
0

IBM Software Group

© 2004 IBM Corporation

Delivering e-business access to CICS
IP CICS Sockets

Kenneth M Porter

IBM z/OS Communications Server Development
kmporter@us.ibm.com

1

IBM Software Group

© 2003 IBM Corporation1 CICS TS for z/OS | IP CICS Sockets

IP CICS Sockets Abstract

Business Needs

Components

Programming

Configuration and Setup

Recommendations

Summary

During this presentation we will explore the reasons why successful enterprises architect e-business solutions to
leverage the value of their CICS applications, the choices available to access CICS from the many different e-
business clients, and the merits of one choice over another. Customers frequently ask which access method is
‘best’ to access CICS. Whilst there is no one answer, we will discuss the environmental, functional and non-
functional factors that have a bearing on the answer to these questions.

Over the past 35 years, part of the success of CICS has been due to the fact it does supports many types of
clients, and in recent years the support of a choice of protocols, interfaces and APIs to connect to and from CICS
servers. SOAP, JCA, Java RMI, WebSphere MQ, HTTP, TCP/IP sockets… the choice seems endless. However,
choice can be overwhelming, and not making the right choice can lead to over-taxing demands on clients, less
than optimised networks and systems, and reduced flexibility for future access and re-use.

This presentation aims to outline which of these choices are industry best practice – ie. what are the strategic
options?

There are a number of redbooks and whitepapers referred to at the end of this presentation which will help you
explorer this topic in more detail.

So, lets get started. Moving to slide 2….

2

IBM Software Group

© 2003 IBM Corporation2 CICS TS for z/OS | IP CICS Sockets

3270

TOR
3270

AOR

TOR
LU62

FOR

VTAM

LU6.2

TCP/IP

Network

The Need for TCP based connections
Business Needs

3

IBM Software Group

© 2003 IBM Corporation3 CICS TS for z/OS | IP CICS Sockets

3270

TOR
3270

AOR

TOR
LU62

FOR

VTAM

LU6.2

TCP/IP

Network

TCP/IP

TOR
IP

The Need for TCP based connections
Business Needs

4

IBM Software Group

© 2003 IBM Corporation4 CICS TS for z/OS | IP CICS Sockets

The components supporting IP CICS Sockets
based applications

VTAM

TCP/IP

CICS/TS

IP CICS Sockets

VSAM

Compiler/Assembler/Linkedit

CICS programming skills

Socket programming skills

Components

5

IBM Software Group

© 2003 IBM Corporation5 CICS TS for z/OS | IP CICS Sockets

What is IP CICS Sockets ?

IP CICS Sockets is a component of the Communications
Server for OS/390 and z/OS, not CICS/TS itself.

It is a general-purpose sockets programming API to be used
by CICS application programmers for implementing native
(low-level) sockets communication in OS/390 and z/OS CICS
transaction programs.

None of the CICS TS TCP/IP related services (CWI, IIOP, ECI,
etc.) are based on CICS Sockets. They all use specialized
implementations that are based on the native TCP/IP sockets
APIs or UNIX System Services sockets.

Components

6

IBM Software Group

© 2003 IBM Corporation6 CICS TS for z/OS | IP CICS Sockets

Interfaces

IP and ICMP

TCP and UDP

Sockets Programming Interface

MQ DB2/DRDA HTTP(S) IIOP

MQAPI SQL HTML/.. RMI

User Applications

User
sockets
appli-

cations

• The sockets programming interface is a
rather low-level and sometimes complex
programming interface where the user's
application program must handle many
tedious details, such as converting data
between ASCII and EBCDIC on z/OS.

• The advantage of using the socket API
directly is the opportunity for developing
high-performing applications with a very
low software overhead.

• The higher in the protocol stack the user
application is located, the more abstract
the programming interfaces become
and the more services are done by the
protocol layers on behalf of the
application.

• The price is loss of detailed control over
the communication channel, which for
the majority of applications is of no
concern.

Applications and their relationship to the sockets programming
interfaces

Components

7

IBM Software Group

© 2003 IBM Corporation7 CICS TS for z/OS | IP CICS Sockets

The CICS Sockets Domain

CICS
Web

listener

CICS IIOP
listener

ECI over
TCP/IP
listener

CICS Sockets

CICS Sockets
APIs Traditional CICS APIs

The TCP/IP Sockets APIs

CICS Transaction Programs

These services are
based on the UNIX
System Services
C/C++ sockets API
(provided by
Language
Environment) and
the UNIX System
Services callable
APIs

These services are
based on the Sockets
Extended sockets APIs
(provided by
Communications
server)

CICS Region

CICS Sockets generic
listener services

The listeners are
the 'servers' as
seen from a
TCP/IP
perspective.

TCP/IP Communication into the CICS region
Components

8

IBM Software Group

© 2003 IBM Corporation8 CICS TS for z/OS | IP CICS Sockets

P
a
s
c
a
l

R
e
x
x

C
I
C
S

C
a
l
l

A
S
M
-
M
A
C
R
OEZASOKE

T

EZASM
I

TCP/IP provided C sockets API LE provided C/C++ sockets API

UNIX Systems Services provided callable BPX sockets API

X
T
I

SUN
3.9 NCS

X11
R4

DPI
1.2

RFC
1006

R
P
C

R
P
C

X
-

W
I
N

S
N
M
P

X
T
I

XPG
4.2

R
P
C

R
P
C

SUN
4.0 DCE

X
-

W
I
N

X11
R6

S
N
M
P

DPI
2.0

UNIX Systems Services provided Logical File System (LFS)

UNIX Systems Services and TCP/IP provided Physical File Systems (PFS) - AF_INET and AF_INET6

TCP/IP provided TCP/IP protocol stack

Sockets application programs or subsystems utilizing sockets APIs

1

2
3

4

1

1 11

1 3 33 2

4

4 4 4 4 4

z/OS V1R4 2 z/OS V1R5 3 Future candidates 4 Not plannedIPv6 enablement:

z/OS sockets API overview
Components

IBM Software Group

© 2003 IBM Corporation9 CICS TS for z/OS | IP CICS Sockets

Application

TCP UDP

IP and ICMP

Interfaces

BSD Sockets

Stream RawDatagram

STREAM DATA
GRAM

RAW

Reliable

Yes
(connec-

tion
oriented)

Applica-
tion

respon-
sibility

Applica-
tion

respon-
sibility

Data size Large
amounts

Fixed
datagram

size

Fixed
network

packet size

TCP/IP
protocol
interface

TCP UDP IP

An application programmer can use any of three types of sockets: a stream socket
(the most widely used socket type), a datagram socket, and a raw socket.

Socket types and their characteristics
Components

Stream socket characteristics:
Connection oriented, full duplex, reliability is part of transport
protocol layer, byte stream without transport protocol imposed
boundaries, and flow control.

Datagram socket characteristics:
Connectionless, no transport protocol reliability - if required it
must be part of the application protocol, no flow control, and a
datagram has a maximum size.

Raw socket characteristics:
Direct application access to network layer protocols. Other
characteristics resemble datagram sockets.

Most sockets applications use stream sockets (the TCP transport
protocol in a TCP/IP network environment).

IBM Software Group

© 2003 IBM Corporation10 CICS TS for z/OS | IP CICS Sockets

TCP UDP

IP and ICMP

Interfaces

Port 23 Port 13 Port 13 Port 520

MAC frame

MAC hdr
MAC
trailerTCP hdrIP hdr User data

Hardware
Address

IP
Address

Port
Number

Transport
Protocol

Send TCP data to IP address 10.0.1.1
and port number 13.

Telnet TimeD RouteD

ARP (Address
Resolution
Protocol) is used
to map IP
addresses to
hardware
addresses on a
LAN (MAC:
Medium Access
Control)

MAC address

IP address (10.0.1.1)

IP Packet
TCP segment

IP address
Transport protocol
Port number

IP Network

The addressing elements of a TCP/IP socket
Components

An incoming IP packet is passed from the networking layer to
either the TCP or UDP protocol layer, or to a raw socket or to a
part of the TCP/IP protocol stack that handles a given protocol,
depending on the PROTOCOL field in the IP header. In the TCP
or UDP layer, the correct socket to deliver input to is selected
based on the TCP or UDP header PORT field, which holds the
destination port number.
An application may use the same port number for both a stream
socket and a datagram socket.
One application may have many sockets open, and each socket
may be set up to serve different port numbers, if required.
Both server and client program sockets have port numbers. The
server's port number is generally pre-defined (most often referred
to as well-known port numbers) so client programs know how to
contact a given server program by server IP address, server port
number and protocol (typically TCP or UDP). Client programs
are often assigned a port number by their transport protocol layer
(a so-called ephemeral or short-lived port number that only has
meaning while the client program is active).

11

IBM Software Group

© 2003 IBM Corporation11 CICS TS for z/OS | IP CICS Sockets

10.1.1.1

TCP/UDP

IP/ICMP

Data Link

VIPA1: 10.2.1.1
VIPA2: 10.3.1.1

socket()
bind(80,10.3.1.1)
listen()
.....

socket()
bind(5082,INADDR_ANY)
listen()
.....

BIND-Specific Server Generic Server

If you try to start two or more servers that both bind to the same port number on the same
IP address (incl. INADDR_ANY), only the first server will succeed in starting up, the others
will end with address_in_use errors. Multiple servers can bind to the same port number, if
they bind to different specific HOME IP addresses.

socket()
bind(80,10.2.1.1)
listen()
.....

BIND-Specific Server

connect(80,10.2.1.1)

connect(80,10.3.1.1)

connect(5082,10.2.1.1)

connect(5082,10.3.1.1)

connect(5082,10.1.1.1)

Bind-specific or Generic servers
Components

12

IBM Software Group

© 2003 IBM Corporation12 CICS TS for z/OS | IP CICS Sockets

Bind-specific or Generic servers - Notes

A generic server (also known as an INADDR_ANY server) will accept
requests for all the HOME IP addresses of the stack, in this case: 10.1.1.1,
10.2.1.1, and 10.3.1.1
If the HOME list is dynamically extended through dynamic configuration
changes, the server will begin accepting requests for the added IP address
in addition to those that were active when the server was started.
INADDR_ANY is a symbol for the IPv4 address 0.0.0.0
If a server binds its listening socket to a specific IP address (that must be in
the HOME list of the TCP/IP stack that this server application interfaces to),
then that server will only receive connection requests that arrive for that
specific IP address and none of the other IP addresses in the HOME list.
If you need to start more servers on the same standard port number, such
as port 80, you can do so by making each of the servers bind-specific to
their individual IP addresses - typically virtual IP addresses (VIPA).

Components

13

IBM Software Group

© 2003 IBM Corporation13 CICS TS for z/OS | IP CICS Sockets

10.1.1.1

TCP/UDP

IP/ICMP

Data Link

VIPA1:
10.2.1.2

socket()
bind(80,0.0.0.0)
listen()
.....

Generic Server

connect(80,10.2.1.1)

connect(80,10.1.1.1)

TCP/UDP

IP/ICMP

Data Link

10.1.1.2

VIPA1:
10.2.1.1

connect(80,10.2.1.2)

connect(80,10.1.1.2)

STACK1 STACK2

z/OS LPAR

If a server is generic, then it will accept incoming connections to any IP address in the HOME list of
any TCP/IP stack that is active in that LPAR.
Sometimes that is desirable, and sometimes it isn't

Consider that the reason for two stacks most likely is separation of different network security zones,
and you most likely do not want users from both security zones accessing the same services

Generic servers in an LPAR with multiple TCP/IP stacks

Components

14

IBM Software Group

© 2003 IBM Corporation14 CICS TS for z/OS | IP CICS Sockets

Where is the end??

The nitty-gritty of sockets programming
The sockets API is a relatively low-level API that leaves many details to be handled by the

application programmer:

Clients must have knowledge about the server's location before they can contact the server. There
is no discovery mechanism at the sockets API layer.
Socket programs must deal with different data formats and include logic to do any necessary data
conversion, such as ASCII / EBCDIC translation, little Endian / big Endian fixed integer
conversions, IEEE floating point / proprietary floating point format conversions, etc.
User authentication (the plain standard sockets API does not include any functions to authenticate
end users before these are given access to a server program). Secure sockets layer (SSL) may
optionally authenticate a client and/or a server during connection establishment. SSL bases
authentication on X.509 certificates.
Transport layer buffer utilization may affect
certain aspects of the API. A read() or a write()
may not always read or write the expected number
of bytes.
Servers must be started manually before they can begin to
serve clients.
Stream sockets transport data in continuous bi-directional streams
without any notion of record boundaries.

Programming

IBM Software Group

© 2003 IBM Corporation15 CICS TS for z/OS | IP CICS Sockets

Source
program

Header files,
copy structures

Statically linked
socket modules

Socket run-time
support modules

Compile

Link/Bind

Execute

Sockets Library

A sockets library consists of:

Compile-time structures (header files,
copy structures, include files, macros,
etc.)
Statically linked modules (resolver
modules, interface stub routines, etc.)
Run-time modules (inter-address space
communication routines)

The resolver code is part of the sockets
library and is used for:

gethostbyname()
gethostbyaddr()

For CICS Sockets:
Compile SYSLIB: tcpip.SEZACMAC
Link/Bind SYSLIB: tcpip.SEZACMTX
Execute STEPLIB: tcpip.SEZALINK/LOAD and tcpip.SEZATCP

What is a sockets library?
Programming

When we create a sockets program, we use something which
generally is called a sockets library. A sockets library consists of
both compile-time structures, statically linked support modules,
and run-time support modules.
OS/390 uses a so-called stub-resolver approach, where the
resolver code is part of the sockets library and is either statically
linked into the application or is invoked as run-time modules as
part of the application process.
The resolver is used by certain functions in the socket library,
which are known as resolver calls, such as gethostbyname
(which is used to translate aTCP/IP host name to one or more IP
addresses). The resolver library routines are generally
considered part of a sockets library, but they are not basic socket
functions in the sense that a call to such a routine generates a
single interaction to the TCP or UDP transport functions. A call
to a resolver function may generate no calls to the transport
protocol layers, or it may generate a series of calls to the
transport protocol layer. A call to gethostbyname() may result in
basic sockets calls to socket(), send(), receive(), and close() for
communication with a name server.

IBM Software Group

© 2003 IBM Corporation16 CICS TS for z/OS | IP CICS Sockets

LST1

LST2

TRNA

EZAO

EZAC

PLTx

Pool of reusable
socket subtasks

TCP/IP
Stack

T
R
U
E

Build
EZACICD

Conf.
file

CICS/ESA or
CICS TS Region

• Multiple listeners – each instance
separately configurable

• Multiple listeners in many CICS
regions can share listener port
number

• User ID security
• Configuration file and transaction

(EZAC)
• Operations transaction to start/stop

individual listeners (EZAO)
• PLT-enabled start and termination
• Reusable subtasks
• IPv6 (AF_INET6) enabled in z/OS

V1R5

CICS Sockets is
implemented as an External
Resource Manager in CICS.

IP CICS sockets structural overview
Programming

Functional enhancements: configuration file with info on multiple listeners
per CICS image. Each listener can be controlled via port number, queue
length, ASCII/EBCDIC translation, security exit, timeouts. Security exit
may use CICS user ID security instead of terminal-related security
(requires CICS V4 and write own EZACICSE security exit routine, that
returns the user ID to start the transaction under). Configuration file may
be built by batch utility and/or maintained with the EZAC transaction.
Start/Stop can be done via CICS PLT processing - incl. enabling TRUE
and starting listener transactions. Individual listeners can be
stopped/started via the EZAO transaction. Special gethostbyname()
module (EZACIC25) should be used by CICS transactions. A DNS cache
file is maintained (may be a CICS data table). Initial content can be loaded
by batch utility.
Performance enhancements: Subtasks are not started/stopped per
transactions; but are started when the CICS socket environment initializes.
A configuration parameter specifies the number of reuseabale subtasks to
start (excl. listeners - they each have a permanent subtask). Parallel
listeners allow a higher number of transaction initiations. The DNS cache
improves performance for frequently resolved names. Subtasks use
HPNS and not IUCV for communication with the TCP/IP V3R2 stack.
The enhanced CICS socket was made available late June 97.
CICS sockets registers with WLM during initialization.

17

IBM Software Group

© 2003 IBM Corporation17 CICS TS for z/OS | IP CICS Sockets

P
a
s
c
a
l

R
e
x
x

C
I
C
S

C
a
l
l

A
S
M
-
M
A
C
R
OEZASOKE

T

EZASM
I

TCP/IP provided C sockets API LE provided C/C++ sockets API

UNIX Systems Services provided callable BPX sockets API

X
T
I

SUN
3.9 NCS

X11
R4

DPI
1.2

RFC
1006

R
P
C

R
P
C

X
-

W
I
N

S
N
M
P

X
T
I

XPG
4.2

R
P
C

R
P
C

SUN
4.0 DCE

X
-

W
I
N

X11
R6

S
N
M
P

DPI
2.0

UNIX Systems Services provided Logical File System (LFS)

UNIX Systems Services and TCP/IP provided Physical File Systems (PFS) - AF_INET and AF_INET6

TCP/IP provided TCP/IP protocol stack

Sockets application programs or subsystems utilizing sockets APIs

1

2
3

4

1

1 11

1 3 33 2

4

4 4 4 4 4

z/OS V1R4 2 z/OS V1R5 3 Future candidates 4 Not plannedIPv6 enablement:

z/OS sockets API overview
Programming

IBM Software Group

© 2003 IBM Corporation18 CICS TS for z/OS | IP CICS Sockets

IP CICS Sockets APIs

The following APIs are supported for use in IP
CICS Sockets programming:
– CALL instruction

• CALL EZASOKET
• CALL EZACICSO
• CALL EZACICAL

– C functions
• socket()

Programming

The Macro API is implemented by the use of the EZASMI assembler macro.
The CALL Instruction (CALL) API is implemented by calling EZASOKET.
Notes:
1 - Implemented internally.
See z/OS V1R4.0 Communication Server: IP Application Programming Interface Guide
for details on Macro, CALL and REXX APIs.

IBM Software Group

© 2003 IBM Corporation19 CICS TS for z/OS | IP CICS Sockets

IP CICS Sockets API commands

The following API commands are supported for use in IP CICS
Sockets programming:
– ACCEPT, BIND, CLOSE, CONNECT, FCNTL, GETCLIENTID,

GETHOSTBYADDR, GETHOSTBYNAME, GETHOSTID,
GETPEERNAME, GETSOCKNAME, GETSOCKOPT,
GIVESOCKET, INITAPI, INITAPIX, IOCTL, LISTEN, READ,
READV, RECVFROM, RECVMSG, SELECT, SELECTEX, SEND,
SENDMSG, SENDTO, SETSOCKOPT, SHUTDOWN, SOCKET,
TAKESOCKET, TERMAPI, WRITE, WRITEV

The following API functions are supported for use in IP CICS C
Sockets programming:
– accept(), bind(), close(), connect(), fcntl(), getclientid(),

gethostbyaddr(), gethostbyname(), gethostid(), gethostname(),
getpeername(), getsockname(), getsockopt(), givesocket(), initapi(),
ioctl(), listen(), read(), recv(), recvfrom(), select(), send(), sendto(),
setsockopt(), shutdown(), socket(), takesocket(), write()

Programming

The Macro API is implemented by the use of the EZASMI assembler macro.
The CALL Instruction (CALL) API is implemented by calling EZASOKET.
Notes:
1 - Implemented internally.
See z/OS V1R4.0 Communication Server: IP Application Programming Interface Guide
for details on Macro, CALL and REXX APIs.

IBM Software Group

© 2003 IBM Corporation20 CICS TS for z/OS | IP CICS Sockets

Remember this,
Please!!

CICS C-Socket Program
Linkage Edit control:

//SYSLIN DD *
INCLUDE SYSLIB(EZACIC07)
NAME MYCPGM(R)

/*

CICS Call EZACICAL and Call
EZASOKET program Linkage Edit control:

//SYSLIN DD *
INCLUDE SYSLIB(EZACICAL)
NAME MYSOKPGM(R)

/*

PQ28963 ships
re-entrant
version of
EZACIC07,
called
EZACIC17.

CICS Task Related User Exit (EZACIC01)

EZACICAL API
EZASOKET /
EZACICSO API C API

Call EZASOKET

EZACIC03 Subtask EZACIC03 Subtask EZACIC03 Subtask

EZACICAL/EZASOKET/EZACICSO EZACIC07/17
Pass call parmlist on to EZACIC01 via a
DFHRMCAL call

1 If parmlist is EZACICAL parmlist, convert it into an EZASOKET parmlist
2 Call EZACICFN to transform EZASOKET callable into EZASMI macro
3 Dispatch/post subtask (EZACIC03)

Call
EZBSOH03

Call
EZBSOH03

Call
EZBSOH03

CICS Region

If you use the new entry
point name (EZACICSO)
that was introduced in
z/OS V1R4, then you
don't have to do anything
special during link-edit of
your CICS sockets
program.
If your program calls
EZACICAL or
EZASOKET, please make
sure you submit link-edit
input control statements
as outlined below.

IP CICS Sockets APIs
Programming

Both CICS C-sockets and Call EZACICAL socket programs are transformed into
calls to the sockets extended callable API before the socket calls are passed
down to the socket communicating subtasks, making the full CICS socket
implementation much more streamlined. The subtasks now only have to do call
routing on behalf of the CICS task.
Really, EZACICAL calls are transformed directly into EZASMI macro calls by
EZACIC01, there's not a transform to EZASOKET first. (According to Bill Kelsey,
Oct 2001).
A CICS task may use sockets extended callable sockets, including assembler
callable sockets; but not the sockets extended assembler macro API.
There is no change in the linkageedit control statements from V3R1 to V3R2 - for
a CICS C-socket program you still need to include EZACIC07, and for both
sockets extended and EZACICAL callable programs, you need to include the
EZACICAL module (the EZACICAL module includes both an EZACICAL and an
EZASOKET entry point for CICS sockets).
There are no changes in the definition of CICS sockets to CICS.
The CICS Listener has been changed to using sockets extended calls only.
There are no additions to the CICS C-socket functions. The sockets extended
callable API in CICS has been extended with readv(), recvmsg(), selectex(),
sendmsg(), and writev(). - getibmopt() and setibmopt() are not supported by
CICS sockets.
The implicit initapi() or explicit with TCPNAME=space is supported in CICS and a
search in TCPIP.DATA will be performed by the socket subtasks (not the CICS
task!).
Gethostbyname() (Sockets extended only) in CICS works with a name server, but
not with a local hosts file.

21

IBM Software Group

© 2003 IBM Corporation21 CICS TS for z/OS | IP CICS Sockets

Affinity to one of more stacks in an LPAR can be established at an address-space level and will be in
effect for all TCP/IP access from that address space.
The simplest way to establish stack affinity is to add a small job step to your CICS start up procedure:

//DFHSTART PROC START='INITIAL',
// INDEX1='USER1.CICS130',
// INDEX2='CICSTS.V1R3M0.CICS',
// REGNAM='',
// REG='64M',
// DUMPTR='YES',
// RUNCICS='YES',
// OUTC='*',
// JVMMEMBR='DFHJVM',
// SIP=1
//*
//* Set affinity to TCPCS stack on mvs098
//*
//AFFINITY EXEC PGM=BPXTCAFF,PARM='TCPCS'
//*
........
//CICS EXEC PGM=DFHSIP,REGION=®,TIME=1440,
// COND=(1,NE,CICSCNTL),
// PARM='START=&START,SYSIN'

All sockets activity from this address space will only use the TCPCS TCP/IP stack on this LPAR

Establishing stack-affinity
Configuration and Setup

22

IBM Software Group

© 2003 IBM Corporation22 CICS TS for z/OS | IP CICS Sockets

1 Modify CICS JCL
a Add TCPIP.SEZALINK/LOAD to STEPLIB
b Add TCPIP.SEZATCP to DFHRPL
c Add SYSTCPD DD statement pointing to your TCP/IP resolver data set
d Add TCPDATA DD statement for messages from CICS sockets

2 Define CICS resources
e Add TCPDATA DCT entries
f Add PLT entries for automatic start/stop of CICS sockets
g Run a DFHCSDUP job with TCPIP.SEZAINST(EZACICCT) as input

3 Reserve port(s) in TCP/IP for listener(s)
h Add a PORT reservation statement for your CICS listener(s)

4 Build CICS Sockets configuration data set
i Create a batch job to define the IP CICS Sockets configuration and load to a

VSAM data set as EZACONFG
j Start CICS and use the EZAC transaction to update the configuration data set

Refer to IP CICS Sockets Guide, SC31-8518, Chapter 2 for details (easy step-by-step guide).

Setting up IP CICS Sockets
Configuration and Setup

23

IBM Software Group

© 2003 IBM Corporation23 CICS TS for z/OS | IP CICS Sockets

EZAC,DISplay,CICS APPLID = DBDCCICS

APPLID ===> DBDCCICS APPLID of CICS System
TCPADDR ===> TCPCS Name of TCP Address Space
NTASKS ===> 100 Number of Reusable Tasks
DPRTY ===> 010 DPRTY value for ATTACH
CACHMIN ===> 010 Minimum Refresh Time for Cache
CACHMAX ===> 020 Maximum Refresh Time for Cache
CACHRES ===> 005 Maximum number of Resolvers
ERRORTD ===> CSMT TD Queue for Error Messages
SMSGSUP ===> NO Suppress Task Started Messages
TERMLIM ===> 000 Subtask Termination Limit

PF 3 END 12 CNCL

CICS entry in IP CICS Sockets configuration file - EZAC trans

Configuration and Setup

24

IBM Software Group

© 2003 IBM Corporation24 CICS TS for z/OS | IP CICS Sockets

EZAC,DISplay,LISTENER (standard listener) APPLID = DBDCCICS

APPLID ===> DBDCCICS APPLID of CICS System
TRANID ===> CSKL Transaction Name of Listener
PORT ===> 03001 Port Number of Listener
AF ===> INET Listener Address Family
IMMEDIATE ===> YES Immediate Startup Yes|No
BACKLOG ===> 040 Backlog Value for Listener
NUMSOCK ===> 100 Number of Sockets in Listener
MINMSGL ===> 004 Minimum Message Length
ACCTIME ===> 060 Timeout Value for ACCEPT
GIVTIME ===> 000 Timeout Value for GIVESOCKET
REATIME ===> 000 Timeout Value for READ
TRANTRN ===> NO Translate TRNID Yes|No
TRANUSR ===> NO Translate User Data Yes|No
SECEXIT ===> Name of Security Exit
WLM groups ===> ===> ===>

PF 3 END 12 CNCL

You specify if
the listener is
an IPv4 or an
IPv6 listener
(INET or
INET6)

Listener entry in IP CICS Sockets configuration file - EZAC trans

Configuration and Setup

IBM Software Group

© 2003 IBM Corporation25 CICS TS for z/OS | IP CICS Sockets

EZAC,DEFine,LISTENER APPLID = DBDCCICS
ENTER ALL FIELDS

APPLID ===> DBDCCICS APPLID of CICS System
TRANID ===> TPL6 Transaction Name of Listener
Format ===> enhanced Enter STANDARD|ENHANCED

EZAC,DEFine,LISTENER (enhanced listener) APPLID = DBDCCICS
OVERTYPE TO ENTER
APPLID ===> DBDCCICS APPLID of CICS System
TRANID ===> TPL6 Transaction Name of Listener
PORT ===> 03002 Port Number of Listener
AF ===> INET Listener Address Family
IMMEDIATE ===> YES Immediate Startup Yes|No
BACKLOG ===> 020 Backlog Value for Listener
NUMSOCK ===> 050 Number of Sockets in Listener
ACCTIME ===> 060 Timeout Value for ACCEPT
GIVTIME ===> 000 Timeout Value for GIVESOCKET
REATIME ===> 000 Timeout Value for READ
CSTRANid ===> XXXX Child server transaction name
CSSTTYPe ===> KC STartup method (KC|IC|TD)
CSDELAY ===> 000000 Delay interval (hhmmss)
MSGLENgth ===> 000 Message length (0-999)
PEEKDATa ===> NO Enter Y|N
MSGFORMat ===> ASCII Enter ASCII|EBCDIC
USEREXIT ===> Name of user/security exit
WLM groups ===> ===> ===>

The default
transaction code
to start when
clients connect
to this listener.

The security exit
may override
this transaction
code.

Defining an enhanced listener
Configuration and Setup

MSGFORM tells te enhanced listener if errors should be
reported in EBCDIC or ASCII to the client
CSTTYPE and CSDELAY are also for the enhanced
listener and defines IC delay

26

IBM Software Group

© 2003 IBM Corporation26 CICS TS for z/OS | IP CICS Sockets

Look for error messages in the transient data queue identified by the ERRORTD configuration option and
MSGUSR output from your CICS address space. IP CICS Sockets messages all start with prefix EZY:

EZY1224I 02/21/02 21:15:51 CICS/SOCKETS INITIALIZATION SUCCESSFUL

Common setup gotchas

CICS started task user ID must have an OMVS segment

SYSTCPD DD statement must be defined in CICS startup JCL

TCPIP.SEZATCP must be in DFHRPL concatenation

If storage protection has been enabled, transactions EZAO,
EZAP, and CSKL must be defined with TASKDATAKEY(CICS)
and programs EZACIC00, EZACIC01, and EZACIC02 must have
EXECKEY=CICS

TASKDATALOC for EZAO, EZAP, and CSKL must be the same

Configuration and Setup

IBM Software Group

© 2003 IBM Corporation27 CICS TS for z/OS | IP CICS Sockets

socket()

bind()

socket()

listen()

accept()

connect()

send() recv()

recv() send()

close() close()

blocks until
connection

process request

TCP 3-way handshake

data (a transaction)

Reply from server

CLIENT

SERVER

Stream socket programs (based on the TCP
transport protocol) are by far the most
commonly used type of sockets. When a client connects to

the server, a new socket is
created and the server
uses that socket for
communication with the
client.
The server in this time
period has two sockets:
the listening socket and
the socket it uses to
communicate with the
client.
It is the accept call that
created the second socket.

Stream Socket Call Overview
Configuration and Setup

TCP connection establishment is performed using what is known
as the TCP 3-way handshake, which consists of a SYN segment
from client TCP layer to server TCP layer, a SYN+ACK segment
from server TCP layer back to client TCP layer, and a final ACK
segment from the client TCP layer.
During close() processing, FIN segments are exchanged to
break the connection again.
The client and server may exchange any amount of data in any
number of iterations during a connection.
If there is no traffic on the connection, the TCP layers may, at
regular intervals, send KEEPALIVE segments to learn if the other
end is still around or has vanished.
If any data is outstanding (not acknowledged), the TCP layers
will retry and keep retrying for up to 3.5 minutes (TCP/IP MVS
figures, other implementations may differ) using some rather
complicated retransmission algorithms to calculate how long to
wait before a retry should be done.

IBM Software Group

© 2003 IBM Corporation28 CICS TS for z/OS | IP CICS Sockets

An ITERATIVE server processes client requests serially.

Socket
Bind to server port number
Listen for connections
Do until shutdown

Accept connection
Read client data
Process request
Send reply to client
Close connection

End-do
Close Listener-socket

Client

Client

Client

Connection
Request queue

Iterative server

Server capacity can become an issue with such a design. If client connections last for a while,
one client can block the server for other clients who need the server's services.

Iterative server socket program
Configuration and Setup

Both iterative and concurrent server are concepts that best
match the stream socket application.
Good and simple design for short transactions.
Iterative servers are not good for long transactions that involve
much processing or a number of iterations between server and
client. Other clients will wait until this transaction has finished.
The Bind call associates this server with the preselected port
number and fills in the local address part of the socket address
so that the socket can be addressed from the clients. Normally
the IP address is filled in as INADDR_ANY (binary zero)
meaning that the server will accept connection requests from all
available network interfaces.
The Listen call prepares the socket to accept connection
requests from the clients. The size of the connection request
queue is specified as a backlog value on this call. The maximum
value is configured in TCPIP.PROFILE with the SOMAXCONN
keyword (default is 10).

IBM Software Group

© 2003 IBM Corporation29 CICS TS for z/OS | IP CICS Sockets

A CONCURRENT server is able to process a number of client requests concurrently.

Take connection
Read client data
Process request
Send reply to client
Close connection

Socket
Bind to server port number
Listen for connections
Do until shutdown

Accept connection
Schedule child process
Give connection to child

End-do
Close Listener socket

Concurrent Server
Main process (often referred
to as a Listener - it listens for
clients connecting to it)
UNIX terminology often
refers to this as a daemon.

Child processes

Client

Client

Client

Concurrency is implemented based on the operating system's abilities. On z/OS it can be
done using standard MVS address spaces and either JES or APPC MVS scheduling, MVS
subtasks within a single address space, CICS or IMS transaction scheduling, POSIX
processes, or POSIX threads.

Concurrent server socket program
Configuration and Setup

A concurrent server is good for high-performance, high-volume
transactions where each transaction may vary in length.
The main process loop is very short, making it able to accept new
connections and schedule them to parallel child processes very fast.
Child process scheduling depends on the environment: normal MVS
address space will use subtasking (this requires either the use of Sockets
Extended assembler macro API or C-sockets with C Multi Tasking Facility
(MTF)). CICS will use CICS transactions. IMS will use IMS transactions.
OpenEdition/MVS will use multiple forked address spaces, or the POSIX
threading facilities.
In TCP/IP for MVS we use the GIVEOSOCKET/TAKESOCKET sequence
to give a connection to a child process and to take it in the child process.
In OpenEdition/MVS the socket is enherited by the forked child process
that is able to use it as soon as the forking process has closed it. In a
POSIX multithreaded environment, sockets are accessible by all threads.
The third and final category is a socket client program, which we do not
decsribe in detail in this context.

30

IBM Software Group

© 2003 IBM Corporation30 CICS TS for z/OS | IP CICS Sockets

CICS Task

CICS Task

CICS Task

Sockets Client

Iterative Socket Server

Sockets Listener

CICS Task

Concurrent Sockets
Child Server

Non-socket
transaction
initiation -
3270 terminal
input, IC,
batch input,
etc.

Started via
PLT or via
EZAO
transaction.

Connect

Send/Receive

Connect

Send/Receive

Connect

Send/Receive

Send TRM

Remote
Sockets
Server

Remote
Sockets
Client

Remote
Sockets
Client

CICS Region
Concurrent Sockets Server

TRM: Transaction Request Message

EXEC
CICS
START

Sockets program categories in CICS
Configuration and Setup

31

IBM Software Group

© 2003 IBM Corporation31 CICS TS for z/OS | IP CICS Sockets

Do Forever
Accept connection request
Read TRM from client
[Pass TRM to security

exit]
Givesocket
EXEC CICS START passing

TIM
If errors, send err

message
end

EXEC CICS Retrieve of TIM
Takesocket
[Send OK Message to client]
[Read additional data from
client]
Send reply to client
Close socket

Connect to listener

Send TRM

[Read OK/Error
Message]

[Send additional data]

Read Reply

Close socket

Listener

Client

Child Server

Listener socket descriptor
number
Listener TCP/IP ID
TRM user data
Remote client socket address

Transaction Initiation Message

Concurrent CICS sockets server overview
Configuration and Setup

32

IBM Software Group

© 2003 IBM Corporation32 CICS TS for z/OS | IP CICS Sockets

Tran [,user data [,KC/IC/TD [,hhmmss]]]

Tran
•CICS transaction code in uppercase to start child server. Can be 1 to 4 bytes long.

User data
•Optionally includes up to 35 bytes of user data. The data can be input to be passed to child server in the TIM or
it can be data that is required by your listener security exit routine, such as a user ID and a password.

KC/IC/TD
•Task Control (KC), Interval Control (IC) or Transient Data (TD). If nothing specified, startup is immediate using
Task Control. IC or TD may also be specified in lowercase (ic or td). IF TD/td is specified, Tran is an
intrapartition queue with trigger-level set to one or any value.

hhmmss
•If you specified IC above, you can here specify the interval time - all six digits must be specified (example:
000005 for 5 seconds interval).

Examples: CICA
CICB,,KC
CIC1,,IC,000005
CIC2,MYUSER/MYPWD
CIC3
CIC4,,TD

The listener will analyze the Tran code and determine
if it is ASCII or EBCDIC uppercase and perform
translation of the remaining TRM accordingly - and
according to your configuration of the listener
transaction (TRANTRN and TRANUSR options).

The Transaction Request Message (TRM) format
Configuration and Setup

33

IBM Software Group

© 2003 IBM Corporation33 CICS TS for z/OS | IP CICS Sockets

TRA1,user1/pwd
1

Application input

Application input

Application input

CICS Sockets
Listener port1

CICS Sockets
Listener port2

CICS Sockets
Listener port3

CICS Transaction
TRA1

CICS Transaction
TRA2

CICS Transaction
TRA3

Associate to TRA2

User exit to assign
transaction code

Three ways to launch CICS transactions:
1 As before via a Transaction Request Message
2 Via a listener configuration option to associate listener instance with one specific CICS transaction code
3 Via a user exit, driven by the listener

With the two new options, data may be sent by the client in completely free format.

CICS Region

CICS Sockets
configuration

TCP/IP
Network

Transaction initiation enhancements in CS z/OS V1R2
Configuration and Setup

34

IBM Software Group

© 2003 IBM Corporation34 CICS TS for z/OS | IP CICS Sockets

Error messages from the listener to the sockets client
The listener may in certain situations not be able to start the child server program
(such as: unknown CICS transaction code, or transaction request rejected by the
listener security exit). In those situations, the listener will send an error response back
to the remote client and close the socket communication immediately with that client.
If the client sent the transaction code in ASCII, the error message will be translated to
US-ASCII before it is sent.

– EZY1315E 04/27/04 14:13:55 INVALID TRANID=ECHO PARTNER INET ADDR=9.42.104.161
PORT= 1128

– EZY1303I 04/27/04 14:25:32 EZACIC02 GIVESOCKET TIMEOUT TRANS SRV1 PARTNER
INET ADDR =9.42.104.161 PORT= 1129

The remote client needs to be developed in such a way that it is prepared to receive an
error message from the listener:
– peek first three characters in the output stream and test for "EZY"

If everything is OK, the listener will not send an error message but it will start your
child server program.

The remote client may then, based on your application protocol, send some additional
input data or just issue a second read and wait for a final reply from your child server.

Configuration and Setup

35

IBM Software Group

© 2003 IBM Corporation35 CICS TS for z/OS | IP CICS Sockets

Application
Client

Application
Server

Application Protocols

My TCP/IP Application

Application protocol

An application protocol defines as a minimum:
– The identity of the server (port number and transport protocol).
– The format of data and commands that are exchanged between the two parts of the

application
• ASCII/EBCDIC
• Fixed length or variable length messages
• Character data, fixed point integers (little/big Endian), floating point, etc.

– The state switching mechanisms of the application: when one end is allowed to send
data, when the other end is expected to create and send a reply.

– How error status is presented to the client.
– How the dialog is orderly terminated.
– If user authentication is required and how it is done.

Configuration and Setup

36

IBM Software Group

© 2003 IBM Corporation36 CICS TS for z/OS | IP CICS Sockets

Application protocol - messages

Three alternative message designs:
1. Record identifier and associated fixed message lengths. First byte holds a message type identifier,

and for each message type, sender and receiver have agreed upon a fixed message length.
Example: message type A is 26 bytes long, message type B is 54 bytes long.

2. Record descriptor word in first 2 or 4 bytes in each message holding information about the length of
the remaining message. If length is in binary, the application protocol should state that it must be in
network byte order format (big Endian). If length is in character format, the length field should be right
justified with leading zero characters: 0008 for an 8-byte long message.

3. End-of-message markers. Typically used in C-programming, where messages often are null-
terminated character strings: characters strings where the last byte is a x'00' byte.

The first two techniques are often implemented using a peeking read on the receiving side,
where the receiver peeks at the first 1, 2 or 4 bytes to find out how much more data the
receiver has to read to get the full message.
Sometimes an application protocol includes a well-known character sequence in the
beginning of the first message from a client. This sequence is used by the server to decide
whether the client is sending character data in ASCII or in EBCDIC.

Configuration and Setup

37

IBM Software Group

© 2003 IBM Corporation37 CICS TS for z/OS | IP CICS Sockets

CICS sockets callable service routines

Character Conversion
– EZACIC04: Translate from EBCDIC to ASCII
– EZACIC05: Translate from ASCII to EBCDIC

– Both routines are based on a variation of 8-bit US ASCII and IBM-037 US EBCDIC. If you need
to use standard code sets, you have to write your own translation routines.

Converting between bit strings and character strings
– The select() call requires a bit string as argument and returns another bit string. The EZACIC06

routine can be used to convert between a bit string and a character string, which makes the use
of bit strings easier for programs written in, for example, COBOL.

Get information out of resolver structures:
– Gethostbyname() and gethostbyaddr() calls return a so-called host entry structure, which is easily

understood and interpreted by assembler and C programs, but not COBOL programs.
– EZACIC08 is a callable routine that allows a COBOL program easy access to the information that

is returned by the above two calls.
– EZACIC09 is a callable routine that allows a COBOL program easy access to the information that

is return by a Getaddrinfo() call. (z/OS V1R5)

Configuration and Setup

38

IBM Software Group

© 2003 IBM Corporation38 CICS TS for z/OS | IP CICS Sockets

FDDI1

FDDI2

2216

2216

OS/390 V2R8

LST1

LST2

LST3

LST4

LST5

LST6

LST7

LST8

CICS/ESA 4.1

One CICS region
8 listeners
95 subtasks in pool
Child server in COBOL:

Send OK-msg
Receive 50 bytes
Echo 50 bytes
Receive 3 bytes
Close

10 RS/6000s
Each 8 clients

9672-RX6 4CP LPAR

Results:

451.3 connections/sec

TCP/IP CPU: 9.68%
VTAM CPU: 0.32%
CICS CPU: 90%

NB: The transactions do not
use any back-end data. If
access to DB2 were
needed, CICS would
require more CPU and the
number of connections per
second would drop.

Results show the
capabilities of TCP/IP and
the CICS sockets API
infrastructure.

Performance of CICS sockets
Recommendations

39

IBM Software Group

© 2003 IBM Corporation39 CICS TS for z/OS | IP CICS Sockets

To use it - or not to use it?
The CICS Sockets API is a low-level API:
– Detailed knowledge about sockets programming is required.
– Even simple transactions require quite a bit of design and coding effort to implement.
– Since it is a call API, CEDF does not get control when a sockets call is issued (It does when the call

is passed to the TRUE, but not when your application calls the socket API).
– Good performance.
This is NOT SNA LU6.2 programming:
– There is no 2-phase commit protocol built into sockets.
– The closest you come to an APPC attach manager is the sockets listener, but there is no architected

FMH5 that carries authentication information.
CICS Transaction Server provides many good Internet access alternatives today:
– CICS Transaction Gateway
– IIOP for EJB and CORBA-initiated transactions
– CICS Web Interface
– Message queuing
– 3270 transaction bridge

Don't decide to use CICS Sockets until you have carefully analyzed other, more
functionally rich alternatives that today are offered by CICS TS. CICS Sockets is for those
who need the details of a low-level API and the performance of a low-overhead solution.

Recommendations

40

IBM Software Group

© 2003 IBM Corporation40 CICS TS for z/OS | IP CICS Sockets

Advanced Topics

Security Exit

Writing your own listener

TCP connection load balancing and availability

Connection balancing

Workload balancing with CICS sockets

High-availability design for TCP/IP workload into the CICS
environment

Intra Sysplex CICS Transaction routing for sockets-initiated
workload

Recommendations

41

IBM Software Group

© 2003 IBM Corporation41 CICS TS for z/OS | IP CICS Sockets

Security exit
It is possible to write a security exit routine that is given control by the listener whenever a
new request has been received from a remote client.

The exit routine has access to the following information:
– The transaction code
– Optional user data (based on installation standards, this could include a RACF user ID and password to

be used by the security exit to authenticate the client)
– Method of starting (IC, TD, or KC)
– Optional interval control time
– Client's socket address (addressing family, port, and IP address)
– Socket descriptor

The exit routine returns
– Allow/disallow transaction
– Listener or security exit sends error message to remote client
– CICS terminal ID to be associated with new CICS task
– CICS user ID to be associated with new CICS task (CICS/ESA V4 as a minimum)

Exit routine can modify the user data field, so a possible userID/password in the user data
doesn't get sent over to the child server program in the TIM. The exit routine can also modify
the transaction code, if so is desired or needed.

Recommendations

42

IBM Software Group

© 2003 IBM Corporation42 CICS TS for z/OS | IP CICS Sockets

Writing your own listener

The IBM-supplied standard listener requires a TRM from the remote client
that has at least a CICS transaction code, and optionally more information.

If an installation has unique requirements for the listener, it is fully possible
to write your own listener. It is a normal socket program.

Delay and throughput are important attributes in a listener, so the listener
code must be developed so that it never blocks processing because a
remote client is a bit slow in sending data. This requires the use of select
logic, which is a special socket call that tests a list of socket descriptors for
activity - allowing the listener code not to issue socket calls against sockets
before it knows that the socket call will be serviced immediately.

For efficiency, a listener can be coded in assembler - but COBOL or any
other HLL is OK too.

See IP CICS Sockets Guide, SC31-8518, Chapter 5 for details on writing
your own listener.

Recommendations

IBM Software Group

© 2003 IBM Corporation43 CICS TS for z/OS | IP CICS Sockets

A1 A1 A1

Load Balancing Technologies:
Between z/OS images:

a DNS - DNS/WLM
b NAT - Local Director, Alteon
c MAC forwarders - IND, MNLB, Sysplex

Distributor
d Contents-based - Arrowpoint, BigIP, Alteon

Inside z/OS:
e Port sharing

Application Characteristics:
•Multiple instances of the server are able to
provide the exact same services to clients
(will typically require data sharing)

•No state preserved at server between two
connections (application protocol has to
include support for such behavior)

Benefits of Intelligent Load Balancing:
•Improving response time
•Availability - If one instance goes down,
connections with it break, but new
connections can be established with
remaining instance(s)

•Scalability - more server instances can be
added on demand (horizontal growth)

Examples:
•Web server
•TN3270 server
•Some CICS applications
•FTP server (depends on data sharing)
•DB2

?

Parallel Sysplex

z/OSz/OS

TCP/IPTCP/IP

TCP connection load balancing and availability
Recommendations

The load balancing technologies are the generalized
ones. There are other solutions that are application-
specific, such as the web servers use of WLM multiple
address space support.

44

IBM Software Group

© 2003 IBM Corporation44 CICS TS for z/OS | IP CICS Sockets

Connection balancing
Word of caution:
– Remember server instance is selected at TCP connection setup point in time.

• If many CICS transaction requests are multiplexed over a single TCP connection, then connection balancing
doesn't buy you a whole lot (ECI works this way).

– Do not begin distributing connections across multiple server instances (CICS regions) unless you
know for sure:
• that each of the server instances can provide the exact same service
• that your backend CICS transactions do not rely on local state data between a series of connections

SHAREPORT
– If one server instance in an LPAR can't handle all the workload, you may be able to start a second

server instance on the same LPAR on the same port number. This requires that the TCP/IP systems
programmer defines the port as SHARED - and TCP/IP will then send a new incoming connection
request to the server in the shared pool of servers to the one that currently has the lowest number of
active connections. SHAREPORT is limited to balance between servers in one LPAR.

– Because of the SHARED attribute, multiple servers are able to bind to one and the same local IP
address (optional - may also just bind to 0.0.0.0) and the same port number (for example, 80).

Sysplex Distributor, Network Dispatcher, OEM connection balancers (or sprayers) on
outboard router or switch equipment
– These solutions can be deployed so that they can balance among multiple servers on different

LPARs. The preferred technology today is Sysplex Distributor or some of the so-called content switch
technologies from various router/switch vendors.

– DNS/WLM is no longer a preferred technology and should not be used - use Sysplex Distributor
instead in a Sysplex.

Recommendations

45

IBM Software Group

© 2003 IBM Corporation45 CICS TS for z/OS | IP CICS Sockets

TOR1

TOR2

TOR3

TOR4

AOR1 AOR2 AOR3

AOR4 AOR5

LST1

LST2

LST3

LST4

DNS/WLM
IND
SD

z/OS-1

z/OS-2

CICS DTR

CICS DTR

Port
Sharing

Port
Sharing

CICS TS 1.3 supports Dynamic Transaction Routing for started transactions. Transaction must be
defined as routable in region where start command is issued.
DTRPGM=EYU9XLOP is the CICS Plex System Manager routine that will make a decision about
which AOR to route to.
The AOR must be on the same z/OS image as the TOR (givesocket/takesocket limited to same z/OS)

•Affinity to a certain TOR
for multiple connections
must be handled by the
application protocol.

•An alternate port number
could be defined for each
TOR, and that port
number could be returned
to the client to use on
succeeding connections
that require affinity.

•Sysplex Distributor does
from z/OS V1R4 support
timer-based affinity

Port 2000

Port 2004

Workload balancing with CICS sockets
Recommendations

46

IBM Software Group

© 2003 IBM Corporation46 CICS TS for z/OS | IP CICS Sockets

Sysplex Distributor Primary
DRVIPA: 10.1.1.1

Sysplex Distributor Backup
DRVIPA: 10.1.1.1

OSA-E OSA-E OSA-E OSA-E

CWS
Listener
port 80

CICS
Sockets
Listener
port 5010

CWS
Listener
port 80

CICS
Sockets
Listener

port 5010

CICS
AORs

CICS
AORs

TRA2TRA2

TRA1TRA1

Backup Sysplex
Distributor

Dynamic IP routing will recover
from lost network segments,
switches, or OSA adapter ports

z/OS TCP/IP Sysplex functions
will recover from a lost LPAR, or a
lost TCP/IP stack by moving the
distributed dynamic VIPA to a
backup TCP/IP stack in a backup
LPAR.

z/OS TCP/IP Sysplex
functions will recover
from a lost listener by
redirecting all new
connections to
remaining listener(s) in
the Sysplex.

z/OS CICS functions
will recover from lost
AORs

1

2

3
4

Redundancy and use of
automated recovery
technologies are key to
a successful high-
availability design.

High-availability for TCP/IP workload into the CICS environment

Recommendations

47

IBM Software Group

© 2003 IBM Corporation47 CICS TS for z/OS | IP CICS Sockets

CICS
AOR

CICS
AOR

CICS
AOR

CICS Web
Services
listener region

CICS
AOR

CICS
AOR

CICS Sockets
listener region

CICS
AOR

Socket cannot
be passed
across LPAR
boundaries

Sockets transaction can use transactions
on other LPARs as long as the socket
isn't passed to the other transaction.

LPAR1 LPAR2 LPAR1 LPAR2

CICS Sockets Domain Transactions CICS Sockets Transactions

TCP connection

Intra-Sysplex CICS transaction routing for sockets-initiated workload

Recommendations

TCP connection

48

IBM Software Group

© 2003 IBM Corporation48 CICS TS for z/OS | IP CICS Sockets

CICS Sockets enhancements in z/OS V1R5

IP CICS Sockets APIs support for the Basic Socket Interface Extensions for IPv6
– IP CICS C sockets
– IP CICS sockets extended

Support for both IPv4 and IPv6 standard and enhanced listener

Support for the IPv6 multicast options for GETSOCKOPT and SETSOCKOPT.
– IP CICS C sockets
– IP CICS sockets extended

Support for IPv4 multicast options for getsockopt and setsockopt.
– IP CICS C sockets

Providing IPv6 and assembler samples

Summary

49

IBM Software Group

© 2003 IBM Corporation49 CICS TS for z/OS | IP CICS Sockets

CICS Sockets enhancements in z/OS V1R6

Focus on reliability:
– Improved peek-processing in the listener

• Faulty client programs could in certain scenarios cause the listener to
loop, trying to get enough data from the client

• PQ68544 - PTFs for z/OS V1R2, V1R4, shipped with V1R5

– Improved syntax checking in the listener
• Faulty clients could in certain cases make the standard listener abend if

some of the syntax rules for the TRM were violated

– Improved shutdown processing where a large number of subtasks
were active
• There were some windows where subtasks weren't terminated before

CICS terminated its main task - resulting in abend A03 during CICS
shutdown

• PQ76754 - PTFs for z/OS V1R2, V1R4, and V1R5

Summary

50

IBM Software Group

© 2003 IBM Corporation50 CICS TS for z/OS | IP CICS Sockets

Documentation references

IP CICS Sockets Guide
– Manual SC31-8518

A Beginner's Guide to MVS TCP/IP Socket Programming
– Redbook GG24-2561

CICS/ESA and TCP/IP for MVS Sockets Interface
– Redbook GG24-4026

Summary

51

IBM Software Group

© 2003 IBM Corporation51 CICS TS for z/OS | IP CICS Sockets

For More Information....

IBM eServer zSeries Mainframe Servers
http://www.ibm.com/servers/eserver/zseries

Networking: IBM zSeries Servers
http://www.ibm.com/servers/eserver/zseries/networking

IBM Enterprise Servers: Networking Technologies
http://www.ibm.com/servers/eserver/zseries/networking/technology.html

Networking & communications software
http://www.ibm.com/software/network

Communications Server
http://www.ibm.com/software/network/commserver

Communications Server white papers, product documentations, etc.
http://www.ibm.com/software/network/commserver/library

Communications Server technical Support
http://www.ibm.com/software/network/commserver/support

ITSO redbooks
http://www.redbooks.ibm.com

Advanced technical support (flashes,
presentations, white papers, etc.)
http://www.ibm.com/support/techdocs/

Request For Comments (RFC)
http://www.rfc-editor.org/rfcsearch.html

Summary

52

IBM Software Group

© 2003 IBM Corporation52 CICS TS for z/OS | IP CICS Sockets

Acknowledgements

The following are trademarks of International Business Machines
Corporation in the United States, other countries, or both: IBM, CICS,
CICS/ESA, CICS TS, CICS Transaction Server, DB2, MQSeries,
OS/390, S/390, WebSphere, z/OS, zSeries, Parallel Sysplex.

Java, JavaBeans, and all Java-based trademarks and logos are
trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are
trademarks of Microsoft Corporation in the United States, other
countries, or both.

Other company, product, and service names and logos may be
trademarks or service marks of others.

During this presentation I may use some trademarks or abbreviations. They are shown here.

Moving on to the agenda on slide 3…

