
Hursley Performance

John Burgess

Trevor Clarke

 IBM®'s CICS® Transaction Server V3.1

 Web services Performance

Hursley Performance

John Burgess

Trevor Clarke

Overview
In this paper we compare the performance of the same workload in 3270-based and

Web service architectures. We used one of our traditional CICS®/DB2® workloads

and explain an easy way to measure its performance. Then we'll look at how we

converted this to a Web services based architecture using the CICS Web Services

Assistant (a CICS Transaction Server V3.1 feature) and show the results of re-

measuring performance with the new architecture. We will also show the effects of

using HTTPS to secure the TCP/IP sessions.

Starting point

CICS/DB2 workload (RTW)

The RTW is a standard workload used by the Hursley Performance team to assess

changes in performance characteristics within new releases of CICS code when

running DB2 applications. In these applications, the presentation logic is separated

from the business logic by an EXEC CICS LINK.

The workload has the following characteristics.

• All COBOL programs

• 7 unique transactions

• 20 Database Tables

• Average of 200 DB2 calls per transaction

• 54% Select, 1% insert, 1% update, 1%delete, 8% open cursor, 27% fetch

cursor, 8% close cursor

The front-end presentation logic is very simple. It receives data from the terminal,

passes it to the back-end business logic, and sends a response to the terminal when the

logic returns control. In this comparison, the front-end function will be replaced by

the Web services interface, consisting of a TCPIPSERVICE and a Web services

PIPELINE, with the same data passed to the back-end program. In the Web services

architecture, this data is generated by the client in XML format. The PIPELINE

converts it to the correct COMMAREA structure for the business logic, and back into

outbound XML for the client. Because of this conversion, the structure/complexity of

the COMMAREA becomes a major performance factor.

Network simulation

In the 3270 version of the RTW, the network is simulated by TPNS LU2 terminals.

TPNS runs on a separate z/OS system to avoid it affecting the CPU usage of the

system under test. The transaction rate can be increased by dynamically reducing the

‘user think time’. For this evaluation we have used 5 different transaction rates to

ensure scalability of each solution.

Environment

• LPAR with 3 dedicated CPUs on a 2084 332

• 2084 includes built in CPACF (CP assist for Cryptographic Function) and one

PCIXCC (Peripheral Component Interconnect Extended Cryptographic

Coprocessor)

• ESS800 DASD

Hursley Performance

John Burgess

Trevor Clarke

• z/OS 1.7

• DB2 V7.1

• CICS TS V3.1 with PTFs UK11615 and UK11616

Performance Data Collection

We used RMF to measure two important metrics for this comparison:

• Transaction rate (ETR), recorded by using TSO’s WLM definition panels to

put the CICS APPLID in a unique reporting group in the CICS subtype.

• CPU usage, recorded by putting the CICS region (JOBNAME) in a unique

WLM reporting group in the JES subtype.

After making the WLM definitions, we generated RMF ‘Mon I’ interval reports for

the 5 different ETRs. Since RMF reports CPU-used for a region as a percentage of the

RMF interval, with multiple CPUs available it is possible that the CPU time used is

greater than the interval time and hence reported as > 100%.

You can see the ETR and CICS CPU percentages in Figure 1.

3270 based RTW Benchmark results

40 60 80 100 120 140 160 180 200 220 240 260

Trans per second

0

50

100

150

200

250

C
P

U
%

3270 Access

Figure 1

We calculated CPU time per transaction of approximately 8.8 millisecond by dividing

the CPU% used by the transaction rate for each interval and then taking the average of

the five points.

After establishing this base for the 3270 architecture, we converted the workload to a

Web services architecture and measured again.

Hursley Performance

John Burgess

Trevor Clarke

Conversion to Web services

CICS side

We enabled the same backend business logic components as Web services. There are

currently two ways to achieve this. One is by using WebSphere Developer for zSeries

(WD/z) to generate CICS programs that will convert XML to COMMAREA and back

again. This technique results in a unique CICS conversion program for each Web

service. The other way is to use the CICS Web services Assistant (CWA) to generate

a WSBIND file for each Web service which is used by a single generic converter

program for all Web services in CICS.

We wanted to evaluate a CICS-only solution, so we chose CWA to enable our

application programs as Web services.

LS2WS

The CICS Web services Assistant supplies JCL (L2WS) which takes a Language

Structure source file and a parameter file as input. The Language structure is the

COMMAREA that’s the target for the converted XML. The field names in the

COMMAREA are used to create the XML tag names. The parameter file describes

certain characteristics of the Web service being created as shown in this example:

PDSLIB=//JOHNB.WEB.SERVICE (library containing commarea)
LANG=COBOL
PGMNAME=DB900002 (back-end CICS application)
REQMEM=COMMAREA (inbound commarea)
RESPMEM=COMMAREA (outbound commarea)
LOGFILE=/u/clarket/order0
URI=wsdl/soap11/order0 (URI for web service)
PGMINT=COMMAREA
WSBIND=/u/clarket/cts31/pipelines/soap11/pickup/order0.ws
bind
WSDL=/u/clarket/wsdl/order0.wsdl

The sample JCL to run LS2WS is supplied in DFHINST. When run, it creates WSDL

that describes how the client can invoke the Web service. Another output is the

WSBIND file that describes to the converter program how it should generate the

COMMAREA from the inbound XML and how to generate the outbound XML from

the COMMAREA. It is placed in an HFS directory which is associated with a

PIPELINE definition. When the PIPELINE is installed in CICS, a Web service and a

URIMAP definition are installed for all WSBIND files that are found in this directory.

TCPIPSERVICE

Since this project uses SOAP/HTTP as the Web service transport, the first resource

needed is the CICS TCPIPSERVICE. We simply defined one TCPIPSERVICE for a

Port 5025 and left the default transaction name as CWXN. The CWXN transaction

uses the inbound URI to locate the corresponding URIMAP which defines the

PIPELINE to use, the Web service name and transaction name (if not the default).

Hursley Performance

John Burgess

Trevor Clarke

PIPELINE

The PIPELINE definition, new to CICS TS V3.1, points to the directory containing

the WSBIND files needed to autoinstall Web services and associated URIMAPs when

you install the PIPELINE. However, we needed to change the transaction ID from

CPIH to unique names so that we could associate the different transactions with

different DB2 Entries. We manually defined and installed all the URIMAPs and Web

service definitions so that we could give each Web service a unique Transaction ID.

You still need to define a transaction resource but the program name on the definition

is ignored and it runs the PIPELINE program DFHPIDSH under that Transaction ID

instead.

 Overall view of CICS Web Services

Figure 2 shows the basic components of the Web services infrastructure.

HFS

WSDL

WSBind

CICS Web Services
Assistant

WEBSERVICE

pipeline
config

URIMAP

CICS TS V3.1TCPIPSERVICE

CPIHCWXN
Service

Requester

URIMAP
matching

CSOL

Pipeline

handlers

handlers

handlers

SOAP message

data mapping

Business

Logic

Language
structure

dynamic
install

dynamic
install

PIPELINE

Figure 2

Client Side

Once an application program has been made available as a Web service, it is the

responsibility of the client side to exploit it. How you accomplish this depends on the

platform and tooling you intend to use, but the common factor is the WSDL file that

was created by the LS2WS JCL. The WSDL describes how to invoke the Web service

and structure of the XML fields, and it can be used at run time by an application or it

can be used by platform-dependent pre-processing tooling to build the code needed to

invoke the Web service. For our testing purposes, we used our own internal tools to

simulate network clients invoking these services – the details are not relevant to the

results of the test.

Hursley Performance

John Burgess

Trevor Clarke

Web Service Benchmark results

We used the same techniques as before to collect performance data for this variation

of the workload. The tool simulating the network clients was run at 5 different “think

times” to match the previously achieved transaction rates and performance data

collected at these throughput rates. The data was mapped onto the chart (see Figure 3)

and compared to the previous 3270 architecture. The Trans per second for Web

services is based on what we call a business transaction -- that is, we count a CWXN

and the corresponding application transaction as one. Thus the Trans per sec is the

same as the inbound Web service requests per second, and is the same as the RMF

transaction rate divided by two.

40 60 80 100 120 140 160 180 200 220 240 260

Trans per second

0

50

100

150

200

250

C
P

U
%

3270 Access Web Services

Figure 3

Using the same methodology as before, the average cost of these applications used as

Web services is 10.1 milliseconds of CPU per transaction. This is approximately 14%

more CPU per transaction than for the 3270 architecture. The percentage change you

will see in your own system will depend on the architecture that you are migrating

from and the original size of your applications.

Using HTTPS

To assess the overhead of encrypting the data, we ran the same workload with SSL

connections and encrypted and decrypted the data between the clients and CICS

Transaction Server using the Triple Des 168 encryption algorithm. As in the previous

environment we used persistent connections.

We achieved this change of protocol on the server side by changing the

TCPIPSERVICE definition to SECURITY SSL(YES). Figure 4 shows the results.

Hursley Performance

John Burgess

Trevor Clarke

40 60 80 100 120 140 160 180 200 220 240 260

Trans per second

0

50

100

150

200

250

C
P

U
%

3270 Access Web Services SSL

Figure 4

There was an increase in CPU per transaction of about 3% when using HTTPS

persistent connections compared to HTTP. The cost of SSL encryption and decryption

will increase as the length of the data being transferred increases. In this case the data

passing between client and server was about 1K bytes per request. On this system, all

the encryption and decryption is done in the hardware by the CPACF associated with

each CPU, making SSL relatively inexpensive.

Effects of COMMAREA complexity

The greatest factor in Web services CPU costs is the XML parsing due to the

complexity of the COMMAREA structure. Data length and number of elements both

play a part in this. As the number of elements in the SOAP message increases, so does

the cost of parsing them. The length of the resulting data on the wire is affected, not

only by the number of elements, but also the length of the XML tags. You can use the

table to estimate additional costs for your own applications. If you use CWA, the

maximum tag name length is the same as the maximum COBOL data name length (30

bytes), so we have shown the two extremes.

 1 byte tag name 30 byte tag name

Every 100 elements Inbound 0.27ms CPU 0.56ms CPU

Every 100 elements Outbound 0.18ms CPU 0.39ms CPU

For example, our RTW workload had a COMMAREA with 10 inbound and 10

outbound elements. You might estimate the extra costs for an application with 50

inbound and 100 outbound elements with average tag sizes of 15 bytes like this:

(0.27+(0.56-0.27*(15/30))) *(50elements/100) = 0.20ms CPU for inbound elements

(0.18+(0.39-0.18*(15/30))) *(100elements/100) = 0.28ms CPU for outbound elements

That is, approximately an additional 0.48millisecs of CPU per transaction.

Hursley Performance

John Burgess

Trevor Clarke

Summary
There have been many performance improvements since the SOAP for CICS Feature

was introduced in CICS TS V2.2 and we are continually investigating ways of

improving performance even more.

These current performance measurements show that the Web services infrastructure

processing costs, excluding any application business logic, is just over 1millisec of

CPU per request for simple COMMAREA structures using HTTP on our 2084. Use

the LSPR to scale this to your own CPU model for capacity planning purposes.

The standard PIPELINE runs in OPENAPI and can also exploit multiple CPUs within

the CICS address space concurrently, making this solution scaleable within one CICS

region and not affecting normal CICS workload on the QR TCB.

This scalability was verified when we replaced the business components with ‘null’

components and, using a simple COMMAREA structure, we managed to handle 2000

inbound requests per second from one CICS region.

© Copyright IBM Corporation 2006

® IBM, CICS, DB2, z/OS and WebSphere are registered trademarks of

International Business Machines Corporation, in the United States, other

countries, or both.

