
CICS Transaction Server for z/OS

 How to configure a z/OS LDAP Server
for CICS Development purposes

Robert Harris,
CICS Technical Strategy,

IBM Hursley.

Issued: 01 August 2002

Revision Date: 01 August 2002

Previous Revision Date: None

Review Date: As Required

Take Note!

Before using this document be sure to read the general information under "Notices".

First Edition, August 2002.

© Copyright International Business Machines Corporation 2002. All rights reserved. Note to
US Government Users -- Documentation related to restricted rights -- Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule contract with IBM Corp.

Page i

Notices:

The following paragraph does not apply in any country where such provisions are inconsistent with local law.

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITH-
OUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore this statement
may not apply to you.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these
available in all countries in which IBM operates.

Any reference to an IBM licensed program or other IBM product in this publication is not intended to state or imply
that only IBM's program or other product may be used. Any functionally equivalent program that does not infringe
any of the intellectual property rights may be used instead of the IBM product.

Evaluation and verification of operation in conjunction with other products, except those expressly designated by
IBM, is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this
document does not give you any license to these patents. You can send license inquiries, in writing, to the IBM Direc-
tor of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, New York 10594, USA.

The information contained in this document has not be submitted to any formal IBM test and is distributed AS-IS.
The use of the information or the implementation of any of these techniques is a customer responsibility and depends
on the customer's ability to evaluate and integrate them into the customer's operational environment. While each item
has been reviewed by IBM for accuracy in a specific situation, there is no guarantee that the same or similar results
will be obtained elsewhere. Customers attempting to adapt these techniques to their own environments do so at their
own risk.

Page ii

Trademarks:
The following are Trademarks of International Business Machines Corporation in the United States, in
other countries, or both:

UNIX is a registered Trademark in the United States and other countries licensed exclusively through
X/Open Company Limited
Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.
INTEL is a registered trademark of Intel Corporation, in the United States, or other countries, or both.
Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in the United States, or
other countries, or both.
Other company, product, and service names may be trademarks or service marks of others.

3090 ACF/VTAM AD/Cycle
AFP AIX AnyNet
Application System/400 APPN AS/400
AT BookManager C Set++
C/370 C/MVS CBIPO
CBPDO CICS CICS/400
CICS/6000 CICS/ESA CICS/MVS
CICS OS/2 CICS TS CICS/VM
CICS/VSE CICSPlex CICSPlex SM
COBOL/370 COBOL/2 Common User Access
CUA DATABASE 2 DB2
DFSMS DFSMS/MVS DFSMSdfp
DFSMSdss DFSMShsm DFSORT
DXT eNetwork Enterprise Systems Architecture/370
Enterprise Systems Architecture/390 ES/3090 ESA/370
ESA/390 ES/9000 ESCON
GDDM HiperBatch Hiperspace
InfoWindow IBM IBMLink
IMS IMS/ESA Language Environment
MQ MQSeries MVS
MVS/DFP MVS/ESA MVS Parallel Sysplex
MVS/SP MVS/XA Multiprise
NetView OpenEdition OS/2
OS/390 OS/400 Processor Resource/Systems Manager
Parallel Sysplex PR/SM Presentation Manager
RACF Resource Measurement Facility RETAIN
RISC System/6000 RMF RT
S/370 S/390 SAA
SQL/DS SP System/36
System/38 System/360 System/370
System/390 SystemView Systems Application Architecture
VisualAge VSE/ESA VTAM
WebExplorer z/OS

Page iii

Reference Material and Bibliography:
This document uses a short reference to the following documentation:

Summary of amendments

Date Of Change Change made to document

01/08/2002 Creation

Short reference Book Title

CICS RDO Book CICS Resource Definition Guide
SC34-5722

CICS SDG CICS System Definition Guide
SC34-5725

CICS CG CICS Customization Guide
SC34-5706

CICS EXT CICS External Interfaces Guide
SC33-1944

CICS JAVA Java™ Applications in CICS
SC34-6000-0

CICS APR CICS Application Programming Reference
SC34-5702

CICS SPR CICS System Programming Reference
SC34-5726

JVM Book New IBM Technology featuring Persistent Reusable
Java Virtual Machines
SC34-5881

LDAP Admin z/OS Security Server LDAP Server Administration and
Use
SC24-5923-02

LDAP Util z/OS Security Server LDAP Client Programming
SC24-5924-01

LDAP Red Book Understanding LDAP
SG24-4986

Page iv

Preface:

This document is aimed at CICS System Programmers who want to configure a z/OS Lightweight Directory
Access Protocol Server for use by CICS Transaction Server for z/OS Version 2.2.
Java™ programmers who are going to implement Enterprise Java Bean™ function in the CICS
Transaction Server for z/OS environment need to know about LDAP configuration. Knowledge of
Enterprise Bean™ function is, however, not required to get the best out of this document.
It is aimed at taking a System Programmer who is knowledgable about CICS Java environment through
the steps needed to configure an host LDAP Server for CICS’ usage. Examples are given showing what
needs to be done and how to achieve it. An appendix shows how to configure a LDAP server for access to
DB2 via JDBC™ 2.0 by CICS.
You do not need any detailed knowledge of CICS to get the best out of this document; however, an
appreciation of the mainframe environment is desirable and one needs an appreciation of LDAP and the
way it is used by an Enterprise Bean™ in the EJB™ environment provided by CICS.
The information and code in this document is only applicable to CICS Transaction Server for z/OS Version
2.2. It is not applicable to earlier CICS releases.
This document uses Colour to highlight items of interest, so access to the PDF as well as the hard copy in
the absence of a colour print is desirable.

Page v

Table of Contents
LDAP on z/OS for CICS TS Version 2.2 ...1

Introduction ...1
Documentation ...1
Requirements ..2
Conventions ..3
CICS Documentation ...3

How LDAP works ..4
What you are going to end up with ...5

LDAP Configuration choices ...5
End result ..6

The LDAP Server ..7
The Initial Hierarchy ...7

JCL ...7
The HFS Configuration file ..8

Initially running the LDAP Server ..10
Starting the LDAP Server ...10

Issuing MVS commands to the LDAP Server ...10
Configuring the LDAP Browser and Directory Tool ...11
Contacting the LDAP Server ..13

Install the Schema ...14
The WebSphere naming schema ..14
Installing the WebSphere schema ...15

Creating the Suffix ..18
Why you need to do this ...18
Creating the entry ...18
Checking it made it ...18

Checking that the correct default permissions have been created20
Why you have to do this ...20
Checking the default is a group ..20

Correcting the default ...21
Adding the CICS Users ...23

Why these are needed ...23
Creating the Users ...23

Creating the WebSphere tree structure ...27
Why you need to do this ...27
Creating the Tree anchor ..27
Creating the Tree Structure ...29
Checking the Tree Structure ...31

Adding the CICS region ..32
Why you need to do this ...32
Creating the ldif file ..33
Checking the results ..36

Using the tools ..36
Using commands ..38

What to do next ...38
Avoiding the CICS Retraction bug ...39

Page vi

What is the bug? ...39
Circumventing the bug ...40

CICS relationships ..42
JVM System Properties ..42

Nameserver (com.ibm.cics.ejs.nameserver) ..42
Container Distinguished Name (com.ibm.ws.naming.ldap.containerdn) .42
Anchor point (com.ibm.ws.naming.ldap.noderootrdn)43
LDAP access Userid (java.naming.security.principal) ..43
LDAP access Password (java.naming.security.credentials) ...43
Java Security Mechanism (java.naming.security.authentication)43
JNDI constructor class (java.naming.factory) ..44
My System.properties file ..45

RDO CORBASERVER ..46
CorbaServers ...47

Introduction ...47
TCPIPService definitions ...47
CorbaServers used ..47
Initial LDAP Hierarchy ..49

Browser display ..49
Directory Tool display ...50

Results of Publishing the CorbaServer ...51
JNDIPrefix without a / ...51
JNDIPrefix with a / ..53

Retracting a Corbaserver ..55
A CICS Bug ...55

DJars ..56
CorbaServers own DJars ...56
Publishing a DJar ..56

Publishing using CEMT ...57
LDAP results of DJar publication ..58

Retracting the DJAR ...59
When it all goes horribly wrong ...60

Checking Spellings ...60
Deleting the configuration ..60
CICS Tracing ..62
LDAP Server tracing ..62
CICS Messages ...62

LDAP Level mismatch ...62
Case Sensitivity ..63
Userid failures ..63
ACL violations ...63

Appendix: LDAP and JDBC 2.0 ...64
Introduction to JDBC 2.0 and DB2 on CICS ...64

Defining the DB2 database to be accessed ...64
Acquiring the DB2 Connection ..65
JDBC datatype for DB2 access ..65

Avoiding the JNDI function ...65
Using JNDI lookup ...66

Setting the JNDI key ..66

Page vii

Resolving the Connection Object using JNDI ...67
Publishing the Database Connection using LDAP ...68

LDAP definitions ...68
LDAP leaf creation and JNDI verbs ..69
Results of the node creation ...70
Publishing the Object to LDAP ..71
Results of Publication ...75

Page viii

Page ix

List of Figures
Final LDAP Structure ..6
LDAP Server JCL..7
LDAP initial configuration file..8
WebSphere naming schema...14
Shell script for checking WebSphere schema..16
Creating the Suffix...18
Adding CICS userids ...23
Creating the WebSphere Tree anchor ..27
Specifying the Domain ..30
Creating the Subcontext/JNDIPrefix ...34
System.Properties file ..45
Initial part of an IOR..47
Initial LDAP Hierarchy: LDAP Browser ..49
Initial LDAP Hierarchy: Directory Tool ...50
Publication result for JNDIPREFIX without a / : LDAP Browser ..51
Publication result for JNDIPREFIX without a / : Directory Tool ...52
Publication result for JNDIPREFIX with a / : LDAP Browser ...53
Publication result for JNDIPREFIX with a / : Directory Tool ..54
CICS Retraction bug ..55
Publication result for DJar : LDAP Browser ...58
Publication result for DJar : Directory Tool ..59
Shell script to delete all LDAP entries...61
LDAP JDBC node structure ..70
Results of Rebind operation...75

LDAP on z/OS for CICS TS Version 2.2

Introduction

This document describes the implementation of a z/OS Lightweight
DIrectory Access Protocol Server for use by CICS Transaction Server Version 2.2. It
assumes that the LDAP Server has been installed but not yet configured. Instructions
and guidance are given under the assumption that the arrangement is for the LDAP
Server to be used within a Development environment (as opposed to a Production
setup).

A Lightweight Directory Access Protocol Server primarily acts as a
dictionary for Enterprise Bean related information, but is actually a general-purpose
depository for any type of looked-up information.

Documentation

SC24-5923-02: z/OS Security Server LDAP Server
Administration and Use contains information about
configuring a LDAP Server
SC24-5924-01: z/OS Security Server LDAP Client
Programming is more of a LDAP programming guide, but it
contains documentation for the LDAP utility commands
SG24-4986: Understanding LDAP is a Red Book that
describes the LDAP environment and explains concepts

Page 1 of 76

Requirements

The LDAP Server used in this document is the z/OS Version 1 Release 2
Security Server LDAP Server.

You will need a
LDAP Browser. The one I
use is Softerra LDAP
Browser obtainable from
www.shareware.com.

I also use the IBM Secureway Directory Tool:

Page 2 of 76

Conventions

Throughout this document the following terms will frequently occur:

LDAP Server address
LDAP server port
Administrator Userid
Administrator Password
Suffix

To show what needs to be done, these will be set to values used on my
z/OS system at Hursley in the UK. Example code and commands are presented using
my settings. You will have to use your own values to execute the items in this
document.

My settings are:

CICS Documentation

The arrangement discussed in this document is that contained in the CICS
Java book (SC34-6000-0 Java Applications in CICS) from the section relating to LDAP
configuration.

LDAP Server Address winmvs2c.hursley.ibm.com

LDAP server port 2389

Administrator userid cn=admin

Administrator Password secret

Suffix ou=RAH,o=IBM Hursley,c=UK

HFS Home directory /u/rharri1

Page 3 of 76

How LDAP works

LDAP is based on a naming hierarchy which is governed by the X500
naming structure. This means that all entries are in a Key=Value format, with the Key
part being governed by the hierarchy. In most cases (but not all) both the Key and the
Value are not case sensitive. Consequently, it is wise to assume that they are used in
mixed-case mode.

The key is called a Distinguished Name (dn). A dn can be made up of
several components called Relative Distinguished Names (rdn).

Distinguished Names are specified in a left to right sequence of Relative
Distinguished Names, with the right-most rdn being the top of the tree. Thus, given a dn
of o=RAH,ou=IBM Hursley,c=uk there are three rdns: o, ou and c and the c=uk rdn
is the top of the tree.

The most common element of a dn is the Common Name (cn).

This has an immediate implication in supplying Userids: the format to use
is cn=<userid> and not just the name of its own.

Here are some elements of a dn (each of which is a rdn) at the LDAP V3
level:

The Red Book SG24-4986: Understanding LDAP provides a full
appreciation of LDAP.

cn Common Name A persons full name

sn SurName

c Country In CL2 format

l Locality A place, town etc.

st State A country etc.

street Street

o Organisation Company

ou Organisational Unit Company subdivision

title Title Mr/Ms/Sir etc.

Page 4 of 76

What you are going to end up with

LDAP Configuration choices

You are going to end up with a LDAP configuration that is determined by
System Definition and User choice.

The system definition partially allows you to choose (but this will usually be
fixed):

The company naming convention

But you do not have any control over:

The WebSphere naming convention

The user configuration allows you to choose:

A departmental point for your definitions (like Test,
Acceptance)
A CICS region-specific point

These choices affect both the LDAP Server and the definitions used within
CICS.

Decisions about the user configuration apply because I am building a
LDAP hierarchy for the Development environment. Other choices will be made for a
Production setup.

LDAP Servers can contain both Test and Production information, but the
usual access/security rules will usually mean that Test and Production LDAP servers
are different.

I hope that using this document to create a Development LDAP
environment will lead to a considered choice for the Production setup.

Page 5 of 76

End result

The end result of your choices will be to build a structure within the LDAP
Server. Figure 1 shows the result for choices I have made in this document.

Items with blue markings are those fixed by the System Administrator,

whilst those with red are freely available.

Items will get added under the ibm-wsnname=IYCKRAH6 entry.

Figure 1: Final LDAP Structure

Fixed by System Administrator
Fixed by System Administrator

Your Choice

Your Choice

Your Choice, one per CICS region

Page 6 of 76

The LDAP Server

The Initial Hierarchy
After the LDAP Server Installation, there will be an initial dn naming the

company and division for which the LDAP server is going to operate. This is referred to
as the suffix. The suffix must be known as it is used for configuration purposes.

This will usually be fixed by the System Administrator, as it will contain
company specific details.

JCL
After the LDAP Server has been installed, you will end up with some

Started Task JCL which looks like Figure 2 :

//***
//* Licensed Materials - Property of IBM
//* 5647-A01
//* (C) Copyright IBM Corp. 1997, 1999
//*
//***
//*
//* Procedure for starting the LDAPSRV server
//*
//* To start server using configuration file
//* /etc/ldap/slapd.conf specify:
//* s ldapsrv
//*
//* To start server using alternate configuration file or
//* other parameters specify:
//* s ldapsrv,parms='options'
//* where options can be:
//* -f filename # alternate configuration file
//* -d level # debug level (65535 turns on all debugs)
//* -p portno # non-secure port number
//* -s portno # secure port number
//*
//* An alternative to the -f option is to define a CONFIG DD.
//* The remaining options are optional. If not set, message/debug
//* levels are set to 0, non-secure port number will be 389, and
//* secure port number will be 636. NOTE: use of these low port
//* numbers will require that the LDAPSRV server run under a userid
//* that has OpenEdition UID 0.
//*---
//* CONFIG can be used to specify the LDAP server config file.
//* ENVVAR can be used to specify any environment variables
//* DSNAOINI can be used to specify the file required by DB2.
//*--
//LDAPSRV PROC PARMS='',REGSIZE=64M
//*--
//LDAP EXEC PGM=GLDSLAPD,REGION=®SIZE,TIME=1440,
// PARM=('/&PARMS >DD:SLAPDOUT 2>&1')
//STEPLIB DD DSN=PP.LDAP.ZOS120.SGLDLNK,DISP=SHR
// DD DSN=SYS2.DB2.V710.SDSNLOAD,DISP=SHR
//CONFIG DD PATH='/etc/ldapsrv2/slapd.conf'
//DSNAOINI DD DSN=PP.LDAP.ZOS120.LDAPSRV2.DSNAOINI,DISP=SHR
//SLAPDOUT DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SYSUDUMP DD SYSOUT=A
//CEEDUMP DD SYSOUT=A

Figure 2: LDAP Server JCL

Page 7 of 76

Here are the things to notice:

//DSNAOINI refers to a required DB2 file
//CONFIG statement refers to a HFS file
(/etc/ldapsrv2/sladp.conf) containing the configuration for
the LDAP Server which contains the port number for access
Information is displayed using Streams which is directed to a
SYSOUT file (>DD:SLAPDOUT 2/&1)

The HFS Configuration file
The main configuration file is held within HFS. It should look something

like Figure 3 (which has lots of comments removed):

#
Connection Info
#
port 2389
secureport 3389
security none
#
Volume Controls
#
validateincomingV2strings yes
sendV3stringsoverV2as UTF-8
verifySchema on
sizeLimit 500
timeLimit 3600
maxConnections 200
maxThreads 200
waitingThreads 10
verifySchema on
validateincomingV2strings yes
sendV3stringsoverV2as UTF-8
#
DB2 Info
#
database tdbm GLDBTDBM
servername DSN710RH
dbuserid LDAPSR2
databasename LDAPDBRH
#
Administrator definition
#
adminDN "cn=admin"
adminPW secret
#
Top Level Definition
#
suffix "ou=RAH,o=IBM Hursley,c=UK"
#

#
adminDN <distinguishedname>
#
Example:
adminDN "cn=Admin, o=Your Company"
#
The adminDN option should be updated to contain a
distinguished name within one of the suffixes defined below.
This requires that an entry exist in the directory for this
distinguished name and it will be used when evaluating an
LDAP bind operation for the AdminDN.
#

suffix <toplevelname>
#
Default Value: none
#
Example:
suffix "o=Your Company"
#

Figure 3: LDAP initial configuration file

Page 8 of 76

This configuration file is just sufficient to enable the LDAP Server to be
started. More actions are taken within the LDAP Server for it to become useful.

Advanced configuration options can be used to control replication and
referral (linkage of LDAP Server instances to form a larger entity), but these are outside
the scope of this document. I assume that the LDAP Server is going to be used in a
Development environment, and that many individual CICS regions are going to use the
same LDAP Server instance without interfering with each other.

Apart from the DB2 information (the LDAP Server uses a DB2 database to
hold information) the main things to note are:

The Port number (port) used to communicate with the Server
The name (adminDN) and password (adminPW) used for
communicating with the LDAP Server
The suffix ("ou=RAH,o=IBM Hursley,c=UK") used to define the
LDAP namespace

The port, adminDN and adminPW items, together with the IP Address of
the z/OS system are needed to contact the LDAP Server. (See “Nameserver
(com.ibm.cics.ejs.nameserver)” on page 42.)

The suffix of "ou=RAH,o=IBM Hursley,c=UK" has to be specified in
quotes and forms the dn of the LDAP namespace being processed. The suffix will
usually be set by the System Administrator.

Page 9 of 76

Initially running the LDAP Server

Starting the LDAP Server

When you start the LDAP Server, the following messages should appear
in the Job Log:

This means that the LDAP Server will accept requests.

Issuing MVS commands to the LDAP Server

The LDAP Server is a started task, and so will accept MVS Modify
commands (/F <jobname>) to control its running. See “LDAP Server tracing” on
page 62 for details.

GLD4005I Environment variable file not found. Environment variables not set. Continuing.
GLD0022I z/OS Version 1 Release 2 Security Server LDAP Server
 Starting slapd.
GLD0010I Reading configuration file //DD:CONFIG.
GLD0053I Configuration read security of none.
GLD0185I Connections allowed only on the nonsecure port.
GLD0163I Backend capability listing follows:
GLD0166I Backend type: tdbm, Backend ID: TDBM BACKEND, Backend suffix:
OU=RAH,O=IBM HURSLEY,C=UK::
GLD0165I Capability: LDAP_Backend_ID Value: TDBM BACKEND
GLD0165I Capability: LDAP_Backend_BldDateTime Value: 2001-12-04-14.59.32.000000
GLD0165I Capability: LDAP_Backend_APARLevel Value: LDAP
GLD0165I Capability: LDAP_Backend_Release Value: R 2.0
GLD0165I Capability: LDAP_Backend_Version Value: V 1.0
GLD0165I Capability: LDAP_Backend_Dialect Value: DIALECT 1.0
GLD0165I Capability: LDAP_Backend_BerDecoding Value: BINARY
GLD0165I Capability: LDAP_Backend_ExtGroupSearch Value: YES
GLD0165I Capability: LDAP_Backend_krbIdentityMap Value: YES
GLD0165I Capability: supportedControl Value: 2.16.840.1.113730.3.4.2
GLD0165I Capability: supportedControl Value: 1.3.18.0.2.10.2
GLD0167I End of capability listing for Backend type: tdbm, Backend ID: TDBM BACKEND,
Backend suffix: OU=RAH,O=IBM HURSLEY,C=UK.
GLD0164I Backend capability listing ended.
GLD0002I Configuration file successfully read.
GLD0189I Nonsecure communication is active for IP: INADDR_ANY, nonsecure port: 2389.
GLD0122I Slapd is ready for requests.

Page 10 of 76

Configuring the LDAP Browser and Directory Tool

In order to access and configure the LDAP Browser and the Directory Tool
you will need:

The IP Address of the z/OS hosting the LDAP Server
The Port number for access - from the port setting
The Userid and Password for administration purposes - from the
adminDN and adminPW settings

It’s important that the full dn format (cn=admin) is used for the Userid!

These values feed into ldapmodify and ldapadd commands that define
items in the LDAP server. These commands are issued from with the z/OS Unix System
Services shell and it is usually convenient to create shell scripts to issue these
commands. SC24-5924-01: z/OS Security Sever LDAP Client
Programming contains information about these commands.

After properties
configuration the settings of my
LDAP Browser are:

Page 11 of 76

And the IBM Secureway Directory Management tool settings are:

The configuration file for the
Directory Management tool
is:

Page 12 of 76

Contacting the LDAP Server

Once the LDAP Browser has been configured (and the LDAP Server
contacted), it should display a very simple structure.

The left hand side will show the initial structure:

whilst the right hand side will show the contents:

You can see that the suffix has appeared in the subschemasubentry
item and a folder has appeared for the ou being used.

The Directory Management tool shows:

The LDAP Server now needs to have a basic structure (called a schema)
added. Continue at “Install the Schema” on page 14.

Page 13 of 76

Install the Schema

The WebSphere naming schema

The LDAP Server needs to have a schema. A schema defines the
structure of the database and several structures are possible. The preferred schema is
that used by the IBM WebSphere product - even if you do not intend to use WebSphere
itself. This is the structure that I am going to use for my LDAP Server.

This WebSphere schema definition is available in /usr/lpp/ldap/etc/
WebSphereNaming.ldif. Alternatively, it is shipped with CICS TS 2.2 in
/usr/lpp/cicsts/cicsts22/utils/namespace/
WebSphereNamingSchema.ldif (however, this latter is affected by APARs, so use
the WebSphere supplied version if available).

You should copy this file and rename to
MyWebSphereNamingSchema.ldif.

It should look like Figure 4 (initial part only).

A ldif file contains commands for the ldapmodify or ldapadd utility.

--
This file is shipped in code page IBM-1047 and must remain in
code page IBM-1047.
--

dn:cn=schema, <suffix>
changetype: modify
add: attributetypes
attributetypes: (
 1.3.18.0.2.4.1102
 NAME 'ibm-wsnEntryType'
 DESC 'Defines the type of WebSphere Name Tree entry'
 EQUALITY caseExactIA5Match
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
 SINGLE-VALUE
 USAGE userApplications
)
ibmattributetypes: (
 1.3.18.0.2.4.1102
 DBNAME('ibmwsnEntryType' 'ibmwsnEntryType')
 ACCESS-CLASS normal
 LENGTH 32
 EQUALITY
)
attributetypes: (
 1.3.18.0.2.4.1103
 NAME 'ibm-wsnName'
 DESC 'Name of an entry in the WebSphere Name Tree'
 EQUALITY caseExactMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
 SINGLE-VALUE
 USAGE userApplications
)
ibmattributetypes: (
 1.3.18.0.2.4.1103
 DBNAME('ibmwsnName' 'ibmwsnName')
 ACCESS-CLASS normal
 LENGTH 240
 EQUALITY
)

Figure 4: WebSphere naming schema

Page 14 of 76

You have to change the dn:cn=schema,<suffix> line by inserting the
dn of the suffix. In my case, it will look like

Note that quotes are not required inside a ldif file whereas they are in
executing a ldapmodify command.

Installing the WebSphere schema

The WebSphere schema is installed by operations within the OpenEdition
Shell. Again you will need:

The IP Address of the z/OS hosting the LDAP Server
The Port number for access - from the port setting
The Userid and Password for administration purposes - from
the adminDN and adminPW settings

Whilst the LDAP server is running, within the OpenEdition shell issue the
following command on the modified schema file:

It’s important that the full cn=admin (or whatever is specified in the LDAP
Server configuration file) is used for the Userid and that the -D parameter is supplied
within quotes (-D "cn=admin"). If the command is spread over several lines, you will
need to add the \ continuation character at the end of all lines apart from the last one.

If you get a message implying that type or values already exist, then
someone else has already done this step for you.

You can see what has been installed by running (in the OE shell):

(So it’s -b "cn=schema,ou=RAH,o=IBM Hursley,c=UK" in my case.)

dn:cn=schema, ou=RAH, o=IBM Hursley, c=UK

ldapmodify
 -h <hostname>
 -p <portnumber>
 -D <userid>
 -w <password>
 -f /u/rharri1/MyWebSphereNamingSchema.ldif

ldapsearch
 -h <hostname>
 -p <portnumber>
 -D <userid>
 -w <password>
 -b "cn=schema,<suffix>"
 "objectclass=*"

Page 15 of 76

You can check that everything has been created by placing the following
code into a script file (remember to chmod a+rwx it and, maybe, changing £s to $s and
¬s to ^s etc. together with the apt namings) and seeing that things match.

Shell script to verify WebSphereNamingSchema

pserver="winmvs2c.hursley.ibm.com"
pport="2389"
puserid="cn=admin"
ppassword="secret"
pschema="ou=RAH, o=IBM Hursley, c=UK"

echo
echo " --WebSphereNamingSchema Input--"

cat MyWebSphereNamingSchema.ldif | \
 awk '/NAME .ibm/ {print £0} \
 /DBNAME\(.ibm/ { } '

echo " --Attributes--"

ldapsearch -h £pserver -p £pport \
 -D £puserid -w £ppassword \
 -b "cn=schema,£pschema" \
 "objectclass=*" | \
 awk '/¬attr/ {print £0} ' | \
 awk '/ibm/ {print £0} ' | \
 awk '/NAME..ibm/ {print £0} ' | \
 awk 'BEGIN { FS = " "} ; \
 { for (i=1;i<=NF;i++) \
 { j = i+1 ; \
 m = match(£i,/NAME/) ; \
 if (m !=0) \
 { print " ", £i, £j ; break } \
 } \
 } '|\
 cat

echo " --Objects--"

ldapsearch -h £pserver -p £pport \
 -D £puserid -w £ppassword \
 -b "cn=schema,£pschema" \
 "objectclass=*" | \
 awk '/¬object/ {print £0} ' | \
 awk '/ibm/ {print £0} ' | \
 awk '/NAME..ibm/ {print £0} ' | \
 awk 'BEGIN { FS = " "} ; \
 { for (i=1;i<=NF;i++) \
 { j = i+1 ; \
 m = match(£i,/NAME/) ; \
 if (m !=0) \
 { print " ", £i, £j ; break } \
 } \
 } '|\
 cat

End of Shell script

Figure 5: Shell script for checking WebSphere schema

Page 16 of 76

Alternatively, check out the schema definitions with the Directory tool:

At this point you have inserted definitions into the LDAP Database, but
nothing is actually using them.

Next you have to add the suffix definition into the LDAP structure.
Continue at “Creating the Suffix” on page 18.

Page 17 of 76

Creating the Suffix

Why you need to do this

The previous operations have merely configured the LDAP Server without
actually placing anything useful within. You have to add an initial entry corresponding to
the suffix so that everything else can use this as the base for further definitions.

Creating the entry

Create a ldif file for the addition of the suffix (I’ve called it
Mysuffix.ldif). It should contain the left-most rdn of the suffix entry (which is ou
in my case):

Observe that it is the ou part of the suffix (the left-most) that is the
required entry but the whole of the suffix is quoted in the dn field. The suffix is inserted
by doing a:

Checking it made it
In the LDAP Browser (after rebinding) the OU folder now contains the

entry:

dn: ou=RAH,o=IBM Hursley,c=uk
objectclass: organizationalunit
ou: RAH

Figure 6: Creating the Suffix

ldapadd
 -h <hostname>
 -p <portnumber>
 -D <userid>
 -w <password>
 -f /u/rharri1/Mysuffix.ldif

Page 18 of 76

If you use the Directory Tool (after refreshing), and hit the ACL Button, you
can see the permissions associated with the entry:

You can see that everybody has read access to LDAP Information but only
the administrator can manipulate items. Next you create some Userids for CICS usage
as shown in Section ”Adding the CICS Users” on page 23.

If, however, the ACL display looks like this:

then the default acl group has not been correctly setup, and you must fix
this as described in Section ”Correcting the default” on page 21.

Page 19 of 76

Checking that the correct default
permissions have been created

Why you have to do this

Most LDAP Servers will have already created the default access control
list (acl) for the system at installation time. However, it is important that this default
setting has been setup as a Group (as opposed to an Userid).

Checking the default is a group

You should issue the following command (from within the OE shell):

(with your own suffix in -b).

If it produces something like:

you have got a problem with the default access and must correct it.

The crucial indication of the error is the red
aclentry=cn=anybody:NORMAL:RSC:SYSTEM:RSC line which shows that the entry
is for a specific user and not a group.

ldapsearch \
 -h <hostname> \
 -p <portnumber> \
 -D <userid> \
 -w <password> \
 -b "ou=RAH,o=IBM Hursley,c=UK" \
 "(objectclass=*)" \
 aclentry aclpropagate aclsource \
 entryowner ownerpropagate \
 ownersource

entryOwner ownerpropagate ownersource
ou=RAH,o=IBM Hursley,c=uk
aclentry=cn=anybody:NORMAL:RSC:SYSTEM:RSC
ownerpropagate=TRUE
entryowner=access-id:CN=ADMIN
aclsource=ou=RAH,o=IBM Hursley,c=uk
ownersource=default

Page 20 of 76

However if you get something like:

things are correctly setup, and you need not take any more action in this
section. Next you need to add some Userids for CICS access to the LDAP Server: goto
“Adding the CICS Users” on page 23.

Correcting the default

You must get rid of the userid entry for cn=anybody which will allow the
group to become active. At the OE prompt issue a:

with the correct suffix (note the escaped double quotes and the lower-case
-d).

See what has happened by reissuing the display command):

ou=RAH,o=IBM Hursley,c=uk
aclentry=access-id:CN=ADMIN:normal:rwsc:
 sensitive:rwsc:critical:rwsc:
 restricted:rwsc:system:rwsc
aclentry=group:CN=ANYBODY:normal:rsc:system:rsc
aclentry=group:CN=AUTHENTICATED:normal:rsc:system:rsc
ownerpropagate=TRUE
entryowner=access-id:CN=ADMIN
aclsource=default
ownersource=default

ldapcp \
 -h <hostname> \
 -p <portnumber> \
 -d <userid> \
 -w <password> \
 "acl delete \"ou=RAH,o=IBM Hursley,c=UK\" "

ldapsearch \
 -h <hostname> \
 -p <portnumber> \
 -D <userid> \
 -w <password> \
 -b "ou=RAH,o=IBM Hursley,c=UK" \
 "(objectclass=*)" \
 aclentry aclpropagate aclsource \
 entryowner ownerpropagate \
 ownersource

Page 21 of 76

If it produces something like:

Then the problem has been corrected. The green lines show that the
default access groups have been correctly defined.

Once this default acl as a group is around, you create some userids for
CICS usage as described in “Adding the CICS Users” on page 23.

ou=RAH,o=IBM Hursley,c=uk
aclentry=access-id:CN=ADMIN:normal:rwsc:
 sensitive:rwsc:critical:rwsc:
 restricted:rwsc:system:rwsc
aclentry=group:CN=ANYBODY:normal:rsc:system:rsc
aclentry=group:CN=AUTHENTICATED:normal:rsc:system:rsc
ownerpropagate=TRUE
entryowner=access-id:CN=ADMIN
aclsource=default
ownersource=default
Page 22 of 76

Adding the CICS Users

Why these are needed

CICS requires two LDAP-sourced identities. One is for CICS system use
(CICSUser) and the other (CICSSystems) for general access to the LDAP server.

Creating the Users

There are some definitions in the
/usr/lpp/cicsts/cicsts22/utils/namespace/dfhsns.ldif file. Copy this
file to Mydfhsns1.ldif, insert the suffix and remove other definitions so it looks like:

The CICSUser entry is used by CICS to access the LDAP Server and so
the Userid (see “LDAP access Userid (java.naming.security.principal)” on page 43) and
Password (see “LDAP access Password (java.naming.security.credentials)” on page 43)
are specified to CICS.

Run this file through ldapmodify in the usual fashion:

 # Add the CICSUser (admin) user with the default password
 dn: cn=CICSUser, ou=RAH, o=IBM Hursley, c=UK
 changetype: add
 objectclass: person
 cn: CICSUser
 sn: CICS Transaction Server 2.2 admin
 userPassword: secret

 # Add the CICSSystems (runtime) user with the default password
 dn: cn=CICSSystems, ou=RAH, o=IBM Hursley, c=UK
 changetype: add
 objectclass: person
 cn: CICSSystems
 sn: CICS Transaction Server 2.2 runtime
 userPassword: secret

Figure 7: Adding CICS userids

 ldamodify -v \
 -h winmvs2c.hursley.ibm.com -p 2389 \
 -D "cn=admin" -w secret \
 -f /u/rharri1/Mydfhsns1.ldif

Page 23 of 76

The LDAP Browser (once you have rebound) will now show the new
entries:

Observe that the authorities do not show up on the Browser panel.

and for each created userid

Page 24 of 76

If you do a:

(with the relevant schema) you should see both entries have authorities
inherited from the default groups in addition to those especially set (I’ve split a few lines
for readability):

ldapsearch \
 -h <hostname> \
 -p <portnumber> \
 -D <userid> \
 -w <password> \
 -b "ou=RAH,o=IBM Hursley,c=UK" \
 "(objectclass=*)" \
 aclentry aclpropagate aclsource \
 entryowner ownerpropagate \
 ownersource

ou=RAH,o=IBM Hursley,c=uk
aclentry=access-id:CN=ADMIN:normal:rwsc:sensitive:rwsc:
 critical:rwsc:restricted:rwsc:system:rwsc
aclentry=group:CN=ANYBODY:normal:rsc:system:rsc
aclentry=group:CN=AUTHENTICATED:normal:rsc:system:rsc
ownerpropagate=TRUE
entryowner=access-id:CN=ADMIN
aclsource=default
ownersource=default

cn=CICSUser,ou=RAH,o=IBM Hursley,c=UK
aclentry=access-id:CN=ADMIN:normal:rwsc:sensitive:rwsc:
 critical:rwsc:restricted:rwsc:system:rwsc
aclentry=group:CN=ANYBODY:normal:rsc:system:rsc
aclentry=group:CN=AUTHENTICATED:normal:rsc:system:rsc
ownerpropagate=TRUE
entryowner=access-id:CN=ADMIN
aclsource=default
ownersource=default

cn=CICSSystems,ou=RAH,o=IBM Hursley,c=UK
aclentry=access-id:CN=ADMIN:normal:rwsc:sensitive:rwsc:
 critical:rwsc:restricted:
rwsc:system:rwsc
aclentry=group:CN=ANYBODY:normal:rsc:system:rsc
aclentry=group:CN=AUTHENTICATED:normal:rsc:system:rsc
ownerpropagate=TRUE
entryowner=access-id:CN=ADMIN
aclsource=default
ownersource=default

Page 25 of 76

You can see authorities using the Directory Tool:

Next you need to create the required WebSphere tree structure for access
as described in “Creating the WebSphere tree structure” on page 27.

Page 26 of 76

Creating the WebSphere tree structure

Why you need to do this

You need to create the LDAP tree structure under which all definitions are
held. It’s called a WebSphere tree as it uses the definitions supplied earlier in the
WebSphere schema. However, WebSphere itself is not around.

Defining the WebSphere tree structure initially involves creating an anchor
point under the previously defined base point (the suffix).

You choose this anchor point name. It should relate to something like Test
or Acceptance. I am going to call my anchor point CicsTest.

See “Container Distinguished Name
(com.ibm.ws.naming.ldap.containerdn)” on page 42 for how this is specified to
CICS.

Creating the Tree anchor

There are some definitions in the
/usr/lpp/cicsts/cicsts22/utils/namespace/dfhsns.ldif file. Copy this
file to Mydfhsns2.ldif, insert the suffix and remove other definitions so it looks like:

As the tree structure I am going to use is CicsTest it is this name that is
used in the dn clause and the associated ibm-wsnTree entry.

The dn of ibm-wsnTree=CicsTest, ou=RAH, o=IBM Hursley, c=UK is
referred to as the containerdn.

Run this file through ldapmodify in the usual fashion:

Build the name tree container
This matches the defaults supplied by Websphere for zOS
dn: ibm-wsnTree=CicsTest, ou=RAH, o=IBM Hursley, c=UK
changetype: add
objectclass: ibm-wsnNameTreeContainer
ibm-wsnTree: CicsTest

Figure 8: Creating the WebSphere Tree anchor

 ldamodify -v \
 -h winmvs2c.hursley.ibm.com -p 2389 \
 -D "cn=admin" -w secret \
 -f /u/rharri1/Mydfhsns2.ldif

Page 27 of 76

The LDAP Browser (once you have rebound) will now show the new
entries:

The Directory tool also shows the
new entry:

Once this anchor is in place, the required tree structure can be created
under it. Continue with “Creating the Tree Structure” on page 29.

and for the ibm-wsnTree entry of CicsTest:

Page 28 of 76

Creating the Tree Structure
The name of the Tree Structure is upto you. I am going to call mine

SysProg. See “Anchor point (com.ibm.ws.naming.ldap.noderootrdn)” on
page 43 for how this is specified to CICS.

This structure is created by running a CICS-supplied script which invokes
a java class. This script needs amending to indicate HFS directories.

The script itself is in the
/usr/lpp/cicsts/cicsts22/utils/namespace/DFHBuildSNS file. Copy this as
MyDFHBuildSNS (ensuring the execute permission is set). It should look like:

Change the export CICS_HOME line to be the HFS directory used for
installing CICS. So the script should look like:

This script has been affected by APARs, so you should change it to the
above example to ensure it works!

Call the Java program that will build the SNS

If executing this utility from the location where
it is shipped with CICS, it requires NO changes
in order to run.

If executing it from another location, alter the
next environment variable value to point to
the base HFS directory where CICS is installed.

For example, /usr/lpp/cicsts/cicsts22
export CICS_HOME=../..

###
Do not change anything below this line
###
export CLIB=£CICS_HOME/lib

Build the correct classpath
export BUILT_CP=$CICS_HOME/utils/namespace/dfhnsutils.jar
export BUILT_CP=$BUILT_CP:$CLIB/security/dfhreg.jar
export BUILT_CP=$BUILT_CP:$CLIB/dfjname.jar:$CLIB/websphere.jar
export BUILT_CP=$BUILT_CP:$CLIB/dfjcicsras.jar
export BUILT_CP=$BUILT_CP:$CLIB/ras.jar:$CLIB/dfjwrap.jar

java -cp £BUILT_CP com.ibm.cics.naming.utils.DFHBuildSNS -Xmx5M £"@"

export CICS_HOME=/usr/lpp/cicsts/cicsts22

###
Do not change anything below this line
###
export CLIB=£CICS_HOME/lib

Build the correct classpath
export BUILT_CP=$CICS_HOME/utils/namespace/dfhnsutils.jar
export BUILT_CP=$BUILT_CP:$CLIB/security/dfhreg.jar
export BUILT_CP=$BUILT_CP:$CLIB/dfjname.jar:$CLIB/websphere.jar
export BUILT_CP=$BUILT_CP:$CLIB/dfjcicsras.jar
export BUILT_CP=$BUILT_CP:$CLIB/ras.jar:$CLIB/dfjwrap.jar

java -cp £BUILT_CP com.ibm.cics.naming.utils.DFHBuildSNS -Xmx5M £"@"

Page 29 of 76

I created another script (d2) to run the MyDFHBuildSNS script (which
calls the java class):

The chosen name is supplied in the -domain parameter. The Anchor
point dn is specified in the -containerdn field. (You defined this in “Creating the Tree
anchor” on page 27.)

Observe the different syntax from ldapmodify and that the
-containerdn parameter has to be enclosed in double quotes.

When the d2 script is run, you should get the following output which
shows that everything has worked correctly:

MyDFHBuildSNS \
 -ldapserver ldap://winmvs2c.hursley.ibm.com:2389 \
 -principal "cn=admin" \
 -credentials secret \
 -containerdn "ibm-wsnTree=CicsTest,ou=RAH,o=IBM Hursley,C=UK" \
 -domain SysProg

Figure 9: Specifying the Domain

Processing request to build the system namespace:
LDAP Server: ldap://winmvs2c.hursley.ibm.com:2389
 Node: undefined
 Domain: SysProg
ContainerDN: ibm-wsnTree=CicsTest,ou=RAH,o=IBM Hursley,C=UK
 Principal: cn=admin

Checking current namespace structure.
Building the system namespace.
System namespace now ready for use by CICS TS.

Page 30 of 76

Checking the Tree Structure
Once the script has run, there will be lots of additional entries in the LDAP

Server which can be displayed. These entries were added under the supplied
ibm-wsnTree anchor point which was set to CicsTest.

The LDAP Browser LHS panel will show:

The Directory Management tool shows:

You now need to create an entry for each Development CICS region
within this structure. Goto “Adding the CICS region” on page 32.

Page 31 of 76

Adding the CICS region

Why you need to do this
This document is aimed at the Development/Test environment, so entries

are going to be unique on a CICS region basis. Thus, each CICS region needs to be
defined in the LDAP Structure. This definition is called a LDAP Subcontext.

I am going to impose the standard that the Subcontext name is going to
be the Applid of a CICS region. (Each Development region does not share anything, so
they need individual entries in the LDAP Server.) In the Production environment,
different criteria will apply.

The name chosen for the Subcontext is used in the RDO CORBASERVER
definition for the JNDIPREFIX field. This name is case sensitive. (See “RDO
CORBASERVER” on page 46.)

Repeat the actions in this section for all required CICS regions (change
the red items in Figure 10, ‘Creating the Subcontext/JNDIPrefix,’ on page 34).

Page 32 of 76

Creating the ldif file
The Applid of my CICS region is IYCKRAH6, so this is what I am going to

use as my Subcontext name and consequently use in all RDO CorbaServer
JNDIPREFIX entries within the CSD for that region.

The subcontext is created via the ldapmodify utility. Some commands are
in the /usr/lpp/cicsts/cicsts22/utils/namespace/
dfhNewCICSSubcontext.ldif file. Copy this as
MydfhNewCICSSubcontext.ldif. It should look like:

You must modify most of this file to use your assigned name.

dn: ibm-wsnName=iycwabcd,
 ibm-wsnName=legacyRoot,
 ibm-wsnName=PLEX2,
 ibm-wsnName=domainRoots,
 ibm-wsnTree=t1,
 o=WASNaming,
 c=us
ibm-wsnname: iycwabcd
javaclassname: com.ibm.ws.naming.ldap.WsnLdapContextImpl
ibm-wsnentrytype: PrimaryContext
ibm-wsnnametreecontainerdn: ibm-wsnTree=t1,
 o=WASNaming,
 c=us
objectclass: ibm-wsnEntry
objectclass: ibm-wsnPrimaryContextLocation
ibm-wsnpathfromcontainer: ibm-wsnName=iycwabcd,
 ibm-wsnName=legacyRoot,
 ibm-wsnName=PLEX2,
 ibm-wsnName=domainRoots
aclentry: access-id:cn=CICSUser,c=US:object:ad:normal:rwsc
aclentry: group:CN=ANYBODY:normal:rsc
aclentry: access-id:cn=CICSSystems,c=US:object:ad:normal:rwsc

Page 33 of 76

It should end up like (ensure that trailing commas and colons are not
omitted):

The red items are the Subcontext/JNDIPREFIX name which is case
sensitive. The blue items are the domain (see Figure 9, ‘Specifying the Domain,’ on
page 30). The green items are the anchor points (see Figure 8, ‘Creating the
WebSphere Tree anchor,’ on page 27). The magenta items are the suffix (see Figure 6,
‘Creating the Suffix,’ on page 18).

The case-sensitive Userids (see Figure 7, ‘Adding CICS userids,’ on page
23) are given write access to this Subcontext as shown.

Observe that there are two entryOwner entries: the cn=admin one
should correspond to the LDAP Server id (which is used in all the ldap commands). The
explicit addition of this entry permits administrator access through the Directory tool.

 The second entryOwner names the userid that is going to be
responsible for the Subcontext, namely that used by the CICS region (see Section
”LDAP access Userid (java.naming.security.principal)” on page 43).

dn: ibm-wsnName=IYCKRAH6,
 ibm-wsnName=legacyRoot,
 ibm-wsnName=SysProg,
 ibm-wsnName=domainRoots,
 ibm-wsnTree=CicsTest,
 ou=RAH,
 o=IBM Hursley,
 c=UK
entryOwner: access-id:cn=admin
entryOwner: access-id:cn=CICSUser,ou=RAH,o=IBM Hursley,c=UK
ibm-wsnname: IYCKRAH6
javaclassname: com.ibm.ws.naming.ldap.WsnLdapContextImpl
ibm-wsnentrytype: PrimaryContext
ibm-wsnnametreecontainerdn: ibm-wsnTree=CicsTest,
 ou=RAH,
 o=IBM Hursley,
 c=UK
objectclass: ibm-wsnEntry
objectclass: ibm-wsnPrimaryContextLocation
ibm-wsnpathfromcontainer: ibm-wsnName=IYCKRAH6,
 ibm-wsnName=legacyRoot,
 ibm-wsnName=SysProg,
 ibm-wsnName=domainRoots
aclentry: access-id:cn=CICSUser,ou=RAH,o=IBM Hursley,c=UK:
 object:ad:normal:rwsc
aclentry: group:CN=ANYBODY:normal:rsc
aclentry: access-id:cn=CICSSystems, ou=RAH, o=IBM Hursley, c=UK:
 object:ad:normal:rwsc

Figure 10: Creating the Subcontext/JNDIPrefix

Page 34 of 76

The Subcontext is created via ldapadd:

ldapadd -v \
 -h winmvs2c.hursley.ibm.com -p 2389 \
 -D "cn=admin" -w secret \
 -f /u/rharri1/MydfhNewCICSSubcontext.ldif

Page 35 of 76

Checking the results

Using the tools

The LDAP Browser (after refreshing) will show the new SubContext:

Note that the JavaClassName attribute has appeared which is set to an
IBM-supplied java class.

Page 36 of 76

The Directory Management tool also shows the new entry:

but it can also show the access set on it:

You can see that both the CICS Userids can manage the subcontext (put
items into it and take items from it).

Page 37 of 76

Using commands

You can issue this command:

which should yield something like (some lines split for readability):

What to do next

You have finished the configuration of the LDAP Server to use by CICS!

Continue by configuring the java-related parts of CICS. This is described
in “CICS relationships” on page 42. After that define a CorbaServer for use as shown in
“CorbaServers” on page 47 which will enable you to test things out.

However, depending upon whether or not a bug has been fixed, you may
need to do another ldif operation as described in “Avoiding the CICS Retraction bug” on
page 39. I suggest you do not do this unless the bug is present. It appears in the
circumstances described in “What is the bug?” on page 39.

ldapsearch \
 -h winmvs2c.hursley.ibm.com -p 2389 \
 -D "cn=admin" -w secret \
 -b "ou=rah,o=ibm hursley,c=uk" \
 "(|(ibm-wsnName=IYCKRAH6))" \
 aclentry aclpropogate aclsource \
 entryOwner ownerpropagate ownersource

ibm-wsnName=IYCKRAH6, ibm-wsnName=legacyRoot,
ibm-wsnName=SysProg, ibm-wsnName=domainRoots,
ibm-wsnTree=CicsTest, ou=RAH, o=IBM Hursley, c=UK
entryowner=access-id:cn=admin
entryowner=access-id:cn=CICSUser,ou=RAH,o=IBM Hursley,c=UK
aclentry=group:cn=anybody:normal:rsc
aclentry=access-id:cn=CICSUser,ou=RAH,o=IBM Hursley,c=UK :
 object:ad:normal:rwsc
aclentry=access-id:cn=CICSSystems,ou=RAH,o=IBMHursley,c=UK :
 object:ad:normal:rwsc
ownerpropagate=TRUE
aclsource=ibm-wsnName=IYCKRAH6, ibm-wsnName=legacyRoot,
 ibm-wsnName=SysProg, ibm-wsnName=domainRoots,
 ibm-wsnTree=CicsTest, ou=RAH, o=IBM Hursley, c=UK
ownersource=ibm-wsnName=IYCKRAH6, ibm-wsnName=legacyRoot,
 ibm-wsnName=SysProg, ibm-wsnName=domainRoots,
 ibm-wsnTree=CicsTest, ou=RAH, o=IBM Hursley,c=UK

Page 38 of 76

Avoiding the CICS Retraction bug

What is the bug?

There is, ahem, a bit of an, err, bug in the way CICS deletes entries from
the LDAP Hierarchy.

CICS will over enthusiastically delete the SubContext level if it is empty: so
deleting all the Security settings described in “Adding the CICS region” on page 32.

You can end up, after issuing CICS commands, with a structure that omits
the SubContext (the IYCKRAH6 level in my case):

IYCKRAH6 should be here

Page 39 of 76

Circumventing the bug

The easiest way to circumvent the bug is to ensure that the SubContext
level never becomes empty. The simplest way to do this is to create a fake user.

I have coded up an ldif file called Myfix.ldif containing a dummy entry:

And invoked it via a:

The crucial part is in red - it’s the level of the SubContext that CICS will
erroneously remove if given the chance.

In subsequent chapters of this document, this fake entry is not shown to
avoid confusion (and irrelevance once the bug is fixed!).

dn: cn=Fix to prevent CICS from deleting this level,
 ibm-wsnName=IYCKRAH6,
 ibm-wsnName=legacyRoot,
 ibm-wsnName=SysProg,
 ibm-wsnName=domainRoots,
 ibm-wsnTree=CicsTest,
 ou=RAH,
 o=IBM Hursley,
 c=UK
changetype: add
objectclass: person
cn: Fix to prevent CICS from deleting this level
sn: Fake entry
userPassword: secret
entryOwner: access-id:cn=admin
aclentry: group:cn=anybody:normal:rsc
aclentry: access-id:cn=CICSUser,ou=RAH,o=IBM Hursley,c=UK :
 normal:rsc
aclentry: access-id:cn=CICSSystems,ou=RAH,o=IBM Hursley,c=UK :
 normal:rsc

ldapadd -v \
 -h winmvs2c.hursley.ibm.com -p 2389 \
 -D "cn=admin" -w secret \
 -f Myfix.ldif

Page 40 of 76

After running the command, the LDAP Browser will show:

The Directory Tool additionally shows that the LDAP User associated with
CICS cannot manipulate it:

Page 41 of 76

CICS relationships

JVM System Properties

JVM System Properties are set in an HFS file named via a member in the
DFHJVM PDS via the JVMPROPS setting (conventionally called the
system.properties file). The member used is set on the RDO PROGRAM definition
if using a normal Java class (one which is executed via a main method) or determined
from a matching RDO REQUESTMODEL if runing an Enterprise Bean. See the CICS
Java and CICS RDO books for details.

CICS will use a fixed member name of DFHJVMPR for its operations, so
this member must exist in the DFHJVM PDS and contain, amongst other things, the
following entries.

Some of these properties relate to the LDAP Server and so are taken
directly from the configuration of the LDAP Server.

In the settings that follow, the line breaks are for readability.

Nameserver (com.ibm.cics.ejs.nameserver)

This is the IP name of the LDAP server including the port number used for
access. (See Figure 3, ‘LDAP initial configuration file,’ on page 8.)

In my case, the setting is:

Container Distinguished Name
(com.ibm.ws.naming.ldap.containerdn)

This is the name of the anchor point for the configuration. (See Figure 8,
‘Creating the WebSphere Tree anchor,’ on page 27.)

In my case, the setting is:

com.ibm.cics.ejs.nameserver=ldap://winmvs2c.hursley.ibm.com:2389

com.ibm.ws.naming.ldap.containerdn=
 ibm-wsnTree=CicsTest,ou=RAH,o=IBM Hursley,C=UK

Page 42 of 76

Anchor point
(com.ibm.ws.naming.ldap.noderootrdn)

This is the name under which all associated entries are placed into the
LDAP structure. You do not specify the full dn, only the bit after the containerdn. Recall
that dns are specified in a left-to-right fashion with the top of the tree being the last rdn.
(See Figure 9, ‘Specifying the Domain,’ on page 30.) This setting appears a little odd in
that all three entries have the same name (fixed by the WebSphere naming schema),
and that only the middle one is variable.

In my case, the setting is:

LDAP access Userid (java.naming.security.principal)

This is the Userid used by CICS to access the LDAP Server (see
“Creating the Users” on page 23). In my case the setting is:

LDAP access Password (java.naming.security.credentials)

This is the Password for the Userid used by CICS to access the LDAP
Server (see “Creating the Users” on page 23). In my case the setting is:

Java Security Mechanism (java.naming.security.authentication)

The Java Security mechanism that supports the LDAP access Userid is
governed by a fixed setting for this attribute of simple.

com.ibm.ws.naming.ldap.noderootrdn=
 ibm-wsnName=legacyRoot,
 ibm-wsnName=SysProg,
 ibm-wsnName=domainRoots

java.naming.security.principal=
 cn=cicsuser,ou=RAH,o=IBM Hursley,c=UK

java.naming.security.credentials=secret

java.naming.security.authentication=simple

Page 43 of 76

JNDI constructor class (java.naming.factory)

This entry is fixed as it contains the java class used to manipulate the
LDAP Server. This fixed entry is:

java.naming.factory.initial=
 com.ibm.sphere.naming.WsnInitialContextFactory

Page 44 of 76

My System.properties file

The system.properties file that I am using looks like:
 #

 #

 H
os

t L
D

A
P

 #

 ja
va

.n
am

in
g.

fa
ct

or
y.

in
iti

al
=c

om
.ib

m
.sp

he
re

.n
am

in
g.

W
sn

In
iti

al
C

on
te

xt
Fa

ct
or

y

 c
om

.ib
m

.c
ic

s.e
js

.n
am

es
er

ve
r=

ld
ap

://
w

in
m

vs
2c

.h
ur

sl
ey

.ib
m

.c
om

:2
38

9

 c
om

.ib
m

.w
s.n

am
in

g.
ld

ap
.c

on
ta

in
er

dn
=i

bm
-w

sn
Tr

ee
=C

ic
sT

es
t,o

u=
R

A
H

,o
=I

B
M

 H
ur

sl
ey

,C
=U

K
 c

om
.ib

m
.w

s.n
am

in
g.

ld
ap

.n
od

er
oo

trd
n=

ib
m

-w
sn

N
am

e=
le

ga
cy

R
oo

t,i
bm

-w
sn

N
am

e=
Sy

sP
ro

g,
ib

m
-w

sn
N

am
e=

do
m

ai
nR

oo
ts

 ja
va

.n
am

in
g.

se
cu

rit
y.

au
th

en
tic

at
io

n=
si

m
pl

e

 ja
va

.n
am

in
g.

se
cu

rit
y.

pr
in

ci
pa

l=
cn

=C
IC

SU
se

r,o
u=

R
A

H
,o

=I
B

M
 H

ur
sl

ey
,c

=U
K

 ja
va

.n
am

in
g.

se
cu

rit
y.

cr
ed

en
tia

ls
=s

ec
re

t

Fi
gu

re
 1

1:
 S

ys
te

m
.P

ro
pe

rt
ie

s
fil

e

Page 45 of 76

RDO CORBASERVER

The JNDIPREFIX for all CorbaServer objects in the CICS region should
be set to the case sensitive SubContext name (see Figure 10, ‘Creating the
Subcontext/JNDIPrefix,’ on page 34). As this is case sensitive, switch the terminal into
mixed mode input via CEOT UC before doing CEDA (which you will have to specify in
UPPERCASE!).

The JNDIPrefix (and SubContext name) is IYCKRAH6 in my case.

You have the choice of exposing a second-level name after the
SubContext name by quoting the JNDIPREFIX as IYCKRAH6/name.

Examples of both types are given in “CorbaServers used” on page 47.

In fact, you can have many /s in the JNDIPREFIX: you just get lots of extra
levels in the LDAP hierarchy. However, this configuration is not recommended.

Page 46 of 76

CorbaServers

Introduction

This section shows how the LDAP Server should react when Publishing
and Retracting CorbaServer definitions. Publishing means putting the GenericFactory
object for the CorbaServer into the LDAP hierarchy. Retracting means deleting it along
with any Bean-related information.

This chapter only discusses CorbaServers from the LDAP perspective.

A GenericFactory is used to locate the Home Interface for an Enterprise
Bean. It is inserted into the LDAP structure as a type of corbaIor
(InterOperableResource for a Corba Object) and contains addressing information. It
looks like:

TCPIPService definitions

Each of the CorbaServers has a separate TCPIPSERVICE definition
installed (not relevant to a LDAP discussion).

CorbaServers used

In order to show what happens in the LDAP Server for the Publication and
Retraction of a CorbaServer, I am going to use two RDO-defined CORBASERVER
objects (recall that JNDIPREFIX is case sensitive, use CEOT UC to put your terminal
into mixed-case mode):

Figure 12: Initial part of an IOR

Page 47 of 76

C000 just has the SubContext name (IYCKRAH6 in my case) as the
JNDIPREFIX.

C0001 has the SubContext name and the name of the CorbaServer
exposed (IYCKRAH6/C001):

CEMT Shows that they have been correctly installed:

 CORbaserver : C000
 Group : RAHEJ
 DEscription : CORBASERVER C000
 Jndiprefix : IYCKRAH6
 Autopublish : No Yes | No
 SEssbeantime : 00 , 00 , 10 0-99 (Days,Hours,Mins)
 SHelf : /u/rharri1/shelf
 DJardir :
SERVER ORB ATTRIBUTES
 Host : IYCKRAH6.C000
 :
 :
 :
 :
CLIENT ORB ATTRIBUTES
 CErtificate :
TCPIP SERVICES
 Unauth : TCC000
 CLientcert :
 SSLUnauth :

 CORbaserver : C001
 Group : RAHEJ
 DEscription : CORBASERVER C000
 Jndiprefix : IYCKRAH6
 Autopublish : No Yes | No
 SEssbeantime : 00 , 00 , 10 0-99 (Days,Hours,Mins)
 SHelf : /u/rharri1/shelf
 DJardir :
SERVER ORB ATTRIBUTES
 Host : IYCKRAH6.C001
 :
 :
 :
 :
CLIENT ORB ATTRIBUTES
 CErtificate :
TCPIP SERVICES
 Unauth : TCC001
 CLientcert :
 SSLUnauth :

 I CORB
 STATUS: RESULTS - OVERTYPE TO MODIFY
 Corba(C000) Inser Sessb(000010) Unaut(TCC000)
 Corba(C001) Inser Sessb(000010) Unaut(TCC001)

Page 48 of 76

Initial LDAP Hierarchy

Browser display

The initial view of the LDAP hierarchy for the LDAP Browser is:

Figure 13: Initial LDAP Hierarchy: LDAP Browser

Page 49 of 76

Directory Tool display

The initial hierarchy a seen through the Directory Management tool is:

Figure 14: Initial LDAP Hierarchy: Directory Tool

Page 50 of 76

Results of Publishing the CorbaServer

JNDIPrefix without a /

If one does a CEMT PERFORM CORBA(C000) PUBLISH to insert
information into the LDAP Server, this inserts the GenericFactory into the Hierarchy.

After rebinding, the new GenericFactory entry can be seen showing a type
of CORBAOBJECT:

Figure 15: Publication result for JNDIPREFIX without a / : LDAP Browser

Page 51 of 76

The Directory tool shows:

Figure 16: Publication result for JNDIPREFIX without a / : Directory Tool

Page 52 of 76

JNDIPrefix with a /

If one does a CEMT PERFORM CORBA(C001) PUBLISH to insert
information into the LDAP Server, this inserts the GenericFactory into the Hierarchy
under a lower-level name (which is the part after the JNDIPREFIX /).

The Browser shows the intermediate level (the bit after the /) as just
another LDAP context:

Figure 17: Publication result for JNDIPREFIX with a / : LDAP Browser

Page 53 of 76

The Management tool shows:

Figure 18: Publication result for JNDIPREFIX with a / : Directory Tool

Page 54 of 76

Retracting a Corbaserver

The opposite of Publishing a CorbaServer is to retract it. This removes the
IOR from the LDAP Server and so makes the CorbaServer, and all the Beans within it,
unavailable for use.

This is done via a CEMT PERFORM CORB(xxxx) RETRACT command.

 After issuing a CEMT P CORB(C001) RETRACT, the situation shown in
Figure 18, ‘Publication result for JNDIPREFIX with a / : Directory Tool,’ on page 54 will
return to Figure 14, ‘Initial LDAP Hierarchy: Directory Tool,’ on page 50.

And the equivalent CEMT P CORB(C000) RET will return from Figure 15,
‘Publication result for JNDIPREFIX without a / : LDAP Browser,’ on page 51 to Figure
13, ‘Initial LDAP Hierarchy: LDAP Browser,’ on page 49.

A CICS Bug

There is, ahem, a CICS bug, err, that rather enthusiastically deletes the
lowest level in the LDAP Hierarchy when it is empty.

Consequently, after a Retraction, the LDAP Structure may end up like:

If this happens, do some more configuration as discussed in
“Circumventing the bug” on page 40.

Figure 19: CICS Retraction bug

Page 55 of 76

DJars

CorbaServers own DJars

A DJar (Deployed Jar file) contains Enterprise Bean code. In CICS
terminology, a RDO DJAR definition just contains the name of the HFS jar file and which
CorbaServer into which the Beans contained within the jar file are to be placed.

Before a Bean can be used by a client, it has, like a CorbaServer, to be
published to the LDAP Server (from whence a client obtains the addressing
information). Like the CorbaServer, this publication involves putting the Bean IOR into
the LDAP Hierarchy under the owning CorbaServer.

Publishing a DJar

Here is a RDO definition for a DJAR:

The name of the RDO DJAR object itself is somewhat irrelevant. It’s only a
mechanism for associating the HFS name of the Deployed jar file (specified in mixed
case) and the owning CorbaServer.

CICS has various mechanisms for creating DJar definitions, but these are
outside of the scope of this document.

If a CorbaServer already has installed DJAR RDO definitions active upon
Publication, then the DJARs are also published. Similarly, the Retraction of a
CorbaServer will retract all associated DJars.

However, individual DJars can themselves be Published and Retracted
and this is what this chapter is considering. In fact, it is not the DJar that is being
Published or Retracted but definitions of all the Enterprise Beans within the relevant jar
file.

The example in this Chapter is using the CICS EJB HelloWorld sample.

 DJar : C001D001
 Group : RAHEJ
 Description : HELLOWORLD
 Corbaserver : C001
 Hfsfile : /u/rharri1/HelloWorldEJB.jar

Page 56 of 76

Publishing using CEMT

A CEMT I DJAR command shows installed DJars (only one in my case):

Note that the HFS file name is truncated on the display.

I published this individual DJAR via a CEMT PERFORM DJAR(C001D001)
PUBLISH command. If the CorbaServer was being Published when this DJar definition
was active, it would have been Published along with the CorbaServer.

I DJAR
STATUS: RESULTS
 Djar(C001D001) Corba(C001) Inser
 Dates(20020403) Times(13:05:00) Hfsfi(/u/rharri1/HelloWorldEJB.j)

Page 57 of 76

LDAP results of DJar publication

The LDAP Browser shows the addition of the Bean under the CorbaServer
entry:

You can see that the Bean has an IOR for access, and that the
javaclassname entry names the Home Interface for the Bean. Unlike most of the
other parts of the LDAP Hierarchy, you can see that CICS has created the entry.

Figure 20: Publication result for DJar : LDAP Browser

Page 58 of 76

The Directory Tool also shows the security information:

Observe that it has inherited access from the owning CorbaServer entry.

Retracting the DJAR

The DJAR is Retracted, removing its IOR from the LDAP Server, via a
CEMT P DJAR(C001D001) RET command. All DJars associated with a CorbaServer
are retracted if the owning CorbaServer is itself Retracted.

Figure 21: Publication result for DJar : Directory Tool

Page 59 of 76

When it all goes horribly wrong

Checking Spellings

Initial problems with using a LDAP Server will probably arise from the
specification of the system.properties file.

The file being used is named in the DFHJVMPR member of the DFHJVM
PDS.

Ensure that the spellings are correct! As most things are case sensitive,
an unlikely lower-case letter may spell DiSasTer.

Deleting the configuration

Of course, you have diligently followed everything in this document down
to the last comma and colon - so things will work first time!

In the unlikely1 event that you need to delete everything and restart, the
easiest way is to use the Directory Tool and delete the top-level (suffix) item.

Alternatively, use the following script file to do the deletion. The complexity
of it arises from the fact that ldapsearch lists things in hierarchy order, but items have
to be deleted from the bottom up. Another factor is that awk arrays use [square
brackets] and this can cause code-page problems.

I’ve called the script file delallldap (remember to chmod a+rwx it and,
maybe, changing £s to $s etc. together with the apt namings):

1. In other words, all the time until you get things working!

Page 60 of 76

Shell script to delete everything from schema downwards

pserver="winmvs2c.hursley.ibm.com"
pport="2389"
puserid="cn=admin"
ppassword="secret"
pschema="ou=RAH,o=IBM Hursley,c=UK"

echo
echo " --Going to delete-- "
echo

ldapsearch -h £pserver -p £pport \
 -D £puserid -w £ppassword \
 -b "£pschema" \
 "(|(objectclass=*))" \
 dn |\
 cat

echo
echo " --Deleting (in reverse order)-- "
echo

ldapsearch -h £pserver -p £pport \
 -D £puserid -w £ppassword \
 -b "£pschema" \
 "(|(objectclass=*))" \
 dn |\
 \
 awk 'BEGIN { FS = " " ; RS = "" ; recs = "" } \
 \
 { \
 if (NR == 1) recs = £0 ; \
 else recs = £0 "\001" recs \
 } \
 \
 END { \
 print recs \
 } \
 ' |\
 \
 awk 'BEGIN { FS = " " ; RS = "\001" } \
 \
 { \
 print £0 \
 } \
 ' |\
 \
 ldapdelete -v \
 -h £pserver -p £pport \
 -D £puserid -w £ppassword

echo
echo " --End of Deletion script-- "
echo

End of Shell script

Figure 22: Shell script to delete all LDAP entries

Page 61 of 76

CICS Tracing

Unfortunately, most of the function of CICS' LDAP processing is contained
within Java code that does not have the level of tracing traditionally enjoyed by CICS
functions. The best you can do is turn on II and EJ domain tracing, but this is not
usually too helpful.

LDAP Server tracing

The LDAP server will accept MVS Modify commands to control tracing.
The syntax, from SDF, is /F jobname,APPL=DEBUG=n where n is a tracing level
number. To turn LDAP tracing off use /F jobname,APPL=DEBUG=0,

The level numbers are documented in the LDAP Admin book, but
DEBUG=133 is the most useful setting as this shows security (acl) processing as well as
the routines used by the Server.

CICS Messages

The messages that CICS outputs for LDAP Processing are constrained
because they come from the aforementioned java code, and so are not under CICS'
control. In general, they will contain the level (rdn) in the hierarchy at which the error
condition occurred, or at least part of the hierarchy passed from CICS at which an
objection was detected. Investigate around this rdn to detect the problem.

LDAP Level mismatch

You should use the LDAP Browser or Directory tool to display the LDAP
hierarchy and consider why the mismatch has arisen. This is easier said than done, but
it should be obvious if there is a missing level.

Page 62 of 76

Case Sensitivity

Always inspect the case of the request and compare with what is in the
LDAP Server. Most things tend to be case sensitive, so this can commonly produce
errors.

In the case of CorbaServer operations, the RDO definition for
JNDIPREFIX is case sensitive, so if the terminal which created it was not in mixed mode
(CEOT UC) then the LDAP SubContext must be in Upper Case (see “Adding the CICS
region” on page 32). The solution is to use a terminal which has temporarily switched
into mixed-mode input before altering the RDO CorbaServer entry.

Userid failures

If the Userid (see “LDAP access Userid (java.naming.security.principal)”
on page 43) and/or the password (see “LDAP access Password
(java.naming.security.credentials)” on page 43) is incorrect, this will be quickly apparent
though a CICS message.

ACL violations

LDAP Security violations can arise if the Userid used by CICS for LDAP
access (see “LDAP access Userid (java.naming.security.principal)” on page 43) is not
authorised for the relevant LDAP hierarchy level. One of the causes for this is that you
have not set the entryowner attributes correctly (see Figure 10, ‘Creating the
Subcontext/JNDIPrefix,’ on page 34.

Page 63 of 76

Appendix: LDAP and JDBC 2.0

Introduction to JDBC 2.0 and DB2 on CICS

CICS has extensive facilities for accessing DB2 from traditional application
programs. These have evolved over time and the latest supported DB2 is v7.1.

In the Java environment, access to a database is via Java Data Base
Connectivity Version 2.0 protocols. JDBC 2.0 has evolved for an environment where a
connection can be made to multiple databases and these connections have to be
managed. This is called Connection Pooling.

JDBC 2.0 within CICS uses the underlying DB2 connection mechanisms
provided by CICS (which are defined by RDO etc.) for application programs. The
operational semantic of Connection Pooling (which is not visible to a java application)
implied by the JDBC 2.0 protocols is not needed as CICS provides a superior (but
equivalent) mechanism for optimising database connections.

JDBC 2.0 has the concept of direct connections to multiple databases
(which is why they have to be managed). CICS’ usage of DB2 has a different concept: a
connection is always made to a single DB2 sub-system, and it is the responsibility of the
DB2 instance to manage access to the required database.

The upshot of this is that the usage of JDBC 2.0 to access DB2 within the
CICS environment is directly equivalent to that for application programs: a single DB2 is
contacted and accessed.

Defining the DB2 database to be accessed

As CICS can only access a single DB2 instance, the java definition of it is
simple. One should always define the connection so that the default URL is used for the
database (as the underlying RDO-based mechanisms will correctly resolve it).

There are two ways of defining this (the first is preferred):

These values can be placed in the system.properties file (see “JVM
System Properties” on page 42) and resolved via a context lookup, or placed directly in
the java object (not recommended).

jdbc:default:connection

jdbc:db2os390sqlj:

Page 64 of 76

Acquiring the DB2 Connection

Under JDBC 1.2 access was via the DriverManager Interface (which used
the database URL directly). This technique does not require any JNDI or LDAP
configuration.

Under JDBC 2.0 the preferred way of obtaining a database connection is
via the DataSource interface. The DataSource interface uses JNDI operations to resolve
a reference to a previously published object.

This published DataSource object is, essentially, empty, as it does not
contain any meaningful information for access to DB2 from CICS. Consequently, it can
be reused.

JDBC datatype for DB2 access

As CICS only accesses a single DB2 instance, the class required for the
java Connection object is DB2SimpleDataSource.

Avoiding the JNDI function

If you are writing a java application specifically for the CICS environment,
you do not need to bother about compatibility with the full JDBC 2.0 operational
characteristics. You merely want to create the Connection Object and then use it. The
intermediate step of populating the Connection Object can be omitted as there is
nothing sensible with which to populate it. This has an huge performance benefit in
avoiding processing associated with JNDI/LDAP operations.

The java code to do this would look like:

// Generate direct connection to DB2

DB2SimpleDataSource ds = new DB2DataSource() ;
Connection db2conn = ds.getConnection() ;

// Go and access DB2 source

Page 65 of 76

Using JNDI lookup

If you have acquired the java database access code from an external
source, or wish to write code with maximum portatability, you have to use a JNDI lookup
to resolve the DB2 Database connection.

This section discusses this operation from the LDAP viewpoint.

Setting the JNDI key

By convention, the JNDI key used for JDBC access is of format:

Consequently, you have to create a JNDI object with this required key.
The lookup is going to be from within the JNDI environment provided by CICS. Thus,
the item will be placed in the tree under the influences of the Containerdn (see
“Container Distinguished Name (com.ibm.ws.naming.ldap.containerdn)” on
page 42) and Noderootdn settings (see “Anchor point
(com.ibm.ws.naming.ldap.noderootrdn)” on page 43).

In effect, you will be adding a JDBC leaf and, under that, entries for the
names of the databases. I am going to call my object
IYCKRAH6/jdbc/CICSDB2instance (as I am going to have my definition uniquely
specified for my own CICS region).

You are quite at liberty to use any name you like for the database name,
but it is a waste of time and effort to use more than one (as they all resolve to the same
thing). Additionally, it does not matter what the JNDI object contains as CICS will ignore
most of the settings as it already knows which DB2 it is going to contact.

Consequently, it is recommended that the context contains this
jdbc/<database> name and so the use of a specific JNDI setting is avoided in the
java code itself.

It is recommended that a key of com.ibm.cics.datasource.name is
used for this lookup. Thus, system.properties would contain something like:

and be used via:

jdbc/<database identity>

com.ibm.cics.datasource.name=IYCKRAH6/jdbc/CICSDB2instance

String contextDataBaseName = "com.ibm.cics.datasource.name" ;
String dataSourceName = System.getProperty(contextDataBaseName);

Page 66 of 76

Resolving the Connection Object using JNDI

The name of the JNDI entry containing the connection object is then used
to resolve the Connection before it is used to access the DB2 database:

Observe that using the JNDI method to resolve the Connection uses a
DataSource object, whereas avoiding JNDI uses a DB2SimpleDataSource object.

The JNDI resolution step ’turns’ the DataSource object into a
DB2SimpleDataSource object for use in accessing the DB2 database. Strictly, this
means that the DB2SimpleData class inherits from the DataSource class and so JDBC
operations inherent in DataSource are implemented in DB2SimpleDataSource.

Context ctx = new InitialContext() ;
DataSource ds = null ;
ds = lookupDataSource(ctx,dataSourceName) ;

Connection db2conn = ds.getConnection() ;

// Go and access DB2

Page 67 of 76

Publishing the Database Connection using LDAP

The object published to the LDAP server contains information necessary
to alter the DataSource Object into a DB2SimpleDataSource object (so that DB2
can be accessed from within the Java environment within CICS).

LDAP definitions

You need to define to the LDAP server the correct information for the JNDI
operation. This involves creating the IYCKRAH6/jdbc/CICSDB2instance entry in
the correct place of the LDAP hierarchy (governed by the definitions used for the CICS
region, which means everything upto and including the IYCKRAH6 part is already
present).

I have coded up a file called Myjdbc.ldif which contains the required
definitions. The first part of this contains the definitions for the jdbc node:

Define the JDBC 2.0 root

dn: ibm-wsnName=jdbc,
 ibm-wsnName=IYCKRAH6,
 ibm-wsnName=legacyRoot,
 ibm-wsnName=SysProg,
 ibm-wsnName=domainRoots,
 ibm-wsnTree=CicsTest,
 ou=RAH,
 o=IBM Hursley,
 c=UK
ibm-wsnName: jdbc
javaClassName: javax.naming.Context
ibm-wsnEntryType: PrimaryContext
ibm-wsnNameTreeContainerDN: ibm-wsnTree=CicsTest,
 ou=RAH,
 o=IBM Hursley,
 c=UK
objectclass: ibm-wsnEntry
objectclass: ibm-wsnPrimaryContextLocation
ibm-wsnPathFromContainer: ibm-wsnName=jdbc,
 ibm-wsnName=IYCKRAH6,
 ibm-wsnName=legacyRoot,
 ibm-wsnName=SysProg,
 ibm-wsnName=domainRoots
entryOwner: access-id:cn=admin
entryOwner: access-id:cn=CICSUser,ou=RAH,o=IBM Hursley,c=UK
aclentry: group:cn=anybody:normal:rsc
aclentry: access-id:cn=CICSUser,ou=RAH,o=IBM Hursley,c=UK :
 object:ad:normal:rwsc
aclentry: access-id:cn=CICSSystems,ou=RAH,o=IBM Hursley,c=UK :
 object:ad:normal:rwsc

Page 68 of 76

whilst the latter part contains the information for the JDBC accessed
database:

If you were going to define multiple JDBC entries, the first half will not
need to be done again (as the jdbc node will already have been defined). You merely
need to change the (blue) initial ibm-wsnName settings and execute.

Observe the red javaClassName: setting of
com.ibm.db2.jcc.DB2SimpleDataSource. It is this which ’turns’ the DataSource
object into the required DB2SimpleDataSource instance.

This file is executed in the usual fashion for the addition of a LDAP leaf:

LDAP leaf creation and JNDI verbs

I have done all the LDAP node defintions for the JDBC entry through an
utility definition so that the correct ACLs (permissions) are set. This means that the
subsequent Bind operation for LDAP is going to use the rebind verb (rather than
bind) as this is the flavour of JNDI operation that requires the definition to exist.

Define the JDBC 2.0 leaf node Data Source

dn: ibm-wsnName=CICSDB2instance,
 ibm-wsnName=jdbc,
 ibm-wsnName=IYCKRAH6,
 ibm-wsnName=legacyRoot,
 ibm-wsnName=SysProg,
 ibm-wsnName=domainRoots,
 ibm-wsnTree=CicsTest,
 ou=RAH,
 o=IBM Hursley,
 c=UK
ibm-wsnName: CICSDB2instance
javaClassName: com.ibm.db2.jcc.DB2SimpleDataSource
ibm-wsnEntryType: SerializableLeaf
objectclass: ibm-wsnEntry
entryOwner: access-id:cn=admin
entryOwner: access-id:cn=CICSUser,ou=RAH,o=IBM Hursley,c=UK
aclentry: group:cn=anybody:normal:rsc
aclentry: access-id:cn=CICSUser,ou=RAH,o=IBM Hursley,c=UK :
 object:ad:normal:rwsc
aclentry: access-id:cn=CICSSystems,ou=RAH,o=IBM Hursley,c=UK :
 object:ad:normal:rwsc

ldapadd -v \
 -h winmvs2c.hursley.ibm.com -p 2389 \
 -D "cn=admin" -w secret \
 -f Myjdbc.ldif

Page 69 of 76

Results of the node creation

After the LDIF script has been run, the Directory tool shows the created
entry. Observe that it has not been ’filled in’ with any data suitable for recreating the
CICS DB2SimpleDataSource object:

However, the required DB2SimpleDataSource class has been recorded.

Figure 23: LDAP JDBC node structure

Page 70 of 76

Publishing the Object to LDAP

This definition has merely set the environment to contain the information
required to initialise the DB2SimpleDataSource object. The population of this
information has to be done from within the owning CICS region.

The act of population is to save a java stringified version of a
DB2SimpleDataSource object. This information is used in populating the
DataSource object and it should look something like:

 ACED0005 73720016 6A617661 782E6E61 * ¼f ?sr ?javax.na
 6D696E67 2E526566 6572656E 6365E8C6 * ming.ReferenceF¦
 9EA2A8E9 8D090200 044C0005 61646472 * Pó¿Tì?? ?L ?addr
 73740012 4C6A6176 612F7574 696C2F56 * st ?Ljava/util/V
 6563746F 723B4C00 0C636C61 73734661 * ector;L ?classFa
 63746F72 79740012 4C6A6176 612F6C61 * ctoryt ?Ljava/la
 6E672F53 7472696E 673B4C00 14636C61 * ng/String;L ¶cla
 73734661 63746F72 794C6F63 6174696F * ssFactoryLocatio
 6E71007E 00024C00 09636C61 73734E61 * nq ~ ?L ?classNa
 6D657100 7E000278 70737200 106A6176 * meq ~ ?xpsr ?jav
 612E7574 696C2E56 6563746F 72D9977D * a.util.Vector+ù}
 5B803BAF 01020003 49001163 61706163 * [Ç;»?? ?I ?capac
 69747949 6E637265 6D656E74 49000C65 * ityIncrementI ?e
 6C656D65 6E74436F 756E745B 000B656C * lementCount[?el
 656D656E 74446174 61740013 5B4C6A61 * ementDatat ?[Lja
 76612F6C 616E672F 4F626A65 63743B78 * va/lang/Object;x
 70000000 00000000 02757200 135B4C6A * p ?ur ?[Lj
 6176612E 6C616E67 2E4F626A 6563743B * ava.lang.Object;
 90CE589F 1073296C 02000078 70000000 * É+Xƒ?s)l? xp
 0A737200 1A6A6176 61782E6E 616D696E * ?sr ?javax.namin
 672E5374 72696E67 52656641 64647284 * g.StringRefAddrä
 4BF43CE1 11DCC902 00014C00 08636F6E * K(<ß?_+? ?L ?con
 74656E74 7371007E 00027872 00146A61 * tentsq ~ ?xr ¶ja
 7661782E 6E616D69 6E672E52 65664164 * vax.naming.RefAd
 6472EBA0 079A0238 AF4A0200 014C0008 * drdá•Ü?8»J? ?L ?
 61646472 54797065 71007E00 02787074 * addrTypeq ~ ?xpt
 000B6465 73637269 7074696F 6E740042 * ?descriptiont B
 44423220 44617461 536F7572 63652077 * DB2 DataSource w
 69746820 64656661 756C7420 55524C20 * ith default URL
 666F7220 75736520 62792043 49435320 * for use by CICS
 5472616E 73616374 696F6E20 53657276 * Transaction Serv
 65727371 007E0009 74000C6C 6F67696E * ersq ~ ?t ?login
 54696D65 6F757474 00013070 70707070 * Timeoutt ?0ppppp
 70707074 0024636F 6D2E6962 6D2E6462 * pppt $com.ibm.db
 322E6A63 632E4442 32446174 61536F75 * 2.jcc.DB2DataSou
 72636546 6163746F 72797074 0023636F * rceFactorypt #co
 6D2E6962 6D2E6462 322E6A63 632E4442 * m.ibm.db2.jcc.DB
 3253696D 706C6544 61746153 6F757263 * 2SimpleDataSourc
 65 * e

Page 71 of 76

The code required to run within the owning CICS region to populate the
JNDI entry will be something like:

The JNDI rebind verb is used to update the JNDI entry in the LDAP
server.

If the bind verb was used instead of the rebind, then the LDAP utility
definition would not create the final leaf node (the bit after the last \ which is the
CICSDB2instance part in my example) as the bind operation will do this.

The published DB2SimpleDataSource object does not contain an
addressing URL for the database. This defaults to a Default URL of
jdbc:default:connection which is the recommended setting for access to DB2 via
JDBC from within CICS.

Context ctx = new InitialContext() ;

// Get the JDBC leaf name

String contextDataBaseName = "com.ibm.cics.datasource.name" ;
String dataSourceName = System.getProperty(contextDataBaseName);

// Create the DB2SimpleDataSource Object to be published

DB2SimpleDataSource ds = new DB2SimpleDataSource() ;

// Annote the object (if required) or set some more defaults

ds.setDescription(
 "DB2 datasource with default URL for use by CICS Transaction Server"
);

// Publish the Object to JNDI when the definitions exist

ctx.rebind(dataSourceName,ds.getReference()) ;

Page 72 of 76

This code fragment was created using a Java Development Tool - I called
it Publish_to_JNDI_via_LDAP_rebind - and compiled within that environment.

The resulting Publish_to_JNDI_via_LDAP_rebuild.class was
FTPed to my MVS region, and a RDO (case dependant) entry of

was used via CECI LINK PROG(JNDIPUBR) to update the JNDI entry.

 PROGram : JNDIPUBR
 Group : RAHJAVA
 DEscription : PUBLISH TO JNDI/rebind
 Language : CObol | Assembler | Le370 |
 RELoad : No No | Yes
 RESident : No No | Yes
 USAge : Normal Normal | Transient
 USElpacopy : No No | Yes
 Status : Enabled Enabled | Disabled
 RSl : 00 0-24 | Public
 CEdf : Yes Yes | No
 DAtalocation : Below Below | Any
 EXECKey : User User | Cics
 COncurrency : Threadsafe Quasirent | Threadsafe
REMOTE ATTRIBUTES
 DYnamic : No No | Yes
 REMOTESystem :
 REMOTEName :
 Transid :
 EXECUtionset : Fullapi Fullapi | Dplsubset
JVM ATTRIBUTES
 JVM : Yes No | Yes
 JVMClass : Publish_to_JNDI_via_LDAP_rebind
 :
 :
 :
 :
 JVMProfile : DFHJVMPR
JAVA PROGRAM OBJECT ATTRIBUTES
 Hotpool : No No | Yes

Page 73 of 76

All sorts of strange failures can occur if the correct properties and settings
are not correct.

Within the DFHJVM member of DFHJVMPR, I had the following items
defined (amongst others):

and within the relevant system.properties file:

LIBPATH :/usr/lpp/java131s/J1.3\
:/usr/lpp/java131s/J1.3/bin\
:/usr/lpp/java131s/J1.3/bin/classic\
:/usr/lpp/db2710/db2710/lib\

TMSUFFIX /usr/lpp/db2710/db2710/classes/db2sqljruntime.zip:\
/usr/lpp/db2710/db2710/classes/db2j2classes.zip:\

CLASSPATH :/usr/lpp/java131s/J1.3\
:/usr/lpp/java131s/J1.3/bin\
:/usr/lpp/java131s/J1.3/bin/classic\
:/usr/lpp/db2710/db2710/lib\
:/usr/lpp/db2710/db2710/classes\

com.ibm.cics.datasource.name=IYCKRAH6/jdbc/CICSDB2instance

Page 74 of 76

Results of Publication

After the rebind code has been run within CICS, the Directory Browser will
contain the stringified data for the creation of the CICS DB2SimpleDataSource object
which will be used for the creation of the DataSource object:

Figure 24: Results of Rebind operation

Page 75 of 76

>>>>>>>>>>>>>>>END of document<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

Page 76 of 76

	CICS Transaction Server for z/OS
	How to configure a z/OS LDAP Server for CICS Development purposes
	Robert Harris,
	CICS Technical Strategy,
	IBM Hursley.
	Table of Contents

	LDAP on z/OS for CICS TS Version 2.2
	Introduction
	This document describes the implementation of a z/OS Lightweight DIrectory Access Protocol Server...
	A Lightweight Directory Access Protocol Server primarily acts as a dictionary for Enterprise Bean...
	Documentation
	Requirements

	The LDAP Server used in this document is the z/OS Version 1 Release 2 Security Server LDAP Server.
	You will need a LDAP Browser. The one I use is Softerra LDAP Browser obtainable from www.sharewar...
	I also use the IBM Secureway Directory Tool:
	Conventions

	Throughout this document the following terms will frequently occur:
	To show what needs to be done, these will be set to values used on my z/OS system at Hursley in t...
	My settings are:
	CICS Documentation

	The arrangement discussed in this document is that contained in the CICS Java book (SC34-6000-0 J...
	How LDAP works

	LDAP is based on a naming hierarchy which is governed by the X500 naming structure. This means th...
	The key is called a Distinguished Name (dn). A dn can be made up of several components called Rel...
	Distinguished Names are specified in a left to right sequence of Relative Distinguished Names, wi...
	The most common element of a dn is the Common Name (cn).
	This has an immediate implication in supplying Userids: the format to use is cn=<userid> and not ...
	Here are some elements of a dn (each of which is a rdn) at the LDAP V3 level:
	The Red Book SG24-4986: Understanding LDAP provides a full appreciation of LDAP.

	What you are going to end up with
	LDAP Configuration choices
	You are going to end up with a LDAP configuration that is determined by System Definition and Use...
	The system definition partially allows you to choose (but this will usually be fixed):
	But you do not have any control over:
	The user configuration allows you to choose:
	These choices affect both the LDAP Server and the definitions used within CICS.
	Decisions about the user configuration apply because I am building a LDAP hierarchy for the Devel...
	LDAP Servers can contain both Test and Production information, but the usual access/security rule...
	I hope that using this document to create a Development LDAP environment will lead to a considere...
	End result

	The end result of your choices will be to build a structure within the LDAP Server. Figure 1 show...
	Items with blue markings are those fixed by the System Administrator, whilst those with red are f...
	Figure 1: Final LDAP Structure

	Items will get added under the ibm-wsnname=IYCKRAH6 entry.

	The LDAP Server
	The Initial Hierarchy
	After the LDAP Server Installation, there will be an initial dn naming the company and division f...
	This will usually be fixed by the System Administrator, as it will contain company specific details.
	JCL

	After the LDAP Server has been installed, you will end up with some Started Task JCL which looks ...
	Figure 2: LDAP Server JCL

	Here are the things to notice:
	The HFS Configuration file

	The main configuration file is held within HFS. It should look something like Figure 3 (which has...
	Figure 3: LDAP initial configuration file

	This configuration file is just sufficient to enable the LDAP Server to be started. More actions ...
	Advanced configuration options can be used to control replication and referral (linkage of LDAP S...
	Apart from the DB2 information (the LDAP Server uses a DB2 database to hold information) the main...
	The port, adminDN and adminPW items, together with the IP Address of the z/OS system are needed t...
	The suffix of "ou=RAH,o=IBM Hursley,c=UK" has to be specified in quotes and forms the dn of the L...

	Initially running the LDAP Server
	Starting the LDAP Server
	When you start the LDAP Server, the following messages should appear in the Job Log:
	This means that the LDAP Server will accept requests.
	Issuing MVS commands to the LDAP Server

	The LDAP Server is a started task, and so will accept MVS Modify commands (/F <jobname>) to contr...
	Configuring the LDAP Browser and Directory Tool

	In order to access and configure the LDAP Browser and the Directory Tool you will need:
	It’s important that the full dn format (cn=admin) is used for the Userid!
	These values feed into ldapmodify and ldapadd commands that define items in the LDAP server. Thes...
	After properties configuration the settings of my LDAP Browser are:
	And the IBM Secureway Directory Management tool settings are:
	The configuration file for the Directory Management tool is:
	Contacting the LDAP Server

	Once the LDAP Browser has been configured (and the LDAP Server contacted), it should display a ve...
	The left hand side will show the initial structure:
	whilst the right hand side will show the contents:
	You can see that the suffix has appeared in the subschemasubentry item and a folder has appeared ...
	The Directory Management tool shows:
	The LDAP Server now needs to have a basic structure (called a schema) added. Continue at “Install...

	Install the Schema
	The WebSphere naming schema
	The LDAP Server needs to have a schema. A schema defines the structure of the database and severa...
	This WebSphere schema definition is available in /usr/lpp/ldap/etc/ WebSphereNaming.ldif. Alterna...
	You should copy this file and rename to MyWebSphereNamingSchema.ldif.
	It should look like Figure 4 (initial part only).
	Figure 4: WebSphere naming schema

	A ldif file contains commands for the ldapmodify or ldapadd utility.
	You have to change the dn:cn=schema,<suffix> line by inserting the dn of the suffix. In my case, ...
	Note that quotes are not required inside a ldif file whereas they are in executing a ldapmodify c...
	Installing the WebSphere schema

	The WebSphere schema is installed by operations within the OpenEdition Shell. Again you will need:
	Whilst the LDAP server is running, within the OpenEdition shell issue the following command on th...
	It’s important that the full cn=admin (or whatever is specified in the LDAP Server configuration ...
	If you get a message implying that type or values already exist, then someone else has already do...
	You can see what has been installed by running (in the OE shell):
	(So it’s -b "cn=schema,ou=RAH,o=IBM Hursley,c=UK" in my case.)
	You can check that everything has been created by placing the following code into a script file (...
	Figure 5: Shell script for checking WebSphere schema

	Alternatively, check out the schema definitions with the Directory tool:
	At this point you have inserted definitions into the LDAP Database, but nothing is actually using...
	Next you have to add the suffix definition into the LDAP structure. Continue at “Creating the Suf...

	Creating the Suffix
	Why you need to do this
	The previous operations have merely configured the LDAP Server without actually placing anything ...
	Creating the entry

	Create a ldif file for the addition of the suffix (I’ve called it Mysuffix.ldif). It should conta...
	Figure 6: Creating the Suffix

	Observe that it is the ou part of the suffix (the left-most) that is the required entry but the w...
	Checking it made it

	In the LDAP Browser (after rebinding) the OU folder now contains the entry:
	If you use the Directory Tool (after refreshing), and hit the ACL Button, you can see the permiss...
	You can see that everybody has read access to LDAP Information but only the administrator can man...
	If, however, the ACL display looks like this:
	then the default acl group has not been correctly setup, and you must fix this as described in Se...

	Checking that the correct default permissions have been created
	Why you have to do this
	Most LDAP Servers will have already created the default access control list (acl) for the system ...
	Checking the default is a group

	You should issue the following command (from within the OE shell):
	(with your own suffix in -b).
	If it produces something like:
	you have got a problem with the default access and must correct it.
	The crucial indication of the error is the red aclentry=cn=anybody:NORMAL:RSC:SYSTEM:RSC line whi...
	However if you get something like:
	things are correctly setup, and you need not take any more action in this section. Next you need ...
	Correcting the default

	You must get rid of the userid entry for cn=anybody which will allow the group to become active. ...
	with the correct suffix (note the escaped double quotes and the lower-case -d).
	See what has happened by reissuing the display command):
	If it produces something like:
	Then the problem has been corrected. The green lines show that the default access groups have bee...
	Once this default acl as a group is around, you create some userids for CICS usage as described i...

	Adding the CICS Users
	Why these are needed
	CICS requires two LDAP-sourced identities. One is for CICS system use (CICSUser) and the other (C...
	Creating the Users

	There are some definitions in the /usr/lpp/cicsts/cicsts22/utils/namespace/dfhsns.ldif file. Copy...
	Figure 7: Adding CICS userids

	The CICSUser entry is used by CICS to access the LDAP Server and so the Userid (see “LDAP access ...
	Run this file through ldapmodify in the usual fashion:
	The LDAP Browser (once you have rebound) will now show the new entries:
	Observe that the authorities do not show up on the Browser panel.
	If you do a:
	(with the relevant schema) you should see both entries have authorities inherited from the defaul...
	You can see authorities using the Directory Tool:
	Next you need to create the required WebSphere tree structure for access as described in “Creatin...

	Creating the WebSphere tree structure
	Why you need to do this
	You need to create the LDAP tree structure under which all definitions are held. It’s called a We...
	Defining the WebSphere tree structure initially involves creating an anchor point under the previ...
	You choose this anchor point name. It should relate to something like Test or Acceptance. I am go...
	See “Container Distinguished Name (com.ibm.ws.naming.ldap.containerdn)” on page�42 for how this i...
	Creating the Tree anchor

	There are some definitions in the /usr/lpp/cicsts/cicsts22/utils/namespace/dfhsns.ldif file. Copy...
	Figure 8: Creating the WebSphere Tree anchor

	As the tree structure I am going to use is CicsTest it is this name that is used in the dn clause...
	The dn of ibm-wsnTree=CicsTest, ou=RAH, o=IBM Hursley, c=UK is referred to as the containerdn.
	Run this file through ldapmodify in the usual fashion:
	The LDAP Browser (once you have rebound) will now show the new entries:
	The Directory tool also shows the new entry:
	Once this anchor is in place, the required tree structure can be created under it. Continue with ...
	Creating the Tree Structure

	The name of the Tree Structure is upto you. I am going to call mine SysProg. See “Anchor point (c...
	This structure is created by running a CICS-supplied script which invokes a java class. This scri...
	The script itself is in the /usr/lpp/cicsts/cicsts22/utils/namespace/DFHBuildSNS file. Copy this ...
	Change the export CICS_HOME line to be the HFS directory used for installing CICS. So the script ...
	This script has been affected by APARs, so you should change it to the above example to ensure it...
	I created another script (d2) to run the MyDFHBuildSNS script (which calls the java class):
	Figure 9: Specifying the Domain

	The chosen name is supplied in the -domain parameter. The Anchor point dn is specified in the -co...
	Observe the different syntax from ldapmodify and that the -containerdn parameter has to be enclos...
	When the d2 script is run, you should get the following output which shows that everything has wo...
	Checking the Tree Structure

	Once the script has run, there will be lots of additional entries in the LDAP Server which can be...
	The LDAP Browser LHS panel will show:
	The Directory Management tool shows:
	You now need to create an entry for each Development CICS region within this structure. Goto “Add...

	Adding the CICS region
	Why you need to do this
	This document is aimed at the Development/Test environment, so entries are going to be unique on ...
	I am going to impose the standard that the Subcontext name is going to be the Applid of a CICS re...
	The name chosen for the Subcontext is used in the RDO CORBASERVER definition for the JNDIPREFIX f...
	Repeat the actions in this section for all required CICS regions (change the red items in Figure ...
	Creating the ldif file

	The Applid of my CICS region is IYCKRAH6, so this is what I am going to use as my Subcontext name...
	The subcontext is created via the ldapmodify utility. Some commands are in the /usr/lpp/cicsts/ci...
	You must modify most of this file to use your assigned name.
	It should end up like (ensure that trailing commas and colons are not omitted):
	Figure 10: Creating the Subcontext/JNDIPrefix

	The red items are the Subcontext/JNDIPREFIX name which is case sensitive. The blue items are the ...
	The case-sensitive Userids (see Figure 7, ‘Adding CICS userids,’ on page 23) are given write acce...
	Observe that there are two entryOwner entries: the cn=admin one should correspond to the LDAP Ser...
	The second entryOwner names the userid that is going to be responsible for the Subcontext, namely...
	The Subcontext is created via ldapadd:
	Checking the results
	Using the tools

	The LDAP Browser (after refreshing) will show the new SubContext:
	Note that the JavaClassName attribute has appeared which is set to an IBM-supplied java class.
	The Directory Management tool also shows the new entry:
	but it can also show the access set on it:
	You can see that both the CICS Userids can manage the subcontext (put items into it and take item...
	Using commands

	You can issue this command:
	which should yield something like (some lines split for readability):
	What to do next

	You have finished the configuration of the LDAP Server to use by CICS!
	Continue by configuring the java-related parts of CICS. This is described in “CICS relationships”...
	However, depending upon whether or not a bug has been fixed, you may need to do another ldif oper...

	Avoiding the CICS Retraction bug
	What is the bug?
	There is, ahem, a bit of an, err, bug in the way CICS deletes entries from the LDAP Hierarchy.
	CICS will over enthusiastically delete the SubContext level if it is empty: so deleting all the S...
	You can end up, after issuing CICS commands, with a structure that omits the SubContext (the IYCK...
	Circumventing the bug

	The easiest way to circumvent the bug is to ensure that the SubContext level never becomes empty....
	I have coded up an ldif file called Myfix.ldif containing a dummy entry:
	And invoked it via a:
	The crucial part is in red - it’s the level of the SubContext that CICS will erroneously remove i...
	In subsequent chapters of this document, this fake entry is not shown to avoid confusion (and irr...
	After running the command, the LDAP Browser will show:
	The Directory Tool additionally shows that the LDAP User associated with CICS cannot manipulate it:

	CICS relationships
	JVM System Properties
	JVM System Properties are set in an HFS file named via a member in the DFHJVM PDS via the JVMPROP...
	CICS will use a fixed member name of DFHJVMPR for its operations, so this member must exist in th...
	Some of these properties relate to the LDAP Server and so are taken directly from the configurati...
	In the settings that follow, the line breaks are for readability.
	Nameserver (com.ibm.cics.ejs.nameserver)

	This is the IP name of the LDAP server including the port number used for access. (See Figure 3, ...
	In my case, the setting is:
	Container Distinguished Name (com.ibm.ws.naming.ldap.containerdn)

	This is the name of the anchor point for the configuration. (See Figure 8, ‘Creating the WebSpher...
	In my case, the setting is:
	Anchor point (com.ibm.ws.naming.ldap.noderootrdn)

	This is the name under which all associated entries are placed into the LDAP structure. You do no...
	In my case, the setting is:
	LDAP access Userid (java.naming.security.principal)

	This is the Userid used by CICS to access the LDAP Server (see “Creating the Users” on page�23). ...
	LDAP access Password (java.naming.security.credentials)

	This is the Password for the Userid used by CICS to access the LDAP Server (see “Creating the Use...
	Java Security Mechanism (java.naming.security.authentication)

	The Java Security mechanism that supports the LDAP access Userid is governed by a fixed setting f...
	JNDI constructor class (java.naming.factory)

	This entry is fixed as it contains the java class used to manipulate the LDAP Server. This fixed ...
	My System.properties file

	The system.properties file that I am using looks like:
	Figure 11: System.Properties file
	RDO CORBASERVER

	The JNDIPREFIX for all CorbaServer objects in the CICS region should be set to the case sensitive...
	The JNDIPrefix (and SubContext name) is IYCKRAH6 in my case.
	You have the choice of exposing a second-level name after the SubContext name by quoting the JNDI...
	Examples of both types are given in “CorbaServers used” on page�47.
	In fact, you can have many /s in the JNDIPREFIX: you just get lots of extra levels in the LDAP hi...

	CorbaServers
	Introduction
	This section shows how the LDAP Server should react when Publishing and Retracting CorbaServer de...
	This chapter only discusses CorbaServers from the LDAP perspective.
	A GenericFactory is used to locate the Home Interface for an Enterprise Bean. It is inserted into...
	Figure 12: Initial part of an IOR
	TCPIPService definitions

	Each of the CorbaServers has a separate TCPIPSERVICE definition installed (not relevant to a LDAP...
	CorbaServers used

	In order to show what happens in the LDAP Server for the Publication and Retraction of a CorbaSer...
	C000 just has the SubContext name (IYCKRAH6 in my case) as the JNDIPREFIX.
	C0001 has the SubContext name and the name of the CorbaServer exposed (IYCKRAH6/C001):
	CEMT Shows that they have been correctly installed:
	Initial LDAP Hierarchy
	Browser display

	The initial view of the LDAP hierarchy for the LDAP Browser is:
	Figure 13: Initial LDAP Hierarchy: LDAP Browser
	Directory Tool display

	The initial hierarchy a seen through the Directory Management tool is:
	Figure 14: Initial LDAP Hierarchy: Directory Tool
	Results of Publishing the CorbaServer
	JNDIPrefix without a /

	If one does a CEMT PERFORM CORBA(C000) PUBLISH to insert information into the LDAP Server, this i...
	After rebinding, the new GenericFactory entry can be seen showing a type of CORBAOBJECT:
	Figure 15: Publication result for JNDIPREFIX without a / : LDAP Browser

	The Directory tool shows:
	Figure 16: Publication result for JNDIPREFIX without a / : Directory Tool
	JNDIPrefix with a /

	If one does a CEMT PERFORM CORBA(C001) PUBLISH to insert information into the LDAP Server, this i...
	The Browser shows the intermediate level (the bit after the /) as just another LDAP context:
	Figure 17: Publication result for JNDIPREFIX with a / : LDAP Browser

	The Management tool shows:
	Figure 18: Publication result for JNDIPREFIX with a / : Directory Tool
	Retracting a Corbaserver

	The opposite of Publishing a CorbaServer is to retract it. This removes the IOR from the LDAP Ser...
	This is done via a CEMT PERFORM CORB(xxxx) RETRACT command.
	After issuing a CEMT P CORB(C001) RETRACT, the situation shown in Figure 18, ‘Publication result ...
	And the equivalent CEMT P CORB(C000) RET will return from Figure 15, ‘Publication result for JNDI...
	A CICS Bug

	There is, ahem, a CICS bug, err, that rather enthusiastically deletes the lowest level in the LDA...
	Consequently, after a Retraction, the LDAP Structure may end up like:
	Figure 19: CICS Retraction bug

	If this happens, do some more configuration as discussed in “Circumventing the bug” on page�40.

	DJars
	CorbaServers own DJars
	A DJar (Deployed Jar file) contains Enterprise Bean code. In CICS terminology, a RDO DJAR definit...
	Before a Bean can be used by a client, it has, like a CorbaServer, to be published to the LDAP Se...
	Publishing a DJar

	Here is a RDO definition for a DJAR:
	The name of the RDO DJAR object itself is somewhat irrelevant. It’s only a mechanism for associat...
	CICS has various mechanisms for creating DJar definitions, but these are outside of the scope of ...
	If a CorbaServer already has installed DJAR RDO definitions active upon Publication, then the DJA...
	However, individual DJars can themselves be Published and Retracted and this is what this chapter...
	The example in this Chapter is using the CICS EJB HelloWorld sample.
	Publishing using CEMT

	A CEMT I DJAR command shows installed DJars (only one in my case):
	Note that the HFS file name is truncated on the display.
	I published this individual DJAR via a CEMT PERFORM DJAR(C001D001) PUBLISH command. If the CorbaS...
	LDAP results of DJar publication

	The LDAP Browser shows the addition of the Bean under the CorbaServer entry:
	Figure 20: Publication result for DJar : LDAP Browser

	You can see that the Bean has an IOR for access, and that the javaclassname entry names the Home ...
	The Directory Tool also shows the security information:
	Figure 21: Publication result for DJar : Directory Tool

	Observe that it has inherited access from the owning CorbaServer entry.
	Retracting the DJAR

	The DJAR is Retracted, removing its IOR from the LDAP Server, via a CEMT P DJAR(C001D001) RET com...

	When it all goes horribly wrong
	Checking Spellings
	Initial problems with using a LDAP Server will probably arise from the specification of the syste...
	The file being used is named in the DFHJVMPR member of the DFHJVM PDS.
	Ensure that the spellings are correct! As most things are case sensitive, an unlikely lower-case ...
	Deleting the configuration

	Of course, you have diligently followed everything in this document down to the last comma and co...
	In the unlikely event that you need to delete everything and restart, the easiest way is to use t...
	Alternatively, use the following script file to do the deletion. The complexity of it arises from...
	I’ve called the script file delallldap (remember to chmod a+rwx it and, maybe, changing £s to $s ...
	Figure 22: Shell script to delete all LDAP entries
	CICS Tracing

	Unfortunately, most of the function of CICS' LDAP processing is contained within Java code that d...
	LDAP Server tracing

	The LDAP server will accept MVS Modify commands to control tracing. The syntax, from SDF, is /F j...
	The level numbers are documented in the LDAP Admin book, but DEBUG=133 is the most useful setting...
	CICS Messages

	The messages that CICS outputs for LDAP Processing are constrained because they come from the afo...
	LDAP Level mismatch

	You should use the LDAP Browser or Directory tool to display the LDAP hierarchy and consider why ...
	Case Sensitivity

	Always inspect the case of the request and compare with what is in the LDAP Server. Most things t...
	In the case of CorbaServer operations, the RDO definition for JNDIPREFIX is case sensitive, so if...
	Userid failures

	If the Userid (see “LDAP access Userid (java.naming.security.principal)” on page�43) and/or the p...
	ACL violations

	LDAP Security violations can arise if the Userid used by CICS for LDAP access (see “LDAP access U...

	Appendix: LDAP and JDBC 2.0
	Introduction to JDBC 2.0 and DB2 on CICS
	CICS has extensive facilities for accessing DB2 from traditional application programs. These have...
	In the Java environment, access to a database is via Java Data Base Connectivity Version 2.0 prot...
	JDBC 2.0 within CICS uses the underlying DB2 connection mechanisms provided by CICS (which are de...
	JDBC 2.0 has the concept of direct connections to multiple databases (which is why they have to b...
	The upshot of this is that the usage of JDBC 2.0 to access DB2 within the CICS environment is dir...
	Defining the DB2 database to be accessed

	As CICS can only access a single DB2 instance, the java definition of it is simple. One should al...
	There are two ways of defining this (the first is preferred):
	These values can be placed in the system.properties file (see “JVM System Properties” on page�42)...
	Acquiring the DB2 Connection

	Under JDBC 1.2 access was via the DriverManager Interface (which used the database URL directly)....
	Under JDBC 2.0 the preferred way of obtaining a database connection is via the DataSource interfa...
	This published DataSource object is, essentially, empty, as it does not contain any meaningful in...
	JDBC datatype for DB2 access

	As CICS only accesses a single DB2 instance, the class required for the java Connection object is...
	Avoiding the JNDI function

	If you are writing a java application specifically for the CICS environment, you do not need to b...
	The java code to do this would look like:
	Using JNDI lookup

	If you have acquired the java database access code from an external source, or wish to write code...
	This section discusses this operation from the LDAP viewpoint.
	Setting the JNDI key

	By convention, the JNDI key used for JDBC access is of format:
	Consequently, you have to create a JNDI object with this required key. The lookup is going to be ...
	In effect, you will be adding a JDBC leaf and, under that, entries for the names of the databases...
	You are quite at liberty to use any name you like for the database name, but it is a waste of tim...
	Consequently, it is recommended that the context contains this jdbc/<database> name and so the us...
	It is recommended that a key of com.ibm.cics.datasource.name is used for this lookup. Thus, syste...
	and be used via:
	Resolving the Connection Object using JNDI

	The name of the JNDI entry containing the connection object is then used to resolve the Connectio...
	Observe that using the JNDI method to resolve the Connection uses a DataSource object, whereas av...
	The JNDI resolution step ’turns’ the DataSource object into a DB2SimpleDataSource object for use ...
	Publishing the Database Connection using LDAP

	The object published to the LDAP server contains information necessary to alter the DataSource Ob...
	LDAP definitions

	You need to define to the LDAP server the correct information for the JNDI operation. This involv...
	I have coded up a file called Myjdbc.ldif which contains the required definitions. The first part...
	whilst the latter part contains the information for the JDBC accessed database:
	If you were going to define multiple JDBC entries, the first half will not need to be done again ...
	Observe the red javaClassName: setting of com.ibm.db2.jcc.DB2SimpleDataSource. It is this which ’...
	This file is executed in the usual fashion for the addition of a LDAP leaf:
	LDAP leaf creation and JNDI verbs

	I have done all the LDAP node defintions for the JDBC entry through an utility definition so that...
	Results of the node creation

	After the LDIF script has been run, the Directory tool shows the created entry. Observe that it h...
	Figure 23: LDAP JDBC node structure

	However, the required DB2SimpleDataSource class has been recorded.
	Publishing the Object to LDAP

	This definition has merely set the environment to contain the information required to initialise ...
	The act of population is to save a java stringified version of a DB2SimpleDataSource object. This...
	The code required to run within the owning CICS region to populate the JNDI entry will be somethi...
	The JNDI rebind verb is used to update the JNDI entry in the LDAP server.
	If the bind verb was used instead of the rebind, then the LDAP utility definition would not creat...
	The published DB2SimpleDataSource object does not contain an addressing URL for the database. Thi...
	This code fragment was created using a Java Development Tool - I called it Publish_to_JNDI_via_LD...
	The resulting Publish_to_JNDI_via_LDAP_rebuild.class was FTPed to my MVS region, and a RDO (case ...
	was used via CECI LINK PROG(JNDIPUBR) to update the JNDI entry.
	All sorts of strange failures can occur if the correct properties and settings are not correct.
	Within the DFHJVM member of DFHJVMPR, I had the following items defined (amongst others):
	and within the relevant system.properties file:
	Results of Publication

	After the rebind code has been run within CICS, the Directory Browser will contain the stringifie...
	Figure 24: Results of Rebind operation

