs=1083&uid=swg24021465
http://www-01.ibm.com/support/docview.wss?rs=1083&uid=swg24021465

COPY APPLCTL1 .
COPY APPLCTL2 .
COPY APPLCTL3 .
COPY APPLCTL4 .

The copy members are created by the DB2 DCLGEN utility, which is an option in
the DB2I application in ISPF. MULTIRD accesses the four secondary tables. The
primary table is accessed by the DDM.

Other working storage variables are used for error messages.

LINKAGE SECTION
The parameters used by MULTIRD are addressed in the linkage section of the
program, as follows:
LINKAGE SECTION .
COPY VIDIRDC .
COPY APPLCTL .
*
01 DB2-RECORD-KEY .

02 DB2-OBJECT-ID PIC X(6) .
02 DB2-REC-TYPE PIC X(3) .
02 DB2-USER-ID PIC X(8) .

VIDIRDC is the copybook that defines the parameters passed by CICS VT.
APPLCTL is the copybook for the APPLCTL file.

Main logic
At the start, the exit establishes addressability to the VSAM record area and the
DB2 record area. The only data in the DB2 record area is the key of the record.

The first test performed in MULTIRD is for IRDFUNCT = D. This indicates a
DELETE/ERASE call. Because MULTIRD is an after exit, the DDM has already
performed an SQL DELETE to the primary table. DB2 referential integrity deletes
the appropriate record from the secondary table, so MULTIRD has nothing to do
and ends at this point.

For all other calls, MULTIRD establishes the record type being processed, as
follows:
EVALUATE RECORD-TYPE

WHEN ’010’ PERFORM BUILD-010-RECORD
WHEN ’020’ PERFORM BUILD-020-RECORD
WHEN ’030’ PERFORM BUILD-030-RECORD
WHEN ’040’ PERFORM BUILD-040-RECORD
WHEN OTHER PERFORM INVALID-RECORD-TYPE

END-EVALUATE .

The processing at each BUILD-nnn-RECORD is the same. Each field is moved from
the incoming VSAM record area to the appropriate DB2 table working storage
variable.

Test for the call type being processed
Once the appropriate DB2 table working storage record has been built, there is a
test for the type of call being processed.

Chapter 7. Record level reengineering 45

EVALUATE IRDFUNCT
WHEN ’L’ PERFORM LOAD-RECORD
WHEN ’I’ PERFORM INSERT-0n0-RECORD
WHEN ’R’ PERFORM UPDATE-0n0-RECORD

END-EVALUATE .

For INSERT and UPDATE calls, the appropriate SQL call is issued. Assuming that
the SQL code is 0, the exit ends.

Error handling
If an SQL error occurs, an error message is issued.

The message includes the DIM name and name of the DB2 table that was being
processed when the SQL error occurred. In this error routine, the following is also
performed:
v IRDSQLCA is set to the address of the exit SQLCA so that formatted SQL error

messages are issued.
v IRDRET is set to E

This causes a U3108 abend in batch or a 3108 transaction abend in CICS.

Build a load record
The IRDFUNCT parameter is L when the VIDLOAD utility is running.

There are four key IRD parameters that are set for processing this type of call:

IRDB2DAT
You set this pointer to the address of the DB2 record area that your exit
has built.

IRDTYPE
This is a user-specified 2-byte field that indicates the record type. For
MULTIRD, the record types are 10, 20, 30, and 40. See “Loading the DB2
data” on page 47 for an illustration of how this is used.

IRDRPTGR
This is the number of DB2 records that have been built in the IRDB2DAT
area. This parameter is related to an IRD for a file containing a repeating
group field where each group item becomes a separate DB2 row. This
scenario is discussed in “Handling repeating groups” on page 51. For
MULTIRD, the value in this field is 1.

IRDB2DLN
This is the length of the DB2 record. In MULTIRD, each of the 4 secondary
tables is a different length. This field has particular relevance in “Handling
repeating groups” on page 51.

No SQL statement can be processed when the IRDFUNCT parameter is L because
there is no connection to DB2.

General notes for MULTIRD
MULTIRD builds DB2 column values prior to issuing an SQL call or building a
load record. No field level reengineering needs to be performed so the DB2 column
values are built by MOVE statements.

When field level reengineering is required in an IRD, there is no field level
parameter provided by CICS VT.

46 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

Running VIDLOAD
The first time MULTIRD is tested is when you run VIDLOAD. Because multiple
output records are written for each VSAM record, you must specify the DD
statement LOADOUTM in the VIDLOAD JCL.

Figure 14 shows the JCL for migrating APPLCTL.

The record length of the output file is 242. This is the length of the longest DB2
row plus 2 bytes. This is explained next.

Loading the DB2 data
The output file your.APPLCTL.LOADDB2 from the VIDLOAD utility is loaded into
DB2. Because APPLCTL is converted to multiple tables, the records in this file are
for multiple tables in DB2.

MULTIRD specifies a value for IRDTYPE when IRDFUNCT is L. When you use the
VIDLOAD utility with the LOADOUTM DD, each record has a 2-byte prefix. The
prefix for records for the primary table is always 00. The prefix for the secondary
tables is whatever you set in IRDTYPE. Here is an extract of the load file for
APPLCTL:
----+----1----+----2----+----3----+----4----+----5----+----6
00AD2021010THOMSONJOSBORNEI1998-04-25......................
10AD2021010THOMSONJAPYACCTS PAYABLE BLENKINSOPFIONA 2
00FL3055020PALLINMJHALLAJ 2000-10-03........................
20FL3055020PALLINMJAPYCHEQUES ACCCHQ ACCCPAT1
00FL3055020THOMSONJHALLAJ 2000-10-03........................
20FL3055020THOMSONJAPYRECEIPTS ACCRCPT ACCCPAT1
00JB8383040MCGRAWA MCGURND 2005-11-15........................
40JB8383040MCGRAWA APYPAPD0205MONTHLY REPORTS YYYNNYMACCOUNT
00PG5267030STEWARTHRITCHIEA2004-06-28........................
30PG5267030STEWARTHAPYA407DLG LEDGER DAILY RECONCILE 00005

You must add a statement to your DB2 load utility control cards to select the
appropriate records. For example, to load the primary table use the control card:
WHEN (1:2) = '00’

Because of DB2 referential integrity, you must load the primary table first.

Loading large tables
The DB2 load utility reads every record in the input sequential data set to satisfy
the WHEN statement. If you are migrating a very large VSAM file, it is often more
efficient to split the VIDLOAD output file into a separate data set for each table.

//jobcard
//*
//VIDLOAD EXEC PGM=VIDLOAD,PARM=’APPLCTL’,REGION=8M
//STEPLIB DD DISP=SHR,DSN=appl.DRIVERS.LOAD
// DD DISP=SHR,DSN=VID.SVIDLODE
//SYSPRINT DD SYSOUT=*
//LOADIN DD DISP=SHR,DSN=your.VSAM.UNLOAD
//LOADOUTM DD DSN=your.APPLCTL.LOADDB2,
// DISP=(,CATLG,DELETE),
// UNIT=SYSDA,SPACE=(CYL,(150,35),RLSE),
// RECFM=FB,LRECL=242,

Figure 14. VIDLOAD JCL for multiple tables

Chapter 7. Record level reengineering 47

You can achieve this with DFSORT , like the example in Figure 15 .

MULTFBE exit
The FBE to handle APPLCTL is described in this section.

You can download the entire exit from the following link: This link opens in a new
window

WORKING STORAGE SECTION
Because MULTFBE contains SQL, the SQLCA and the DB2 tables accessed by the
exit are defined in working storage. The same copy members used in MULTIRD
are used in MULTFBE.
EXEC SQL

INCLUDE SQLCA
END-EXEC.

COPY APPLCTL1 .
COPY APPLCTL2 .
COPY APPLCTL3 .
COPY APPLCTL4 .

The copy members are created by the DB2 DCLGEN utility.

LINKAGE SECTION
The parameter list that CICS VT passes to an FBE is different to an IRD.

For MULTFBE, the linkage section is:
01 VSAM-FIELD PIC X(233).
01 DB2-FIELD PIC X(1) .
COPY VIDFBEC .

//jobcard
//*
//COPY1 EXEC PGM=SORT
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SORTIN DD DISP=SHR,DSN=your.APPLCTL.LOADDB2
//TYPE00 DD DSN=your.TYPE00.FILE,DISP=(,CATLG,DELETE),
// SPACE=(CYL,(350,100)),UNIT=SYSDA,AVGREC=U,
// DCB=your.APPLCTL.LOADDB2
//TYPE10 DD DSN=your.TYPE10.FILE,DISP=(,CATLG,DELETE),
// SPACE=(CYL,(150,75)),UNIT=SYSDA,AVGREC=U,
// DCB=your.APPLCTL.LOADDB2
//TYPE20 DD DSN=your.TYPE20.FILE,DISP=(,CATLG,DELETE),
// SPACE=(CYL,(750,200)),UNIT=SYSDA,AVGREC=U,
// DCB=your.APPLCTL.LOADDB2
//TYPE30 DD DSN=your.TYPE30.FILE,DISP=(,CATLG,DELETE),
// SPACE=(CYL,(1550,300)),UNIT=SYSDA,AVGREC=U
// DCB=your.APPLCTL.LOADDB2
//TYPE30 DD DSN=your.TYPE40.FILE,DISP=(,CATLG,DELETE),
// SPACE=(CYL,(450,100)),UNIT=SYSDA,AVGREC=U,
// DCB=your.APPLCTL.LOADDB2
//SYSIN DD *
OPTION COPY
OUTFIL FNAMES=TYPE00,INCLUDE=(1,2,CH,EQ,C’00’)
OUTFIL FNAMES=TYPE10,INCLUDE=(1,2,CH,EQ,C’10’)
OUTFIL FNAMES=TYPE30,INCLUDE=(1,2,CH,EQ,C’30’)
OUTFIL FNAMES=TYPE40,INCLUDE=(1,2,CH,EQ,C’40’)

Figure 15. JCL to create multiple load files

48 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

http://www-01.ibm.com/support/docview.wss?rs=1083&uid=swg24021465
http://www-01.ibm.com/support/docview.wss?rs=1083&uid=swg24021465

COPY APPLCTL .
01 DB2-RECORD-KEY .
02 DB2-OBJECT-ID PIC X(6) .
02 DB2-REC-TYPE PIC X(3) .
02 DB2-USER-ID PIC X(8) .

In the mapping shown in Figure 12 on page 43, MULTFBE is mapped against the
field called FILLER, which is 233 bytes. This field is not mapped to a DB2 column.
The second parameter which CICS VT passes to an FBE is the address of the DB2
column. Because no column is mapped to FILLER, no address is passed and the
linkage section field DB2-FIELD is a placeholder.

Main Logic
At the start, the exit establishes addressability to the VSAM field and the DB2
record.

The first test performed in MULTFBE is for EXFUNCT. If EXFUNCT = D, the call
being processed is either a WRITE/REWRITE or the VIDLOAD is executing. The
IRD MULTIRD is responsible for building the DB2 row. If EXFUNCT is not V,
MULTFBE ends.

The next test in MULTFBE is to establish the record type. The field RECORD-TYPE
is part of the key that is passed to the exit in the linkage section.
EVALUATE RECORD-TYPE

WHEN ’010’ PERFORM PROCESS-010-RECORD
WHEN ’020’ PERFORM PROCESS-020-RECORD
WHEN ’030’ PERFORM PROCESS-030-RECORD
WHEN ’040’ PERFORM PROCESS-040-RECORD

END-EVALUATE .

The processing at each PROCESS-0n0-RECORD is the same. MULTFBE issues an
SQL SELECT to the appropriate table, using a WHERE clause specifying the values
in the key of the VSAM record.

Each field is moved from the DB2 host variables in the select statement to the
appropriate field in the VSAM record, using the appropriate VSAM copybook
definition. The exit ends when the VSAM record is built.

No data reengineering is required.

Error handling
Error handling in MULTFBE is equivalent to error handling in MULTIRD, except
that different parameter names are used.

The significant fields for MULTFBE are as follows:
v EXSQLCA is set to the address of the exit SQLCA so that formatted SQL error

messages are issued.
v EXRET is set to E.

EXRET = E causes a U3107 abend in batch or a 3107 transaction abend in CICS.

General notes for MULTFBE
MULTFBE is a simple exit, and most of the coding is for the SQL SELECT
statements and the subsequent MOVE statements. There are separate MOVE

Chapter 7. Record level reengineering 49

statements for each discrete field, and this is largely for illustration purposes.
Because there is no data transformation, these moves could be combined into a
single block move.

Testing exits like MULTIRD and MULTFBE
There is no CICS VT stand-alone test facility for an IRD or FBE.

The initial testing occurs during data migration. The migration steps are as follows:

Unload the VSAM file

Use the standard VIDUNLOD utility to unload your VSAM file to a sequential
data set. The exits are not executed during this process.

Run the VIDLOAD utility

The VIDLOAD utility creates the file for loading to DB2. The IRD is invoked to
build the records to be loaded to the secondary tables. If you have field level FBEs,
these will be tested as well.

You can use CICS VT tracing to help to debug field level FBEs, but the trace will
not show any of the data built by an IRD like MULTIRD. You can browse the
LOADOUTM data set to review the effects of the IRD.

If you save the VIDLOAD input file, you can rerun it multiple times to help with
debugging. You can also use COBOL DISPLAYs or PL/I PUTs.

Run the DB2 load utility

This is the biggest test for an IRD like MULTIRD. If the exit is not building the
data correctly, packed decimal and date fields may be in error. The DB2 load utility
abends in this case.

Below are the typical error messages you will see if you have invalid packed
decimal or date data:

DSNU334I with error code = 04 indicates an invalid packed decimal value
DSNU334I with error code = 14 indicates an invalid date or time value

Run the VIDREAD utility with DMF

When the data is loaded to DB2, run the VIDREAD utility with dual mode facility
(DMF) active. This tests exits like MULTFBE. It also tests any field level FBEs.

You can use CICS VT tracing to help with debugging.

If you are dealing with large data volumes, limit the volume of tracing with the
TRACSET trace parameter.

Verify DB2 access paths

When you have successfully migrated the data to DB2, and successfully read it
with VIDREAD, check that the SQL in your exits is efficient. REBIND the DB2
packages for exits that contain SQL and specify EXPLAIN(YES).

50 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

Review the output that is generated to the PLAN_TABLE. A tablespace scan or any
form of sorting indicates an issue with either your SQL or a DB2 table or index
definition. You should also check that the attributes of host variable fields are
consistent with the associated DB2 column data type.

Handling repeating groups
A repeating field or structure is anathema in a relational database but
commonplace in VSAM files.

A number of different approaches can be considered for implementation in CICS
VT:
v If there is a single repeating field, each element can be a separate column with a

numeric suffix. If this DB2 design is acceptable, no exits are required and the file
can be mapped very quickly using the automated mapping facility. Be aware
that the maximum number of columns in a single table is limited by DB2 to 750.

v The entire array structure can be mapped as either a single DB2 column, a series
of columns if the structure size is more than 255 bytes, or a single VARCHAR
column.

v For a repeating group field, each instance can be a separate row in an additional
table. This is the only normalized design.

There are obvious limitations with the first two approaches although their
advantages is that the data is migrated to a single table and the migration effort is
minimized. The runtime performance is also minimized because data is processed
in a single I/O operation.

Implementing a normalized DB2 design
Assume that you decide to implement a normalized DB2 design with each group
entry becoming a separate DB2 row. To illustrate this consider the following
copybook extract:

A normalized design uses a secondary table containing 10 DB2 rows for each
VSAM record. The key of the secondary table is the same as the key of the primary
table, but with an additional column to achieve uniqueness. This can be a
timestamp column, or a numeric column which indicates the relative record
position within the group. The additional column value must be generated by the
IRD.

The secondary table is related to the primary tables through DB2 referential
integrity.

There are no sample CICS VT high-level language exits for this solution. The
following section highlights the variations in MULTIRD and MULTFBE that are
required.

05 RETL-PRICE-GROUP OCCURS 10 TIMES
10 RETL-PRICE-HIGH-SIZE-NUM PIC S999 COMP-3
10 RETL-PRICE-LOW-SIZE-NUM PIC S999 COMP-3
10 STK-RETL-SLS-PRICE PIC S9(5)V99 COMP-3
10 SKU-PRICE-CHNG-PCT PIC S9V9999 COMP-3
10 SKU-PRICE-CHNG-AMT PIC S999V99 COMP-3.

Figure 16. Repeating group field

Chapter 7. Record level reengineering 51

MULTIRD variations
There are no OCCURS clauses that have to be handle by the MULTIRD IRD exit.
Each update call accesses a single table. When an IRD exit has to handle an
OCCURS clause, insert processing, update processing, and initial load processing
are all different. These are discussed in this section.

Insert processing

If there are a fixed number of occurrences in each group, insert processing is
straightforward. Multiple rows are inserted by the IRD.

In some cases, an OCCURS clause may indicate the maximum number of items in
the group. Unused array items often have predefined values based on field
attributes, such as zero or low values. In this case, the exit has to determine how
many array items contain valid data to be inserted to DB2.

Update processing

A key factor affecting the complexity of the IRD is the update process. For
example, assume that RETL-PRICE-GROUP in the copybook extract in Figure 16 on
page 51 holds information for the last 10 variations in the price of an item, stored
chronologically. The first array element always contains latest price information.
When the price of an item changes, the oldest price information drops off, and the
nine remaining array elements are moved within the array. This is illustrated in the
VSAM record show in Figure 17, where 0 represents the latest price information
and -9 the oldest.

The application program issues a PUT/REWRITE call to add new price
information. The latest price information is always written to the first element, so
when this update takes place the remaining elements shift to the next element
along.

When you implement this as multiple rows in a DB2 table, you must ensure that
the same is achieved in your CICS VT exits. You could add a TIMESTAMP column
to the DB2 table, and use it as part of the ORDER BY cursor statement in the FBE.
If the column was defined as NOT NULL WITH DEFAULT, DB2 generates a value
corresponding to the date and time the insert takes place. This would also ensure
uniqueness of the primary key.

If a TIMESTAMP column is not desirable, the column value has to be generated by
the IRD.

Testing for an update

The effects of an update call for a normalized design vary. If the OCCURS clause
defines the maximum number of occurrences, an update call may mean one or
more SQL INSERTS. It can also mean one or more SQL UPDATES. SQL is the most
expensive part of an exit and minimizing SQL activity minimizes the overhead.

+------+------+------+------+------+------+------+------+------+------+
| 0 | -1 | -2 | -3 | -4 | -5 | -6 | -7 | -8 | -9 |
+------+------+------+------+------+------+------+------+------+------+

Figure 17. OCCURS field in VSAM record

52 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

It is essential that your IRD considers the implications of an update call on the
OCCURS table.

There are several different ways to approach this:
1. You can assume that the group OCCURS fields changes on every update call.

In this case, you may decide to delete all the rows in DB2 and insert new rows.
2. You can compare the updated data in the group field against the data in DB2.

If there is any difference, issue SQL delete calls and then insert new rows.
3. You can compare each group field value and issue SQL update calls for those

which have changed.

The greater the OCCURS number, the greater the SQL overhead to process the
OCCURS table. One way to eliminate unnecessary SQL calls is described in “Exit
work area” on page 54.

Initial data migration

The significant IRD parameters for initial data migration are described in “Build a
load record” on page 46. For a repeating group IRD, pay particular attention to
IRDRPTGR and IRDB2DLN.

To illustrate, consider the example of a group field with OCCURS 10. When
IRDFUNCT = L, the IRD must build all 10 records in a single contiguous area in
working storage or in the exit work area. Set the address of this area to IRDB2DAT.
You specify the number of DB2 records that you have built in this area in the
parameter IRDRPTGR. In this case, the value is 10.

The output data set created by the VIDLOAD utility contains records for the
primary DB2 table as well as the repeating group table. You must specify a value
in IRDTYPE to identify the repeating group table records. The area addressed by
IRDB2DAT looks like Figure 18.

In Figure 18, the boxes containing “a” correspond to the 2-byte IRDTYPE
parameter. The box containing “key+TS” refers to the concatenation of the DB2
primary key plus a TIMESTAMP column to make each row in the repeating group
table unique. The box containing “data” refers to each occurrence of the group
field.

Calculate the length of the entire area - a+key+TS+data - and store it in
IRDB2DLN.

MULTFBE variations
MULTFBE retrieves a single row from the appropriate table. When a group
OCCURS field is migrated to multiple rows, the FBE uses a cursor to retrieve all of
the DB2 rows to build the group OCCURS fields. An SQL code +100 is returned
when all rows have been fetched.

If your IRD is checking for updates to the group field, your FBE must store the
group field data when a get-for-update call is processed. EXCALL = GETU in this
case. This technique is described in “Exit work area” on page 54.

+-+--------+---------------+-+--------+---------------+-+--------+------\
|a|key+TS | data |a| key+TS | data |a| key+TS | data _
+-+--------+---------------+-+--------+---------------+-+--------+---------\

Figure 18. Repeating group record built by IRD

Chapter 7. Record level reengineering 53

Initial data migration to multiple tables

You use the VIDLOAD utility to convert the VSAM records into the appropriate
format for loading into DB2. When you are migrating to multiple DB2 tables using
a combination of an FBE and an IRD, you must specify the output DD statement
LOADOUTM. An example of the JCL is shown in Figure 14 on page 47.

Loading large tables

When a VSAM file is migrated to multiple DB2 tables, you use the LOADOUTM
DD statement in the VIDLOAD utility. The output sequential data set contains
records for all the tables associated with the file, and you must use the WHEN
statement in the DB2 load utility control cards.

The DB2 load utility reads every record in the input sequential data set to satisfy
the WHEN statement. If you are migrating a very large VSAM file, it is often more
efficient to split the VIDLOAD output file into a separate data set for each table.
You can achieve this with DFSORT, like the example in Figure 15 on page 48.

Exit work area
The exit work area is explained in “Passing data between exits” on page 27. You
can use this area to optimize the SQL that your IRD needs to perform for an
update call.

Assume that you have a file containing a 10-element array, and each array
occurrence corresponds to a separate row in DB2. When you use a secondary table
for handling repeating groups, a REWRITE call may update none, some, or all of
the array data. This means that the IRD exit has to perform a combination of SQL
INSERT, UPDATE, and DELETE calls.

To avoid potentially unnecessary SQL calls, add code to the FBE to store the array
in the exit work area on a get-for-update (GETU) call. On an update call, compare
the data and only issue SQL calls if the data has changed.

This technique is valid only if your programs update the last record read. If there
is a possibility that a program reads several records and then performs an update
against any previously read record, this technique is not valid.

Other IRD considerations
FBEs may be generic and reused in many fields across many VSAM files. IRDs
tend to be very specific to a particular VSAM file.

The two different uses of IRDs illustrated earlier in this section are the two most
common uses. There are features of IRD capability that are not used in these two
situations.

IRDTYPE parameter
This 2-byte field is used to identify secondary table records created by the
VIDLOAD utility. The sample MULTIRD explains one way to use it.

There are two other potential situations you should be aware of and these are
discussed next.

54 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

Suppressing IRDTYPE
In some cases, secondary table records may contain a field that uniquely identifies
each different record type.

For example, the extract of the file produced by the VIDLOAD utility shown in
“Loading the DB2 data” on page 47 shows record types of 10, 20, 30, and 40 in
position 1. MULTIRD uses the IRDTYPE parameter to set these record types. The
field RECORD-TYPE is at position 9 in these records, and it contains values of 010,
020, 030, and 040.

There is a pair of records for each record type. The first instance corresponds to the
record to be loaded to the primary table. The second instance corresponds to the
record to be loaded to the secondary table. Without the IRDTYPE parameter in
bytes 1 and 2, you are unable to code a WHEN (x:y) = ‘record_type' parameter in
the DB2 load utility to distinguish between records for the primary and secondary
tables.

When your data already has a field which uniquely identifies it, you can suppress
the 2-byte record identifier by specifying IRDTYPE = ??.

Generating records for multiple secondary table records
In MULTIRD, each VSAM record was split between the primary table and one of
four secondary tables. You may want to split a single VSAM record into several
different DB2 tables.

To illustrate this, assume that you want to split each VSAM record into one
primary table and three different secondary tables. CICS VT handles the data in
the primary table. Your IRD is responsible for processing the data in the three
secondary tables. The main consideration is handling the initial data migration.

The VIDLOAD utility creates fixed length output records. You specify the length of
the output record in IRDB2DLN. This is described in “Initial data migration” on
page 53. To migrate a VSAM record to three secondary tables, set IRDB2DLN to
the length of the longest of the three DB2 records. Pad shorter records with spaces.

IRDTYPE cannot be used to distinguish different record types in this situation.
Your IRD must build record identifier fields. For example, assume that the working
storage area your IRD builds that contains the data for the secondary tables is as
follows:
+-+---+--------+-----+-+---+--------------+-+---+----------+---+
|X|key| T1 data| pad |Y|key|T2 data |Z|key| T3 data |pad|
+-+---+--------+-----+-+---+--------------+-+---+----------+---+

This shows the area addressed by IRDB2DAT. The data for the first table (T1) has a
record identifier of X. The data for the second table (T2) has a record identifier of Y
and the data for the third table (T3) has a record identifier of Z. The T2 table has
the longest row, so the value your IRD sets in IRDB2DLN is T2 row length plus
the length of the record identifier. The data for tables T1 and T3 are padded to the
length of T2.

In this situation, always set IRDTYPE=??.

The DB2 load cards for the table T1 should include WHEN(1:n) = ‘X', and the
equivalent values for loading tables T2 and T3.

Chapter 7. Record level reengineering 55

Handling nullable columns in an IRD
The sample FBE CNULLCL shows you how CICS VT supports nullable DB2
columns.

You can only use an FBE for a field that is mapped to CICS VT. MULTIRD shows
that when you migrate a file to multiple DB2 tables, the IRD is responsible for
building DB2 column values for the secondary tables. The secondary tables are not
mapped to CICS VT, so your IRD is responsible for maintaining nullable secondary
table columns.

SQL statement for nullable columns
The IRD issues SQL insert and update calls.

When you are processing a nullable column, you must specify a null indicator
variable in the VALUES clause of your insert statement. Here is an example:
EXEC SQL

INSERT INTO TB_MYFILE (
MYFILE_KEY,
MYFILE_COL1,
MYFILE_COL1,
MYFILE_COL3)

VALUES (
:HV-KEY,
:HV-COL1,
:HV-COL2,
:HV-COL3:HVNULL-IND)

The column MYFILE_COL3 is nullable. The working storage variable
HVNULL-IND is the null indicator field. A value less than 0 will result in a null
value for this insert.

Data migration
The null indicator is not relevant for the initial data migration.

Your IRD decides if a nullable column value is valid or should become null. When
you want to specify a null value, move a predefined character, such as ‘@' to the
first value of the field in the VIDLOAD output record. In your DB2 load utility
control cards, add the statement
NULLIF POS1:POS1 = ’@’

to the utility control cards.

56 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

Chapter 8. Exit parameter lists

The exit parameter lists that are passed to FBEs and IRDs provide parameters and
storage areas to drive the logic.

For assembler exits, use the macros VIDFBEP and VIDIRDP in my .SVIDSAMP.
custom . COBOL versions are provided as copybooks in members VIDFBEC and
VIDIRDC.

The parameter list for FBEs is explained in “FBE parameter list” . The parameter
list for IRDs is explained in “IRD parameter list” on page 62 . In both cases, field
attributes are shown in COBOL.

Accessing exit parameters
When an FBE is invoked by CICS VT, addressability is provided to three
parameters:
v The address of the VSAM field the exit maps to.
v The address of the DB2 column that maps to the VSAM field. If the VSAM field

is not mapped to a DB2 column, the address is 0.
v The address of the FBE parameter list.

In a COBOL FBE, include appropriate variables in the linkage section. For a PLI
FBE, include them as parameters in the PROCEDURE statement. In an assembler
FBE, register 1 points to the three-word parameter list.

The following three parameters are passed to an IRD:
v The address of the VSAM record area
v The address of the DB2 record area
v The address of the IRD parameter list.

You address these parameters using the same techniques that are described for FBE
parameters.

FBE parameter list
The names, short descriptions, and attributes of the parameters are shown in
Table 3, followed by a more detailed explanation of each parameter.

Table 3. VIDFBE parameters

Parameter Description Attribute

EXDIMNAM DIM name PIC X(8)

EXDDMNAM DDM name PIC X(8)

EXFLDNAM VSAM field name PIC X(8)

EXCONVAD Address of VIDCONV USAGE IS PTR

EXVSAIO Address of VSAM record area USAGE IS PTR

EXDB2IO Address of the DB2 record area USAGE IS PTR

EXRSVD1 Reserved PIC X(4)

© Copyright IBM Corp. 2004, 2014 57

Table 3. VIDFBE parameters (continued)

Parameter Description Attribute

EXRSVD2 Reserved PIC X(4)

EXRSVD3 Reserved PIC X(4)

EXRSVD4 Reserved PIC X(4)

EXVSAFLD Address of VSAM field USAGE IS PTR

EXDB2FLD Address of DB2 column USAGE IS PTR

EXWRKA Address of 16k work area USAGE IS PTR

EXFLDNUM Field build order PIC S9(4) COMP

EXVSAFLN VSAM field length PIC X

EXDB2FLN DB2 column length PIC X

EXFUNCT Function to be performed PIC X

EXRET Exit return code PIC X

EXNULOFF Offset into null pool for column PIC S9(4) COMP

EXNULLS Address of null pool USAGE IS PTR

EXRTNTAB Address of field routine table USAGE IS PTR

EXFILLCH VSAM fill character PIC X

EXFLDTYP VSAM field type PIC X

EXFLDMAP Field is mapped PIC X

EXFLDNL DB2 column is nullable PIC X

EXDB2TYP DB2 column data type PIC X

EXCICS Exit running in CICS PIC X

EXFILLER Reserved PIC X(2)

EXSQLCA Address of SQLCA USAGE IS PTR

EXWRKDS Reserved USAGE IS PTR

EXVSABLD VSAM record area being built PIC X

EXRSVD5 Reserved PIC X

EXSTAT Return code from exit PIC X(4)

EXVSAFLV VSAM field length PIC S9(4) COMP

EXDB2FLV DB2 column length PIC S9(4) COMP

EXDB2BLD DB2 record area being built. PIC X

EXRSVD6 Reserved PIC X(3)

EXCALL VSAM call type PIC X(4)

Description and usage of FBE parameters
The description of some of the parameters refers to the sample exits in Chapter 5,
“Coding FBEs for field level reengineering,” on page 17 , Chapter 6, “FBE for
managing a control record,” on page 31 and “Multiple record type solution” on
page 43 .

EXDIMNAM
This is the name of the DIM being processed. This parameter is useful
when your exit is used by multiple DIMs, and the processing varies in
each case.

58 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

EXDDMNAM
This is the name of the DDM being processed.

EXFLDNAM
This is the name of the field that the exit is mapped to. This parameter is
useful when your exit is used by multiple fields and the processing varies
in each case.

EXCONVAD
This is the address of the VT module VIDCONV that contains the field
conversion routines. You use this in assembler FBEs to branch to
VIDCONV.

EXVSAIO
This is the address of the VSAM record area. If your FBE is operating at an
individual field level, like the samples CNULLCL or CJULGREG, this
parameter is not required. FBEs at a record level such as MULTFBE and
CTLRECF use this parameter.

EXDB2IO
This is the address of the DB2 record area and its usage is similar to
EXVSAIO.

EXRSVD1-4
Reserved.

EXVSAFLD
This is the address of the VSAM field the FBE is mapped to. Use this
parameter when your FBE is operating at an individual field level, like the
samples CNULLCL or CJULGREG.

EXDB2FLD
This is the address of the DB2 column the FBE is mapped to. This is only
valid for fields that are mapped to a column. If the field is not mapped to
a column, this address is zero. Usage is similar to EXVSAFLD.

EXWRKA
This is the address of the 16k work area that is shared between all the exits
in a single DIM. For assembler FBEs, use this to store the save area to
enable your FBE to be re-entrant. For high-level language FBEs, use this to
share data areas between exits.

EXFLDNUM
This is the build order number of this field in the mapping. If your FBE
handles multiple fields, you can use this parameter instead of
EXFLDNAM.

EXVSAFLN
This contains the length of the VSAM field. This is a 1-byte field and is
intended for use by an EXECUTE instruction in an assembler exit. (See
EXVSAFLV for high-level language FBEs).

EXDB2FLN
This is the length of the DB2 column. This is a 1-byte field and is intended
for use by an EXECUTE instruction in an assembler exit. (See EXDB2FLV
for high-level language FBEs).

EXFUNCT
This is the function being performed when the exit is invoked. Possible
values are:

V Building VSAM field

Chapter 8. Exit parameter lists 59

D Building DB2 field

If your FBE is mapped to a key field, use EXFUNCT in conjunction with
EXVSABLD and EXDB2BLD.

EXRET
This is the return code that is set by the FBE. Possible values are:

"blank"
Good return code. VT continues building the remaining mapped
fields.

Y Good return code. The IO area is fully built. This is used in
CTLRECF.

P Bad return code. Control returns to the application program.

E Bad return code. The VSAM call abends U3017 in batch and 3107
transaction abend code in CICS .

When an FBE is invoked, EXRET is blank. See EXSTAT.

EXNULOFF
VT maintains a table of null variables for every column in the table that
the DIM maps to. This field contains the offset in the table to the column
that is mapped to the field being processed by the exit.

EXNULLS
This is the address of the nulls table. To locate the null indicator variable
for any given field, add EXNULOFF to the address in EXNULLS. An
example of how to do this in COBOL is in CNULLCL.

EXRTNTAB
This is the address of the field routine table. This is for use by an
assembler FBE only.

EXFILLCH
This is the value of the filler character for unmapped areas of the VSAM
record area. This is user-specified in the mapping.

EXFLDTYP
This is the VSAM field type that is specified in the mapping. Possible
values are:

C The VSAM field contains character (or zoned decimal) data

P The VSAM field contains signed packed decimal data

U The VSAM field contains unsigned packed decimal data

H The VSAM field contains hexadecimal data

B The VSAM field is 2 fullwords and contains hexadecimal data

EXFLDMAP
This indicates if the VSAM field is mapped to a column. Possible values
are:

X'00' The field is mapped to a column

X'FF' The field is not mapped to a column

EXFLDNL
This indicates if the DB2 column in nullable. Possible values are:

N The DB2 column is not nullable

60 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

Y The DB2 column is nullable

EXDB2TYP
This is the DB2 column type that the field maps to. Possible values are:

F INTEGER

H SMALLINT

N DECIMAL

C CHAR

B BIGINT

V VARCHAR

D DATE

T TIME

S TIMESTAMP

EXCICS
This parameter is set to C if the exit is being invoked in a CICS
environment.

EXFILLER
Reserved

EXSQLCA
This is the address of the SQLCA. Set this to the address of the FBE
SQLCA to enable CICS VT to format and display the SQL code in the
VIDDMPD DD statement.

EXWRKDS
Reserved

EXVSABLD
This indicates that the VSAM record area is being built. It is only relevant
when EXFUNCT = V. Possible values are:

Y The VSAM IO area is being built

N A VSAM key value is being built for a call using a key

This parameter is required when the FBE is on a field that is part of the
key or an alternate index path. It is used in CTLRECF.

EXRSVD5
Reserved

EXSTAT
This is the status code returned by the exit. This is used in conjunction
with EXRET. It is set by CICS VT to 0000 when the FBE is invoked. If your
FBE sets EXRET = P, CICS VT sets EXSTAT to 0020.

EXVSAFLV
This is the length of the VSAM field. It is equivalent to EXVSAFLN but is
for use by high-level language exits.

EXDB2FLV
This is the length of the DB2 column. It is equivalent to EXDB2FLN but is
for use by high-level language exits. If you are processing a file containing
variable length records and your DB2 table has a VARCHAR column, this
field contains the length of the variable data.

Chapter 8. Exit parameter lists 61

EXDB2BLD
This indicates that the DB2 record area is being built. It is only relevant
when EXFUNCT = ‘D'. Possible values are:

Y The DB2 record area is being built

N A DB2 key value is being built for a call using a key

This parameter is required when the FBE is on a field that is part of the
key or an alternate index path. It is used in CTLRECF.

EXRSVD6
Reserved

EXCALL
This field shows the VSAM call being processed. Possible values are:

OPEN
CLOS
GETU
GET
LOAD
PUTI
PUTR
ERAS
POIN
ENDR

IRD parameter list
The names, short descriptions, and attributes of the parameters are shown in
Table 4, followed by a more detailed explanation of each.

Table 4. VIDIRDP parameters

Parameter Description Attribute

IRDIMNAM DIM name PIC X(8)

IRDDMNAM DDM name PIC X(8)

IRDCNVAD Address of VIDCONV USAGE IS PTR

IRDVSAIO Address of VSAM record area USAGE IS PTR

IRDDB2IO Address of DB2 record area USAGE IS PTR

IRDRSVD1 Reserved PIC X(4)

IRDRSVD2 Reserved PIC X(4)

IRDRSVD3 Reserved PIC X(4)

IRDRSVD4 Reserved PIC X(4)

IRDWRKA Address of 16k work area USAGE IS PTR

IRDFUNCT Function being performed PIC X

IRDRET Return code PIC X

IRDBA When exit is invoked PIC X

IRDSTAT Status code PIC X(2)

IRDCICS Exit running in CICS PIC X PIC X

IRDRPTGR Number of repeating groups PIC S9(4) COMP

62 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

Table 4. VIDIRDP parameters (continued)

Parameter Description Attribute

IRDTYPE Redefined record type PIC X(2)

IRDB2DLN Repeat group record length PIC S9(4) COMP

IRDB2DAT Address of repeat group USAGE IS PTR

IRDSQLCA Address of SQLCA USAGE IS PTR

Description and usage of IRD parameters
The explanation of the usage of some parameters refers to the sample exits in
Chapter 5, “Coding FBEs for field level reengineering,” on page 17, Chapter 6,
“FBE for managing a control record,” on page 31 and “Multiple record type
solution” on page 43.

IRDIMNAM
This is the name of the DIM.

IRDDMNAM
This is the name of the DDM.

IRDCNVAD
This is the address of the VT module VIDCONV that contains the field
conversion routines. You use this in assembler IRDs to branch to
VIDCONV.

IRDVSAIO
This is the address of the VSAM record area.

IRDDB2IO
This is the address of the DB2 record area.

IRDRSVD1-4
Reserved

IRDWRKA
This is the address of the 16k work area that is shared between all the exits
in a single DIM. For assembler IRDs, use this to store the save area to
enable your IRD to be re-entrant. For high-level language IRDs, use this to
share data areas between exits.

IRDFUNCT
This is the function being performed when the exit is invoked. Possible
values are:

I A new record is being inserted

D A record is being deleted

R An existing record is being updated

L The record is being processed by the VIDLOAD utility

X An exclusive table lock has been obtained (see PK14457)

IRDRET
This is the return code from the exit. Possible values are:

blank The exit has ended normally

Y The exit has ended normally and the call is complete

N The exit has ended and the call is not complete

Chapter 8. Exit parameter lists 63

P The exit has ended and a bad return code should be set

E CICS VT abends the call with U3018

X The exit has ended normally and obtained an exclusive table lock

IRDBA
This is the value specified in the mapping for the IRD processing sequence.
Possible values are:

B The exit is called before the DDM has issued an SQL call

A The exit is called after the DDM has issued an SQL call

blank The exit is called before and after the DDM has issued an SQL

IRDSTAT
The status code that CICS VT sets for the call. Possible values are:

OK A normal return code will be set

NO A bad return code will be set

If you set IRDRET = Y and IRDSTAT=NO, CICS VT sets a return code of
0020 for the call and writes the formatted SQLCA to VIDDMPD.

IRDCICS
This parameter is set to C if the exit is being invoked in a CICS
environment.

IRDRPTGR
This parameter is only used for the initial data migration. It is significant
when you have a repeating group or array and each group item becomes a
single DB2 row. You use it to define the number of DB2 records to be
written. It is explained further in “IRD parameters for data migration.”

IRDTYPE
Use this parameter to identify the output record type. It is only used for
the initial data migration and is explained further in “IRD parameters for
data migration.”

IRDB2DLN
Your exit defines the length of the output area that is built. This parameter
is only used for the initial data migration and is explained further in “IRD
parameters for data migration.”

IRDB2DAT
This parameter contains the address of the output area your exit builds. It
is only used for the initial data migration and is explained further in “IRD
parameters for data migration.”

IRDSQLCA
This is the address of the SQLCA. Set this to the address of the FBE
SQLCA to enable CICS VT to format and display the SQL code in the
VIDDMPD DD statement.

IRD parameters for data migration
You must use a combination of an IRD and FBE to migrate a dataset to more than
one DB2 table. Your IRD must take account of the initial data migration, when
IRDFUNCT=L. The IRD parameters IRDGPTR, IRDTYPE, IRDB2DLN, and
IRD2DAT are only used when IRDFUNCT=L.

64 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

To understand the use of these parameters, the following sections describe their
use in various scenarios.

Migrating a file with multiple record types

The sample exit MULTIRD details the FBE and IRD for migrating a file with
multiple record types. For each VSAM record, there are two DB2 records created
during initial migration; a record for the primary DB2 table and a record for the
appropriate record type DB2 table.

The values of the data migration parameters in this case are shown in Table 5:

Table 5. Data migration parameter settings

Parameter Name Parameter Value

IRDRPTGR A single record is written for each secondary table so the value is 1.

IRDTYPE The appropriate 2-byte record type indicator.

IRDB2DLN The length of the DB2 record excluding IRDTYPE.

IRDB2DAT The area in your exit where the DB2 record is built.

Migrating a file with a repeating group

When your file has a repeating group field, you may decide that the group field
data is migrated to a separate table containing one DB2 row for each group entry.
The values of the data migration parameters in this case are shown in Table 6.

Table 6. Data migration parameter settings

Parameter Name Parameter Value

IRDRPTGR The number of records to be written for the secondary table. If you
have an OCCURS DEPENDING ON clause then this parameter
value may vary.

IRDTYPE The appropriate 2-byte record type indicator.

IRDB2DLN The length of each DB2 record excluding IRDTYPE.

IRDB2DAT The area in your exit where the DB2 records are built.

Chapter 8. Exit parameter lists 65

66 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

Chapter 9. Generic assembler FBEs

Generic exits written in assembler are available for some common scenarios. These
have all been used in live customer situations.

The generic exits are as follows:

PACKC2F
Handles the conversion between unsigned packed decimal fields in VSAM
and signed decimal columns in DB2.

PACKDEC
Handles invalid packed decimal field values in a START/STARTBR/
POINT call.

NULLCOL
Enables a field containing a predefined value in VSAM to be stored as a
null value in DB2.

NULLCOLS
Enables a field containing common values such as spaces or binary zeros
to become null values in DB2.

BIT2CHAR
Stores bit data as discrete CHAR(1) values in DB2.

JULGREG
Transforms Julian date field values in VSAM to DB2 date column format.

These exits are available for downloading from the following link: This link opens
in a new window

Minor modifications may be required to BIT2CHAR and JULGREG if your field
attributes or lengths differ from those that these exits were initially written for.
Comments in the exits define the characteristics of the supported fields.

There has been no benchmarking to compare the performance of assembler exits
with the equivalent exits in COBOL.

PACKC2F
DB2 stores packed decimal data in signed format. In COBOL, a packed decimal
field can be defined as signed or unsigned as follows:

Signed:
PIC S999V99 COMP-3

Unsigned:
PIC 99999V99 COMP-3

Assume you have a field defined as PIC 999V99 COMP-3 (unsigned). In your
VSAM file, a value of 123.45 is physically stored as X'12345F'. DB2 treats all
decimal column values as signed. If you map this unsigned field to a decimal
column, CICS VT would return a field value of X'12345C' to your application.

Unless the field is part of the key or an alternate index path, it may not affect your
application program but it would be highlighted by the CICS VT dual mode

© Copyright IBM Corp. 2004, 2014 67

|
|
|

http://www-01.ibm.com/support/docview.wss?rs=1083&uid=swg24021465
http://www-01.ibm.com/support/docview.wss?rs=1083&uid=swg24021465

facility (DMF) as a difference, and therefore an error. To avoid this error use the
generic exit PACKC2F. It resets the sign bits from b'1100' to b'1111' when the field is
retrieved from DB2.

If the field is part of the base cluster key or an alternate index key, values retrieved
from DB2 must be converted to unsigned values using an exit such as PACKC2F.

PACKDEC
When a copybook field is mapped to a decimal or date DB2 column, invalid field
values from your existing application programs will result in an error, such as an
S0C7 abend or -310 SQL code. In most cases, invalid data is identified during
initial data migration, either during the VIDLOAD utility or during the DB2 load
process.

When a date or decimal column maps to a field or subfield which is the base
cluster or alternate index key, a data error may occur in calls such as START,
STARTBR, or POINT. For example, assume you have a group key field and the
subfields are a combination of zoned and packed decimal. If the key field is
initialized in a single COBOL MOVE statement, either the zoned or packed
decimal field will contain in invalid value. This is not an issue in VSAM but is an
issue when the data is in DB2.

The PACKDEC exit is used for a packed decimal key or alternate index field that is
mapped to a DEC column with the same length. If the exit is being called for a
direct read it tests the value of the first byte. If the first byte value is X'F0', the exit
overlays the entire field with packed decimal zero. Without the exit, an S0C7 abend
occurs.

NULLCOL
This exit translates predefined hexadecimal strings into nulls in DB2, and translates
a null back to the specified hexadecimal value on retrieval from DB2.

For example, your program could insert either high values or low values in a
packed decimal field to represent that a valid field value is not known. In a DB2
application, nulls are often used to represent column values that are not known at
insert time.

The field value must be coded as a constant in line 23 in the sample exit source as
follows:
NULLVAL DC X’FFFFFFF’ NULL VALUE

No other changes to the sample NULLCOL exit are required.

The NULLCOL exit should be copied to a new source member with an 8-byte
name and the appropriate nulls value specified at the NULLVAL label. The new
exit must be assembled and link-edited, and mapped, The mapping is shown in
Figure 19 on page 69:

68 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

Note that the exit compares the value of the entire VSAM field to the hard-coded
nulls value.

NULLCOLS
This generic exit is for mapping fields to nullable DB2 columns. Optional user
parameters specified in the mapping define the VSAM field values that are to
become nulls in DB2. The default version of the exit handles the conversion of
repeating bytes of binary zeros, binary ones, and spaces into nulls, and conversion
to any of these values on retrieval from DB2.

Much of the function of this exit is superseded by the built-in support for nullable
columns.

The exit must be mapped as follows:
EXITA=NULLCOLS,input,output

The parameter input defines the VSAM field value that is to become null in DB2.
The parameter output defines the field value to be built by CICS VT and returned
to VSAM. The value you specify must be repeated in each byte for the entire field.
Otherwise it is not treated as null.

Possible parameter values for inputare:

L Low values (binary zeros)

S Spaces

H High values (binary ones)

1-5 User defined

The output parameter is optional. If omitted, it is assumed to be the same as the
input parameter. Multiple input values can be specified if more than one VSAM
field value is to become null. In this case, if no output parameter is specified, the
exit assumes that the first input parameter represents the output parameter.

----------------------------- CICS VT: Update field ----------------------------
Command ===> __ Scroll ===> CSR_

Data set name : ORDERFL
Creator : PROD +
Table : ORDER_TAB +
Data set length: 00352

Field name : VIDF0019
Field length . . . ===> 00004 (In bytes)
Field type ===> P ("C", "P", "U", "X", "F", "H")
Column name . . . ===> CREATE_DATE................... + (Look-up available)
Starting position ===> 00259 ("1" = Beginning of data set)
Picture or FBE . . ===> EXITL=NULLSMP1____________ (example HH.XX.SS.NNNNNN)

(or MMDDYY)
(or EXITx=exit name)

Parameters ===> __________________________ Optional user parameters
Special function . ===> ___ ("KEY", "PTH", "BKY", or blank)
Mapped from table ===> P ("P"=Prim, "X"=Not mapped)
Build order . . . ===> 00019 ("1"=first, "2"=second and so on)

Press: Enter=Update PF3=Exit PF1=Help

Figure 19. Specifying an FBE exit

Chapter 9. Generic assembler FBEs 69

|
|

Example 1:
EXITA=NULLCOLS,S

An input field value of spaces becomes a null value in DB2. On retrieval from
DB2, the field will be spaces.

Example 2:
EXITA=NULLCOLS,LS

An input field value of binary zeros or spaces become null in DB2. On retrieval,
the field value becomes binary zeros.

Example 3:
EXITA=NULLCOLS

If no parameters are specified, the default is L. Binary zeros become null in DB2,
and the retrieved field value is binary zeros.

Example 4:
EXITA=NULLCOLS,,S

No input parameter is supplied, so the default is L. Field values of binary zeros
become nulls in DB2. On retrieval, the field value becomes spaces.

You can define up to five custom values to be handled as null bytes. This involves
modifying the exit source and assembling a new load module. There are
potentially 10 lines of assembler code near the start of the program to be modified.
SETNULL1 DC X’6F’ /* INPUT PARAMETER VALUE 1
SETNULL2 DC X’4B’ /* INPUT PARAMETER VALUE 2
SETNULL3 DC X’60’ /* INPUT PARAMETER VALUE 3
SETNULL4 DC X’00’ /* INPUT PARAMETER VALUE 4
SETNULL5 DC X’00’ /* INPUT PARAMETER VALUE 5

FILLVAL1 DC X’4B’ /* OUTPUT PARAMETER VALUE 1
FILLVAL2 DC X’FF’ /* OUTPUT PARAMETER VALUE 2
FILLVAL3 DC X’00’ /* OUTPUT PARAMETER VALUE 3
FILLVAL4 DC X’00’ /* OUTPUT PARAMETER VALUE 4
FILLVAL5 DC X’00’ /* OUTPUT PARAMETER VALUE 5

The SETNULLx fields define input parameters and the FILLVALn fields define output
parameters. Custom value parameters can be combined with supplied parameter
values.

Example 5:
EXITA=NULLCOLS,1SH

Input field values of X'6F', spaces, or binary ones become null values. No output
parameter is specified, so the first input parameter value is used, resulting in field
values x'6F' returned from DB2.

Example 6:
EXITA=NULLCOLS,1,2

VSAM field values of X'6F' become nulls, and are set to X'FF' on retrieval from
DB2.

70 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

BIT2CHAR
This generic exit converts bits in a binary string to DB2 character data. Each bit
becomes a byte. There are no parameters required.

The exit handles input field sizes of 1, 2, 3, or 4 bytes. The output DB2 columns
can be 1-byte columns, or 8, 18, 32, or 64 bytes. If the output is 1-byte columns
they must be adjacent in the DB2 table. For example:

VSAM Field DB2 Row

8 bits Either 8 x 1-byte columns
Or 2 x 4-byte columns
Or 1 x 8-byte column

32 bits Either 32 x 1-byte columns
Or 4 x 8-byte columns
Or 1 x 32-byte column

JULGREG
DB2 does not have the capability to store Julian dates (unless you use a LOCAL
date format). The exit JULGREG transforms a Julian date field value in VSAM to
the appropriate date value in DB2. Windowing enables you to set the appropriate
century. There are a number of different variations in fields that use Julian dates,
and the version currently supported by JULGREG has a VSAM field format of
YYDDDHHMM.

Chapter 9. Generic assembler FBEs 71

72 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

Chapter 10. Built-in conversion routines

There are many built-in data conversion routines provided with CICS VT.

“Converting from VSAM to DB2” on page 74 shows all of the routines for
converting a VSAM field to a DB2 column. “Converting from DB2 to VSAM” on
page 75 shows all of the routines for converting from DB2 to VSAM.

You can call any of the built-in conversion routines from within an exit. This can
be particularly useful when you are processing DATE, TIME, and TIMESTAMP
columns in DB2.

Do not statically link VIDCONV with your exit. Include VIDHLIPI in the link-edit.

Calling a VT conversion routine in COBOL
The format for calling the conversion routines in COBOL is as follows:
CALL VIDCONV USING vidconv-routine-number

source-field
source-field-length
source-field-picture
destination-field
destination-field-length
destination-field-picture
picture-field-length

Sample COBOL working storage variables
Here is an example of the working storage variables for a COBOL program. This is
taken from the CTLRECF sample exit described in Chapter 6, “FBE for managing a
control record,” on page 31.
* VIDCONV AND PARAMETER LIST VARIABLES
01 VIDCONV PIC X(8) VALUE ’VIDCONV ’ .
01 DB2-TO-VSAM-PARMLIST .

02 DB2-ROUTINE-NO PIC S9(8) COMP VALUE 50.
02 DB2-SOURCE-FIELD PIC X(8) .
02 DB2-SOURCE-FIELD-LEN PIC S9(8) COMP VALUE 8.
02 DB2-SOURCE-FIELD-PIC PIC S9(8) COMP VALUE 0.
02 DB2-DEST-FIELD PIC S9(7) COMP-3 .
02 DB2-DEST-FIELD-LEN PIC S9(8) COMP VALUE 4.
02 DB2-DEST-FIELD-PIC PIC X(6) VALUE ’HHXXSS’.
02 DB2-PIC-FIELD-LEN PIC S9(8) COMP VALUE 6.

01 VSAM-TO-DB2-PARMLIST .
02 VS-ROUTINE-NO PIC S9(8) COMP VALUE 20.
02 VS-SOURCE-FIELD PIC S9(7) COMP-3 .
02 VS-SOURCE-FIELD-LEN PIC S9(8) COMP VALUE 4.
02 VS-SOURCE-FIELD-PIC PIC X(6) VALUE ’HHXXSS’.
02 VS-DEST-FIELD PIC X(08) .
02 VS-DEST-FIELD-LEN PIC S9(8) COMP VALUE 8.
02 VS-DEST-FIELD-PIC PIC S9(8) COMP VALUE 0.
02 VS-PIC-FIELD-LEN PIC S9(8) COMP VALUE 6.

© Copyright IBM Corp. 2004, 2014 73

Using conversion routines
CICS VT uses the conversion routines based on mapping information and stores it
in the DIM. For example, if you have a field defined as type P for packed decimal
and you map it to a DECIMAL column, CICS VT will use the PACKDEC routine
for update and insert calls and DECPACK for retrieval calls.

Most of the conversion routines are provided for user-written FBE exits. If you are
writing CICS VT exits that use the VIDCONV routines, you can test that your
parameter list is correct and that the correct conversion is occurring using the
VIDFCTST program in the VID.SVIDLODE library. Input into the program consists
of an 80-byte record describing the name of the field conversion routine that is to
be invoked, the source and destination lengths, the picture, and the source data.

Output from the program is an 80-byte record that tests both conversion routines.
For example, if a test is performed for CHARDATE, the output also includes a test
for DATECHAR.

Member VIDCONVT in my.SVIDSAMP.custom contains sample JCL and
instructions on how to use this testing facility.

Converting from VSAM to DB2

Routine
number Routine name and function

Source
length
required

Dest length
required

Source PIC
allowed

Dest PIC
allowed Note

1 CHARINT Character to Integer Y N(4) N N

2 CHARSINT Character to SMALLINT Y N(2) N N

3 CHARDEC Character to Packed Y Y N N

4 CHARVCH Character to VARCHAR Y N N N

5 CHARDATE Character to DATE Y N(10) Y (req'd) N 2

6 CHARTIME Character to TIME Y N(8) Y (req'd) N 2

7 CHARDTIM Character to TIMESTAMP Y N(26) Y (req'd) N 2

8 ZONEINT Zoned to INTEGER Y N(4) N N

9 ZONESINT Zoned to SMALLINT Y N(2) N N

10 ZONEDEC Zoned to Packed Y Y N N

11 ZONECHAR Zoned to CHARACTER Y Y N N 1

12 ZONEVCH Zoned to VARCHAR Y N N N

13 ZONEDATE Zoned to DATE Y N(10) Y (req'd) N 2

14 ZONETIM Zoned to TIME Y N(8) Y (req'd) N 2

15 ZONEDTIM Zoned to TIMESTAMP Y N(26) Y (req'd) N 2

16 PACKINT Packed to INTEGER Y N(4) N N

17 PACKSINT Packed to SMALLINT Y N(2) N N

18 PACKDEC Packed to DECIMAL Y Y N N

19 PACKDATE Packed to DATE Y N(10) Y (req'd) N 2

20 PACKTIME Packed to TIME Y N(10) Y (req'd) N 2

21 PACKDTIM Packed to TIMESTAMP Y N(26) Y (req'd) N 2

22 BINSINT Binary to INTEGER Y Y N N

74 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

Routine
number Routine name and function

Source
length
required

Dest length
required

Source PIC
allowed

Dest PIC
allowed Note

23 BINDEC Binary to DECIMAL Y Y N N

1. A picture clause is required.
2. The ZONECHAR and CHARZONE routines require that the source and

destination lengths are the same.

Converting from DB2 to VSAM

Routine
number Routine name and function

Source
length
required

Dest
length
required

Source
PIC
allowed

Dest PIC
allowed Note

31 INTCHAR Integer to Character N(4) Y N N

32 SINTCHAR SMALLINT to Character N(2) Y N N

33 DECCHAR Packed to Character Y Y N N

34 VCHCHAR VARCHAR to Character N N N N

35 DATECHAR DATE to Character N(10) Y N Y (req'd) 1

36 TIMECHAR TIME to Character N(8) Y N Y (req'd) 1

37 DTIMCHAR TIMESTAMP to Character N(26) Y N Y (req'd) 1

38 INTZONE INTEGER to Zoned N(4) Y N N

39 SINTZONE SMALLINT to Zoned N(2) Y N N

40 DECZONE Packed to Zoned Y Y N N

41 CHARZONE Character to Zoned Y Y N N 2

42 VCHZONE VARCHAR to Zoned N Y N N

43 DATEZONE Date to Zoned N(10) Y N Y (req'd) 1

44 TIMEZONE TIME to Zoned N(8) Y N Y (req'd) 1

45 DTIMZONE TIMESTAMP to Zoned N(26) Y N Y (req'd) 1

46 INTPACK INTEGER to Packed N(4) Y N N

47 SINTPACK SMALLINT to Packed N(2) Y N N

48 DECPACK Packed to Packed Y Y N N

49 DATEPACK DATE to PACKED N(20) Y N Y (req'd) 1

50 TIMEPACK TIME to PACKED N(8) Y N Y (req'd) 1

51 DTIMPACK TIMESTAMP to PACKED N(26) Y N Y (req'd) 1

52 SINTBIN SMALLINT to Binary Y Y N N

53 DECBIN Packed to Binary Y Y N N

1. A picture clause is required.
2. The ZONECHAR and CHARZONE routines require that the source and

destination lengths are the same.

Chapter 10. Built-in conversion routines 75

76 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

Chapter 11. Supplementary information

Supplementary information about using CICS VSAM Transparency.

CICS VT transactions
The following table lists all of the transactions that are supplied with CICS VSAM
Transparency. All of the transactions can be found in the VID CSD group.

Table 7. List of CICS VT transactions

Transaction
Security
category Description

VTMA 2 Starts and stops the dual mode facility (DMF).

VTMC 2 Checks that the CICS installation was successful.

VTMD
2

Displays the list of files that have been migrated and their
current status.

VTMI 2 Starts and stops the CICS VT interface and reloads the DST.

VTMM 2 Changes the migration status of an individual file.

VTMT 2 Activates tracing in the CICS region.

VTMU 2 Provides CICS VT usage information.

VTMV 2 Runs the installation verification procedure.

CICS VT utilities and samples
The following tables list all of the utilities and sample JCL that are supplied with
CICS VSAM Transparency. You run the CICS VT utilities using the sample JCL to
set up CICS VT correctly and migrate data sets to DB2.

CICS VT provides sample JCL to help you correctly set up and configure the
product. This JCL is in the my.SVIDCNFG.cust library.

Table 8. Sample JCL to set up CICS VT

JCL Description

VIDCDEF Defines the CICS VT definitions to the CSD using the DFHCSDUP
utility.

VIDCDEF2 The new version 2.1 objects to be defined in the CICS CSD. It is
used if you are upgrading an existing version 1.2 installation.

VIDDEF Creates the CICS VT parameter data sets.

VIDGDMEX Assemble/link JCL and source for VIDDDMEX exit.

VIDSETUP Runs the CICS VT installation customization program.

CICS VT provides a number of utilities to prepare data sets for migration to DB2.
The sample JCL to run these utilities are in the my.SVIDSAMP.cust library. Some of
the sample JCL members have the same name as the utilities that they execute.

© Copyright IBM Corp. 2004, 2014 77

|

Table 9. Utilities and sample JCL for data migration

CICS VT Utility JCL name Utility description

VIDMAPIN VIDAUTOJ Gathers information about one or more VSAM data
sets for the automated mapping facility.

VIDFCTST VIDCONVT Tests the default data conversion routines.

VIDGDTAB VIDGDTAB Assembles the CICS VT data set table that contains
the list of migrated data sets.

VIDLOAD VIDLOAD Creates the DB2 load data set.

VIDLOADV VIDLOADV Falls back to VSAM.

VIDPATHM VIDPATHJ Manually maps alternate indexes.

VIDUNLOD VIDUNLOD Unloads a VSAM file to a sequential data set, prior
to converting the data to DB2 format.

VIDMIGGN None Generates the data migration jobs and control
information

VIDGFMX VIDGFMX Source code and assemble/link JCL for VIDFMSPX

To help you migrate your data sets to DB2, CICS VT provides sample JCL that you
can edit to run DB2 utilities. The sample JCL to run these utilities are in the
my.SVIDSAMP.cust library.

Table 10. Sample JCL for DB2 utilities

DB2 utility Sample JCL Description

REPAIR VIDB2RPR Resets the image copy pending a flag in DB2 after
using the LOAD utility with LOG NO specified.

LOAD VIDB2LD Loads the converted data to DB2.

RUNSTATS VIDRUNS Updates the DB2 catalog systems after the data is
loaded to DB2.

DSNTIAUL VIDTIAUL Generates the control cards for the DB2 LOAD
utility.

DSNTEP2 VIDTEP2 Runs the dynamic SQL in batch mode.

JCL to compile COBOL exit
//COB EXEC PGM=IGYCRCTL,REGION=2M,
// PARM=(QUOTE,NODYNAM,ADV,’BUF(12288)’,SOURCE,XREF,LIST,MAP)
//STEPLIB DD DSN=IGY320.SIGYCOMP,DISP=SHR
//SYSLIB DD DSN=DFH320.CICS.SDFHCOB,DISP=SHR
// DD DSN=DFH320.CICS.SDFHMAC,DISP=SHR
// DD DSN=DFH320.CICS.SDFHSAMP,DISP=SHR
// DD DSN=CICSVT.HLL.COPYBOOK,DISP=SHR
// DD DSN=my.SVIDSAMP.custom,DISP=SHR
//SYSIN DD DSN=CICSVT.HLL.EXIT.SOURCE(CTLRECF),DISP=SHR
//DBRMLIB DD DSN=CICSVT.HLL.EXIT.DBRMLIB(CTLRECF),DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),
// UNIT=SYSDA,SPACE=(80,(250,100))
//SYSUT1 DD UNIT=SYSDA,SPACE=(460,(350,100))
//SYSUT2 DD UNIT=SYSDA,SPACE=(460,(350,100))
//SYSUT3 DD UNIT=SYSDA,SPACE=(460,(350,100))
//SYSUT4 DD UNIT=SYSDA,SPACE=(460,(350,100))
//SYSUT5 DD UNIT=SYSDA,SPACE=(460,(350,100))
//SYSUT6 DD UNIT=SYSDA,SPACE=(460,(350,100))
//SYSUT7 DD UNIT=SYSDA,SPACE=(460,(350,100))

78 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

|||
|

|||

//LKED EXEC PGM=IEWL,REGION=2M,
// PARM=’LIST,XREF’,COND=(5,LT,COB)
//SYSLIB DD DSN=DFH320.SDFHLOAD,DISP=SHR
// DD DSN=CEE.SCEELKED,DISP=SHR
//VS2LIB DD DSN=CVT120.SVIDLODE,DISP=SHR
//SYSLMOD DD DSN=CICSVT.HLL.EXIT.LOAD(CTLRECF),DISP=SHR
//SYSUT1 DD UNIT=SYSDA,DCB=BLKSIZE=1024,SPACE=(1024,(200,20))
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//SYSIN DD *

INCLUDE VS2LIB(VIDHLIPI)
//BIND EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//DBRMLIB DD DISP=SHR,DSN=CICSVT.HLL.EXIT.DBRMLIB
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSTSIN DD *

DSN SYSTEM(DB2B)
BIND PACKAGE(VIDCOLL) +

MEMBER(CTLRECF) +
ISOLATION(CS) +
VALIDATE(BIND) +
RELEASE(COMMIT)

Note that the DB2 precompiler is invoked implicitly in this example.

Copybook and DDL for APPLCTL
Here is the DDL for the APPLCTL file that is discussed in Chapter 7, “Record level
reengineering,” on page 41. The primary table is called TB_APPLCTL. The four
secondary tables are called TB_APPLCTL_010, TB_APPLCTL_020,
TB_APPLCTL_030, and TB_APPLCTL_040.
CREATE TABLE TB_APPLCTL (

OBJECT_ID CHAR(06) NOT NULL
,REC_TYPE CHAR(03) NOT NULL
,USER_ID CHAR(08) NOT NULL
,USER_ID_LAST_CHG CHAR(08) NOT NULL
,LAST_CHG_DATE DATE NOT NULL
,PRIMARY KEY (OBJECT_ID, REC_TYPE, USER_ID))

IN CVTDB.APPLCTL0;

CREATE TABLE TB_APPLCTL_010(
OBJECT_ID CHAR(06) NOT NULL
,REC_TYPE CHAR(03) NOT NULL
,USER_ID CHAR(08) NOT NULL
,APPL_CODE CHAR(03) NOT NULL
,APPL_NAME CHAR(30) NOT NULL
,APPL_OWNER_LNAME CHAR(20) NOT NULL
,APPL_OWNER_FNAME CHAR(10) NOT NULL
,APPL_OWNER_PHONE CHAR(10) NOT NULL
,APPL_OWNER_DEPT CHAR(150) NOT NULL
,PRIMARY KEY (OBJECT_ID, REC_TYPE, USER_ID)
,FOREIGN KEY (OBJECT_ID, REC_TYPE, USER_ID)
REFERENCES TB_APPLCTL ON DELETE CASCADE)

IN CVTDB.APPLCTL1 ;

CREATE TABLE TB_APPLCTL_020(
OBJECT_ID CHAR(06) NOT NULL
,REC_TYPE CHAR(03) NOT NULL
,USER_ID CHAR(08) NOT NULL
,APPL_CODE CHAR(03) NOT NULL
,FILE_NAME CHAR(18) NOT NULL
,DD_NAME CHAR(08) NOT NULL
,PATH_NAME1 CHAR(08) NOT NULL
,PATH_NAME2 CHAR(08) NOT NULL
,PATH_NAME3 CHAR(08) NOT NULL

Chapter 11. Supplementary information 79

,PATH_NAME4 CHAR(08) NOT NULL
,PATH_NAME5 CHAR(08) NOT NULL
,PATH_NAME6 CHAR(08) NOT NULL
,KEY_LEN DEC(3,0) NOT NULL
,REC_LEN DEC(5,0) NOT NULL
,READ_FLG CHAR(01) NOT NULL
,DELETE_FLG CHAR(01) NOT NULL
,INSERT_FLG CHAR(01) NOT NULL
,UPDATE_FLG CHAR(01) NOT NULL
,MAXIMUM_CT DEC(13,0) NOT NULL
,MINIMUM_CT DEC(13,0) NOT NULL
,AVERAGE_CT DEC(13,0) NOT NULL
,SHR_OPT_1 DEC(1) NOT NULL
,SHR_OPT_2 DEC(1) NOT NULL
,DISK_VOL1 CHAR(06) NOT NULL
,DISK_VOL2 CHAR(06) NOT NULL
,DISK_VOL3 CHAR(06) NOT NULL
,DISK_VOL4 CHAR(06) NOT NULL
,DISK_VOL5 CHAR(06) NOT NULL
,PRIMARY KEY (OBJECT_ID, REC_TYPE, USER_ID)
,FOREIGN KEY (OBJECT_ID, REC_TYPE, USER_ID)
REFERENCES TB_APPLCTL ON DELETE CASCADE)

IN CVTDB.APPLCTL2 ;

CREATE TABLE TB_APPLCTL_030(
OBJECT_ID CHAR(06) NOT NULL
,REC_TYPE CHAR(03) NOT NULL
,USER_ID CHAR(08) NOT NULL
,APPL_CODE CHAR(03) NOT NULL
,PROGRAM_NAME CHAR(08) NOT NULL
,PROGRAM_DESCR CHAR(58) NOT NULL
,K_LOC DEC(9,0) NOT NULL
,ONLINE_FLG CHAR(01) NOT NULL
,BATCH_FLG CHAR(01) NOT NULL
,RUN_CYCLE CHAR(01) NOT NULL
,LANG CHAR(01) NOT NULL
,COMPILE_OPTIONS CHAR(50) NOT NULL
,PRIMARY KEY (OBJECT_ID, REC_TYPE, USER_ID)
,FOREIGN KEY (OBJECT_ID, REC_TYPE, USER_ID)
REFERENCES TB_APPLCTL ON DELETE CASCADE)

IN CVTDB.APPLCTL3 ;

CREATE TABLE TB_APPLCTL_040(
OBJECT_ID CHAR(06) NOT NULL
,REC_TYPE CHAR(03) NOT NULL
,USER_ID CHAR(08) NOT NULL
,APPL_CODE CHAR(03) NOT NULL
,JOB_NAME CHAR(08) NOT NULL
,JOB_DESCR CHAR(25) NOT NULL
,RERUNNABLE CHAR(01) NOT NULL
,CRIT_PATH CHAR(01) NOT NULL
,CALLOUT CHAR(01) NOT NULL
,MUST_COMPLETE CHAR(01) NOT NULL
,PREREQ CHAR(01) NOT NULL
,POSTREQ CHAR(01) NOT NULL
,RUN_CYCLE CHAR(01) NOT NULL
,REPORT_TITLE_01 CHAR(20) NOT NULL
,REPORT_TITLE_02 CHAR(20) NOT NULL
,REPORT_TITLE_03 CHAR(20) NOT NULL
,REPORT_TITLE_04 CHAR(20 NOT NULL
,REPORT_TITLE_05 CHAR(20) NOT NULL
,RESTART_INSTR CHAR(75) NOT NULL
,PRIMARY KEY (OBJECT_ID, REC_TYPE, USER_ID)
,FOREIGN KEY (OBJECT_ID, REC_TYPE, USER_ID)
REFERENCES TB_APPLCTL ON DELETE CASCADE)

IN CVTDB.APPLCTL4 ;

Here is the COBOL copybook for the APPLCTL file.

80 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

01 APPL-CONTROL-REC .
02 APPL-CONTROL-KEY .

03 MULTREC-KEY .
05 OBJECT-ID PIC X(6) .
05 RECORD-TYPE PIC X(3) .

88 OWNER-RECORD VALUE ’010’ .
88 FILE-RECORD VALUE ’020’ .
88 PROGRAM-RECORD VALUE ’030’ .
88 JOB-RECORD VALUE ’040’ .

05 USER-ID PIC X(8) .

02 TYPE-010-REC .
03 APPL-CODE PIC X(3) .
03 APPL-NAME PIC X(30) .
03 APPL-OWNER-LNAME PIC X(20) .
03 APPL-OWNER-FNAME PIC X(10) .
03 APPL-OWNER-PHONE PIC X(10) .
03 APPL-OWNER-DEPT PIC X(150) .
03 FILLER PIC X(10) .
03 USER-ID-LAST-CHG PIC X(8) .
03 LAST-CHG-DATE PIC S9(9) COMP-3 .

02 TYPE-020-REC REDEFINES TYPE-010-REC .
03 APPL-CODE PIC X(3) .
03 FILE-NAME PIC X(18) .
03 DD-NAME PIC X(8) .
03 PATH-NAME1 PIC X(8) .
03 PATH-NAME2 PIC X(8) .
03 PATH-NAME2 PIC X(8) .
03 PATH-NAME3 PIC X(8) .
03 PATH-NAME4 PIC X(8) .
03 PATH-NAME5 PIC X(8) .
03 PATH-NAME6 PIC X(8) .
03 KEY-LEN PIC S9(3) COMP-3 .
03 REC-LEN PIC S9(5) COMP-3 .
03 READ-FLG PIC X .
03 DELETE-FLG PIC X .
03 INSERT-FLG PIC X .
03 UPDATE-FLG PIC X .
03 MAXIMUM-CT PIC S9(13) COMP-3 .
03 MINIMUM-CT PIC S9(13) COMP-3 .
03 AVERAGE-CT PIC S9(13) COMP-3 .
03 SHR-OPT-1 PIC 9 .
03 SHR-OPT-2 PIC 9 .
03 DISK-VOL1 PIC X(6) .
03 DISK-VOL2 PIC X(6) .
03 DISK-VOL3 PIC X(6) .

03 DISK-VOL4 PIC X(6) .
03 DISK-VOL5 PIC X(6) .
03 FILLER PIC X(94) .
03 USER-ID-LAST-CHG PIC X(8) .
03 LAST-CHG-DATE PIC S9(9) COMP-3 .

02 TYPE-030-REC REDEFINES TYPE-010-REC .
03 APPL-CODE PIC X(3) .
03 PROGRAM-NAME PIC X(8) .
03 PROGRAM-DESCR PIC X(58) .
03 K-LOC PIC 9(9) .
03 ONLINE-FLG PIC X .
03 BATCH-FLG PIC X .
03 RUN-CYCLE PIC X .

88 DAILY VALUE ’D’ .
88 WEEKLY VALUE ’W’ .
88 MONTHLY VALUE ’M’ .
88 QUARTERLY VALUE ’Q’ .
88 YEARLY VALUE ’Y’ .
88 ON-REQUEST VALUE ’O’ .

Chapter 11. Supplementary information 81

88 SPECIAL VALUE ’S’ .
03 LANG PIC X .

88 COBOL-LANG VALUE ’C’ .
88 COBOL2 VALUE ’2’ .
88 COBOL-LE VALUE ’L’ .
88 ASSEMBLER VALUE ’A’ .
88 OTHER-LANG VALUE ’O’ .

03 SPECIAL-COMPILE-OPTIONS PIC X(50) .
03 DATA-CHANGE-FLG PIC X .
03 FILLER PIC X(100) .
03 USER-ID-LAST-CHG PIC X(8) .
03 LAST-CHG-DATE PIC S9(9) COMP-3 .

02 TYPE-040-REC REDEFINES TYPE-010-REC .
03 APPL-CODE PIC X(3) .
03 JOB-NAME PIC X(8) .
03 JOB-DESCR PIC X(25) .
03 RERUNNABLE-FLG PIC X .

88 YES VALUE ’Y’ .
88 NO-RERUN VALUE ’N’ .

03 CRITICAL-PATH-FLG PIC X .
88 YES VALUE ’Y’ .
88 NOT-CRITICAL VALUE ’N’ .

03 CALL-OUT-FLG PIC X .
88 YES VALUE ’Y’ .
88 NO-CALLOUT VALUE ’N’ .

03 MUST-COMPLETE-FLG PIC X .
88 YES VALUE ’Y’ .

88 NO-COMPLETE VALUE ’N’ .
03 PREREQ-FLG PIC X .

88 YES VALUE ’Y’ .
88 NO-PREREQ VALUE ’N’ .

03 POSTREQ-FLG PIC X .
88 YES VALUE ’Y’ .
88 NO-POSTREQ VALUE ’N’ .

03 JOB-RUN-CYCLE PIC X .
88 DAILY VALUE ’D’ .
88 WEEKLY VALUE ’W’ .
88 MONTHLY VALUE ’M’ .
88 QUARTERLY VALUE ’Q’ .
88 YEARLY VALUE ’Y’ .
88 ON-REQUEST VALUE ’O’ .
88 SPECIAL VALUE ’S’ .

03 REPORT-TITLE PIC X(20)
OCCURS 5 .

03 SPECIAL-RESTART-INSTR PIC X(75) .
03 FILLER PIC X(15) .
03 USER-ID-LAST-CHG PIC X(8) .
03 LAST-CHG-DATE PIC S9(9) COMP-3 .

82 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

Chapter 12. Glossary
access method control block (ACB)

A control block that links an application program (for example, a CICS
system) to VSAM or VTAM.

alternate index
For VSAM key-sequences data sets and entry-sequenced data sets, an
index of alternate keys that provides a path for secondary access to the
data set.

bind The process by which the output from the SQL precompiler is converted to
a usable control structure, often called an access plan, application plan, or
package. During this process, access paths to the data are selected and
some authorization checking is performed.

buffer pool
Main storage that is reserved to satisfy the buffering requirements for one
or more DB2 table spaces or indexes.

call attachment facility (CAF)
A DB2 attachment facility for application programs that run in TSO or
MVS batch.

copybook
The definition of a record structure that describes the record at a field level
to an application program.

data definition language (DDL)
A set of SQL statements used to create DB2 objects.

data migration component
The CICS VT component that is used to perform the initial data migration
from VSAM to DB2.

database request module (DBRM)
A data set member that is created by the DB2 precompiler and that
contains information about SQL statements. DBRMs are used in the bind
process.

data set definition module (DDM)
A module that is used by CICS VT at run time to access the migrated data
in DB2. One DDM is created for each base cluster and alternate index.

data set information module (DIM)
A module that defines the relationship between the VSAM record structure
and the DB2 table structure. One DIM is created for each base cluster and
alternate index path.

data set table (DST)
A CICS table that contains definition for all the VSAM data sets that are
migrated using CICS VT.

entry-sequenced data set (ESDS)
A VSAM data set whose records are physically in the same order in which
they were put in the data set. It is processed by addressed direct access or
addressed sequential access and has no index. New records are added at
the end of the data set.

© Copyright IBM Corp. 2004, 2014 83

field build exit (FBE)
A user written program that CICS VT uses for field level data
reengineering.

global user exit (GLUE)
A point in a CICS module at which CICS can pass control to a user-written
program (known as an exit program), and then resume control when the
program has finished. CICS VT uses a GLUE to intercept VSAM calls
issued by programs running in CICS.

installation verification procedure (IVP)
The series of post-configuration tasks that are used to verify that the set up
and configuration of CICS VT has been successful.

insert, replace delete exit (IRD)
A user written program that CICS VT uses to perform record level
reengineering.

Interactive System Productivity Facility (ISPF)
An IBM licensed program that serves as a full-screen editor and dialog
manager. Used for writing application programs, it provides a means of
generating standard screen panels and interactive dialogs between the
application programmer and terminal user.

job control language
A control language that is used to describe a job and its requirements to an
operating system.

Job Entry Subsystem (JES)
An IBM licensed program that receives jobs into the system and processes
all output data that is produced by jobs.

key-sequenced data set
In a z/OS environment, a VSAM file or data set whose records are loaded
in key sequence and controlled by an index.

library lookaside (LLA)
A facility in MVS/ESA that reduces library I/O activity by keeping
selected directory entries in storage, instead of making repetitive searches
of DASD.

mapping
A CICS VT process that establishes the relationship between a VSAM
record and a DB2 row, in order to generate DIM and DDM run time
modules.

mapping component
The CICS VT ISPF component that is used to perform mapping.

migration unit
A number of VSAM data sets that are migrated at the same time.

page set
A table space or index space. Each page set consists of a collection of
VSAM data sets.

primary index
An index that enforces the uniqueness of a primary key.

primary key
In a relational database, a unique, non-null key that is part of the
definition of a table. A table cannot be defnied as a parent unless it has a
unique key or primary key.

84 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

program list table (PLT)
The CICS control table that contains a list of programs. The programs in a
PLT can be executed as a group during CICS start up or shutdown, and
can be enabled and disabled as a group by a single CEMT transaction.

relative record data set (RRDS)
A VSAM data set organization, in which records are of fixed length and
are accessed by their relative record numbers. The relative record number
(RRN) of a record is its displacement (in records) from the beginning of the
data set.

relative record number (RRN)
In an RRDS, the number of the "slot" used to hold a record, that is its
displacement (in records) from the beginning of the data set.

run-time component
The component of CICS VT that intercepts VSAM calls issued by
application programs and processes them in DB2.

SQL Processor Using File Input (SPUFI)
A facility of the TSO attachment subcomponent that enables the DB2I user
to execute SQL statements without embedding them in an application
program.

storage group
A named set of disks on which DB2 data can be stored.

subsystem interface (SSI)
The MVS interface by which routines request services of, or pass
information to, subsystems. The SSI is used by CICS VT to intercept VSAM
calls issued by batch programs.

task-related user exit (TRUE)
A user exit program that is associated with specified events in a particular
task, rather than with every occurrence of a particular event in CICS
processing (as is the case with global user exits).

Chapter 12. Glossary 85

86 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

Appendix A. JCL to compile COBOL exit
//COB EXEC PGM=IGYCRCTL,REGION=2M,
// PARM=(QUOTE,NODYNAM,ADV,’BUF(12288)’,SOURCE,XREF,LIST,MAP)
//STEPLIB DD DSN=IGY320.SIGYCOMP,DISP=SHR
//SYSLIB DD DSN=DFH320.CICS.SDFHCOB,DISP=SHR
// DD DSN=DFH320.CICS.SDFHMAC,DISP=SHR
// DD DSN=DFH320.CICS.SDFHSAMP,DISP=SHR
// DD DSN=CICSVT.HLL.COPYBOOK,DISP=SHR
// DD DSN=my.SVIDSAMP.custom,DISP=SHR
//SYSIN DD DSN=CICSVT.HLL.EXIT.SOURCE(CTLRECF),DISP=SHR
//DBRMLIB DD DSN=CICSVT.HLL.EXIT.DBRMLIB(CTLRECF),DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),
// UNIT=SYSDA,SPACE=(80,(250,100))
//SYSUT1 DD UNIT=SYSDA,SPACE=(460,(350,100))
//SYSUT2 DD UNIT=SYSDA,SPACE=(460,(350,100))
//SYSUT3 DD UNIT=SYSDA,SPACE=(460,(350,100))
//SYSUT4 DD UNIT=SYSDA,SPACE=(460,(350,100))
//SYSUT5 DD UNIT=SYSDA,SPACE=(460,(350,100))
//SYSUT6 DD UNIT=SYSDA,SPACE=(460,(350,100))
//SYSUT7 DD UNIT=SYSDA,SPACE=(460,(350,100))
//LKED EXEC PGM=IEWL,REGION=2M,
// PARM=’LIST,XREF’,COND=(5,LT,COB)
//SYSLIB DD DSN=DFH320.SDFHLOAD,DISP=SHR
// DD DSN=CEE.SCEELKED,DISP=SHR
//VS2LIB DD DSN=CVT120.SVIDLODE,DISP=SHR
//SYSLMOD DD DSN=CICSVT.HLL.EXIT.LOAD(CTLRECF),DISP=SHR
//SYSUT1 DD UNIT=SYSDA,DCB=BLKSIZE=1024,SPACE=(1024,(200,20))
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//SYSIN DD *

INCLUDE VS2LIB(VIDHLIPI)
//BIND EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//DBRMLIB DD DISP=SHR,DSN=CICSVT.HLL.EXIT.DBRMLIB
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSTSIN DD *

DSN SYSTEM(DB2B)
BIND PACKAGE(VIDCOLL) +

MEMBER(CTLRECF) +
ISOLATION(CS) +
VALIDATE(BIND) +
RELEASE(COMMIT)

Note that the DB2 precompiler is invoked implicitly in this example.

© Copyright IBM Corp. 2004, 2014 87

88 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

Appendix B. Copybook and DDL for APPLCTL

Here is the DDL for the APPLCTL file that is discussed in Chapter 7, “Record level
reengineering,” on page 41. The primary table is called TB_APPLCTL. The four
secondary tables are called TB_APPLCTL_010, TB_APPLCTL_020,
TB_APPLCTL_030, and TB_APPLCTL_040.
CREATE TABLE TB_APPLCTL (

OBJECT_ID CHAR(06) NOT NULL
,REC_TYPE CHAR(03) NOT NULL
,USER_ID CHAR(08) NOT NULL
,USER_ID_LAST_CHG CHAR(08) NOT NULL
,LAST_CHG_DATE DATE NOT NULL
,PRIMARY KEY (OBJECT_ID, REC_TYPE, USER_ID))

IN CVTDB.APPLCTL0;

CREATE TABLE TB_APPLCTL_010(
OBJECT_ID CHAR(06) NOT NULL
,REC_TYPE CHAR(03) NOT NULL
,USER_ID CHAR(08) NOT NULL
,APPL_CODE CHAR(03) NOT NULL
,APPL_NAME CHAR(30) NOT NULL
,APPL_OWNER_LNAME CHAR(20) NOT NULL
,APPL_OWNER_FNAME CHAR(10) NOT NULL
,APPL_OWNER_PHONE CHAR(10) NOT NULL
,APPL_OWNER_DEPT CHAR(150) NOT NULL
,PRIMARY KEY (OBJECT_ID, REC_TYPE, USER_ID)
,FOREIGN KEY (OBJECT_ID, REC_TYPE, USER_ID)
REFERENCES TB_APPLCTL ON DELETE CASCADE)

IN CVTDB.APPLCTL1 ;

CREATE TABLE TB_APPLCTL_020(
OBJECT_ID CHAR(06) NOT NULL
,REC_TYPE CHAR(03) NOT NULL
,USER_ID CHAR(08) NOT NULL
,APPL_CODE CHAR(03) NOT NULL
,FILE_NAME CHAR(18) NOT NULL
,DD_NAME CHAR(08) NOT NULL
,PATH_NAME1 CHAR(08) NOT NULL
,PATH_NAME2 CHAR(08) NOT NULL
,PATH_NAME3 CHAR(08) NOT NULL
,PATH_NAME4 CHAR(08) NOT NULL
,PATH_NAME5 CHAR(08) NOT NULL
,PATH_NAME6 CHAR(08) NOT NULL
,KEY_LEN DEC(3,0) NOT NULL
,REC_LEN DEC(5,0) NOT NULL
,READ_FLG CHAR(01) NOT NULL
,DELETE_FLG CHAR(01) NOT NULL
,INSERT_FLG CHAR(01) NOT NULL
,UPDATE_FLG CHAR(01) NOT NULL
,MAXIMUM_CT DEC(13,0) NOT NULL
,MINIMUM_CT DEC(13,0) NOT NULL
,AVERAGE_CT DEC(13,0) NOT NULL
,SHR_OPT_1 DEC(1) NOT NULL
,SHR_OPT_2 DEC(1) NOT NULL
,DISK_VOL1 CHAR(06) NOT NULL
,DISK_VOL2 CHAR(06) NOT NULL
,DISK_VOL3 CHAR(06) NOT NULL
,DISK_VOL4 CHAR(06) NOT NULL
,DISK_VOL5 CHAR(06) NOT NULL
,PRIMARY KEY (OBJECT_ID, REC_TYPE, USER_ID)
,FOREIGN KEY (OBJECT_ID, REC_TYPE, USER_ID)
REFERENCES TB_APPLCTL ON DELETE CASCADE)

IN CVTDB.APPLCTL2 ;

© Copyright IBM Corp. 2004, 2014 89

CREATE TABLE TB_APPLCTL_030(
OBJECT_ID CHAR(06) NOT NULL
,REC_TYPE CHAR(03) NOT NULL
,USER_ID CHAR(08) NOT NULL
,APPL_CODE CHAR(03) NOT NULL
,PROGRAM_NAME CHAR(08) NOT NULL
,PROGRAM_DESCR CHAR(58) NOT NULL
,K_LOC DEC(9,0) NOT NULL
,ONLINE_FLG CHAR(01) NOT NULL
,BATCH_FLG CHAR(01) NOT NULL
,RUN_CYCLE CHAR(01) NOT NULL
,LANG CHAR(01) NOT NULL
,COMPILE_OPTIONS CHAR(50) NOT NULL
,PRIMARY KEY (OBJECT_ID, REC_TYPE, USER_ID)
,FOREIGN KEY (OBJECT_ID, REC_TYPE, USER_ID)
REFERENCES TB_APPLCTL ON DELETE CASCADE)

IN CVTDB.APPLCTL3 ;

CREATE TABLE TB_APPLCTL_040(
OBJECT_ID CHAR(06) NOT NULL
,REC_TYPE CHAR(03) NOT NULL
,USER_ID CHAR(08) NOT NULL
,APPL_CODE CHAR(03) NOT NULL
,JOB_NAME CHAR(08) NOT NULL
,JOB_DESCR CHAR(25) NOT NULL
,RERUNNABLE CHAR(01) NOT NULL
,CRIT_PATH CHAR(01) NOT NULL
,CALLOUT CHAR(01) NOT NULL
,MUST_COMPLETE CHAR(01) NOT NULL
,PREREQ CHAR(01) NOT NULL
,POSTREQ CHAR(01) NOT NULL
,RUN_CYCLE CHAR(01) NOT NULL
,REPORT_TITLE_01 CHAR(20) NOT NULL
,REPORT_TITLE_02 CHAR(20) NOT NULL
,REPORT_TITLE_03 CHAR(20) NOT NULL
,REPORT_TITLE_04 CHAR(20 NOT NULL
,REPORT_TITLE_05 CHAR(20) NOT NULL
,RESTART_INSTR CHAR(75) NOT NULL
,PRIMARY KEY (OBJECT_ID, REC_TYPE, USER_ID)
,FOREIGN KEY (OBJECT_ID, REC_TYPE, USER_ID)
REFERENCES TB_APPLCTL ON DELETE CASCADE)

IN CVTDB.APPLCTL4 ;

Here is the COBOL copybook for the APPLCTL file.
01 APPL-CONTROL-REC .

02 APPL-CONTROL-KEY .
03 MULTREC-KEY .

05 OBJECT-ID PIC X(6) .
05 RECORD-TYPE PIC X(3) .

88 OWNER-RECORD VALUE ’010’ .
88 FILE-RECORD VALUE ’020’ .
88 PROGRAM-RECORD VALUE ’030’ .
88 JOB-RECORD VALUE ’040’ .

05 USER-ID PIC X(8) .

02 TYPE-010-REC .
03 APPL-CODE PIC X(3) .
03 APPL-NAME PIC X(30) .
03 APPL-OWNER-LNAME PIC X(20) .
03 APPL-OWNER-FNAME PIC X(10) .
03 APPL-OWNER-PHONE PIC X(10) .
03 APPL-OWNER-DEPT PIC X(150) .
03 FILLER PIC X(10) .
03 USER-ID-LAST-CHG PIC X(8) .
03 LAST-CHG-DATE PIC S9(9) COMP-3 .

02 TYPE-020-REC REDEFINES TYPE-010-REC .

90 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

03 APPL-CODE PIC X(3) .
03 FILE-NAME PIC X(18) .
03 DD-NAME PIC X(8) .
03 PATH-NAME1 PIC X(8) .
03 PATH-NAME2 PIC X(8) .
03 PATH-NAME2 PIC X(8) .
03 PATH-NAME3 PIC X(8) .
03 PATH-NAME4 PIC X(8) .
03 PATH-NAME5 PIC X(8) .
03 PATH-NAME6 PIC X(8) .
03 KEY-LEN PIC S9(3) COMP-3 .
03 REC-LEN PIC S9(5) COMP-3 .
03 READ-FLG PIC X .
03 DELETE-FLG PIC X .
03 INSERT-FLG PIC X .
03 UPDATE-FLG PIC X .
03 MAXIMUM-CT PIC S9(13) COMP-3 .
03 MINIMUM-CT PIC S9(13) COMP-3 .
03 AVERAGE-CT PIC S9(13) COMP-3 .
03 SHR-OPT-1 PIC 9 .
03 SHR-OPT-2 PIC 9 .
03 DISK-VOL1 PIC X(6) .
03 DISK-VOL2 PIC X(6) .
03 DISK-VOL3 PIC X(6) .

03 DISK-VOL4 PIC X(6) .
03 DISK-VOL5 PIC X(6) .
03 FILLER PIC X(94) .
03 USER-ID-LAST-CHG PIC X(8) .
03 LAST-CHG-DATE PIC S9(9) COMP-3 .

02 TYPE-030-REC REDEFINES TYPE-010-REC .
03 APPL-CODE PIC X(3) .
03 PROGRAM-NAME PIC X(8) .
03 PROGRAM-DESCR PIC X(58) .
03 K-LOC PIC 9(9) .
03 ONLINE-FLG PIC X .
03 BATCH-FLG PIC X .
03 RUN-CYCLE PIC X .

88 DAILY VALUE ’D’ .
88 WEEKLY VALUE ’W’ .
88 MONTHLY VALUE ’M’ .
88 QUARTERLY VALUE ’Q’ .
88 YEARLY VALUE ’Y’ .
88 ON-REQUEST VALUE ’O’ .
88 SPECIAL VALUE ’S’ .

03 LANG PIC X .
88 COBOL-LANG VALUE ’C’ .
88 COBOL2 VALUE ’2’ .
88 COBOL-LE VALUE ’L’ .
88 ASSEMBLER VALUE ’A’ .
88 OTHER-LANG VALUE ’O’ .

03 SPECIAL-COMPILE-OPTIONS PIC X(50) .
03 DATA-CHANGE-FLG PIC X .
03 FILLER PIC X(100) .
03 USER-ID-LAST-CHG PIC X(8) .
03 LAST-CHG-DATE PIC S9(9) COMP-3 .

02 TYPE-040-REC REDEFINES TYPE-010-REC .
03 APPL-CODE PIC X(3) .
03 JOB-NAME PIC X(8) .
03 JOB-DESCR PIC X(25) .
03 RERUNNABLE-FLG PIC X .

88 YES VALUE ’Y’ .
88 NO-RERUN VALUE ’N’ .

03 CRITICAL-PATH-FLG PIC X .
88 YES VALUE ’Y’ .
88 NOT-CRITICAL VALUE ’N’ .

Appendix B. Copybook and DDL for APPLCTL 91

03 CALL-OUT-FLG PIC X .
88 YES VALUE ’Y’ .
88 NO-CALLOUT VALUE ’N’ .

03 MUST-COMPLETE-FLG PIC X .
88 YES VALUE ’Y’ .

88 NO-COMPLETE VALUE ’N’ .
03 PREREQ-FLG PIC X .

88 YES VALUE ’Y’ .
88 NO-PREREQ VALUE ’N’ .

03 POSTREQ-FLG PIC X .
88 YES VALUE ’Y’ .
88 NO-POSTREQ VALUE ’N’ .

03 JOB-RUN-CYCLE PIC X .
88 DAILY VALUE ’D’ .
88 WEEKLY VALUE ’W’ .
88 MONTHLY VALUE ’M’ .
88 QUARTERLY VALUE ’Q’ .
88 YEARLY VALUE ’Y’ .
88 ON-REQUEST VALUE ’O’ .
88 SPECIAL VALUE ’S’ .

03 REPORT-TITLE PIC X(20)
OCCURS 5 .

03 SPECIAL-RESTART-INSTR PIC X(75) .
03 FILLER PIC X(15) .
03 USER-ID-LAST-CHG PIC X(8) .
03 LAST-CHG-DATE PIC S9(9) COMP-3 .

92 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

You can perform most tasks required to set up, run, and maintain CICS VSAM
Transparency in one of these ways:
v Using a 3270 emulator logged on to CICS
v Using a 3270 emulator logged on to TSO
v Using a 3270 emulator as an MVS™ system console

IBM Personal Communications provides 3270 emulation with accessibility features
for people with disabilities. You can use this product to provide the accessibility
features you need for CICS VSAM Transparency.

© Copyright IBM Corp. 2004, 2014 93

94 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM United Kingdom
Laboratories, MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

© Copyright IBM Corp. 2004, 2014 95

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

96 CICS VSAM Transparency for z/OS2.1: Data Reengineering and Customization Guide

Readers’ Comments — We'd Like to Hear from You

CICS VSAM Transparency for z/OS
Version 2 Release 1
Data Reengineering and Customization Guide

Publication No. SC34-7250-01

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: +44 1962 816151
v Send your comments via email to: idrcf@uk.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
SC34-7250-01

SC34-7250-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM United Kingdom Limited
User Technologies Department (MP189)
Hursley Park
Winchester
Hampshire
United Kingdom
SO21 2JN

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

SC34-7250-01

	Contents
	Preface
	Who should use this manual?
	Who this book is for
	Abstract
	Other product publications
	Notes on terminology
	Conventions used in this book

	Chapter 1. Introduction to CICS VT
	Why reengineer your data?

	Chapter 2. Mapping a VSAM file to CICS VT
	Automated mapping facility
	Manual mapping facility
	Choosing the appropriate mapping method
	Simplifying automated mapping by copybook editing

	Chapter 3. Field level data reengineering by mapping
	How to enable automatic reengineering
	Specifying the VSAM field type
	Mapping fields to columns
	No data reengineering
	Data reengineering
	Date and time fields
	DATE picture strings
	Other date formats
	TIME picture strings

	Built-in conversion routines

	Chapter 4. Overview of CICS VT exits
	FBEs and IRDs – differences and similarities
	Data migration considerations

	Establishing when exits are required
	Copybook analysis
	Data analysis
	Data conversion errors during initial data migration
	Runtime data conversion errors

	Mapping an FBE
	Mapping an IRD
	What do I code first?

	Chapter 5. Coding FBEs for field level reengineering
	Converting between Julian and Gregorian date formats
	Using a nullable column in DB2
	Reformatting a date field
	General notes for FBEs
	Mixing exit languages
	Coding PL/I exits
	Exits that include SQL
	Calling other CICS VT routines
	Processing errors in an FBE
	Successful completion and continue processing the call
	Successful completion and the call is complete
	Unsuccessful completion and return control to application
	Unsuccessful completion and abnormally terminate
	User generated error messages
	Processing DATE columns in CICS VT exits
	Working with variable length data
	Terminating an LE/370 enclave
	Passing data between exits
	Performance implications of FBEs
	IOAREA building in CICS VT
	Handling multiple fields in an FBE
	FBE for a key or IBM AIX field

	Other potential uses for FBEs
	Assembler exit coding rules
	Register usage in assembler

	Chapter 6. FBE for managing a control record
	Definition of solution
	Field level reengineering
	Limitations of this solution

	Notes for CTLRECF
	Error processing

	COBOL code

	Chapter 7. Record level reengineering
	Relationship between an IRD and an FBE
	DB2 table design
	DB2 primary table
	DB2 secondary tables

	Recommended approach
	Multiple record type solution
	Mapping for APPLCTL
	Mapping for IRD exit

	MULTIRD exit
	WORKING STORAGE SECTION
	LINKAGE SECTION
	Main logic
	Test for the call type being processed
	Error handling
	Build a load record
	General notes for MULTIRD
	Running VIDLOAD
	Loading the DB2 data
	Loading large tables

	MULTFBE exit
	WORKING STORAGE SECTION
	LINKAGE SECTION
	Main Logic
	Error handling
	General notes for MULTFBE

	Testing exits like MULTIRD and MULTFBE
	Handling repeating groups
	Implementing a normalized DB2 design
	MULTIRD variations
	MULTFBE variations

	Exit work area
	Other IRD considerations
	IRDTYPE parameter
	Suppressing IRDTYPE

	Generating records for multiple secondary table records
	Handling nullable columns in an IRD
	SQL statement for nullable columns
	Data migration

	Chapter 8. Exit parameter lists
	Accessing exit parameters
	FBE parameter list
	Description and usage of FBE parameters

	IRD parameter list
	Description and usage of IRD parameters
	IRD parameters for data migration

	Chapter 9. Generic assembler FBEs
	PACKC2F
	PACKDEC
	NULLCOL
	NULLCOLS
	BIT2CHAR
	JULGREG

	Chapter 10. Built-in conversion routines
	Calling a VT conversion routine in COBOL
	Sample COBOL working storage variables

	Using conversion routines
	Converting from VSAM to DB2
	Converting from DB2 to VSAM

	Chapter 11. Supplementary information
	CICS VT transactions
	CICS VT utilities and samples
	JCL to compile COBOL exit
	Copybook and DDL for APPLCTL

	Chapter 12. Glossary
	Appendix A. JCL to compile COBOL exit
	Appendix B. Copybook and DDL for APPLCTL
	Accessibility
	Notices
	Trademarks

	Readers’ Comments — We'd Like to Hear from You

