

CICS for MVS/ESA IBM

Intercommunication Guide
Version 4 Release 1

 SC33-1181-01

CICS for MVS/ESA IBM

Intercommunication Guide
Version 4 Release 1

 SC33-1181-01

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page ix.

Second edition (April 1997)

This edition applies to Version 4 Release 1 of the IBM licensed program Customer Information Control System/Enterprise Systems
Architecture (CICS/ESA), program number 5655-018, and to all subsequent versions, releases, and modifications until otherwise
indicated in new editions. Consult the latest edition of the applicable IBM system bibliography for current information on this product.

This is the second edition of the Intercommunication Guide for CICS/ESA 4.1. It is based on the first edition, SC33-1181-00, which
is now obsolete. Changes from the first edition are marked by the ‘+’ sign to the left of the changes. The vertical lines in the
left-hand margins indicate changes made between the CICS/ESA 3.3 edition and the CICS/ESA 4.1 first edition.

The CICS/ESA 3.3 edition remains applicable and current for users of CICS/ESA 3.3.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

At the back of this publication is a page entitled “Sending your comments to IBM”. If you want to make comments, but the methods
described are not available to you, please address them to:

IBM United Kingdom Laboratories Limited, Information Development,
Mail Point 095, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1977, 1997. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . ix
Programming Interface Information . ix
Trademarks and service marks . ix

Preface . xi
What this book is about . xi
What is not covered by this book . xi
Who this book is for . xi
What you need to know to understand this book xi
How to use this book . xii
How this book is organized . xii
Determining if a publication is current . xiii

Bibliography . xiv
CICS/ESA 4.1 library . xiv
Other CICS books . xv
Books from related libraries . xv

Summary of changes . xvii
+ Changes for the CICS/ESA 4.1 second edition xvii

Changes for the CICS/ESA 4.1 first edition xvii
Changes for the CICS/ESA 3.3 edition . xviii

Part 1. Concepts and facilities . 1

Chapter 1. Introduction to CICS intercommunication 3
Intercommunication methods . 3
Intercommunication facilities . 4
Using CICS intercommunication . 7

Chapter 2. Multiregion operation . 11
Facilities available through MRO . 11

| Cross-system multiregion operation (XCF/MRO) 12
Applications of multiregion operation . 15
Conversion from single-region system . 18

Chapter 3. Intersystem communication . 19
| Connections between subsystems . 19

Intersystem sessions . 20
Establishing intersystem sessions . 23

Chapter 4. CICS function shipping . 25
Design considerations . 26
The mirror transaction and transformer program 29
Function shipping–examples . 32

Chapter 5. CICS distributed program link . 37
Design considerations . 38
Examples of DPL . 41

 Copyright IBM Corp. 1977, 1997 iii

| Chapter 6. The external CICS interface . 43

+ Chapter 7. CICS support for DCE remote procedure calls 45
+ What is the Distributed Computing Environment? 45
+ DCE remote procedure calls . 50
+ Where to find more information . 53

Chapter 8. Asynchronous processing . 55
Asynchronous processing methods . 56
Asynchronous processing using START and RETRIEVE commands 57
System programming considerations . 62
Asynchronous processing—examples . 63

Chapter 9. CICS transaction routing . 67
Terminal-initiated transaction routing . 68
Automatic transaction initiation (ATI) . 71

| Allocation of remote APPC connections . 78
The relay program . 80
Basic mapping support (BMS) . 81
The routing transaction (CRTE) . 82
System programming considerations . 83

Chapter 10. Distributed transaction processing 85
Advantages over function shipping and transaction routing 85
Why distributed transaction processing? . 86
What is a conversation and what makes it necessary? 87
MRO or APPC for DTP? . 91
APPC mapped or basic? . 93
EXEC CICS or CPI Communications? . 94

Part 2. Installation and system definition . 95

Chapter 11. Installation considerations for multiregion operation 97
| Installation steps . 97
| Requirements for XCF/MRO . 98
| Further steps . 100

Chapter 12. Installation considerations for intersystem communication 101
Modules required for ISC . 101
ACF/VTAM definition for CICS . 101
Considerations for IMS . 102

| Chapter 13. Installation considerations for VTAM generic resources . . 109
| Rules and restrictions . 111
| Migrating your TORs to membership of a VTAM generic resource 112

Part 3. Resource definition . 117

Chapter 14. Defining links to remote systems 119
Introduction to link definition . 119
Identifying remote systems . 120
Defining links for multiregion operation . 121

iv CICS for MVS/ESA Intercommunication Guide

| Defining links for use by the external CICS interface 126
Defining APPC links . 128
Defining logical unit type 6.1 links . 137
Defining CICS-to-CICS LUTYPE6.1 links . 138
Defining CICS-to-IMS LUTYPE6.1 links . 142

| Indirect links for transaction routing . 149
Managing APPC links . 153
Acquiring a connection . 154
Controlling sessions with the SET MODENAME commands 157
Releasing the connection . 159
Summary . 162

| Generic and specific applids for XRF . 163

Chapter 15. Defining remote resources . 165
Local and remote names for resources . 166
CICS function shipping . 167
CICS distributed program link (DPL) . 170
Asynchronous processing . 171
CICS transaction routing . 172
Distributed transaction processing . 189

Chapter 16. Defining local resources . 191
Defining communication profiles . 191
Architected processes . 194
Selecting required resource definitions for installation 195
Defining intrapartition transient data queues 197
Defining local resources for DPL . 199

+ Defining CICS programs as DCE servers . 199

Part 4. Application programming . 201

Chapter 17. Application programming overview 203
Terminology . 203

Chapter 18. Application programming for CICS function shipping . . . 205
File control . 205
DL/I . 206
Temporary storage . 206
Transient data . 206
Function shipping exceptional conditions . 207

Chapter 19. Application programming for CICS DPL 209
The client program . 209
The server program . 210
DPL exceptional conditions . 210

| Chapter 20. Application programming for the external CICS interface . 213
| The MVS client program . 213
| The CICS server program . 216
| Customization . 216
| Sample applications . 217

+ Chapter 21. Application programming for DCE remote procedure calls 219

 Contents v

+ The DCE client program . 219
+ The CICS server program . 219

Chapter 22. Application programming for asynchronous processing . . 221
Starting a transaction on a remote system . 221
Retrieving data associated with a remotely-issued start request 221

Chapter 23. Application programming for CICS transaction routing . . 223
Things to watch out for . 223
Using the EXEC CICS ASSIGN command in the AOR 225

Chapter 24. CICS-to-IMS applications . 227
Designing CICS-to-IMS ISC applications . 227
Asynchronous processing . 229
Distributed transaction processing . 235

| Part 5. Performance . 249

| Chapter 25. Using the MVS workload manager 251
| Overview . 251
| Implementing MVS workload management . 252

| Chapter 26. Intersystem session queue management 261
| Overview . 261
| Methods of managing allocate queues . 261

| Chapter 27. Efficient deletion of shipped terminal definitions 265
| Overview . 265
| Implementing timeout delete . 266
| Performance . 267
| Migration considerations . 268

Part 6. Recovery and restart . 271

Chapter 28. Recovery and restart in interconnected systems 273
Syncpoint exchanges . 274
Action following failure during the in-doubt period 279
Recovery for APPC connections . 283
Intersystem communication and emergency restart 286
Error handling programs for intercommunication 287
Database interlock . 287
Problem determination . 288
Recovery and restart with non-CICS systems 289

Chapter 29. Intercommunication and XRF 291

| Chapter 30. Intercommunication and VTAM persistent sessions 293

Part 7. Appendixes . 297

Appendix A. Rules and restrictions checklist 299

vi CICS for MVS/ESA Intercommunication Guide

Appendix B. CICS mapping to the APPC architecture 303
Supported option sets . 303
CICS implementation of control operator verbs 305
CICS deviations from APPC architecture . 314

Glossary . 315

Index . 321

 Contents vii

viii CICS for MVS/ESA Intercommunication Guide

 Notices

The following paragraph does not apply in any country where such
provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain
transactions, therefore this statement may not apply to you.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of the
intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, are the responsibility of
the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, New York 10594,
U.S.A..

Programming Interface Information
This book is intended to help you understand how to get CICS systems to
communicate with each other and with other systems. This book also documents
General-use Programming Interface and Associated Guidance Information.
General-use programming interfaces allow the customer to write programs that
obtain the services of CICS.

General-use Programming Interface and Associated Guidance Information is
identified where it occurs, by an introductory statement to a part, chapter, or
section.

Trademarks and service marks
The following terms, used in this publication, are trademarks or service marks of
IBM Corporation in the United States or other countries:

 Copyright IBM Corp. 1977, 1997 ix

ACF/VTAM APPN
AS/400 CICS
CICS/ESA CICS/MVS
CICS OS/2 CICSPlex SM
CICS/VM CICS/VSE
C/370 DB2
ES/9000 ESA/390
ESCON IBM
IBMLink IMS/ESA
MVS/ESA MVS/XA
OpenEdition OS/2
Personal System/2 PR/SM
RACF Resource Measurement Facility
RT SAA
System/36 System/38
System/360 System/88
Systems Application Architecture VTAM

x CICS for MVS/ESA Intercommunication Guide

 Preface

What this book is about
This book is about:

| � Multiregion operation (MRO): communication between CICS systems in the
| same operating system, or in the same MVS sysplex, without the use of IBM
| Systems Network Architecture (SNA) networking facilities1.

| � Intersystem communication (ISC): communication between a CICS/ESA
| Version 4 Release 1 system and other systems or terminals that support the
| logical unit type 6.1 or logical unit type 6.2 protocols of SNA. Logical unit type

6.2 protocols are also known as Advanced Program-to-Program Communication
(APPC).

What is not covered by this book
| The information in this book is predominantly, but not exclusively, about
| communication between CICS/ESA 4.1 and other mainframe, CICS or IMS,
| systems. If you are interested in communication between CICS/ESA 4.1 and
| non-mainframe CICS systems, you will find the CICS Family: Communicating from
+ CICS on System/390 manual useful. For information about CICS/ESA 4.1’s
+ support for the CICS Client workstation products, see the CICS/ESA Server
+ Support for CICS Clients manual. For an overview of the intercommunication
| facilities provided on other CICS products, see the CICS Family: Inter-product
| Communication manual.

The CICS Front End Programming Interface is not described in this book, but in the
CICS/ESA Front End Programming Interface User’s Guide.

Who this book is for
This book is for customers involved in the planning and implementation of CICS
intersystem communication (ISC) or multiregion operation (MRO).

What you need to know to understand this book
It is assumed throughout this book that you have experience with single CICS
systems. The information it contains applies specifically to multiple-system
environments, and the concepts and facilities of single CICS systems are, in
general, taken for granted.

It is also assumed that you understand SNA concepts and terminology.

+ 1 The external CICS interface (EXCI) uses a specialized form of MRO link to support: communication between MVS batch programs
+ and CICS; DCE remote procedure calls to CICS programs.

 Copyright IBM Corp. 1977, 1997 xi

How to use this book
Initially, you should read Part 1 of this book to familiarize yourself with the concepts
of CICS multiregion operation and intersystem communication.

Thereafter, you can use the appropriate parts of the book as guidance and
reference material for your particular task.

How this book is organized
This book is organized as follows:

Part 1. Concepts and facilities ... pages 1–94
contains an introduction to CICS intercommunication and describes the facilities
that are available. It is intended for evaluation and planning purposes.

Part 2. Installation and system definition ... pages 95–107
describes those aspects of CICS installation that apply particularly to
intercommunication. It also contains some notes on IMS system definition.
This part is intended to be used in conjunction with the CICS/ESA Installation
Guide and the CICS/ESA System Definition Guide.

Part 3. Resource definition ... pages 117–199
provides guidance for resource definition. It tells you how to define links to
remote systems, how to define remote resources, and how to define the local
resources that are required in an intercommunication environment. It is
intended to be used in conjunction with the CICS/ESA Resource Definition
Guide.

Part 4. Application programming ... pages 201–248
describes how to write application programs that use some of the CICS
intercommunication facilities (function shipping, asynchronous processing, and
transaction routing).

| Part 5. Performance ... pages 249–269
| describes those aspects of performance that apply particularly in the
| intercommunication environment. It is intended to be used in conjunction with
| the CICS/ESA Performance Guide.

Part 6. Recovery and restart ... pages 271–295
describes those aspects of recovery and restart that apply particularly in the
intercommunication environment. It is intended to be used in conjunction with
the CICS/ESA Recovery and Restart Guide.

Appendixes ... pages 297–314

Glossary ... pages 315–320

Index ... page 321

xii CICS for MVS/ESA Intercommunication Guide

Determining if a publication is current
IBM regularly updates its publications with new and changed information. When
first published, both hardcopy and BookManager softcopy versions of a publication
are in step, but subsequent updates will probably be available in softcopy before
they are available in hardcopy.

For CICS Transaction Server books, these softcopy updates appear regularly on
the Transaction Processing and Data Collection Kit CD-ROM, SK2T-0730-xx. Each
reissue of the collection kit is indicated by an updated order number suffix (the -xx
part). For example, collection kit SK2T-0730-06 is more up-to-date than
SK2T-0730-05. The collection kit is also clearly dated on the cover.

Here’s how to determine if you are looking at the most current copy of a
publication:

� A publication with a higher suffix number is more recent than one with a lower
suffix number. For example, the publication with order number SC33-0667-02
is more recent than the publication with order number SC33-0667-01. (Note
that suffix numbers are updated as a product moves from release to release,
as well as for hardcopy updates within a given release.)

� When the softcopy version of a publication is updated for a new collection kit
the order number it shares with the hardcopy version does not change. Also,
the date in the edition notice remains that of the original publication. To
compare softcopy with hardcopy, and softcopy with softcopy (on two editions of
the collection kit, for example), check the last two characters of the
publication’s filename. The higher the number, the more recent the publication.
For example, DFHPF104 is more recent than DFHPF103. Next to the
publication titles in the CD-ROM booklet and the readme files, asterisks indicate
publications that are new or changed.

� Updates to the softcopy are clearly marked by revision codes (usually a “#”
character) to the left of the changes.

 Preface xiii

 Bibliography

 CICS/ESA 4.1 library

The book that you are reading was republished in hardcopy format in April 1997 to
incorporate updated information previously available only in softcopy. The
right-hand column in the above table indicates the latest hardcopy editions of the
CICS/ESA books available in April 1997. A book with a date earlier than April 1997
remains the current edition for CICS/ESA 4.1. Note that it is possible that other
books in the library will be updated after April 1997.

Evaluation and planning

Release Guide GC33-1161 April 1997
Migration Guide GC33-1162 April 1997

General

CICS Family: Library Guide GC33-1226 April 1995
Master Index SC33-1187 October 1994
User’s Handbook SX33-1188 April 1997
Glossary (softcopy only) GC33-1189 n/a

Administration

Installation Guide GC33-1163 April 1997
System Definition Guide SC33-1164 April 1997
Customization Guide SC33-1165 April 1997
Resource Definition Guide SC33-1166 April 1997
Operations and Utilities Guide SC33-1167 April 1997
CICS-Supplied Transactions SC33-1168 April 1997

Programming

Application Programming Guide SC33-1169 October 1994
Application Programming Reference SC33-1170 April 1997
System Programming Reference SC33-1171 April 1997
Sample Applications Guide SC33-1173 October 1994
Distributed Transaction Programming Guide SC33-1174 October 1994
Front End Programming Interface User’s Guide SC33-1175 October 1994

Diagnosis

Problem Determination Guide SC33-1176 October 1994
Messages and Codes GC33-1177 April 1997
Diagnosis Handbook LX33-6093 October 1994
Diagnosis Reference LY33-6082 April 1997
Data Areas LY33-6083 April 1997
Supplementary Data Areas LY33-6081 October 1994
Closely-Connected Program Interface LY33-6084 February 1996

Communication

Intercommunication Guide SC33-1181 April 1997
Server Support for CICS Clients SC33-1591 February 1996
CICS Family: Inter-product Communication SC33-0824 October 1996
CICS Family: Communicating from CICS on
System/390

SC33-1697 October 1996

Special topics

Recovery and Restart Guide SC33-1182 October 1994
Performance Guide SC33-1183 October 1994
CICS-IMS Database Control Guide SC33-1184 October 1994
CICS-RACF Security Guide SC33-1185 October 1994
Shared Data Tables Guide SC33-1186 October 1994
External CICS Interface SC33-1390 April 1997
CICS ONC RPC Feature for MVS/ESA Guide SC33-1119 February 1996
CICS Web Interface Guide SC33-1892 November 1996

xiv CICS for MVS/ESA Intercommunication Guide

When a new order is placed for the CICS/ESA 4.1 product, the books shipped with
that order will be the latest hardcopy editions.

The style of IBM covers changes periodically. Books in this library have more than
one style of cover.

For information about the softcopy books, see “Determining if a publication is
current” on page xiii. The softcopy books are regularly updated to include the
latest information.

Other CICS books
� CICS Application Migration Aid Guide, SC33-0768

� CICS Application Programming Primer (VS COBOL II), SC33-0674

� CICS/ESA Facilities and Planning Guide for CICS/ESA Version 3 Release 3,
SC33-0654

� CICS/ESA XRF Guide for CICS/ESA Version 3 Release 3, SC33-0661

� CICS Family: API Structure, SC33-1007

� CICS Family: General Information, GC33-0155

� IBM CICS Transaction Affinities Utility MVS/ESA, SC33-1159

 CICS Clients
� CICS Clients: Administration, SC33-1436

� CICS Family: Client/Server Programming, SC33-1435

Books from related libraries

Advanced Communications Function for VTAM (ACF/VTAM)
| � Customization, LY43-0063

� Data Areas, LY30-5584
� Diagnosis Guide, SC23-0116
� Diagnosis Reference, LY30-5582
� Installation and Resource Definition, SC23-0111

| � Messages and Codes, SC23-6493
| � Network Implementation Guide, SC31-6494
| � Operation, SC23-6495
| � Programming, SC31-6496

� Reference Summary, SC23-0135
| � Version 4 Release 2 Release Guide, GC31-6492

| CICSPlex SM
| � Concepts and Planning, GC33-0786

+ Distributed Computing Environment (DCE)
+ � Distributed Computing Environment: Understanding the Concepts, GC09-1478
+ � Introducing the OpenEdition Distributed Computing Environment, GC09-1482
+ � OpenEdition Distributed Computing Environment: Application Development
+ Guide, SC09-1484
+ � OpenEdition Distributed Computing Environment: Application Development
+ Reference, SC09-1487

 Preface xv

+ � OpenEdition Distributed Computing Environment: Application Support
+ Configuration and Administration Guide, SC09-1659
+ � OpenEdition Distributed Computing Environment: Application Support
+ Programming Guide, SC09-1530

 IMS
� CICS/VS to IMS/VS Intersystem Communication Primer, SH19-6247 through

SH19-6254

� IMS Data Communication Administration Guide, SC26-4286

| � IMS Installation Guide, SC26-4276

� IMS Operations Guide, SC26-4287

� IMS Programming Guide for Remote SNA Systems, SC26-4186

| MVS/ESA
| � MVS/ESA Setting Up a Sysplex, GC28-1449
| � System/390 MVS Sysplex Application Migration, GC28-1211

Network program products
� Network Program Products General Information, GC30-3350

| Systems Application Architecture (SAA)
| � SAA Common Programming Interface Communications Reference, SC26-4399

Systems Network Architecture (SNA)
� Concepts and Products, GC30-3072

� Format and Protocol Reference Manual: Architecture Logic, SC30-3112

� Format and Protocol Reference Manual: Architecture Logic for LU Type 6.2,
SC30-3269

� Format and Protocol Reference Manual: Distribution Services, SC30-3098

� Reference: Peer Protocols, SC31-6808-1

� Sessions Between Logical Units, GC20-1868

� SNA Formats, GA27-3136

� Technical Overview, GC30-3073

� Transaction Programmer’s Reference Manual for LU Type 6.2, GC30-3084

xvi CICS for MVS/ESA Intercommunication Guide

Summary of changes

+ Changes for the CICS/ESA 4.1 second edition
+ This book is the second edition of the Intercommunication Guide for CICS/ESA 4.1.
+ Changes that were made for the first edition are still indicated by vertical bars to
+ the left of the changes. Changes made for this second edition are indicated by the
+ ‘+’ symbol to the left of the changes. Users of the first edition can therefore see
+ what has changed since that first edition was published. Softcopy versions of this
+ book use both these revision indicators and use the ‘#’ symbol to show further
+ changes since this second hardcopy edition of the book was published.

+ The major changes made for this edition describe CICS support for DCE remote
+ procedure calls:

+ � Chapter 7, “CICS support for DCE remote procedure calls” on page 45
+ describes how non-CICS programs running in an Open Systems Distributed
+ Computing Environment (DCE) can communicate with programs running in a
+ CICS/ESA 4.1 system.

+ � “Defining CICS programs as DCE servers” on page 199 contains resource
+ definition information.

+ � Chapter 21, “Application programming for DCE remote procedure calls” on
+ page 219 contains application programming information.

Changes for the CICS/ESA 4.1 first edition
The major changes made for this edition were:

� Cross-system multiregion operation:

“Cross-system multiregion operation (XCF/MRO)” on page 12 describes how
you can use MRO to communicate across MVS images in an MVS/ESA 5.1
sysplex. “Requirements for XCF/MRO” on page 98 contains installation
information.

� VTAM generic resources:

Chapter 13, “Installation considerations for VTAM generic resources” describes
how you can use the generic resources function of VTAM to balance terminal
sessions across the available terminal-owning regions in a CICSplex.

� The external CICS interface:

Chapter 6, “The external CICS interface” describes how non-CICS programs
running in MVS can communicate with programs running in a CICS/ESA 4.1
system. “Defining links for use by the external CICS interface” on page 126
contains resource definition information. Chapter 20, “Application programming
for the external CICS interface” contains application programming information.

 � Performance-related features:

Part 5 was added. It gives advice on improving aspects of CICS performance
in an intercommunication environment.

– Chapter 25, “Using the MVS workload manager” describes CICS support
for the workload management feature of MVS/ESA 5.1.

 Copyright IBM Corp. 1977, 1997 xvii

– Chapter 26, “Intersystem session queue management” describes methods
for controlling the length of intersystem queues.

– Chapter 27, “Efficient deletion of shipped terminal definitions” describes
how to delete redundant shipped terminal definitions from AORs and
intermediate systems.

� Support for VTAM single-node persistent sessions:

Chapter 30, “Intercommunication and VTAM persistent sessions” was added.
It describes those aspects of persistent sessions that apply particularly to
intersystem communication. Information on defining sessions as persistent was
added to Chapter 14, “Defining links to remote systems.”

� Transaction routing enhancements:

Chapter 9, “CICS transaction routing” was expanded. It contains information
about improvements to the dynamic transaction routing program, DFHDYP, and
about how you can use the CICS Transaction Affinities Utility to detect
inter-transaction affinities.

The alternative methods you can use to define transactions for transaction
routing are described in “Defining transactions for transaction routing” on
page 184.

 � Miscellaneous changes:

CICS/ESA 4.1 support for the following facilities was reflected in minor
changes, mainly to the “Resource definition” section of the manual:

– Autoinstall of APPC connections
– Autoinstall of programs
– Generation of unique session names for MRO connections
– Indirect links for transaction routing
– Use of the PARTNER option on EXEC CICS APPC conversations.

References to “reusable mirror tasks” for function shipping were removed.
Reusable mirrors are not used in CICS/ESA 4.1.

Changes for the CICS/ESA 3.3 edition
The major changes made for the CICS/ESA 3.3 edition were:

� Chapter 5, “CICS distributed program link” was added to describe what
distributed program link (DPL) is, what it can be used for, and the facilities that
CICS provides to support it.

� A section was added to Chapter 15, “Defining remote resources” to provide
information on defining resources for DPL.

� Chapter 19, “Application programming for CICS DPL” was added to provide the
information needed to write application programs that engage in DPL.

xviii CICS for MVS/ESA Intercommunication Guide

Part 1. Concepts and facilities

This part of the manual describes the basic concepts of CICS intercommunication
and the various facilities that are provided.

Chapter 1 defines CICS intercommunication, and introduces the two types of
intercommunication: multiregion operation and intersystem communication. It
then describes the intercommunication facilities that CICS provides. These are:

 � Function shipping

� Distributed program link (DPL)

| � The external CICS interface

+ � Support for DCE remote procedure calls

 � Asynchronous processing

 � Transaction routing

� Distributed transaction processing (DTP).

Chapters 2 through 10 describe each of these in more detail, as follows:

Chapter 2, “Multiregion operation” on page 11

Chapter 3, “Intersystem communication” on page 19

Chapter 4, “CICS function shipping” on page 25

Chapter 5, “CICS distributed program link” on page 37

| Chapter 6, “The external CICS interface” on page 43

+ Chapter 7, “CICS support for DCE remote procedure calls” on page 45

Chapter 8, “Asynchronous processing” on page 55

Chapter 9, “CICS transaction routing” on page 67

Chapter 10, “Distributed transaction processing” on page 85.

 Copyright IBM Corp. 1977, 1997 1

2 CICS for MVS/ESA Intercommunication Guide

Chapter 1. Introduction to CICS intercommunication

It is assumed that you are familiar with the use of CICS as a single system, with
associated data resources and a network of terminals. In this book, we are
concerned with the role of CICS in a multiple-system environment, in which CICS
can communicate with other systems that have similar communication facilities.
We have called this sort of communication CICS intercommunication.

CICS intercommunication is communication between a local CICS system and a
remote system, which may or may not be another CICS system.

 Intercommunication methods
There are two ways in which CICS can communicate with other systems:
multiregion operation (MRO) and intersystem communication (ISC).

 Multiregion operation
| For CICS-to-CICS communication, CICS provides an interregion communication
| facility that is independent of SNA access methods. This form of communication is
| called multiregion operation (MRO). MRO can be used between CICS systems2

| that reside:

| � In the same host operating system
| � In the same MVS systems complex (sysplex).

| CICS/ESA Version 4 Release 1 can use MRO to communicate with the following
| systems2:

| � Other CICS/ESA Version 4 Release 1 systems

+ � CICS Transaction Server for OS/390 Release 1 systems

� CICS/ESA Version 3 Release 3 systems

� CICS/ESA Version 3 Release 2 systems

� CICS/ESA Version 3 Release 1 systems

� CICS/MVS Version 2 Release 1 systems

| � CICS/OS/VS Version 1 Release 7 systems. (The systems must be in the same
| MVS image.)

 Intersystem communication
| For communication between CICS and non-CICS systems, or between CICS
| systems that are not in the same operating system or MVS sysplex, you normally
| require an SNA access method, such as ACF/VTAM, to provide the necessary
| communication protocols2. Communication between systems through SNA is called
| intersystem communication (ISC).

+ 2 The external CICS interface (EXCI) uses a specialized form of MRO link to support: communication between MVS batch programs
+ and CICS; DCE remote procedure calls to CICS programs.

 Copyright IBM Corp. 1977, 1997 3

| Note: This form of communication can also be used between CICS systems in the
| same operating system or MVS sysplex, but MRO provides a more efficient
| alternative.

The SNA protocols that CICS uses for intersystem communication are those of
Logical Unit Type 6 (otherwise known as LUTYPE 6.1) and of Advanced
Program-to-Program Communication (APPC, otherwise known as LUTYPE 6.2).
Additional information on this topic is given in Chapter 3, “Intersystem
communication” on page 19.

CICS/ESA Version 4 Release 1 can use ISC to communicate with:

| � Other CICS/ESA Version 4 Release 1 systems
+ � CICS Transaction Server for OS/390 Release 1

� CICS/ESA Version 3 Release 3
� CICS/ESA Version 3 Release 2
� CICS/ESA Version 3 Release 1
� CICS/MVS Version 2 Release 1
� CICS/OS/VS Version 1 Release 7

+ � CICS/VSE Version 2 Release 3
| � CICS/VSE Version 2 Release 2

� CICS/VSE Version 2 Release 1
� CICS/DOS/VS Version 1 Release 7

| � CICS 400
+ � CICS on Open Systems This comprises:
+ – IBM AIX CICS 6000 Version 1 Release 2
+ – CICS for DEC OSF/1 AXP
+ – CICS for HP 9000

� CICS 6000 Version 1 Release 1
 � CICS OS/2
 � CICS/VM
� IMS/VS Version 1 Release 3
� IMS/VS Version 2 Release 2

| � IMS/ESA Version 3 Release 1
� IMS/ESA Version 4 Release 1
� Any system that supports Advanced Program-to-Program Communication

(APPC) protocols (LU6.2).

 Intercommunication facilities
In the multiple-system environment, each participating system can have its own
local terminals and databases, and can run its local application programs
independently of other systems in the network. It can also establish links to other
systems, and thereby gain access to remote resources. This mechanism allows
resources to be distributed among and shared by the participating systems.

CICS intercommunication provides these basic types of facility:

 � Function shipping
� Distributed program link (DPL)

| � The external CICS interface
+ � Support for DCE remote procedure calls

 � Asynchronous processing
 � Transaction routing
� Distributed transaction processing (DTP).

4 CICS for MVS/ESA Intercommunication Guide

These facilities are not universally available for all forms of intercommunication.
The circumstances under which they can be used are shown in Table 1 on page 5.

+ Table 1. CICS provision of intercommunication facilities

+ Facility+ Intercommunication

+ ISC
+ Intersystem (via ACF/VTAM)
+ IRC
+ Interregion
+ DCE

+ LUTYPE6.2 (APPC)+ LUTYPE6.1+ MRO+ DCE/RPC

+ CICS+ Non-CICS+ CICS+ IMS+ CICS+ Non-CICS

+ Function
+ Shipping
+ Yes+ No+ Yes+ No+ Yes+ No

| Distributed
| program link
| Yes| No| No| No| Yes| No

| External
| CICS interface
| No| No| No| No| Yes+ No

+ DCE/RPC
+ server
+ No+ No+ No+ No+ No+ Yes

+ Asynchronous
+ Processing
+ Yes+ No+ Yes+ Yes+ Yes+ No

+ Transaction
+ Routing
+ Yes+ No+ No+ No+ Yes+ No

+ Distributed
+ transaction
+ processing

+ Yes+ Yes+ Yes+ Yes+ Yes+ No

CICS function shipping
CICS function shipping lets an application program access a resource owned by, or
accessible to, another CICS system. Both read and write access are permitted,
and facilities for exclusive control and recovery and restart are provided.

The remote resource can be:

 � A file
� A DL/I database
� A transient-data queue
� A temporary-storage queue.

Application programs that access remote resources can be designed and coded as
if the resources were owned by the system in which the transaction is to run.
During execution, CICS ships the request to the appropriate system.

Distributed program link (DPL)
CICS distributed program link enables a CICS program (the client program) to call
another CICS program (the server program) in a remote CICS region. Here are
some of the reasons you might want to design your application to use DPL:

� To separate the end-user interface (for example, BMS screen handling) from
the application business logic, such as accessing and processing data, to
enable parts of the applications to be ported from host to workstation more
readily.

 Chapter 1. Introduction to CICS intercommunication 5

� To obtain performance benefits from running programs closer to the resources
they access, and thus reduce the need for repeated function shipping requests.

� In many cases, DPL offers a simple alternative to writing distributed transaction
processing (DTP) applications.

| The external CICS interface
| The external CICS interface is an application programming interface (API) that
| enables an MVS application program (running in an MVS address space) to call a
| CICS application program (running in a CICS/ESA 4.1 address space) and to pass
| and receive data using a communications area. The CICS program is invoked as if
| linked-to by another CICS program.

| You can think of the external CICS interface as a specialized form of distributed
| program link.

+ DCE remote procedure calls
+ CICS support for DCE remote procedure calls (RPCs) enables a non-CICS client
+ program running in an open systems Distributed Computing Environment (DCE) to
+ call a server program running in a CICS/ESA 4.1 system and to pass and receive
+ data using a communications area. The CICS program is invoked as if linked-to by
+ another CICS program.

 Asynchronous processing
Asynchronous processing allows a CICS transaction to initiate a transaction in a
remote system and to pass data to it. The remote transaction can then initiate a
transaction in the local system to receive the reply.

The reply is not necessarily returned to the task that initiated the remote
transaction, and no direct tie-in between requests and replies is possible (other
than that provided by user-defined fields in the data). The processing is therefore
called asynchronous.

CICS transaction routing
CICS transaction routing permits a transaction and an associated terminal to be
owned by different CICS systems. Transaction routing can take the following
forms:

� A terminal that is owned by one CICS system can run a transaction owned by
another CICS system.

� A transaction that is started by automatic transaction initiation (ATI) can acquire
a terminal owned by another CICS system.

� A transaction that is running in one CICS system can allocate a session to an
APPC device owned by another CICS system.

Transaction routing is available between CICS systems connected either by
interregion links (MRO) or by APPC links.

6 CICS for MVS/ESA Intercommunication Guide

Distributed transaction processing (DTP)
When CICS arranges function shipping, distributed program link, asynchronous
transaction processing, or transaction routing for you, it establishes a logical data
link with a remote system. A data exchange between the two systems then follows.
This data exchange is controlled by CICS-supplied programs, using APPC,
LUTYPE6.1, or MRO protocols. The CICS-supplied programs issue commands to
allocate conversations, and send and receive data between the systems.
Equivalent commands are available to application programs, to allow applications to
converse with CICS or non-CICS applications. The technique of distributing the
functions of a transaction over several transaction programs within a network is
called distributed transaction processing (DTP).

DTP allows a CICS transaction to communicate with a transaction running in
another system. The transactions are designed and coded specifically to
communicate with each other, and thereby to use the intersystem link with
maximum efficiency.

The communication in DTP is, from the CICS point of view, synchronous, which
means that it occurs during a single invocation of the CICS transaction and that
requests and replies between two transactions can be directly associated. This
contrasts with the asynchronous processing described previously.

Using CICS intercommunication
The CICS intercommunication facilities enable you to implement many different
types of distributed transaction processing. This section describes a few typical
applications. The list is by no means complete, and further examples are
presented in the other chapters of this part of the book.

Multiregion operation makes it possible for two CICS regions to share selected
system resources, and to present a “single-system” view to terminal operators. At
the same time, each region can run independently of the other, and can be
protected against errors in other regions. Various possible applications of MRO are
described in Chapter 2, “Multiregion operation” on page 11.

CICS intersystem communication, together with an SNA access method
(ACF/VTAM) and network control (ACF/NCP/VS), allows resources to be distributed
among and shared by different systems, which can be in the same or different
physical locations.

Figure 1 on page 9 shows some typical possibilities.

Connecting regional centers
Many users have computer operations set up in each of the major geographical
areas in which they operate. Each system has a database organized toward the
activities of that area, with its own network of terminals able to inquire on or update
the regional database. When requests from one region require data from another,
without intersystem communication, manual procedures have to be used to handle
such requests. The intersystem communication facilities allow these “out-of-town”
requests to be automatically handled by providing file access to the database of the
appropriate region.

 Chapter 1. Introduction to CICS intercommunication 7

Using CICS function shipping, application programs can be written to be
independent of the actual location of the data, and able to run in any of the regional
centers. An example of this type of application is the verification of credit against
customer accounts.

Connecting divisions within an organization
Some users are organized by division, with separate systems, terminals, and
databases for each division: for example, Engineering, Production, and Warehouse
divisions. Connecting these divisions to each other and to the headquarters
location improves access to programs and data, and thus can improve the
coordination of the enterprise.

The applications and data can be hierarchically organized, with summary and
central data at the headquarters site and detail data at plant sites. Alternatively,
the applications and data can be distributed across the divisional locations, with
planning and financial data and applications at the headquarters site, manufacturing
data and applications at the plant site, and inventory data and applications at the
distribution site. In either case, applications at any site can access data from any
other site, as necessary, or request applications to be run at a remote site
(containing the appropriate data) with the replies routed back to the requesting site
when ready.

8 CICS for MVS/ESA Intercommunication Guide

Connecting regional centers

Connecting divisions: distributed applications and data

North

Central

South

HeadquartersFinancial
and
Planning

Warehouse Inventory Work
Orders

Plant

Database partitioned
by area

Same applications run
in each center

All terminal users can
access applications or
data in all systems

Terminal operator and
applications unaware of
location of data

Out-of-town requests
routed to the
appropriate system

Database partitioned
by function

Applications partitioned
by function

All terminal users and
applications can access
data in all systems

Requests for nonlocal
data routed to the
appropriate system

Figure 1 (Part 1 of 2). Examples of distributed resources

 Chapter 1. Introduction to CICS intercommunication 9

Summaries
Planning

Head Office

Order and
Schedules

Production
Status Report

Plant A Plant B Plant C
Parts
Cross-
Reference
Work
Order

Hierarchical division of data base

Summaries and
central data at
HQ, detail data
at plant
location

Order processing
at HQ: orders
and schedules
transmitted to
plants of
production
status

Plants and
summaries of
production
status to HQ
(for example,
overnight)

Access to data
from HQ or
Plant possible
if required

Connecting division: hierarchical distribution of data and application

Low-priority
or backup
applications
and data

High-priority
applications
and data

High-priority
applications
and data

Improved
response through
distributed
processing

Figure 1 (Part 2 of 2). Examples of distributed resources

10 CICS for MVS/ESA Intercommunication Guide

 Chapter 2. Multiregion operation

| CICS multiregion operation (MRO) enables CICS systems that are running in the
| same MVS image, or in the same MVS sysplex, to communicate with each other.

MRO does not support communication between a CICS system and a non-CICS
| system such as IMS.3

ACF/VTAM and SNA networking facilities are not required for MRO. The support
within CICS that enables region-to-region communication is called interregion
communication (IRC). IRC can be implemented in three ways:

� Through support in CICS terminal control management modules and by use of
a CICS-supplied interregion program (DFHIRP) loaded in the link pack area
(LPA) of MVS. DFHIRP is invoked by a type 3 supervisory call (SVC).

� By MVS cross-memory services, which you can select as an alternative to the
CICS type 3 SVC mechanism. See “Choosing the access method for MRO” on
page 123. Here, DFHIRP is used only to open and close the interregion links.

| � By the cross-system coupling facility (XCF) of MVS/ESA. XCF is required for
| MRO links between CICS regions in different MVS images of an MVS sysplex.
| It is selected dynamically by CICS for such links, if available. For details of the
| benefits of cross-system MRO, see “Benefits of XCF/MRO” on page 15.

Installation of CICS multiregion operation is described in Chapter 11, “Installation
considerations for multiregion operation” on page 97.

Facilities available through MRO
The intercommunication facilities available through MRO are:

 � Function shipping
 � Asynchronous processing

| � Distributed program link
| � The external CICS interface (EXCI)

 � Transaction routing
� Distributed transaction processing.

These are described under “Intercommunication facilities” on page 4.

There are some restrictions for distributed transaction processing under MRO that
do not apply under ISC.

| 3 The external CICS interface (EXCI) uses a specialized form of MRO link to support: communication between MVS batch programs
| and CICS; DCE remote procedure calls to CICS programs.

 Copyright IBM Corp. 1977, 1997 11

| Cross-system multiregion operation (XCF/MRO)
| XCF4 is part of the MVS/ESA base control program, providing high performance
| communication links between MVS images that are linked in a sysplex (systems
| complex) by channel-to-channel links, ESCON channels, or coupling facility links5.
| The IRC provides an XCF access method that makes it unnecessary to use VTAM
| to communicate between MVS images within the same MVS sysplex. Using XCF
| services, CICS regions join a single XCF group called DFHIR000. Members of the
| CICS XCF group that are in different MVS images select the XCF access method
| dynamically when they wish to talk to each other, overriding the access method
| specified on the connection resource definition. The use of the MVS cross-system
| coupling facility enables MRO to function between MVS images in a sysplex
environment, supporting all the usual MRO operations,6 such as:

| � Function shipping
| � Asynchronous processing
| � Distributed program link
| � The external CICS interface (EXCI)
| � Transaction routing
| � Distributed transaction processing.

| CICS regions linked by XCF/MRO can be at different release levels; see
| “Multiregion operation” on page 3. However, the MVS images in which they reside
| must be at MVS/ESA level 5.1 or later, and be running the CICS/ESA 4.1 version
| of DFHIRP. For full details of software and hardware requirements for XCF/MRO,
| see “Requirements for XCF/MRO” on page 98.

| CICS MRO in an XCF sysplex environment is illustrated in Figure 2 on page 13
| and Figure 3 on page 14.

| 4 XCF. The MVS/ESA cross-system coupling facility that provides MVS coupling services. XCF services allow authorized programs
| in a multisystem environment to communicate (send and receive data) with programs in the same, or another, MVS image.
| Multisystem applications can use the services of XCF, including MVS components and application subsystems (such as CICS), to
| communicate across a sysplex. See the MVS/ESA Setting Up a Sysplex manual, GC28-1449, for more information about the use
| of XCF in a sysplex.

| 5 Coupling facility links. High-bandwidth fiber optic links that provide the high-speed connectivity required for data sharing between
| a coupling facility and the central processor complexes attached to it.

6 XCF/MRO does not support shared data tables. Shared access to a data table, across two or more CICS regions, requires the
regions to be in the same MVS image. To access a data table in a different MVS image, you can use function shipping.

12 CICS for MVS/ESA Intercommunication Guide

MVS1 5.1

CICS2
4.1

Group: DFHIR000

DBCTL/IMS
regions

SYSGRS
SYS1

SYSMVS
SYS1

L
P
A

Group:
Member:

Group:
Member:

CICS1
4.1

MVS2 5.1

CICS4
2.1

Group: DFHIR000

DBCTL/IMS
regions

SYSGRS
SYS2

SYSMVS
SYS2

L
P
A

Group:
Member:

Group:
Member:

CICS3
3.3

CICS/ESA 4.1
DFHIRP X

C
F

X
C
F

X
C
F

X
C
F

X
C
F

X
C
F

SYSPLEX1

SYSPLEX TIMER

XCF
COUPLE

DATA
SET(S)

XCF signaling paths
CICS/ESA 4.1

DFHIRP

| Figure 2. A sysplex (SYSPLEX1) comprising two MVS images (MVS1 and MVS2). In this
| illustration, the members of the CICS group, DFHIR000, are capable of communicating via
| XCF/MRO links across the MVS images. The CICS regions can be at the CICS/ESA 4.1
| level or earlier, but DFHIRP in the LPA of each MVS must be at the CICS/ESA 4.1 level.
| Both MVS systems must be MVS/ESA 5.1 or later.

| In Figure 2, the MRO links between CICS1 and CICS2, and between CICS3 and
| CICS4, use either the IRC or XM access methods, as defined for the link. The
| MRO links between CICS regions on MVS1 and the CICS regions on MVS2 use
| the XCF method, which is selected by CICS dynamically.

 Chapter 2. Multiregion operation 13

MVS1 5.1

CICS2
4.1

Group: DFHIR000

SYSGRS
SYS1

SYSMVS
SYS1

L
P
A

Group:
Member:

Group:
Member:

CICS1
4.1

CICS/ESA 4.1
DFHIRP X

C
F

X
C
F

X
C
F

DBCTL

IMS

MVS3 5.1

CICSA
2.1

Group:
Member:

Group:
Member:

CICS/MVS 2.1
DFHIRPX

C
F

X
C
F

X
C
FMVS2 5.1

CICS4
2.1

Group: DFHIR000

SYSGRS
SYS2

SYSMVS
SYS2

L
P
A

Group:
Member:

Group:
Member:

CICS3
3.3

CICS/ESA 4.1
DFHIRP

DBCTL

IMS

X
C
F

X
C
F

X
C
F

X
C
F

X
C
F

X
C
F

L
P
A

CICSC
2.1

CICSB
2.1

SYSPLEX2

XCF
COUPLE

DATA SET

SYSGRS
SYS3

SYSMVS
SYS3

| Figure 3. A sysplex (SYSPLEX2) comprising three MVS images (MVS1, MVS2, and
| MVS3). The members of the CICS XCF group (DFHIR000) in MVS1 and MVS2 can
| communicate with each other via XCF/MRO links across the MVS images. The CICS
| regions in MVS3 are restricted to using MRO within MVS3 only because DFHIRP is at the
| CICS/MVS 2.1 level, and cannot communicate via XCF. MVS1 and MVS2 must be
| MVS/ESA 5.1 or later. MVS3 can be any MVS release that includes XCF support.

| Note that, in Figure 3:

| � MVS3 is a member of SYSPLEX2, but it is used solely for CICS/MVS 2.1 MRO
| regions using the CICS 2.1 DFHIRP, which cannot use XCF. Therefore, these
| regions cannot communicate across MRO links with the other CICS regions
| that reside in MVS1 and MVS2.

14 CICS for MVS/ESA Intercommunication Guide

| � MVS1 and MVS2 have the CICS/ESA 4.1 DFHIRP installed, and all the CICS
| regions in these MVS images can communicate across MRO links. The CICS
| regions in these MVS systems can be at the CICS Version 2, Version 3, or
| Version 4 level.

| Benefits of XCF/MRO
| Some of the benefits of cross-system MRO using XCF links are:

| � A low communication overhead between MVS images, providing much better
| performance than using ISC links to communicate between MVS systems.
| XCF/MRO thus improves the efficiency of transaction routing, function shipping,
| asynchronous processing, and distributed program link across a sysplex. (You
| can also use XCF/MRO for distributed transaction processing, provided that the
| LU6.1 protocol is adequate for your purpose.)

| � Easier connection resource definition than for ISC links, with no VTAM tables to
| update.

| � Good availability, by having alternative processors and systems ready to
| continue the workload of a failed MVS or a failed CICS.

| � Easy transfer of CICS systems between MVS images. The simpler connection
| resource definition of MRO, and having no VTAM tables to update, makes it
| much easier to move CICS regions from one MVS to another. You no longer
| need to change the connection definitions from CICS MRO to CICS ISC (which,
| in any event, can be done only if CICS startup on the new MVS is a warm or
| cold start).

| � Improved price and performance, by coupling low-cost, rack-mounted,
| air-cooled processors (in an HPCS environment).

| � Growth in small increments.

Applications of multiregion operation
This section describes some typical applications of multiregion operation.

 Program development
The testing of newly-written programs can be isolated from production work by
running a separate CICS region for testing. This permits the reliability and
availability of the production system to be maintained during the development of
new applications, because the production system continues even if the test system
terminates abnormally.

By using function shipping, the test transactions can access resources of the
production system, such as files or transient data queues. By using transaction
routing, terminals connected to the production system can be used to run test
transactions.

The test system can be started and ended as required, without interrupting
production work. During the cutover of the new programs into production, terminal
operators can run transactions in the test system from their regular production
terminals, and the new programs can access the full resources of the production
system.

 Chapter 2. Multiregion operation 15

 Time-sharing
If one CICS system is used for compute-bound work, such as APL or ICCF, as well
as regular DB/DC work, the response time for the DB/DC user can be unduly long.
It can be improved by running the compute-bound applications in a lower-priority
address space and the DB/DC applications in another. Transaction routing allows
any terminal to access either CICS system without the operator being aware that
there are two different systems.

Reliable database access
| You can use the storage protection and transaction isolation facilities of
| CICS/ESA 4.1 to guard against unreliable applications that might otherwise bring
| down the system or disable other applications. However, you could use MRO to
| extend the level of protection.

| For example, you could define two CICS regions, one of which owns applications
| that you have identified as unreliable, and the other the reliable applications and
| the database. The fewer the applications that run in the database-owning region,

the more reliable this region will be. However, the cross-region traffic will be
greater, so performance can be degraded. You must balance performance against
reliability.

You can take this application of MRO to its limit by having no user applications at
all in the database-owning region. The online performance degradation may be a
worthwhile trade-off against the elapsed time necessary to restart a CICS region
that owns a very large database.

 Departmental separation
| MRO enables you to create a CICSplex in which the various departments of an
| organization have their own CICS systems. Each can start and end its own system

as it requires. At the same time, each can have access to other departments’ data,
with access controlled by the system programmer. A department can run a
transaction on another department’s system, again subject to the control of the
system programmer. Terminals need not be allocated to departments, because,
with transaction routing, any terminal could run a transaction on any system.

 Multiprocessor performance
| Using MRO, you can take advantage of a multiprocessor by linking several CICS
| systems into a CICSplex, and allowing any terminal to access the transactions and
| data resources of any of the systems. The system programmer can assign

transactions and data resources to any of the connected systems to get optimum
performance. Transaction routing presents the terminal user with a single system
image; the user need not be aware that there is more than one CICS system.

| Transaction routing is described in Chapter 9 on page 67.

16 CICS for MVS/ESA Intercommunication Guide

| Workload balancing in a sysplex
| In an MVS/ESA 5.1 sysplex, you can use MRO and XCF/MRO links to create a
| CICSplex consisting of sets of functionally-equivalent terminal-owning regions
| (TORs) and application-owning regions (AORs). You can then perform workload
| balancing using:

| � The VTAM generic resource function
| � Dynamic transaction routing
| � The CICSPlex System Manager (CICSPlex SM)
| � The MVS workload manager.

| A VTAM application program such as CICS can be known to VTAM by a generic
| resource name, as well as by the specific network name defined on its VTAM APPL
| definition statement. A number of CICS regions can use the same generic
| resource name.

| A terminal user, wishing to start a session with a CICSplex that has several
| terminal-owning regions, uses the generic resource name in the logon request.
| Using the generic resource name, VTAM is able to select one of the CICS TORs to
| be the target for that session. For this mechanism to operate, the TORs must all
| register to VTAM under the same generic resource name. VTAM is able to perform
| workload balancing of the terminal sessions across the available terminal-owning
| regions.

| The terminal-owning regions can in turn perform workload balancing using the
| CICS dynamic transaction routing facility. The CICSPlex SM product can help you
| manage dynamic transaction routing across a CICSplex.

| For further information about VTAM generic resources, see the VTAM Version 4
| Release 2 Release Guide. Dynamic transaction routing is described on page 68 of
| this book. For an overview of CICSPlex SM, see the CICSPlex SM Concepts and
| Planning manual. For an overview of the MVS workload manager, see Chapter 25
| on page 251.

Virtual storage constraint relief
In some large CICS systems, the amount of virtual storage available can become a
limiting factor. In such cases, it is often possible to relieve the virtual storage
problem by splitting the system into two or more separate systems with shared
resources. All the facilities of MRO can be used to help maintain a single-system
image for end users.

Note: If you are using DL/I databases, and want to split your system to avoid
virtual storage constraints, consider using DBCTL, rather than CICS function
shipping, to share the databases between your CICS address spaces.

 Chapter 2. Multiregion operation 17

Conversion from single-region system
Existing single-region CICS systems can generally be converted to multiregion
CICS systems with little or no reprogramming.

CICS function shipping allows operators of terminals owned by an existing
command-level application to continue accessing existing data resources after
either the application or the resource has been transferred to another CICS region.
Applications that use function shipping must follow the rules given in Chapter 18,
“Application programming for CICS function shipping” on page 205. To conform to
these rules, it may sometimes be necessary to modify programs written for
single-region CICS systems.

CICS transaction routing allows operators of terminals owned by one CICS region
to run transactions in a connected CICS region. One use of this facility is to allow
applications to continue to use function that has been discontinued in the current
release of CICS. Such coexistence considerations are described in the CICS/ESA
Migration Guide. In addition, the restrictions that apply are given in Chapter 23,
“Application programming for CICS transaction routing” on page 223.

It is always necessary to define an MRO link between the two regions and to
provide local and remote definitions of the shared resources. These operations are
described in Part 3, “Resource definition” on page 117.

18 CICS for MVS/ESA Intercommunication Guide

 Chapter 3. Intersystem communication

The data formats and communication protocols required for communication
between systems in a multiple-system environment are defined by the IBM Systems
Network Architecture (SNA); CICS intersystem communication (ISC) implements
this architecture.

It is assumed that you are familiar with the general concepts and terminology of
SNA. Some books on this subject are listed under “Books from related libraries” on
page xv.

| Connections between subsystems
| This section presents a brief overview of the ways in which subsystems can be

connected for intersystem communication. There are three basic forms to be
considered:

| � ISC within a single host operating system
| � ISC between physically adjacent operating systems
| � ISC between physically remote operating systems.

A possible configuration is shown in Figure 4.

┌──────────┐ ┌─────────┐ ┌─────────┐

│ Any APPC │ │ ACF/NCP │ │ ACF/NCP │

│ (LU6.2) ├─────┤ ├──────────────────┤ ├───────>

│ System │ │ 3725 │ │ 3725 │

└──────────┘ └──┬───┬──┘ └────┬────┘

 │ │ │

 ┌──────┘ └───────┐ │

│ │ │

┌──────┴──────┐ ┌──────┴──────┐ ┌──────┴──────┐

 │ ACF/VTAM │ │ ACF/VTAM │ │ ACF/VTAM │

│ (VTAM1) │ │ (VTAM2) │ │ (VTAM3) │

├─────────────┤ ├─────────────┤ ├─────────────┤

| │ CICS/ESA │ │ CICS/ESA │ │ CICS/VSE │

│ (CICSA) │ │ (CICSC) │ │ (CICSD) │

├─────────────┤ ├─────────────┤ ├─────────────┤

│ ... │ │ ... │ │ ... │

├─────────────┤ ├─────────────┤ ├─────────────┤

| │ CICS/ESA │ │ IMS │ │ CICS/VSE │

| │ (CICSB) │ │ (IMSA) │ │ (CICSE) │

| ├─────────────┤ ├─────────────┤ ├─────────────┤

| │ MVS/ESA │ │ MVS/XA │ │ VSE │

└─────────────┘ └─────────────┘ └─────────────┘

Figure 4. A possible configuration for intercommunicating systems

| Single operating system
| ISC within a single operating system (intrahost ISC) is possible through the

application-to-application facilities of ACF/VTAM or ACF/TCAM. In Figure 4, these
facilities can be used to communicate between CICSA and CICSB, between CICSC
and IMSA, and between CICSD and CICSE.

 Copyright IBM Corp. 1977, 1997 19

In an MVS system, you can use intrahost ISC for communication between two or
| more CICS/ESA systems (although MRO is a more efficient alternative) or between,

for example, a CICS/ESA system and an IMS system.

From the CICS point of view, intrahost ISC is the same as ISC between systems in
different VTAM domains.

| Physically adjacent operating systems
An IBM 3725 can be configured with a multichannel adapter that permits you to
connect two VTAM or TCAM domains (for example, VTAM1 and VTAM2 in
Figure 4 on page 19) through a single ACF/NCP/VS. This configuration may be
useful for communication between:

| � A production system and a local but separate test system
| � Two production systems7 with differing characteristics or requirements.

Direct channel-to-channel communication is available between systems that have
ACF/VTAM installed.

| Remote operating systems
This is the most typical configuration for intersystem communication. For example,
in Figure 4 on page 19, CICSD and CICSE can be connected to CICSA, CICSB,
and CICSC in this way. Each participating system is appropriately configured for its
particular location, using MVS or Virtual Storage Extended (VSE) CICS or IMS, and
one of the ACF access methods such as ACF/VTAM.

| For a list of the CICS and non-CICS systems that CICS/ESA 4.1 can connect to
| via ISC, see page 4. For detailed information about using ISC to connect
| CICS/ESA 4.1 to other CICS products, see the CICS Family: Communicating from
| CICS on System/390 manual.

 Intersystem sessions
CICS uses ACF/VTAM to establish, or bind, logical-unit-to-logical-unit (LU-LU)
sessions with remote systems. Being a logical connection, an LU-LU session is

| independent of the actual physical route between the two systems. A single logical
| connection can carry multiple independent sessions. Such sessions are called

parallel sessions.

CICS supports two types of sessions, both of which are defined by IBM Systems
Network Architecture:

 � LUTYPE6.1 sessions

� LUTYPE6.2 (APPC) sessions.

Note that you must not have more than one APPC connection installed at the same
time between an LU-LU pair. Nor should you have an APPC and an LUTYPE6.1
connection installed at the same time between an LU-LU pair.

| 7 The operating systems may or may not be located in the same physical box.

20 CICS for MVS/ESA Intercommunication Guide

 LUTYPE6.1
LUTYPE6.1 is the term used to refer to the logical unit that was formerly called
LUTYPE6. The “.1” is used to distinguish it from LUTYPE6.2 (APPC), which was
introduced later.

The characteristics of LUTYPE6 sessions are described in the Systems Network
Architecture book Sessions Between Logical Units.

Currently, LUTYPE6.1 sessions are supported by CICS and by IMS, and can be
used for CICS-to-CICS and CICS-to-IMS communication.

 LUTYPE6.2 (APPC)
The general term used for the LUTYPE6.2 protocol is Advanced
Program-to-Program Communication (APPC).

In addition to enabling data communication between transaction-processing
systems, the APPC architecture defines subsets that enable device-level products
(APPC terminals) to communicate with host-level products and also with each
other. APPC sessions can therefore be used for CICS-to-CICS communication,
and for communication between CICS and other APPC systems or terminals.

The following paragraphs provide an overview of some of the principal
characteristics of the APPC architecture.

 Protocol boundary
The APPC protocol boundary is a generic interface between transactions and the
SNA network. It is defined by formatted functions, called verbs, and protocols for
using the verbs. Details of this SNA protocol boundary are given in the Systems
Network Architecture publication Transaction Programmer’s Reference Manual for
LU Type 6.2.

CICS provides a command-level language that maps to the protocol boundary and
enables you to write application programs that hold APPC conversations.
Alternatively, you may use the Common Programming Interface
Communications (CPI Communications) of the Systems Application Architecture
(SAA) environment.

Two types of APPC conversation are defined:

Mapped
In mapped conversations, the data passed to and received from the
APPC application program interface is simply user data. The user is not
concerned with the internal data formats demanded by the architecture.

Basic
In basic conversations, the data passed to and received from the APPC
application program interface is prefixed with a header, called a GDS
header. The user is responsible for building and interpreting this
header. Basic conversations are used principally for communication
with device-level products that do not support mapped conversations,
and which possibly do not have an application programming interface
open to the user.

 Chapter 3. Intersystem communication 21

 Synchronization levels
The APPC architecture provides three levels of synchronization. In CICS, these
levels are known as Levels 0, 1, and 2. In SNA terms, these correspond to NONE,
CONFIRM, and SYNCPOINT, as follows:

Level 0 (NONE)
This level is for use when communicating with systems or devices that do not
support synchronization points, or when no synchronization is required.

Level 1 (CONFIRM)
This level allows conversing transactions to exchange private synchronization
requests. CICS built-in synchronization does not occur at this level.

Level 2 (SYNCPOINT)
This level is the equivalent of full CICS syncpointing, including rollback. Level-1
synchronization requests can also be used.

All three levels are supported by both EXEC CICS commands and CPI
Communications.

Program initialization parameter data
When a transaction initiates a remote transaction connected by an APPC session, it
can send data to be received by the attached transaction. This data, called
program initialization parameters (PIP), is formatted into one or more
variable-length subfields according to the SNA architected rules. CPI
Communications does not support PIP.

LU services manager
Multisession APPC connections use the LU services manager. This is the
software component responsible for negotiating session binds, session activation
and deactivation, resynchronization, and error handling. It requires two special
sessions with the remote LU; these are called the SNASVCMG sessions. When
these are bound, the two sides of the LU-LU connection can communicate with
each other, even if the connection is ‘not available for allocation’ for users.

A single-session APPC connection has no SNASVCMG sessions. For this reason,
its function is limited. It cannot, for example, support level-2 synchronization.

Class of service
The CICS implementation of APPC includes support for “class of service” selection.

Class of service (COS) is an ACF/VTAM facility that allows sessions between a pair
of logical units to have different characteristics. This provides a user with the
following:

� Alternate routing–virtual routes for a given COS can be assigned to different
physical paths (explicit routes).

� Mixed traffic–different kinds of traffic can be assigned to the same virtual route
and, by selecting appropriate transmission priorities, undue session interference
can be prevented.

� Trunking–explicit routes can use parallel links between specific nodes.

22 CICS for MVS/ESA Intercommunication Guide

In particular, sessions can take different virtual routes, and thus use different
physical links; or the sessions can be of high or low priority to suit the traffic carried
on them.

In CICS, APPC sessions are specified in groups called modesets, each of which is
assigned a modename. The modename must be the name of a VTAM LOGMODE
entry (also called a modegroup), which can specify the class of service required
for the session group. (See “ACF/VTAM LOGMODE table entries for CICS” on
page 102.)

 Limited resources
For efficient use of some network resources (for example, switched lines), SNA
allows for such resources to be defined in the network as limited resources.
Whenever a session is bound, VTAM indicates to CICS whether the bind is over a
limited resource. When a task using a session across a limited resource frees the
session, CICS unbinds that session if no other task wants to use it.

| Both single and multi-session connections may use limited resources. For a
| multi-session connection, CICS does not unbind LU service-manager sessions until

all modegroups in the connection have performed initial “change number of
sessions” (CNOS) exchange. When CICS unbinds a session, CICS tries to
balance the contention winners and losers. This may result in CICS resetting an
unbound session to be neither a winner nor a loser.

If limited resources are used anywhere in your network, you must apply support for
limited resource to all your CICS systems that could possibly use a path including a
limited resource line. This is because a CICS system without support for limited
resource does not recognize the ‘available’ connection state. That is the
connection state in which there are no bound sessions and all are unbound
because they were over limited resources.

Establishing intersystem sessions
Before traffic can flow on an intersystem session, the session must be established,
or bound. CICS can be either the primary (BIND sender) or secondary (BIND
receiver) in an intersystem session, and can be either the contention winner or the
contention loser. The contention winner in an LU-LU session is the LU that is
permitted to begin a conversation at any time. The contention loser is the LU that
must use an SNA BID command (LUTYPE6.1) or LUSTATUS command (APPC) to
request permission to begin a conversation.

The number of contention-winning and contention-losing sessions required on a link
to a particular remote system can be specified by the system programmer.

For LUTYPE6.1 sessions, CICS always binds as a contention loser.

For APPC links, the number of contention-winning sessions is specified when the
link is defined. (See “Defining APPC links” on page 128.) The contention-winning
sessions are normally bound by CICS, but CICS also accepts bind requests from
the remote system for these sessions.

Normally, the contention-losing sessions are bound by the remote system.
However, CICS can also bind contention-losing sessions if the remote system is
incapable of sending bind requests.

 Chapter 3. Intersystem communication 23

A single session to an APPC terminal is normally defined as the contention winner,
and is bound by CICS, but CICS can accept a negotiated bind in which the
contention winner is changed to the loser.

Session initiation can be performed in one of the following ways:

� By CICS during CICS initialization for sessions for which
AUTOCONNECT(YES) or AUTOCONNECT(ALL) has been specified. See
Chapter 14, “Defining links to remote systems” on page 119.

� By a request from the CICS master terminal operator.

� By the remote system with which CICS is to communicate.

� By CICS when an application explicitly or implicitly requests the use of an
intersystem session and the request can be satisfied only by binding a
previously unbound session.

24 CICS for MVS/ESA Intercommunication Guide

Chapter 4. CICS function shipping

CICS function shipping enables CICS (command-level) application programs to:

� Access CICS files owned by other CICS systems by shipping file control
requests.

� Access DL/I databases managed by or accessible to other CICS systems by
shipping requests for DL/I functions.

� Transfer data to or from transient-data and temporary-storage queues in other
CICS systems by shipping requests for transient-data and temporary-storage
functions.

� Initiate transactions in other CICS systems, or other non-CICS systems that
implement SNA LU Type 6 protocols, such as IMS, by shipping interval control
START requests. This form of communication is described in Chapter 8,
“Asynchronous processing” on page 55.

Applications can be written without regard for the location of the requested
resources; they simply use file control commands, temporary-storage commands,
and other functions in the same way. Entries in the CICS resource definition tables
allow the system programmer to specify that the named resource is not on the local
(or requesting) system but on a remote (or owning) system.

An illustration of a shipped file control request is given in Figure 5 on page 26. In
this figure, a transaction running in CICA issues a file control READ command
against a file called NAMES. From the file control table, CICS discovers that this
file is owned by a remote CICS system called CICB. CICS changes the READ
request into a suitable transmission format, and then ships it to CICB for execution.

In CICB, the request is passed to a special transaction known as the mirror
transaction. The mirror transaction recreates the original request, issues it on
CICB, and returns the acquired data to CICA.

The CICS recovery and restart facilities enable resources in remote systems to be
updated, and ensure that when the requesting application program reaches a
synchronization point, any mirror transactions that are updating protected resources
also take a synchronization point, so that changes to protected resources in remote
and local systems are consistent. The CICS master terminal operator is notified of
any failures in this process, so that suitable corrective action can be taken. This
action can be taken manually or by user-written code.

 Copyright IBM Corp. 1977, 1997 25

 ┌───────────────────────────┐ ┌───────────────────────────┐

│ CICA ┌───────────────────┐│ │ CICB ┌─────────────┐ │

 │ │DEFINE ││ │ │DEFINE │ │

│ │ FILE(NAMES) ││ │ │ FILE(NAMES) │ │

 │ │ REMOTESYSTEM(CICB)││ │ │ │ │

 │ │ ││ │ │ │ │

│ └─────────────┬─────┘│ │ └──────────┬──┘ │

┌──────┐ │ │ │ │ │ │

│ │ │ ┌──────────────┐ │ │ │ ┌──────────────┐ │ │

│ ├────┤ . │ │ │ │ │ │ │ │

│ │ │ │EXEC CICS READ│ │ │ CICS mirror │ │ │

└──────┘ │ │FILE(NAMES) ├───┘ ISC or MRO │ transaction ├─┘ │

TERMINAL │ │INTO(XXXX) ├───────────<────>──────┤ (issues READ │ │

│ │ . │ session │ command and │ │

│ │ . │ │ passes data │ │

│ │ . │ │ │ │ back) │ │

 │ └──────────────┘ │ │ └──────────────┘ │

 └───────────────────────────┘ └───────────────────────────┘

Figure 5. Function shipping

 Design considerations
User application programs can run in a CICS intercommunication environment and
use the intercommunication facilities without being aware of the location of the file
or other resource being accessed. The location of the resource is specified in the
resource definition. (Details are given in Chapter 15, “Defining remote resources”
on page 165.)

The resource definition can also specify the name of the resource as it is known on
the remote system, if it is different from the name by which it is known locally.
When the resource is requested by its local name, CICS substitutes the remote
name before sending the request. This facility is useful when a particular resource
exists with the same name on more than one system but contains data peculiar to
the system on which it is located.

Although this may limit program independence, application programs can also
name remote systems explicitly on commands that can be function-shipped, by
using the SYSID option. If this option is specified, the request is routed directly to
the named system, and the resource definition tables on the local system are not
used. The local system can be specified in the SYSID option, so that the decision
whether to access a local resource or a remote one can be taken at execution time.

 File control
Function shipping allows access to VSAM or BDAM files located on a remote CICS
system. INQUIRE FILE, INQUIRE DSNAME, SET FILE, and SET DSNAME are
not supported. Both read-only and update requests are allowed, and the files can
be defined as protected in the system on which they reside. Updates to remote
protected files are not committed until the application program issues a syncpoint
request or terminates successfully. Linked updates of local and remote files can be
performed within the same logical unit of work, even if the remote files are located
on more than one connected CICS system.

26 CICS for MVS/ESA Intercommunication Guide

Warning: Take care when designing systems in which remote file requests using
| physical record identifier values are employed, such as VSAM RBA, BDAM, or files
| with keys not embedded in the record. You must ensure that all application

programs in remote systems have access to the correct values following addition of
records or reorganization of these types of file.

You can improve data access time by using data tables. CICS supports both
user-maintained and CICS-maintained remote data tables under MRO. However,
CICS does not support creation of a local data table from a remote source data set.
To achieve this, you will have to load local user-maintained data tables from a
remote file by having an empty dummy VSAM data set as the source data set.
You can then, for example, load the data table with its data by using a transaction
that browses the remote file and writes the records to the local table.

 DL/I
Function shipping allows a CICS transaction to access IMS/ESA DM and IMS/VS
DB databases associated with a remote CICS/ESA, CICS/MVS, or CICS/OS/VS
system, or DL/I DOS/VS databases associated with a remote CICS/VSE or
CICS/DOS/VS system. (See Chapter 1, “Introduction to CICS intercommunication”
on page 3 for a list of systems with which CICS/ESA 4.1 can communicate.)

The IMS/ESA DM (DL/I) database associated with a remote CICS/ESA system can
be a local database owned by the remote system, or a database accessed using
IMS database control (DBCTL). To the CICS system that is doing the function
shipping, this database is simply remote.

As with file control, updates to remote DL/I databases are not committed until the
application reaches a syncpoint. With IMS/ESA DM, it is not possible to schedule
more than one program specification block (PSB) for each logical unit of work, even
when the PSBs are defined to be on different remote systems. Hence linked DL/I
updates on different systems cannot be made in a single logical unit of work.

The PSB directory list (PDIR or DLZACT) is used to define a PSB as being on a
remote system. The remote system owns the database and the associated
program communication block (PCB) definitions. When DL/I access requests are
made to another processor system by a CICS/ESA system but no local requests
are made, it is not necessary to install IMS/ESA DM on the requesting system.

 Temporary storage
Function shipping enables application programs to send data to, or retrieve data
from, temporary-storage queues located on remote systems. A temporary-storage
queue is specified as being remote by an entry in the local temporary-storage table
(TST). If the queue is to be protected, its queue name (or remote name) must also
be defined as recoverable in the TST of the remote system.

 Transient data
An application program can access intrapartition or extrapartition transient-data
queues on remote systems. The destination control table (DCT) in the requesting
system defines the named queue as being on the remote system. The DCT entry
for the queue in the remote system specifies whether the queue is protected, and
whether it has a trigger level and associated terminal. Extrapartition queues can be
defined (in the owning system) as having records of fixed or variable length.

 Chapter 4. CICS function shipping 27

Many of the uses currently made of transient-data and temporary-storage queues in
a single CICS system can be extended to an interconnected processor system
environment. For example, a queue of records can be created in a system for
processing overnight. Queues also provide another means of handling requests
from other systems while freeing the terminal for other requests. The reply can be
returned to the terminal when it is ready, and delivered to the operator when there
is a lull in entering transactions.

If a transient-data queue has an associated transaction, the named transaction
must be defined to execute in the system owning the queue; it cannot be defined
as remote. If there is a terminal associated with the transaction, it can be
connected to another CICS system and used through the transaction routing facility
of CICS.

The remote naming capability enables a program to send data to the CICS service
destinations, such as CSMT, in both local and remote systems.

| Intersystem queuing
Performance problems can occur when function shipping requests awaiting free

| sessions are queued in the issuing region. Requests that are to be function
| shipped to a resource-owning region may be queued if all bound contention winner8

| sessions are busy, so that no sessions are immediately available. If the
resource-owning region is unresponsive (if it is a file-owning region, it may, for
example, be waiting for a system journal to be archived), the queue can become so
long that the performance of the issuing region is severely impaired. Further, if the
issuing region is an application-owning region, its impaired performance can spread
back to the terminal-owning region.

The symptoms of this impaired performance are:

� The system reaches its MXT limit, because many tasks have requests queued.
� The system becomes short-on-storage.

In either case, CICS is unable to start any new work.

| CICS provides two methods of preventing these problems:

| � The QUEUELIMIT and MAXQTIME options of CONNECTION definitions. You
| can use these to limit the number of requests that can be queued against
| particular remote regions, and the time that requests should wait for sessions
| on unresponsive connections.

| � Two global user exits, XZIQUE and XISCONA. Your XZIQUE or XISCONA exit
| program is invoked if no contention winner session is immediately available,
| and can tell CICS to queue the request, or to return SYSIDERR to the
| application program. Its decision can be based on statistics accessible from
| the user exit parameter list. For programming information about writing
| XZIQUE and XISCONA exit programs, refer to the CICS/ESA Customization
| Guide. For information on the statistics records that are passed to your exit
| program, refer to the CICS/ESA Performance Guide.

| 8 “Contention winner” is the terminology used for APPC connections. On MRO and LUTYPE6.1 connections, the SEND sessions
| (defined in the session definitions) are used for ALLOCATE requests; when all SEND sessions are in use, queuing starts.

28 CICS for MVS/ESA Intercommunication Guide

| Note: It is recommended that you use the XZIQUE exit, rather than XISCONA.
| XZIQUE provides better functionality, and is of more general use than
| XISCONA: it is driven for transaction routing, DPL, and distributed transaction
| processing requests, as well as for function shipping, whereas XISCONA is
| driven only for function shipping. If you enable both exits, XZIQUE and
| XISCONA could both be driven for function shipping requests, which is not
| recommended.

| If you already have an XISCONA exit program, you may be able to modify it for
| use at the XZIQUE exit point.

| For further information about controlling intersystem queues, see Chapter 26,
| “Intersystem session queue management” on page 261.

The mirror transaction and transformer program
| CICS supplies a number of mirror transactions, some of which correspond to
| “architected processes” (see “Architected processes” on page 194). Details of the
| supplied mirror transactions are given in Chapter 16, “Defining local resources” on
| page 191. In the rest of this book, they are referred to generally as the mirror
| transaction, and given the transaction identifier 'CSM*'.

The following description of the mirror transaction and the transformer program is
generally applicable to both ISC and MRO function shipping. There are, however,
some differences in the way that the mirror transaction works under MRO, and a
different transformer program is used. These differences are described in “MRO
function shipping” on page 31.

ISC function shipping
The mirror transaction executes as a normal CICS transaction and uses the CICS
terminal control program facilities to communicate with the requesting system.

| In the requesting system (CICA in Figure 6 on page 30), the command-level EXEC
| interface program (for all except DL/I requests) determines that the requested
| resource is on another system (CICB in the example). It therefore calls the
| function-shipping transformer program to transform the request into a form suitable
| for transmission (in the example, line 2 indicates this). The EXEC interface
| program then calls on the intercommunication component to send the transformed
| request to the appropriate connected system (line 3). For DL/I requests, part of this
| function is handled by CICS DL/I interface modules. For guidance about DL/I
| request processing, see CICS/ESA CICS-IMS Database Control Guide.

The intercommunication component uses CICS terminal control program facilities to
send the request to the mirror transaction. The first request to a particular remote
system on behalf of a transaction causes the communication component in the
local system to precede the formatted request with the appropriate mirror
transaction identifier, in order to attach this transaction in the remote system.
Thereafter it keeps track of whether the mirror transaction terminates, and

| reinvokes it as required.

 Chapter 4. CICS function shipping 29

| CICA CICB
| DEFINE FILE(FA) DEFINE FILE(FA) ...

| REMOTESYSTEM(CICB)

| ┌────────────────┐ ┌────────────────┐

| │ Transaction │ │ Mirror │

| │ AAAA: │ │ transaction │

| │ ... │ ┌──────> CSM? │

| │ EXEC CICS READ │ │ │ @──┐

| ┌@──────┤ FILE(FA)... │ │ ┌@───┤ │ │

| │ ┌───> ... │ │ │ │ @──│─┐

| (1) │ └────────────────┘ │ │ └────────────────┘ │ │

| │ │ ┌────────────────┐ (3)│ (4)│

| └───│───> EXEC interface │ │ │ │(5)

| ┌───│───> program DFHEIP │ │(6) │ │

| │ (8) │ ├───>┘ │ │ │

| │ │ │ @──────┘ │ │

| │ ┌─│───> │ │ │

| (2)│ └@──┤ │ │ │

| │(7) └────────────────┘ │ │

| │ │ ┌────────────────┐ ┌────────────────┐ │ │

| └─│─────> Transformer │ │ Transformer @──┘ │

| └─────> program DFHXFP │ │ program DFHXFP @────┘

| └────────────────┘ └────────────────┘

| Figure 6. The transformer program and the mirror in function shipping

The mirror transaction uses the function-shipping transformer program, DFHXFP, to
decode the formatted request (line 4 in Figure 6). The mirror then executes the
corresponding command. On completion of the command, the mirror transaction
uses the transformer program to construct a formatted reply (line 5). The mirror
transaction returns this formatted reply to the requesting system, CICA (line 6). On
CICA the reply is decoded, again using the transformer program (line 7), and used
to complete the original request made by the application program (line 8).

If the mirror transaction is not required to update any protected resources, and no
previous request updated a protected resource in its system, the mirror transaction
terminates after sending its reply. However, if the request causes the mirror
transaction to change or update a protected resource, or if the request is for any
DL/I program specification block (PSB), it does not terminate until the requesting
application program issues a synchronization point (syncpoint) request or
terminates successfully. If a browse is in progress, the mirror transaction does not
terminate until the browse is complete.

When the application program issues a syncpoint request, or terminates
successfully, the intercommunication component sends a message to the mirror
transaction that causes it also to issue a syncpoint request and terminate. The
successful syncpoint by the mirror transaction is indicated in a response sent back
to the requesting system, which then completes its syncpoint processing, so
committing changes to any protected resources. If DL/I requests have been
received from another system, CICS issues a DL/I TERM request as a part of the
processing resulting from a syncpoint request made by the application program and
executed by the mirror transaction.

The application program may access protected or unprotected resources in any
order, and is not affected by the location of protected resources (they could all be
in remote systems, for example). When the application program accesses
resources in more than one remote system, the intercommunication component
invokes a mirror transaction in each system to execute requests for the application

30 CICS for MVS/ESA Intercommunication Guide

program. Each mirror transaction follows the above rules for termination, and when
the application program reaches a syncpoint, the intercommunication component
exchanges syncpoint messages with any mirror transactions that have not yet
terminated. This is called the multiple-mirror situation.

The mirror transaction uses the CICS command-level interface to execute CICS
| requests, and the DL/I CALL or the EXEC DLI interface to execute DL/I requests.

The request is thus processed as for any other transaction and the requested
resource is located in the appropriate resource table. If its entry defines the
resource as being remote, the mirror transaction’s request is formatted for
transmission and sent to yet another mirror transaction in the specified system.
This is called a chained-mirror situation. To guard against possible threats to data
integrity caused by session failures, it is strongly recommended that the system
designer avoids defining a connected system in which chained mirror requests
occur, except when the requests involved do not access protected resources, or
are inquiry-only requests.

MRO function shipping
For MRO function shipping, the operation of the mirror transaction is slightly
different from that described in the previous section.

Long-running mirror tasks
| Normally, MRO mirror tasks are terminated as soon as possible, in the same way
| as described for ISC mirrors (see page 30). This is to keep the number of active
| tasks to a minimum and to avoid holding on to the session for long periods.

However, for some applications, it is more efficient to retain both the mirror task
and the session until the next syncpoint, even though this is not required for data
integrity. For example, a transaction that issues many READ FILE requests to a
remote system may be better served by a single mirror task, rather than by a
separate mirror task for each request. In this way, you can reduce the overheads
of allocating sessions on the sending side and attaching mirror tasks on the
receiving side.

Mirror tasks that wait for the next syncpoint, even though they logically do not need
to do so, are called long-running mirrors. They are applicable to MRO links only,

| and are specified, on the system on which the mirror runs, by coding
| MROLRM=YES in the system initialization parameters. A long-running mirror is
| terminated by the next syncpoint (or RETURN) on the sending side.

| For some applications, the performance benefits of using long-running mirrors can
| be significant.

| Figures 8 and 9 in “Function shipping–examples” on page 32 show how the mirror
| acts for MROLRM=NO and MROLRM=YES respectively.

An additional system initialization parameter, MROFSE=YES, specified on the
front-end region, extends the retention of the mirror task and the session from the
next syncpoint to the end of the task. To achieve maximum benefit,
MROFSE=YES should be used in conjunction with MROLRM=YES on the back-end
region. However, MROFSE=YES applies even if the back-end region has
MROLRM=NO, if requests are of the type which cause the mirror transaction to
keep its inbound session.

 Chapter 4. CICS function shipping 31

Conceptually, MROLRM is specified on the back-end region and MROFSE is
specified on the front-end region. However, if the distinction between “back end”
and “front end” is not clear, it is safe to code both parameters on each region if
necessary.

MROFSE=YES gives a performance improvement only if most applications initiated
from the front-end region have multiple syncpoints and function shipping requests
are issued between each syncpoint. For further information about the performance
implications of using MROFSE=YES, see the CICS/ESA Performance Guide.

The short-path transformer
| CICS uses a special transformer program (DFHXFX) for function shipping over

MRO links. This short-path transformer is designed to optimize the path length
involved in the construction of the terminal input/output areas (TIOA) that are sent
on an MRO session for function shipping. It does this by using a private CICS
format for the transformed request, rather than the architected format defined by
SNA.

CICS uses the short-path transformer program (DFHXFX) for shipping file control,
transient data, temporary storage, and interval control (asynchronous processing)
requests. It is not used for DL/I requests. The shipped request always specifies
the CICS mirror transaction CSMI; architected process names are not used.

 Function shipping–examples
This section gives some examples to illustrate the lifetime of the mirror transaction
and the information flowing between the application and its mirror (CSM*). The
examples contrast the action of the mirror transaction when accessing protected
and unprotected resources on behalf of the application program, over MRO or ISC
links, with and without MRO long-running mirror tasks.

 Transmitted
System A │ Information
 │ │

Application Transaction │ │

 . │ │

 . │ │

EXEC CICS READ │ Attach CSM?, │

FILE('RFILE') │ 'READ' request │

 ... │ ───────────────────> │ Attach mirror

 │ │ transaction.

│ │ Perform READ request.

 │ 'READ' reply,last │

Free session. Reply is │ <─────────────────── │ Free session.

passed back to the │ │ Terminate mirror.

application, which │ │

continues processing. │ │

 │ │

Figure 7. ISC function shipping—simple inquiry. Here no resource is being changed; the
session is freed and the mirror task is terminated immediately.

32 CICS for MVS/ESA Intercommunication Guide

 Transmitted
System A │ Information
 │ │

Application Transaction │ │ {DFHSIT MROLRM(NO)}

 . │ │

 . │ │

EXEC CICS READ │ Attach CSM?, │

FILE('RFILE') │ 'READ' request │

| ... │ ───────────────────> │ Attach mirror

| │ │ transaction.

│ │ Perform READ request.

 │ 'READ' reply,last │

Free session. Reply is │ <─────────────────── │ Free session.

passed back to the │ │ Terminate mirror.

application, which │ │

continues processing. │ │

 │ │

Figure 8. MRO function shipping—simple inquiry. Here no resource is being changed.
Because long-running mirror tasks are not specified, the session is freed by System B and
the mirror task is therefore terminated immediately.

 Transmitted
System A │ Information
 │ │

Application Transaction │ │ {DFHSIT MROLRM(YES)}

 . │ │

 . │ │

EXEC CICS READ │ Attach CSM?, │

FILE('RFILE') │ 'READ' request │

| ... │ ───────────────────> │ Attach mirror

| │ │ transaction.

│ │ Perform READ request.

 │ 'READ' reply │

Hold session. Reply is │ <─────────────────── │ Hold session. Mirror

passed back to the │ │ waits for next request.

application, which │ │

continues processing. │ │

Figure 9. MRO function shipping—simple inquiry. Here no resource is being changed.
However, because long-running mirror tasks are specified, the session is held by System B,
and the mirror task waits for the next request.

 Chapter 4. CICS function shipping 33

 Transmitted
System A │ Information
 │ │

Application Transaction │ │

 . │ │

 . │ │

EXEC CICS READ UPDATE │ Attach CSM?, 'READ │

FILE('RFILE') ... │ UPDATE' request │

| . │ ───────────────────> │ Attach mirror

| . │ │ transaction.

Reply passed to │ 'READ UPDATE' reply │

application │ <─────────────────── │ Perform READ UPDATE.

 . │ │

. │ │ Mirror waits.

EXEC CICS REWRITE │ 'REWRITE' request │

FILE('RFILE') │ ───────────────────> │ Mirror performs

 │ │ REWRITE.

Reply passed to │ 'REWRITE' reply │

application │ <─────────────────── │

. │ │ Mirror waits, still

. │ 'SYNCPOINT' request, │ holding the enqueue on

EXEC CICS SYNCPOINT │ last │ the updated record.

│ ───────────────────> │

│ │ Mirror takes syncpoint,

│ positive response │ releases the enqueue,

Syncpoint completed. │ <─────────────────── │ frees the session, and

Application continues. │ │ terminates.

 │ │

| Figure 10. ISC or MRO function shipping—update. Because the mirror must wait for the
REWRITE, it becomes long-running and is not terminated until SYNCPOINT is received.
Note that the enqueue on the updated record would not be held beyond the REWRITE
command if the file was not recoverable.

34 CICS for MVS/ESA Intercommunication Guide

 Transmitted
System A │ Information
 │ │

Application Transaction │ │

 . │ │

 . │ │

EXEC CICS READ UPDATE │ │

FILE('RFILE') ... │ Attach CSM?, 'READ │

. │ UPDATE' request │

| . │ ───────────────────> │ Attach mirror

| . │ │ transaction.

 . │ │

Reply passed to │ 'READ UPDATE' reply │ Perform READ UPDATE.

application │ <─────────────────── │

. │ │ Mirror waits.

EXEC CICS REWRITE │ │

FILE('RFILE') │ 'REWRITE' request │

. │ ───────────────────> │ Mirror performs

 . │ │ REWRITE.

Reply passed to │ 'REWRITE' reply │

application │ <─────────────────── │

. │ │ Mirror waits.

. │ 'SYNCPOINT' request, │

EXEC CICS SYNCPOINT │ last │

│ ───────────────────> │ Mirror attempts

│ │ syncpoint but abends

│ │ (for example, logging

Application is abended │ negative response │ error). Mirror backs

and backs out. │ <─────────────────── │ out and terminates.

Message routed to CSMT. │ Abend message │

│ <─────────────────── │

│ │ Session freed.

| Figure 11. ISC or MRO function shipping—update with ABEND. This is similar to the
previous example, except that an abend occurs during syncpoint processing.

 Chapter 4. CICS function shipping 35

36 CICS for MVS/ESA Intercommunication Guide

Chapter 5. CICS distributed program link

CICS distributed program link (DPL) enables CICS application programs to run
programs residing in other CICS regions by shipping program-control LINK
requests.

An application can be written without regard for the location of the requested
programs; it simply uses program-control LINK commands in the usual way.
Entries in the CICS program definition tables allow the system programmer to

| specify that the named program is not in the local region (known as the client
| region) but in a remote region (known as the server region).

| An illustration of a DPL request is given in Figure 12. In this figure, a program
| (known as a client program) running in CICA issues a program-control LINK

command for a program called PGA (the server program). From the installed
program definitions, CICS discovers that this program is owned by a remote CICS
system called CICB. CICS changes the LINK request into a suitable transmission
format, and then ships it to CICB for execution.

| In CICB, the mirror transaction (described in Chapter 4, “CICS function shipping”
| on page 25) is attached. The mirror program recreates the original request, issues

it on CICB, and, when the server program has run to completion, returns any
communication-area data to CICA.

┌───────────────────────────┐ ┌───────────────────────────┐

│ CICA ┌───────────────────┐│ │ CICB ┌─────────────────┐ │

│ │DEFINE ││ │ │ DEFINE │ │

│ │ PROGRAM('PGA') ││ │ │ PROGRAM('PGA') │ │

│ │ REMOTESYSTEM(CICB)││ │ │ │ │

│ └─────────────┬─────┘│ │ └──────────────┬──┘ │

│ │ │ │ │ │

│ ┌───────────────┐ │ │ │ ┌──────────────┐ │ │

│ │ . │ │ │ │ │ │ │ │

│ │EXEC CICS LINK │ │ │ CICS mirror │ │ │

│ │PROGRAM('PGA') ├──┘ ISC or MRO │ transaction ├─┘ │

│ │COMMAREA(...) ├──────────<────>──────┤ (issues LINK │ │

│ │ . │ session │ command and │ │

│ │ . │ │ passes back │ │

│ │ . │ │ │ │ commarea) │ │

│ └───────────────┘ │ │ └──────────────┘ │

└───────────────────────────┘ └───────────────────────────┘

Figure 12. Distributed program link

The CICS recovery and restart facilities enable resources in remote regions to be
updated, and ensure that when the client program reaches a syncpoint, any mirror
transactions that are updating protected resources also take a syncpoint, so that
changes to protected resources in remote and local systems are consistent. The
CSMT transient-data queue is notified of any failures in this process, so that
suitable corrective action can be taken, whether manually or by user-written code.

 Copyright IBM Corp. 1977, 1997 37

 Design considerations
Client programs can run in a CICS intercommunication environment and use DPL
without being aware of the location of the server program. The location of the
server program is specified in the installed program resource definition. (Details
are given in “CICS distributed program link (DPL)” on page 170.)

The program resource definition can also specify the name of the server program
as it is known on the resource system, if it is different from the name by which it is
known locally. When the server program is requested by its local name, CICS
substitutes the remote name before sending the request. This facility is particularly

| useful when a server program exists with the same name on more than one
| system, but performs different functions depending on the system on which it is
| located. Consider, for example, a local system CICA and two remote systems
| CICB and CICC. A program named PG1 resides in both CICB and CICC. These
| two programs are to be defined in CICA, but they have the same name. Two
| definitions are needed, so a local alias and a REMOTENAME have to be defined
| for at least one of the programs. The definitions in CICA could look like this:

| DEFINE PROGRAM(PG1) REMOTESYSTEM(CICB) ...

| DEFINE PROGRAM(PG99) REMOTENAME(PG1) REMOTESYSTEM(CICC) ...

Although doing so may limit the client program’s independence, the client program
can also name the remote system explicitly by using the SYSID option on the LINK
command. If this option is specified, CICS routes the request directly to the named
system without reference to the installed program resource definitions in the client

| region. The local system can also be specified on the SYSID option, so that the
| decision whether to link to a remote server program or a local one can be taken at
| execution time.

In the client region (CICA in Figure 13 on page 39), the command-level EXEC
interface program determines that the requested server program is on another
system (CICB in the example). It therefore calls the transformer program to
transform the request into a form suitable for transmission (in the example, line (2)
indicates this). As indicated by line (3) in the example, the EXEC interface program
then calls on the intercommunication component to send the transformed request to
the appropriate connected system.

Using the mirror transaction
The intercommunication component uses CICS terminal-control facilities to send the
request to the mirror transaction. The request to a particular server region causes
the communication component in the client region to precede the formatted request
with the identifier of the appropriate mirror transaction to be attached in the server
system.

| Controlling access to resources, accounting for system usage, performance tuning,
| and establishing an audit trail can all be made easier if you use a user-specified

name for the mirror transaction initiated by any given DPL request. This
transaction name must be defined in the server region as a transaction that invokes
the mirror program DFHMIRS. It is worth noting that defining user transactions to
invoke the mirror program gives you the freedom to specify appropriate values for
all the other options on the transaction resource definition. To initiate any

| user-defined mirror transaction, the client program specifies the transaction name

38 CICS for MVS/ESA Intercommunication Guide

| on the LINK request. Alternatively, the transaction name can be specified on the
| TRANSID option of the program resource definition.

 CICA CICB
DEFINE PROGRAM(PGA) DEFINE PROGRAM(PGA) ...

 REMOTESYSTEM(CICB)

 ┌────────────────┐ ┌────────────────┐

 │ Transaction │ │ Mirror │

 │ AAAA: │ │ transaction │

 │ ... │ ┌──────> @──────┐

│ EXEC CICS LINK │ │ │ ├─>┐ │

 ┌@──────┤ PROGRAM('PGA')│ │ ┌@───┤ @──│─┐ │

 │ ┌───> ... │ │ │ │ @──│─│─│─┐

 (1) │ └────────────────┘ │ │ └────────────────┘ │ │ │ │

│ │ ┌────────────────┐ (3)│ ┌────────────────┐ (5)│(4)│

└───│───> Programs │ │ │ │ Program PGA: @──┘(6)│ │

 ┌───│───> DFHEIP, │ │(8) │ │ │ │(7)

│ (1S) │ DFHEPC, ├───>┘ │ │ ... │ │ │ │

│ │ │ DFHISP @──────┘ │ │ │ │ │

│ ┌─│───> │ │ EXEC CICS │ │ │ │

 (2)│ └@──┤ │ │ RETURN ... ├───>┘ │ │

 │(9) └────────────────┘ └────────────────┘ │ │

 │ │ ┌────────────────┐ ┌────────────────┐ │ │

 └─│─────> Transformer │ │ Transformer @──────┘ │

└─────> program DFHXFP │ │ program DFHXFP @────────┘

 └────────────────┘ └────────────────┘

Figure 13. The transformer program and the mirror in DPL

As line (4) in Figure 13 shows, a mirror transaction uses the transformer program
DFHXFP to decode the formatted link request. The mirror then executes the
corresponding command, thereby linking to the server program PGA (5). When the
server program issues the RETURN command (6), the mirror transaction uses the
transformer program to construct a formatted reply (7). The mirror transaction
returns this formatted reply to the client region (8). In that region (CICA in the
example), the reply is decoded, again using the transformer program (9), and used
to complete the original request made by the client program (10).

The mirror transaction, which is always long-running for DPL, suspends after
sending its commarea. The mirror transaction does not terminate until the client
program issues a syncpoint request or terminates successfully.

When the client program issues a syncpoint request, or terminates successfully, the
intercommunication component sends a message to the mirror transaction that
causes it also to issue a syncpoint request and terminate. The successful
syncpoint by the mirror transaction is indicated in a response sent back to the client
region, which then completes its syncpoint processing, so committing changes to
any protected resources.

The client program may link to server programs in any order, without being affected
by the location of server programs (they could all be in different server regions, for
example). When the client program links to server programs in more than one
server region, the intercommunication component invokes a mirror transaction in
each server region to execute link requests for the client program. Each mirror
transaction follows the above rules for termination, and when the application
program reaches a syncpoint, the intercommunication component exchanges
syncpoint messages with any mirror transactions that have not yet terminated.

 Chapter 5. CICS distributed program link 39

Limitations on the server program
A server program cannot issue the following kinds of commands:

| � Terminal-control commands referring to its principal facility

� Commands that set or inquire on terminal attributes

 � BMS commands

� Signon and signoff commands

� Batch data interchange commands

� Commands addressing the TCTUA

| � Syncpoint commands (except when the client program specifies the
| SYNCONRETURN option on the LINK request).

| If the client specifies SYNCONRETURN:

| � The server program can issue syncpoint requests.

| � The mirror transaction requests a syncpoint when the server program
| completes processing.

| Warning: Both these kinds of syncpoint commit only the work done by the server
| program. In applications where both the client program and the server program
| update recoverable resources, they could cause data-integrity problems if the client
| program fails after issuing the LINK request.

For further information about application programming for DPL, see Chapter 19,
“Application programming for CICS DPL” on page 209.

| Using global user exits to redirect DPL requests
| Two global user exits can be invoked during DPL processing:

| � If it is enabled, XPCREQ is invoked on entry to the CICS program control
| program, before a link request is processed. For DPL requests, it is invoked
| on both sides of the link; that is, in both the client and server regions.

| � If it is enabled, XPCREQC is invoked after a link request has completed. For
| DPL requests, it is invoked in the client region only.

| XPCREQ and XPCREQC can be used for a variety of purposes. You could, for
| example, use them to route DPL requests to different CICS regions, thereby
| providing a simple load balancing mechanism. For advice on how to do this,
| together with programming information about writing XPCREQ and XPCREQC
| global user exit programs, see the CICS/ESA Customization Guide.

| Intersystem queuing
| If the link to a remote region is established, but there are no free sessions
| available, distributed program link requests may be queued in the issuing region.
| Performance problems can occur if the queue becomes excessively long.

| For guidance information about controlling intersystem queues, see Chapter 26,
| “Intersystem session queue management” on page 261.

40 CICS for MVS/ESA Intercommunication Guide

Examples of DPL
This section gives some examples to illustrate the lifetime of the mirror transaction
and the information flowing between the client program and its mirror transaction.

 Transmitted
System A │ Information │ System B
 │ │

Application Transaction │ │

 . │ │

 . │ │

EXEC CICS LINK │ Attach mirror, │

PROGRAM('PGA') │ 'LINK' request │

COMMAREA(...) ... │ ──────────────────> │ Attach

. │ │ mirror transaction.

 . │ │

│ │ Mirror performs LINK

│ │ to PGA.

 │ │

│ │ PGA runs, issues RETURN.

 │ │

Reply passed to │ Commarea data │ Mirror ships the

client program. │ <────────────────── │ commarea back to

. │ │ system A.

 . │ 'SYNCPOINT' │

EXEC CICS SYNCPOINT │ request, last │

│ ──────────────────> │ Mirror takes syncpoint,

│ │ frees the session,

│ Positive response │ and terminates.

Syncpoint completed. │ <────────────────── │

Client program │ │

continues. │ │

| Figure 14. DPL with the client transaction issuing a syncpoint. Because the mirror is
| always long-running, it does not terminate before SYNCPOINT is received.

 Transmitted
System A │ Information │ System B
 │ │

Application Transaction │ │

 . │ │

 . │ │

EXEC CICS LINK │ │

PROGRAM('PGA') │ Attach mirror, │

COMMAREA(...) ... │ 'LINK' request │

. │ ──────────────────> │ Attach

. │ │ mirror transaction.

 . │ │

│ Abend condition │ Program PGA runs,

Client program abends. │ @────────────────── │ abends.

 . │ │

. │ │ Mirror waits for

. │ │ syncpoint or abend

│ Abend message │ from client region.

Message routed to CSMT. │ @────────────────── │

│ │ Session freed.

Figure 15. DPL with the server program abending

 Chapter 5. CICS distributed program link 41

42 CICS for MVS/ESA Intercommunication Guide

| Chapter 6. The external CICS interface

| The external CICS interface (EXCI) is an application programming interface that
| enables a non-CICS client program running in an MVS address space—for
| example, an MVS batch or TSO program—to call a server program running in a
| CICS/ESA 4.1 system and to pass and receive data using a communications area.
| The CICS program is invoked as if linked-to by another CICS program.

| This API allows a client program to allocate and open sessions (or pipes) to a
| CICS/ESA 4.1 system and to pass distributed program link (DPL) requests over
| them. IRC supports these requests and each pipe9 maps onto one MRO session.

| The client program and the server CICS system to which it passes the requests
| can either be in the same MVS image or, if you have an MVS/ESA 5.1 sysplex with
| MVS images connected by cross-system coupling facility (XCF) links, in different
| MVS images within the sysplex. Once received by CICS, requests can be
| “daisy-chained” to other CICS systems, just like other DPL requests.

| A client program that uses the external CICS interface can operate multiple
| sessions for different users10 (either under the same or separate TCBs). All the
| sessions coexist in the same MVS address space without knowledge of, or
| interference from, each other.

| Where a client program attaches another client program, the attached program runs
| under its own TCB.

| Benefits of the external CICS interface
| The external CICS interface makes CICS applications more easily accessible from
| non-CICS environments. MVS batch programs could, for example, be used to:

| � Update resources with integrity while CICS is accessing them.

| � Take CICS resources offline (and back online) at the start (and end) of a batch
| job.

| � Open and close CICS files.

| � Enable and disable transactions in CICS (and so eliminate the need for a
| master terminal operator during system backup and recovery procedures).

| 9 Pipe. A one-way communication path between a sending process and a receiving process. In EXCI, each pipe maps on to one
| MRO session, where the client program represents the sending process and the CICS server region represents the receiving
| process.

| 10 The distinction between an MVS client program and a “user” is explained on page 213.

 Copyright IBM Corp. 1977, 1997 43

| Implementing the external CICS interface
| To use the external CICS interface, you must:

| � Define the connections which your non-CICS programs will use to communicate
| with CICS. This is described on page 126.

| � In your MVS client programs, use one of the external CICS interface APIs (two
| are provided) to allocate and open sessions to a CICS system, and to issue
| DPL requests on those sessions. The external CICS interface APIs are
| described in Chapter 20, “Application programming for the external CICS
| interface” on page 213.

| For programming information about using the external CICS interface, see the
| CICS/ESA External CICS Interface manual.

44 CICS for MVS/ESA Intercommunication Guide

+ Chapter 7. CICS support for DCE remote procedure calls

+ This chapter contains:

+ � An overview of the open systems Distributed Computing Environment (DCE).

+ � A description of CICS support for DCE remote procedure calls (RPCs).

+ What is the Distributed Computing Environment?
+ This section tells you what the Distributed Computing Environment (DCE) is and
+ why you might want to use it. For more detailed information, you should refer to
+ the books listed in “Where to find more information” on page 53.

+ Why distributed computing?
+ Distributed computing means computing that involves the cooperation of two or
+ more machines communicating over a network. The machines participating in the
+ system can range from personal computers to super computers; the network can
+ connect machines in one building or on different continents.

+ The main benefit of distributed computing is that it enables you to optimize your
+ computing resources for both responsiveness and economy. For example, it
+ enables you to:

+ � Share the cost of expensive resources, such as a typesetting and printing
+ service, across many desktops. It also gives you the flexibility to change the
+ desktop-to-server ratio, depending on the demand for the service.

+ � Allocate an application’s presentation, business, and data logic appropriately.
+ Often, the desktop is the best place to perform the presentation logic, as it is
+ nearest the end user and can provide highly responsive processing for such
+ actions as drag and drop GUI interfaces. Conversely, you may feel that the
+ best place for the database access logic is close to the actual storage
+ device—that is, on an enterprise or departmental server. The most appropriate
+ place for the business logic may be less clear, but there is much to be said for
+ placing this too in the same node as the data logic, thus allowing a single
+ desktop request to initiate a substantial piece of server work without intervening
+ network traffic.

+ Distributed computing enables you to make such trade-offs in a flexible way.

+ Why DCE?
+ Along with the advantages of distributed computing come new challenges.
+ Examples include keeping multiple copies of data consistent, keeping clocks in
+ individual machines synchronized, and providing network wide security. A system
+ that provides distributed computing support must address these new issues.

+ DCE was developed by the Open Software Foundation (OSF) as an Open Systems
+ platform to address the challenges of distributed computing. It is being ported to all
+ major IBM and non-IBM environments, including MVS/ESA. Note that all current
+ DCE implementations use TCP/IP rather than SNA as their communication
+ protocol.

+ DCE is based on three distributed computing models:

 Copyright IBM Corp. 1977, 1997 45

+ Client/server A way of organizing a distributed application

+ Remote procedure call A way of communicating between parts of a distributed
+ application

+ Shared files A way of handling data in a distributed system, based on
+ a personal computer file access model.

+ Note: CICS/ESA 4.1 alone (without DCE) also supports distributed computing.
+ See “Distributed computing without DCE” on page 48.

+ The rest of this section gives a high level view of the services provided by DCE.

+ Remote procedure call (RPC)
+ One way of implementing communications between a client and a server of a
+ distributed application is to use the procedure call model. In this model, the client
+ makes what looks like a procedure call, and waits for a reply from the server. The
+ procedure call is translated into network communications by the underlying RPC
+ mechanism. The server receives a request and executes the procedure, returning
+ the results to the client.

+ In DCE RPC, you define one or more DCE RPC interfaces, using the DCE
+ interface definition language (IDL). Each interface comprises a set of associated
+ RPC calls (called operations), each with their input and output parameters. You
+ compile the IDL, which generates data structure definitions and executable stubs
+ for both the client and the server. The matching parameter data structures ensure
+ a common view of the parameters by both client and server. The matching client
+ and server executable stubs handle the necessary data transformations to and from
+ the network transmission format, and between different machine formats (EBCDIC
+ and ASCII).

+ You use the DCE Directory Service to advertise that your server now supports the
+ new interface you defined using the IDL. Your client code can likewise use the
+ Directory Service to discover which servers provide the required interface.

+ You can also use the DCE Security Service to ensure that only authorized client
+ end users can access your newly defined server function.

+ Directory Service
+ The DCE Directory Service is a central repository for information about resources in
+ the distributed system. Typical resources are users, machines, and RPC-based
+ services. The information consists of the name of the resource and its associated
+ attributes. Typical attributes could include a user’s home directory, or the location
+ of an RPC-based server.

+ The DCE Directory Service consists of several parts: the Cell Directory Service
+ (CDS), the Global Directory Service (GDS)11 , the Global Directory Agent (GDA),
+ and a Directory Service programming interface. The CDS manages a database of
+ information about the resources in a group of machines called a DCE cell. The
+ Global Directory Service implements an international, standard directory service
+ and provides a global namespace that connects the local DCE cells into one
+ worldwide hierarchy. The (GDA) acts as a go-between for cell and global directory

+ 11 The Global Directory Service is not currently supported by IBM OpenEdition DCE Base Services MVS/ESA.

46 CICS for MVS/ESA Intercommunication Guide

+ services. Both CDS and GDS are accessed using a single Directory Service
+ application programming interface (API).

+ Security Service
+ There are three aspects to DCE security: authentication, secure communications,
+ and authorization. They are implemented by several services and facilities that
+ together comprise the DCE Security Service. These include the Registry Service,
+ the Authentication Service, the Privilege Service, the Access Control List (ACL)
+ Facility, and the Login Facility.

+ The identity of a DCE user or service is authenticated by the Authentication
+ Service. Communications are protected by the integration of DCE RPC with the
+ Security Service. Communication over the network can be checked for tampering
+ or encrypted for privacy. Finally, access to resources is controlled by comparing
+ the credentials conferred to a user by the Privilege Service with the rights to the
+ resource, which are specified in the resource’s Access Control List. The Login
+ Facility initializes a user’s security environment, and the Registry Service manages
+ the information (such as user passwords) in the DCE Security database.

+ Time Service
+ The DCE Time Service (DTS) provides synchronized time on the computers
+ participating in a Distributed Computing Environment. DTS synchronizes a DCE
+ host’s time with Coordinated Universal Time (UTC), an international time standard.
+ DTS cannot keep the time in each machine precisely the same, but can maintain it
+ to a known accuracy. DTS also provides services which return a time range to an
+ application (rather than a single time value), and which compare time ranges from
+ different machines. They can be used to schedule and synchronize events across
+ the network.

+ File Service
+ The DCE File Service (DFS) allows users to access and share files stored on a File
+ Server anywhere on the network, without having to know the physical location of
+ the file. Files are part of a single, global namespace. A user anywhere on a
+ network can access any file, just by knowing its name. The File Service achieves
+ high performance, particularly through caching of file system data. Many users can
+ access files that are located on a given File Server without a large amount of
+ network traffic or delays.

+ Note: The File Service is based on a personal computer view of files, and is not
+ relevant to the CICS/ESA environment.

+ Thread Service
+ DCE Threads supports the creation, management, and synchronization of multiple
+ threads of control within a single process. This component is conceptually a part of
+ the operating system layer, the layer below DCE. If the host operating system
+ already supports threads, DCE can use that software and DCE Threads is not
+ necessary. Because all operating systems do not provide a threads facility and
+ DCE components require threads be present, this user-level threads package is
+ included in DCE.

 Chapter 7. CICS support for DCE remote procedure calls 47

+ Benefits of DCE
+ DCE’s benefits can be summarized as follows:

+ � Support for distributed applications

+ DCE provides a high-level, coherent environment for developing and running
+ applications on a distributed system. The DCE components fall into two
+ categories: tools for developing distributed applications and services for
+ running them. The tools, such as Remote Procedure Calls and Threads, assist
+ in the development of an application. The services, like the Directory Service,
+ Security Service, and Time Service, provide support in a distributed system that
+ is analogous to the support an operating system provides in a centralized
+ system.

+ � Comprehensive, integrated components

+ Not only does DCE provide all the tools and services needed for developing
+ and running distributed applications, but the DCE components themselves are
+ well integrated. They use one another’s services whenever possible, because
+ many of the DCE components are themselves distributed applications. DCE
+ includes services that address some of the problems inherent in the distributed
+ system itself, such as data consistency and clock synchronization.

+ � Management tools

+ DCE includes management tools for administering all of the DCE services and
+ many aspects of the distributed environment itself.

+ � Interoperability across heterogeneous platforms

+ DCE is oriented towards heterogeneous rather than homogeneous systems.
+ The DCE architecture allows for different operating systems and hardware
+ platforms. Using DCE, a process running on one computer can interoperate
+ with a process on a second computer, even when the two computers have
+ different hardware or operating systems.

+ � Portability

+ DCE provides a consistent set of programming interfaces and services across
+ different platforms.

+ � Participation in a global computing environment

+ DCE interacts with the outside world. In addition to supporting cooperation
+ between themselves, DCE systems can interoperate with other, non-DCE,
+ computing environments. In particular, the DCE Directory Service can
+ interoperate with two standard, global directory services, X.500 and Domain
+ Name Service, allowing users from within DCE to access information about the
+ outside world.

+ Distributed computing without DCE
+ Without DCE, CICS/ESA 4.1 supports distributed computing and the client/server
+ model by means of:

+ � Distributed program link (DPL). This is similar to a DCE remote procedure call.
+ A CICS client program passes parameters to a remote CICS server program
+ and waits for the server to send data in reply. Parameters and data are
+ exchanged by means of a communications area.

48 CICS for MVS/ESA Intercommunication Guide

+ � The external CICS interface (EXCI). An MVS client program links to a CICS
+ server program. Again, this is similar to a DCE RPC.

+ � Support for the external call interface (ECI) of the CICS Client products. The
+ ECI enables CICS/ESA 4.1 server programs to be called from client programs
+ running on a variety of operating systems. For information about CICS Clients,
+ see the CICS Family: Inter-product Communication manual.

+ � Function shipping. Here the parameters for a single CICS API request are
+ intercepted by CICS code and sent from the client system to the server. The
+ CICS mirror transaction in the server executes the request, and returns any
+ reply data to the client program. This can be viewed as a specialized form of
+ remote procedure call.

+ � Asynchronous transaction processing. Here a CICS client transaction passes
+ data to a remote CICS server transaction, using the FROM option of an EXEC
+ CICS START command. The START request is intercepted by CICS code, and
+ function shipped to the server system. The client transaction does not wait for
+ any reply data. This is similar to a remote procedure call with no response
+ data.

+ � Distributed transaction processing. Here a program in the client system
+ exchanges messages with a complementary program in the server.

+ � Transaction routing. This enables terminals owned by one CICS system to run
+ transactions owned by another.

+ � Interaction with other members of the CICS family. The CICS family of
+ products runs on a variety of operating systems, and provides a standard set of
+ functions to enable members to communicate with each other. For information
+ about the CICS family, see the CICS Family: Inter-product Communication
+ manual.

+ � Security support. CICS/ESA 4.1 supports:

+ – A single network signon (through the ATTACHSEC option of the DEFINE
+ CONNECTION command)

+ – Authentication of the client system through bind-time security.

+ RACF or an equivalent security manager provides mechanisms similar to the
+ DCE access control lists and login facility.

+ There is no CICS concept similar to the DCE Directory Service. In all the above
+ scenarios the client environment must know which server CICS system to
+ communicate with. This is normally done by specifying the name of the required
+ remote CICS system in the definition of the relevant remote CICS resource, or in
+ the client application program.

+ CICS/ESA 4.1’s support for DCE
+ CICS/ESA 4.1 supports DCE remote procedure calls.

+ In conjunction with the IBM OpenEdition DCE Base Services MVS/ESA and IBM
+ OpenEdition DCE Application Support MVS/ESA CICS Feature products,
+ CICS/ESA 4.1 enables a CICS program to act as a server for a DCE RPC. (Note
+ that DCE RPC uses the DCE Security and Directory Services.) This is described in
+ “DCE remote procedure calls” on page 50.

 Chapter 7. CICS support for DCE remote procedure calls 49

+ The main advantage of a DCE remote procedure call over a CICS DPL call is that
+ you can call CICS programs from non-CICS environments.

+ DCE remote procedure calls
+ This section gives an overview of how CICS/ESA 4.1 cooperates with the IBM
+ OpenEdition DCE Base Services MVS/ESA and IBM OpenEdition DCE Application
+ Support MVS/ESA CICS Feature products to enable a CICS program to act as a
+ DCE server. For more detailed information, you should refer to the books listed in
+ “Where to find more information” on page 53.

+ Overview
+ The IBM OpenEdition DCE Application Support MVS/ESA CICS Feature12 enables
+ a DCE client application anywhere in the DCE environment to access the resources
+ of a CICS system. The client program uses the simple DCE Remote Procedure
+ Call (RPC) mechanism to call a CICS application program.

+ The client program does not need to know where the required CICS application is
+ located. Functions of the Application Support server and the IBM OpenEdition DCE
+ Base Services MVS/ESA product (OE DCE Base MVS/ESA) provide the location
+ information. When the client and server are on different systems, the differences
+ are transparent to the application programmer.

+ The Application Support server supports client programs written in C, and CICS
+ application programs written in COBOL. The Application Support server
+ automatically handles the conversions of the COBOL and C data types.
+ Components of OE DCE Base MVS/ESA handle conversions of EBCDIC and ASCII
+ data types, if needed.

+ Thus the Application Support server provides the powerful CICS application
+ environments on the host, and the familiar (to the client workstation programmer) C
+ language and RPC mechanism on the client.

+ The Application Support server:

+ � Coexists with all other ways of accessing CICS.

+ � Allows access to existing CICS applications and data.

+ � Allows new CICS applications to be developed as servers in the OpenEdition
+ DCE Executive MVS/ESA environment.

+ � Allows access to all files and databases available to CICS, including DB2
+ databases.

+ � Gives the host programmer continued access to all the facilities and tools in the
+ CICS environments. This includes requests to run other programs on the same
+ subsystem or different subsystems using the existing CICS mechanisms.

+ � Allows a client program to access CICS and does not require the client
+ machine to have CICS transaction processing function installed.

+ 12 For clarity, in the rest of this book this product is called the “Application Support server”.

50 CICS for MVS/ESA Intercommunication Guide

+ What CICS server programs can do
+ The Application Support server and CICS are connected by the external CICS
+ interface (EXCI), which uses CICS interregion connection (IRC) facilities. The
+ Application Support server maps the DCE RPC parameters into a CICS
+ communications area, and then uses EXCI to invoke the required CICS program,
+ as if it had been called by an EXEC CICS LINK command.

+ Each RPC from a client program is handled as a CICS task, with an implied
+ syncpoint at the end of the task. Note that this syncpoint only commits resources
+ owned by the CICS server task. It does not commit any resources owned by the
+ client program.

+ Your server program can access any file or database available in the CICS
+ environment. It can use CICS distributed facilities to access data and programs
+ that are managed by other CICS, IMS, or other APPC-connected systems.

+ You can use DCE RPC to access CICS programs for one or more of the following
+ reasons:

+ � To access CICS data from a platform which does not support CICS, but which
+ does support DCE. Note that all major IBM and non-IBM platforms already
+ support DCE, or plan to support DCE in the near future.

+ � To access CICS data from workstation programs which do not run in a CICS
+ environment. You may want to do this even if the workstation platform
+ supports CICS.

+ � To use the DCE Security Service, with its high level of protection against
+ interception of network traffic.

+ � To use the DCE Directory Service, to provide client independence of the
+ location of the required server program.

+ For details of how to write CICS server programs, see Chapter 21, “Application
+ programming for DCE remote procedure calls” on page 219.

+ What you need for DCE RPC to a CICS server
+ This support requires the following products, in addition to CICS/ESA 4.1:

+ � Connectivity through TCP/IP protocols to the client workstation, and to the DCE
+ directory and security servers. This normally means a TCP/IP network, though
+ for some partner platforms it may be possible to use an SNA network with
+ ANYNET support at both ends to transport TCP/IP protocols using SNA
+ transmission protocols.

+ � IBM TCP/IP for MVS, Version 3 Release 1. You need this to present a TCP/IP
+ interface to the DCE software, even if you are using an SNA network and
+ ANYNET software.

+ � IBM OpenEdition Distributed Computing Environment Base Services MVS/ESA,
+ Version 5 Release 1.

+ � IBM OpenEdition Distributed Computing Environment Application Support
+ MVS/ESA CICS Feature, Version 1 Release 1.

 Chapter 7. CICS support for DCE remote procedure calls 51

+ DCE terminology
+ The CICS server programs are called operations. Each RPC requests the
+ execution of one operation. The declarations for each operation, including the
+ specifications for the input and output parameters, are contained in an interface
+ definition. You define one or more related operations in an interface, using the
+ Interface Definition Language (IDL).

+ IDL defines the server functions that a client can call. IDL is a declarative language
+ with syntax similar to the C language. The Application Support server contains IDL
+ extensions that enable a programmer to use COBOL syntax to define the
+ parameters for the CICS application programs. The programmer coding the IDL
+ declarations may be a COBOL or a C programmer.

+ Note: There are restrictions on the COBOL and C data structures that can be
+ defined using the IDL. These are described in the Application Support
+ Programming Guide.

+ Using DCE RPC with CICS
+ This section describes the tasks you need to perform in the DCE environment to
+ allow a distributed application to access CICS.

+ Interface definition
+ When you write your CICS server program and your DCE client program you must:

+ � Use the Application Support server’s GENUUID command to obtain a skeleton
+ interface definition. The skeleton includes a Universal Unique Identifier (UUID)
+ which uniquely identifies the interface.

+ � Use the DCE Interface Definition Language (IDL) to identify each operation in
+ the interface and define its input and output parameters.

+ � Use the IDL compiler to generate data structure definitions for the RPC
+ parameters and execution stubs for both client and server programs.

+ The client stub packages (marshalls) the RPC parameters for transmission over
+ the network to the server, and unpackages (unmarshalls) the parameters
+ received from the server.

+ The server stub contains function that converts host COBOL data types to C
+ data types and vice versa. It also needs to marshall and unmarshall RPC
+ parameters, and to convert data between EBCDIC and ASCII representations.

+ � Link edit and load the server execution-time stub into the server stub library.

+ � Link edit the client stub with the client program.

+ Interface installation
+ When you have completed your CICS server program you need to advertise its
+ availability to potential clients. You do this by using the Application Support server
+ administration facilities to install the interface. This exports details of the interface to
+ the DCE distributed directory. Client programs can then use DCE facilities to locate
+ servers which support required interfaces.

52 CICS for MVS/ESA Intercommunication Guide

+ Where to find more information
+ Refer to the following books for more information about the IBM OpenEdition DCE
+ Base Services MVS/ESA product:

+ � Distributed Computing Environment: Understanding the Concepts, GC09-1478

+ � Introducing the OpenEdition Distributed Computing Environment, GC09-1482

+ � OpenEdition Distributed Computing Environment: Application Development
+ Guide, SC09-1484, for guidance information about developing the client code
+ and using the OpenEdition DCE MVS/ESA base services.

+ � OpenEdition Distributed Computing Environment: Application Development
+ Reference, SC09-1487, for reference information about application
+ programming interfaces (APIs).

+ Refer to the following books for more information about the IBM OpenEdition DCE
+ Application Support MVS/ESA CICS Feature:

+ � OpenEdition Distributed Computing Environment: Application Support
+ Programming Guide, SC09-1530, for information about how to install CICS
+ remote procedure call server programs.

+ � OpenEdition Distributed Computing Environment: Application Support
+ Configuration and Administration Guide, SC09-1659, for information about the
+ administration tasks that complement the programming tasks.

 Chapter 7. CICS support for DCE remote procedure calls 53

54 CICS for MVS/ESA Intercommunication Guide

 Chapter 8. Asynchronous processing

Asynchronous processing provides a means of distributing the processing that is
required by an application between systems in an intercommunication environment.
Unlike distributed transaction processing, however, the processing is
asynchronous.

In distributed transaction processing, a session is held by two transactions for the
period of a “conversation” between them, and requests and replies can be directly
correlated.

In asynchronous processing, the processing is independent of the sessions on
which requests are sent and replies are received. No direct correlation can be
made between a request and a reply, and no assumptions can be made about the
timing of the reply. These differences are illustrated in Figure 16.

 System A System B
 ┌──────────┐ ┌──────────┐

│ │ │ │ Synchronous Processing (DTP)
 │ ┌───────┤ ├───────┐ │

│ │ TRAN1 ├──<────>──┤ TRAN2 │ │ TRAN1 and TRAN2 hold synchronous

│ └───────┤ ├───────┘ │ conversation on session.

│ │ │ │

│ │ │ │

 │ ┌───────┤ ├───────┐ │ Asynchronous Processing
│ │ TRAN3 ├────>─────┤ TRAN4 │ │

│ └───────┤ │ │ │ TRAN3 initiates TRAN4 and sends

│ │ │ │ │ request.

│ ┌───────┤ │ │ │ Later TRAN4 initiates TRAN5

│ │ TRAN5 ├────<─────┤ │ │ and sends reply.

│ └───────┤ ├───────┘ │ No direct correlation exists

│ │ │ │ between executions of TRAN3 and

 └──────────┘ └──────────┘ TRAN5.

Figure 16. Synchronous and asynchronous processing compared

A typical application area for asynchronous processing is online inquiry on remote
databases; for example, an application to check a credit rating. A terminal operator
can use a local transaction to enter a succession of inquiries without waiting for a
reply to each individual inquiry. For each inquiry, the local transaction initiates a
remote transaction to process the request, so that many copies of the remote
transaction can be executing concurrently. The remote transactions send their
replies by initiating a local transaction (possibly the same transaction) to deliver the
output to the operator terminal (the one that initiated the transaction). The replies
may not arrive in the same order as that in which the inquiries were issued;
correlation between the inquiries and the replies must be made by means of fields
in the user data.

In general, asynchronous processing is applicable to any situation in which it is not
necessary or desirable to tie up local resources while a remote request is being
processed.

Asynchronous processing is not suitable for applications that involve synchronized
changes to local and remote resources; for example, it cannot be used to process
simultaneous linked updates to data split between two systems.

 Copyright IBM Corp. 1977, 1997 55

Asynchronous processing methods
In CICS, asynchronous processing can be done in either of two ways:

1. By using the interval control commands START and RETRIEVE.

You can use the START command to schedule a transaction in a remote
system in much the same way as you would in a single CICS system. This
type of asynchronous processing is in effect a form of CICS function shipping,
and as such, it is transparent to the application. The systems programmer
determines whether the attached transaction is local or remote.

If you use the START command for asynchronous processing, you can
communicate only with systems that support the special protocol needed for
function shipping; that is, CICS itself and IMS.

A CICS transaction that is initiated by a remotely-issued start request can use
the RETRIEVE command to retrieve any data associated with the request.
Data transfer is restricted to a single record passing from the initiating
transaction to the transaction initiated.

2. By using distributed transaction processing (DTP).

This is a cross-system method and has no single-system equivalent. You can
use it to initiate a transaction in a remote system that supports one of the DTP
protocols.

When you use DTP to attach a remote transaction, you also allocate a session
and start a conversation. This permits you to send data directly and, if you
want, to receive data from the remote transaction. Your transaction design
determines the format and volume of the data you exchange. For example,
you can use repeated SEND commands to pass multirecord files.

When you have exchanged data, you terminate the conversation and quit the
local transaction, leaving the remote transaction to run on independently.

The procedure to be followed by the two transactions during the time that they
are working together is determined by the application programming interface
(API) for the protocol you are using. APPC is the preferred one, although you
must use LUTYPE6.1 if you want to communicate with IMS. You may want to
take advantage of the flexible data exchange facilities by employing this
method across MRO links too.

Whatever protocol you decide to use, you must observe the rules it imposes.
However short the conversation, during the time it is in progress, the
processing is synchronous. In terms of command sequencing, error recovery,
and syncpointing, it is full DTP.

In both forms of asynchronous processing (and also in synchronous processing), a
CICS transaction can use the EXEC CICS ASSIGN STARTCODE command to
determine how it was initiated.

CICS-to-IMS communication includes a special case of the DTP method described
above. Because it restricts data communication to one SEND LAST command
answered by a single RECEIVE, this book refers to it elsewhere as the
SEND/RECEIVE interface. The circumstances under which it is used are described
in Chapter 24, “CICS-to-IMS applications” on page 227.

56 CICS for MVS/ESA Intercommunication Guide

The remainder of this chapter is devoted to asynchronous processing using START
and RETRIEVE commands. Distributed transaction processing is described in
Chapter 10, “Distributed transaction processing” on page 85.

Asynchronous processing using START and RETRIEVE commands
For programming information about CICS interval control, see the CICS/ESA
Application Programming Reference manual. The interval control commands that
can be used for asynchronous processing are:

 � START
 � CANCEL
 � RETRIEVE.

Starting and canceling remote transactions
The interval control START command is used to schedule transactions
asynchronously in remote CICS and IMS systems. The command is function
shipped. If the remote system is CICS, the mirror transaction is invoked in the
remote system to issue the START command on that system.

For CICS-to-CICS communication, you can include time-control information on the
shipped START command in the normal way, by means of the INTERVAL or TIME
options. A TIME specification is converted by CICS to a time interval, relative to

| the local clock, before the command is shipped. Because the ends of an
| intersystem link may be in different time zones, it is usually better to think in terms

of time intervals, rather than absolute times, for intersystem communication.

Note particularly that the time interval specified on a START command specifies the
time at which the remote transaction is to be initiated, not the time at which the
request is to be shipped to the remote system.

A START command shipped to a remote CICS system can be canceled at any time
up to its expiration time by shipping a CANCEL command to the same system.
The particular START command has a unique identifier (REQID), which you can
specify on the START command and on the associated CANCEL command. The
CANCEL command can be issued by any task that “knows” the identifier.

Time control cannot be specified for START commands sent to IMS systems;
INTERVAL(0) must be specified or allowed to take the default value.
Consequently, start requests for IMS transactions cannot be canceled after they
have been issued.

Passing information with the START command
The START command has a number of options that enable information to be made
available to the remote transaction when it is started. If the remote transaction is in

| a CICS system, it obtains the information by issuing a RETRIEVE command. The
information that can be specified is summarized in the following list:

� User data—specified in the FROM option.

This is the principal way in which data can be passed to the remote
transaction.

 Chapter 8. Asynchronous processing 57

For CICS-to-CICS communication, additional data can be made available in a
transient data or temporary storage queue named in the QUEUE option. The
queue can be on any CICS system that is accessible to the system on which
the remote transaction is executed.

The QUEUE option cannot be used for CICS-to-IMS communication.

| � The transaction and terminal names to be used for replies—specified in the
| RTRANSID and RTERMID options.

| These options, whose values are set by the local transaction, provide the
| means for the remote transaction to pass a reply to the local system. (That is,
| the TRANSID and TERMID specified by the remote transaction on its reply are
| the RTRANID and RTERMID specified by the local system on the initial
| request.)

� A terminal name—specified in the TERMID option.

For CICS-to-CICS communication, this is the name of a terminal that is to be
associated with the remote transaction when it is initiated. It may be that the
terminal is defined on the region that owns the remote transaction but is not
owned by that region. If so, it is obtained by the automatic transaction initiation
(ATI) facility of transaction routing. See “Automatic transaction initiation (ATI)”
on page 71.

The global user exits XICTENF and XALTENF can be coded to cover the case
of the terminal that is shippable but not defined in the application-owning
region. See “Shipping terminals for automatic transaction initiation” on
page 72.

For CICS-to-IMS communication, it is a transaction code or an LTERM name.

Passing a sysid or applid with the START command
If you have a transaction that can be started from several different systems, and
which is required to issue a START command to the system that initiated it, you
can arrange for all of the invoking transactions to send their local system sysid or

| applid as part of the user data in the START command. An initiating transaction
can obtain its local sysid by using an ASSIGN SYSID command, or its applid by
using an ASSIGN APPLID command.

If the name of the connection to the remote system matches the SYSIDNT system
initialization parameter of the remote system (typical of MRO), then the started
transaction can reply using a START command specifying the passed sysid.

If the name of an APPC or LUTYPE6.1 connection to the remote system does not
match the SYSIDNT system initialization parameter of the remote, then the started
transaction can still determine the sysid to be responded to. It can do this by
issuing an EXTRACT TCT command on which the NETNAME option specifies the
passed applid.

Improving performance of intersystem START requests
In many inquiry-only applications, sophisticated error-checking and recovery
procedures are not justified. Where the transactions make inquiries only, the
terminal operator can retry an operation if no reply is received within a specific
time. In such a situation, the number of messages to and from the remote system
can be substantially reduced by using the NOCHECK option of the START
command. Where the connection between the two systems is via VTAM, this can

58 CICS for MVS/ESA Intercommunication Guide

result in considerably improved performance. The price paid for better performance
is the inability of CICS to detect some types of error in the START command.

A typical use for the START NOCHECK command is in the remote inquiry
application described at the beginning of this chapter.

The transaction attached as a result of the terminal operator’s inquiry issues an
appropriate START command with the NOCHECK option, which causes a single
message to be sent to the appropriate remote system to start, asynchronously, a
transaction that makes the inquiry. The command should specify the operator’s
terminal identifier. The transaction attached to the operator’s terminal can now
terminate, leaving the terminal available for either receiving the answer or initiating
another request.

The remote system performs the requested inquiry on its local database, then
issues a start request for the originating system. This command passes back the
requested data, together with the operator’s terminal identifier. Again, only one
message passes between the two systems. The transaction that is then started in
the originating system must format the data and display it at the operator’s terminal.

If a system or session fails, the terminal operator must reenter the inquiry, and be
prepared to receive duplicate replies. To aid the operator, either a correlation field
must be shipped with each request, or all replies must be self-describing.

An example of intercommunication using the NOCHECK option is given in
Figure 18 on page 65.

The NOCHECK option is always required when shipping of the START command is
queued pending the establishment of links with the remote system (see “Local
queuing of START commands” on page 60), or if the request is being shipped to
IMS.

Including start request delivery in a logical unit of work
The delivery of a start request to a remote system can be made part of a logical
unit of work by specifying the PROTECT option on the START command. The
PROTECT option indicates that the remote transaction must not be scheduled until
the local one has successfully completed a synchronization point (syncpoint). (It
can take the syncpoint either by issuing a SYNCPOINT command or by
terminating.)

Successful completion of the syncpoint guarantees that the start request has been
delivered to the remote system. It does not guarantee that the remote transaction
has completed, or even that it will be initiated.

If the remote system is IMS, no message must cross the link between the START
command and the syncpoint. Both PROTECT and NOCHECK must be specified
for all IMS recoverable transactions.

 Chapter 8. Asynchronous processing 59

Deferred sending of START requests with NOCHECK option
For START commands with the NOCHECK option, whether or not PROTECT is
specified, CICS may defer transmission of the request to the remote system,
depending on the environment.

For MRO links, START requests with NOCHECK are not deferred.

For ISC links, START requests with NOCHECK are deferred until one of the
following events occurs:

� The transaction issues a further START command (or any function shipping
request) for the same system.

� The transaction issues a SYNCPOINT command.

� The transaction terminates (implicit syncpoint).

For both the APPC and LUTYPE6.1 protocols, if the first START with NOCHECK is
followed by a second, CICS transmits the first and defers the second.

The first, or only, start request transmitted from a transaction to a remote system
carries the begin-bracket indicator; the last, or only, request carries the end-bracket
indicator. Also, if any of the start requests issued by the transaction specifies

| PROTECT, the last request in the logical unit of work (LUW) carries the
syncpoint-request indicator. Deferred sending allows the indicators to be added to
the deferred data, and thus reduces the number of transmissions required.

The sequence of requests is transmitted within a single SNA bracket and, if the
remote system is CICS, all the requests are handled by the same mirror task.

For IMS, no message must cross the link between a START request and the
following syncpoint. Therefore, you cannot send multiple START NOCHECK
PROTECT requests to IMS. Each request must be followed by a SYNCPOINT
command, or by termination of the transaction.

| Intersystem queuing
| If the link to a remote region is established, but there are no free sessions
| available, function shipped EXEC CICS START requests used to schedule remote
| transactions may be queued in the issuing region. Performance problems can
| occur if the queue becomes excessively long. This problem is described on page
| 28.

| For guidance information about controlling intersystem queues, see Chapter 26,
| “Intersystem session queue management” on page 261.

Local queuing of START commands
| If a remote system is unavailable, either because it is not active or because a
| connection cannot be established, an attempt to function ship a START request to
| it normally results in the SYSIDERR condition being returned to the application.
| This can happen too, when there is a connection to the remote system, but there
| are no sessions available and you have chosen not to queue the request in the
| issuing region. However, provided that the remote system is directly connected to
| this CICS, and that you specify the NOCHECK option on the START command,

60 CICS for MVS/ESA Intercommunication Guide

| you can arrange for the request to be queued locally, and forwarded when the
| required link is in service. You can do this in two ways:

| 1. Specify LOCALQ(YES) on the local definition of the remote transaction. The
| LOCALQ option specifies that local queuing is used, where necessary, for all
| requests from the local system for a particular remote transaction.

| For information about the LOCALQ option, see the CICS/ESA Resource
| Definition Guide.

| 2. Use an XISLCLQ global user exit program. XISLCLQ is invoked only for
| function shipped EXEC CICS START NOCHECK commands where:

| � The remote system is unavailable
|
| or
|
| � There is a connection to the remote system but there are no sessions
| available, and either the number of requests currently queued in the issuing
| region has reached the maximum specified on the QUEUELIMIT option of
| the CONNECTION definition or your XZIQUE or XISCONA global user exit
| program has specified that the request is not to be queued in the issuing
| region.

| Your user exit program can decide, on a request-by-request basis, whether to
| queue locally.

| For programming information about the XZIQUE, XISCONA, and XISLCLQ
| global user exits, see the CICS/ESA Customization Guide.

Data retrieval by a started transaction
A CICS transaction that is started by a start request can get the user data and
other information associated with the request by using the RETRIEVE command.

In accordance with the normal rules for CICS interval control, a start request for a
particular transaction that carries both user data and a terminal identifier is queued
if the transaction is already active and associated with the same terminal. During
the waiting period, the data associated with the queued request can be accessed
by the active transaction by using a further RETRIEVE command. This has the
effect of canceling the queued start request.

Thus, it is possible to design transactions that can handle the data associated with
| multiple start requests. Typically, a long-running local transaction could be

designed to accept multiple inquiries from a terminal and ship start requests to a
remote system. From time to time, the transaction would issue RETRIEVE
commands to receive the replies, the absence of further replies being indicated by
the ENDDATA condition.

The WAIT option of the RETRIEVE command can be used to put the transaction
into a wait state pending the arrival of the next start request from the remote

| system. If this option is used in a task attached to an APPC device, CICS does not
| suspend the task, but instead raises the ENDDATA condition if no data is currently
| available. However, for tasks attached to non-APPC devices, you must make sure

that your transaction does not get into a permanent wait state in the absence of
further start requests.

 Chapter 8. Asynchronous processing 61

Terminal acquisition by a remotely-initiated CICS transaction
When a CICS transaction is started by a start request that names a terminal
(TERMID), CICS makes the terminal available to the transaction as its principal
facility. It makes no difference whether the start request was issued by a user
transaction in the local CICS system or was received from a remote system and
issued by the mirror transaction.

Starting transactions with ISC or MRO sessions
You can name a system, rather than a terminal, in the TERMID option of the
START command.

If CICS finds that the “terminal” named in a locally- or remotely-issued start request
is a system, it selects a session available to that system and makes it the principal
facility of the started transaction (see “Terminology” on page 203). If no session is
available, the request is queued until there is one.

If the link to the system is an APPC link, CICS uses the modename associated with
the transaction definition to select a class-of-service for the session.

System programming considerations
This section discusses the CICS resources that must be defined for asynchronous
processing. Information about how to define the resources is given in Part 3,
“Resource definition” on page 117.

� A link to a remote system must be defined.

� Remote transactions that are to be initiated by start requests must be defined
as remote resources to the local CICS system. This is not necessary, however,
for transactions that are initiated only by START commands that name the
remote system explicitly in the SYSID option.

� If the QUEUE option is used, the named queue must be defined on the system
to which the start request is shipped. The queue can be either a local or a
remote resource on that system.

� If a START request names a “reply” transaction, that transaction must be
defined on the system to which the start request is shipped.

62 CICS for MVS/ESA Intercommunication Guide

 Asynchronous processing—examples

System A │ Transmitted Information │ System B
 │ │

{DFHSIT MROLRM(YES)} │ │

 │ │

Transaction TRX │ │

initiated by │ │

terminal T1 │ │

 │ │

EXEC CICS START │ │

 TRANSID('TRY') │ │

 RTRANSID('TRZ') │ │

RTERMID('T1') │ Attach CSM? │

FROM(area) │ 'SCHEDULE' request for │

 LENGTH(length) │ transaction │

| │ ───────────────────────> │ Attach mirror

| │ │ transaction.

│ │ Perform START request

│ │ for transaction TRY.

 │ 'SCHEDULE' reply,last │

| Free session. Pass │ <─────────────────────── │ Free session. Terminate

| return code to │ │ mirror.

application program. │ Session available for │ Transaction TRY is

Continue processing. │ remote requests from │ dispatched and starts

│ other transactions in │ processing.

│ system A or B. │

│ │ EXEC CICS RETRIEVE

 │ │ INTO (area)

 │ │ LENGTH(length)

 │ │ RTRANSID(TR)

 │ │ RTERMID(T)

│ │ (TR has value 'TRZ',

│ │ T has value 'T1')

 │ │

│ │ Processing based on

│ │ data acquired.

│ │ Results put into

│ │ TS queue named RQUE.

 │ │

│ │ EXEC CICS START

 │ │ TRANSID(TR)

 │ │ TERMID(T)

│ Attach CSM? │ QUEUE('RQUE')

│ 'SCHEDULE' request for │ (TR has value 'TRZ',

│ transaction │ T has value 'T1')

| Attach mirror │ <─────────────────────── │

| transaction. │ │

 │ │

 (continued) │ │

 │ │

Figure 17 (Part 1 of 2). Asynchronous processing—remote transaction initiation

 Chapter 8. Asynchronous processing 63

System A │ Transmitted Information │ System B
 │ │

Perform START request │ │

with TRANSID value of │ │

'TRZ' and TERMID value │ │

of 'T1'. │ │

 │ │

│ 'SCHEDULE' reply │

Mirror waits for │ ───────────────────────> │

SYNCPOINT. │ │ RETURN

│ 'SYNCPOINT' request,last │ (implicit syncpoint)

│ <─────────────────────── │

 │ │

 │ positive response │

Free session. │ ───────────────────────> │

| Terminate mirror. │ │

 │ │

 │ │

Transaction TRZ is │ │

dispatched on terminal │ │

T1 and starts │ │

processing. │ │

 │ │

EXEC CICS RETRIEVE │ │

 INTO(area) │ │

 LENGTH(length) │ │

 QUEUE(Q) │ │

Q has value 'RQUE' │ │

 │ │

TRZ now uses function │ │

shipping to read and │ │

then to delete the │ │

remote queue. │ │

Figure 17 (Part 2 of 2). Asynchronous processing—remote transaction initiation. This example shows an MRO
connection with long-running mirrors (MROLRM) specified for System A but not for System B. Note the different
action of the mirror transaction on the two systems.

64 CICS for MVS/ESA Intercommunication Guide

System A │ Transmitted Information │ System B
 │ │

Transaction TRX │ │

initiated by terminal │ │

T1 │ │

 │ │

EXEC CICS START │ │

 TRANSID('TRY') │ │

 RTRANSID('TRZ') │ │

 RTERMID('T1') │ │

 FROM(area) │ │

 LENGTH(length) │ │

 NOCHECK │ │

 │ │

│ Attach CSM? │

Terminate, and free │ 'SCHEDULE' request for │

terminal T1. T1 could │ trans, last (no reply) │

| now initiate another │ ───────────────────────> │ Attach mirror.

transaction, but TRZ │ │ Perform START

could not start until │ │ request for transaction

T1 became free again. │ session available │ TRY. Free session.

| │ │ Terminate mirror.

│ │ Transaction TRY is

│ │ dispatched and starts.

│ │ EXEC CICS RETRIEVE

 │ │ INTO (area)

 │ │ LENGTH(length)

 │ │ RTRANSID(TR)

 │ │ RTERMID(T)

│ │ (TR has value 'TRZ',

| │ │ T has value 'T1')

 │ │

│ │ Data determines

| │ │ processing. Reply

│ │ put in data area REP.

 │ │

│ │ EXEC CICS START

 │ │ TRANSID(TR)

 │ │ FROM(REP)

 │ │ LENGTH(length)

 │ │ TERMID(T)

 │ │ NOCHECK

│ │ (TR has value 'TRZ',

| │ │ T has value 'T1')

 (continued) │ │

Figure 18 (Part 1 of 2). Asynchronous processing—remote transaction initiation using NOCHECK

 Chapter 8. Asynchronous processing 65

System A │ Transmitted Information │ System B
 │ │

│ Attach CSM? │

│ 'SCHEDULE' request for │ TRY terminates.

│ trans, last (no reply) │

| Attach mirror │ <─────────────────────── │

| transaction. │ │

 │ │

Perform START request │ │

with TRANSID value of │ │

'TRZ' and TERMID value │ │

of 'T1'. │ │

Free session. │ session available │

 │ │

| Terminate mirror. │ │

 │ │

Transaction TRZ is │ │

dispatched on terminal │ │

T1 and starts │ │

processing. │ │

Figure 18 (Part 2 of 2). Asynchronous processing—remote transaction initiation using NOCHECK. This example
shows an ISC connection, or an MRO connection without long-running mirrors.

66 CICS for MVS/ESA Intercommunication Guide

Chapter 9. CICS transaction routing

CICS transaction routing allows terminals connected to one CICS system to run
with transactions in another connected CICS system. This means that you can
distribute terminals and transactions around your CICS systems and still have the
ability to run any transaction with any terminal.

Figure 19 shows a terminal connected to one CICS system running with a user
transaction in another CICS system. Communication between the terminal and the
user transaction is handled by a CICS-supplied transaction called the relay
transaction.

 ┌─────────────────┐ ┌──────────────────┐

 │CICS A │ │CICS B │

 │Terminal-Owning │ │Application-Owning│

 │Region (TOR) │ │Region (AOR) │

 ┌────────┐ │ │ │ │

│ │ │ ┌───────────┐ │ MRO or APPC │ ┌───────────┐ │

 │Terminal│@──>│ │CICS Relay │ │@──────────────>│ │ User │ │

│ │ │ │Transaction│ │ │ │Transaction│ │

└────────┘ │ └───────────┘ │ │ └───────────┘ │

 └─────────────────┘ └──────────────────┘

Figure 19. The elements of transaction routing

The CICS system that owns the terminal is called the terminal-owning region or
TOR, and the CICS system that owns the transaction is called the
application-owning region or AOR. These terms are not meant to imply that one
system owns all the terminals and the other system all the transactions, although
this is a possible configuration.

The terminal-owning region and the application-owning region must be connected
by MRO or APPC links. Transaction routing over LUTYPE6.1 links is not
supported.

In transaction routing, the term terminal is used in a general sense to mean such
things as an IBM 3270, or a single-session APPC device, or an APPC session to
another CICS system, and so on. All terminal and session types supported by
CICS are eligible for transaction routing, except those given in the following list:

� LUTYPE6.1 connections and sessions
� Pooled TCAM terminals
� IBM 7770 or 2260 terminals
� Pooled 3600 or 3650 pipeline logical units
� MVS system consoles.

The user transaction can use the terminal control, BMS, or batch data interchange
facilities of CICS to communicate with the terminal, as appropriate for the terminal
or session type. Mapping and data interchange functions are performed in the
application-owning region. BMS paging operations are performed in the
terminal-owning region. (More information about BMS operations is given under
“Basic mapping support (BMS)” on page 81.)

Pseudo-conversational transactions are supported (except when the “terminal” is an
APPC session), and the various transactions that make up a pseudo-conversational
transaction can be in different systems.

 Copyright IBM Corp. 1977, 1997 67

More information about writing transactions used in transaction routing is given in
Chapter 23, “Application programming for CICS transaction routing” on page 223.

Initiating transaction routing
Transaction routing can be initiated in the following three ways:

1. A request to start a transaction can arrive from a terminal connected to the
TOR. On the basis of an installed resource definition for the transaction, and
possibly on decisions made in a user-written dynamic routing program, the
request is routed to an appropriate AOR, and the transaction runs as if the
terminal were attached to the same region.

2. A transaction can be started by automatic transaction initiation (ATI) and can
acquire a terminal that is owned by another CICS system.

3. A transaction can issue an ALLOCATE command to obtain a session to an
APPC terminal or connection that is owned by another system.

In addition to these methods, CICS provides a special transaction (CRTE) that can
be used for the occasional invocation of transactions in other systems. See “The
routing transaction (CRTE)” on page 82.

Terminal-initiated transaction routing
| When a request to start a transaction arrives at a CICS TOR, the TOR must find
| out on which system the transaction is to run. It does this by examining the

installed transaction definition; in particular, the values of the DYNAMIC and
REMOTESYSTEM options. See “Defining transactions for transaction routing” on
page 184.

Terminal-initiated transaction routing can be either static or dynamic, depending
upon the value of the DYNAMIC option.

Static transaction routing
Static transaction routing occurs when DYNAMIC(NO) is specified in the transaction
definition. In this case, the request is routed to the system named in the
REMOTESYSTEM option. (If REMOTESYSTEM is unspecified, or if it names the
local CICS system, the transaction is a local transaction, and transaction routing is
not involved.)

Dynamic transaction routing
Specifying DYNAMIC(YES) means that you want the chance to route the terminal
data to an alternative transaction at the time the defined transaction is invoked.
CICS manages this by allowing a user-replaceable program, called the dynamic
transaction routing program, to intercept the terminal input data and specify that

| it be redirected to any transaction and system. The default dynamic transaction
| routing program, supplied with CICS, is named DFHDYP. You can modify the
| supplied program, or replace it with one that you write yourself. You can also use
| the DTRPGM system initialization parameter to specify the name of the program
| that is invoked for dynamic routing, if you want to name your program something
| other than DFHDYP. For programming information about user-replaceable
| programs in general, and about DFHDYP in particular, see the CICS/ESA
| Customization Guide. For information about system initialization parameters, see

the CICS/ESA System Definition Guide.

68 CICS for MVS/ESA Intercommunication Guide

| When your routing program is invoked
| CICS invokes the dynamic transaction routing program:

| � When a transaction defined as DYNAMIC(YES) is initiated.

| � When a transaction definition is not found, and CICS uses the common
| transaction definition specified on the DTRTRAN system initialization
| parameter. See “Using a single transaction definition in the TOR” on
| page 187.

| � Before routing to a terminal-oriented, remote, automatically-initiated (by ATI),
| transaction. For example, when an ATI request on a remote system is
| associated with a terminal owned by this system13. (This case is described in
| “Automatic transaction initiation (ATI)” on page 71.)

| � If an error occurs in route selection.

| � At the end of a routed transaction, if the initial invocation requests re-invocation
| at termination.

| � If a routed transaction abends, if the initial invocation requests re-invocation at
| termination.

| Information passed to your routing program
| Parameters are passed in a communications area between CICS and the dynamic

routing program. The program may change some of these parameters to influence
subsequent CICS action. The parameters include:

� The reason for the current invocation.

 � Error information.

� The sysid of the target system. Initially, the one specified on the
| REMOTESYSTEM option of the installed transaction definition. If none was
| specified, the sysid passed is that of the local system.

| Note: The recommended method is to use a single, common definition for all
| remote transactions that are to be dynamically routed. See “Using a single
| transaction definition in the TOR” on page 187.

� The name of the target transaction. Initially, the name specified on the
| REMOTENAME option for the installed transaction definition. If none was
| specified, the name passed is the local name.

� The address of a buffer containing a copy of the data in the terminal
input/output area (TIOA).

| � The netname of the target system. Initially, it corresponds to the sysid
| specified on the REMOTESYSTEM option of the installed transaction definition.

| � The address of the target transaction’s communications area.

| � A user area.

| 13 In this case, your dynamic routing program cannot redirect requests, but it could, for example, update a count of requests routed
| to a particular system.

 Chapter 9. CICS transaction routing 69

| Using your routing program
Dynamic transaction routing enables you to make transaction routing decisions
based on such factors as input to the transaction, available CICS systems, relative

| loading of the available systems, and so on. Note that your routing program can
| only reroute terminal-initiated requests, where DYNAMIC(YES) is specified on the
| transaction definition. It cannot reroute remote ATI requests. However, a routing
| program can perform other functions, besides redirecting transaction requests.

| Your dynamic routing program could be used to:

| � Perform work-load balancing. For example, in a CICSplex, your program could
| make intelligent choices between equivalent transactions on parallel AORs.

| � Stipulate whether a request is to be queued if no sessions to a remote system
| are available. (For information about controlling the length of intersystem
| queues, see Chapter 26, “Intersystem session queue management” on
| page 261.)

| � For MRO links only, set the priority of the transaction attached in the AOR.

| � Cause a user-defined program to run if the transaction cannot be routed, or if
| the routed-to transaction abends. For example, if all remote CICS regions are
| unavailable and the transaction cannot be routed, you might want to run a
| program in the local terminal-owning region to send an appropriate message to
| the user.

| � Monitor the number of requests routed to particular systems.

A dynamic transaction routing program can issue EXEC CICS commands, but
| EXEC CICS RECEIVE prevents the routed-to transaction from obtaining the initial

terminal data.

For programming information about writing a dynamic transaction routing program,
see the CICS/ESA Customization Guide.

| The CICS Transaction Affinities Utility
| CICS transactions use many techniques to pass information between one another,
| and to synchronize activity between themselves. Some of these techniques require
| the transactions exchanging data to execute in the same CICS region, and
| therefore impose restrictions on the dynamic routing of the transactions. If you are
| using dynamic transaction routing for workload-balancing purposes (where
| equivalent transactions reside on multiple systems), your routing program must be
| aware of transactions that contain affinities, so that it can route them consistently.

| If you are planning to create a dynamic transaction routing environment, consisting
| perhaps of a mixture of CICS/ESA 4.1 and earlier systems, you may find the CICS
| Transaction Affinities Utility MVS/ESA (CAU)14 useful. It can be used to identify the
| causes of inter-transaction affinities in CICS/MVS 2.1.2, CICS/ESA 3.2.1,
| CICS/ESA 3.3, and CICS/ESA 4.1 regions.

| For further information about transaction affinities, see the CICS/ESA Application
| Programming Guide.

| 14 Program number 5696-582.

70 CICS for MVS/ESA Intercommunication Guide

| Using CICSPlex SM
| Normally, to take advantage of dynamic transaction routing, you have to write a
| dynamic transaction routing program. However, if you use the CICSPlex System
| Manager (CICSPlex SM) product to manage your CICSplex, you need not do so.
| CICSPlex SM provides a dynamic routing program that supports both workload
| balancing and workload separation. All you have to do is to tell CICSPlex SM,
| through its user interface, which TORs and AORs in the CICSplex can participate in
| dynamic transaction routing, and define any affinities that govern the AORs to
| which particular transactions must be routed. The output from the Transaction
| Affinities Utility can be used directly by CICSPlex SM.

| For introductory information about CICSPlex SM, see the CICSPlex SM Concepts
| and Planning manual.

Automatic transaction initiation (ATI)
Automatic transaction initiation (ATI) is the process whereby a transaction request
made internally within a CICS system or systems network leads to the scheduling
of the transaction.

CICS transaction routing allows an ATI request for a transaction owned by a
particular CICS system to name a terminal that is owned by another, connected
system. For example, in Figure 20 on page 72, an application in AOR1 issues a
START request for transaction TRAA to be attached to terminal PRT1.

Although the original ATI request occurs in the AOR, it is sent by CICS to the TOR
for execution. So, in the example, AOR1 sends the START request to TOR1 to be
executed. In the TOR, the ATI request causes the relay program to be initiated, in
conjunction with the specified terminal (PRT1 in the example).

The user transaction in the application-owning region is then accessed in the
| manner described for terminal-initiated transaction routing. There is, however, one
| important difference—the transaction is always routed back to the system in which
| the ATI request originated. Associated with the request is an automatic initiate
| descriptor (AID) that specifies the names of the remote transaction (TRAA) and
| system (AOR1). For static transaction routing, the terminal-owning region (TOR1)
| must find a transaction definition that specifies REMOTESYSTEM(AOR1) and
| REMOTENAME(TRAA); if it cannot, the request fails. For dynamic transaction
| routing, when DYNAMIC(YES) is coded on the transaction definition, the dynamic
| routing program is invoked but cannot reroute the request, because the remote
| system name is taken from the AID.

 Chapter 9. CICS transaction routing 71

| ┌─TOR1─────────────────────┐ ┌─AOR1─────────────────────┐

| │┌────────────────────────┐│ │┌────────────────────────┐│

| ││DEFINE TRANSACTION(TRAA)││ ││DEFINE TRANSACTION(TRAA)││

| ││ REMOTESYSTEM(AOR1) ││ │└────────────────────────┘│

| ┌────┐ │└────────────────────────┘│ │┌────────────────────────┐│

| │VDT1├┐ │┌────────────────────────┐│ ││DEFINE TERMINAL(PRT1) ││

| └────┘│ ││DEFINE TERMINAL(PRT1) ││ ││ REMOTESYSTEM(TOR1) ││

| │ │└────────────────────────┘│ │└────────────────────────┘│

| │ │ │ │ │

| │ │ │ │ │

| │ │ │ │ │

| │ │ ┌──────────────┐ │ Function │ │

| ┌────┐│ │ │CICS initiates│ shipped EXEC CICS START │

| │VDT2├┼──┤ │transaction │ @─────────────── TRANSID(TRAA) │

| └────┘│ │ │routing │ TERMID(PRT1) │

| │ │ └──────┬───────┘ │ │ │

| │ │ X │ │ │

| │ │ ┌──────────────┐ │ Transaction │ ┌────────────────┐ │

| ┌────┐│ │ │CICS relay │ routing │ │ │

| │PRT1├┘ │ │transaction │───────────────> │TRANSACTION TRAA│ │

| └────┘ │ │ │ Link │ │ │

| │ └──────────────┘ │ established │ └────────────────┘ │

| │ │ between PRT1│ │

| │ │ and TRAA │ │

| └──────────────────────────┘ └──────────────────────────┘

| Figure 20. ATI-initiated transaction routing

ATI requests are queued in the application-owning region if the link to the
terminal-owning region is not available, and subsequently in the terminal-owning
region if the terminal is not available.

The overall effect is to create a “single-system” view of ATI as far as the
application-owning region is concerned; the fact that the terminal is remote does
not affect the way in which ATI appears to operate.

In the application-owning region, the normal rules for ATI apply. The transaction
can be initiated from a transient data queue, when the trigger level is reached, or
on expiry of an interval control start request. Note particularly that, for transient
data initiation, the transient data queue must be in the same system as the
transaction. Transaction routing does not enable transient data queue entries to
initiate remote transactions.

Shipping terminals for automatic transaction initiation
A CICS system, CICA, can cause an ATI request to be executed in another CICS
system, CICB, in three ways:

1. CICA function-ships a START request to CICB.

2. CICA function-ships WRITEQ requests for a transient data queue owned by
CICB, which eventually triggers.

3. CICA instigates routing to a transaction in CICB, which then issues a START or
writes to a transient data queue.

If the ATI request has a terminal associated with it, CICB searches its resources for
a definition for that terminal. If it finds that the terminal is remote, it sends the ATI
request to the system that is specified in the REMOTESYSTEM option of the
terminal definition. Remember that an ATI request is executed in the TOR.

72 CICS for MVS/ESA Intercommunication Guide

 Terminal-not-known condition
To ensure correct functioning of cross-region ATI, you could define your terminals
to all the systems on the network that need to use them. However, you cannot do
this if you are using autoinstall. (For information about using autoinstall, see the
CICS/ESA Resource Definition Guide.) Autoinstalled terminals are unknown to the
system until they log on, and you rely on CICS to ship terminal definitions to all the
systems where they are needed. (See “Shipping terminal and connection
definitions” on page 175.) This works when routing from a terminal to a remote
system, but there are cases where a system cannot process an ATI request,
because it has not been told the location of the associated terminal.

The example shown in Figure 21 should make this clear:

1. The operator at terminal T1 selects the menu transaction M1 on CICA.

2. The menu transaction M1 runs and the operator selects a function that is
implemented by transaction X1 in CICB.

3. Transaction M1 issues the command:

EXEC CICS START

 TRANSID(X1)

 TERMID(T1)

and exits.

4. CICA function-ships the START command to CICB.

5. CICB now processes the START command and, in doing so, tries to discover
which region owns T1, because this is the region that has to execute the ATI
request resulting from the START command.

6. Only if a definition of T1, resulting from an earlier routed transaction, is present
can CICB determine where to send the ATI request. Assuming no such
definition exists, the interval control program rejects the START request with
TERMIDERR.

 CICA CICB

┌─────────────────────────┐ ┌─────────────────────────┐

│ ┌──────────────────────┐│ │┌──────────────────────┐ │

│ │DEFINE TRANSACTION(M1)││ ││DEFINE TRANSACTION(X1)│ │

│ └──────────────────────┘│ │└──────────────────────┘ │

│ ┌──────────────────────┐│ │ │

│ │DEFINE TRANSACTION(X1)││ │ │

│ │ REMOTESYSTEM(CICB)││ │ │

│ └──────────────────────┘│ │ │

│ ┌──────────────────────┐│ │┌──────────────────────┐ │

│ │CEDA-installed or ││ ││no terminals defined │ │

│ │autoinstalled terminal││ │└──────────────────────┘ │

│ │definition for T1 ││ │ │

│ └──────────────────────┘│ │ │

│ │ │ │

│ ┌─────────────┐│ │┌──────────────────┐ │

│ │TRANSACTION │ Function-shipped │CICS Interval │ │

│ │ M1 │──────────────────────>│Control Program │ │

│ │ │ EXEC CICS START │raises 'TERMIDERR'│ │

│ │ ││ TRANSID(X1) │└──────────────────┘ │

│ └─────────────┘│ TERMID(T1) │ │

└─────────────────────────┘ └─────────────────────────┘

Figure 21. Failure of an ATI request in a system where the termid is unknown

The global user exits XICTENF and XALTENF: You, as user of the system,
know how this routing problem could be solved, and CICS gives you a way of
communicating your solution to the system. The two global user exits XICTENF

| and XALTENF have been provided. XICTENF is driven when interval control

 Chapter 9. CICS transaction routing 73

| processes a START command and discovers the associated termid is not defined
to the system. XALTENF is driven from the terminal allocation program also when
the termid is not defined.

The terminal allocation program schedules requests resulting both from the
eventual execution of a START command and from the transient data queue trigger
mechanism. This means that a START command could result in an invocation of
both exits.

The program you provide to service one or both of these global user exits has
access to a parameter list containing this information:

� Whether the ATI request resulted from: a START command with data, a
START command without data, or a transient data queue trigger.

� Whether the START command was issued by a transaction that had been the
subject of transaction routing.

� Whether the START command was function-shipped from another region.

� The identifier of the transaction to be run.

� The identifier of the terminal with which the transaction should run.

� The identifier of the terminal associated with the transaction that issued the
START command, if this was a routed transaction, or the identifier of the
session, if the command was function-shipped. Otherwise, blanks are returned.

� The netname of the last system the START request was shipped from or, if the
START was issued locally, the netname of the system last transaction-routed
from. Blanks are returned if no remote system was involved.

� The sysid corresponding to the returned netname.

On exit from the program, you tell CICS whether the terminal exists and, if it does,
you supply either the netname or the sysid of the TOR. CICS sends the ATI
request to the region you specify. As a result, the terminal definition is shipped
from the TOR to the AOR, and transaction routing proceeds normally.

There is therefore a solution to the problem shown in Figure 21 on page 73. It is
necessary only to write a small exit program that returns the CICS-supplied
parameters unchanged and sets the return code for ‘netname returned’.

The events that follow are shown in Figure 22 on page 75:

1. The interval control program accepts the START command and signals
acceptance to the issuing system if this is required.

2. After the specified interval has expired, or immediately if no interval was
specified, the terminal allocation program tries to schedule the ATI request. It
finds no terminal defined and takes the exit XALTENF, which again supplies
the required netname.

3. The ATI request is shipped to CICA. CICA allocates a relay transaction,
establishes a transaction routing link to transaction X1 in CICB, and ships a
copy of the terminal definition for T1 to CICB.

74 CICS for MVS/ESA Intercommunication Guide

 CICA CICB

┌──────────────────────────┐ ┌────────────────────────┐

│ ┌──────────────────────┐ │ │┌──────────────────────┐│

│ │DEFINE TRANSACTION(M1)│ │ ││DEFINE TRANSACTION(X1)││

│ └──────────────────────┘ │ │└──────────────────────┘│

│ ┌──────────────────────┐ │ │ │

│ │DEFINE TRANSACTION(X1)│ │ │┌──────────────────────┐│

│ │ REMOTESYSTEM(CICB)│ │ ││no terminals defined ││

│ └──────────────────────┘ │ │└──────────────────────┘│

│ ┌──────────────────────┐ │ │ │

│ │CEDA-installed or │ │ │ │

│ │autoinstalled terminal│ │ │ │

│ │definition for T1 │ │ │ ┌────────┐ │

│ └──────────────────────┘ │ │ │CICS │ ┌───────┐ │

│ Y │ │ │Interval│ │Exit │ │

│ Y ┌────────────┐ │ │ │Control │ │program│ │

│ Y │TRANSACTION │ Function-shipped │Program ├─>│returns│ │

│ Y │ M1 │ ───────────────────> │drives │ │netname│ │

│ Y │ │ EXEC CICS START │XICTENF │@─┤"CICA" │ │

│ Y │ │ │ TRANSID(X1) │ │exit │ └───────┘ │

│ Y └────────────┘ │ TERMID(T1) │ └────┬───┘ │

│ Y │ │ X │

│ Y ┌────────────┐ │ │ ┌──────────┐ ┌───────┐│

│ Y │CICS │ ATI request │CICS │ │Exit ││

│ Y │initiates │ @─────────────────── │Terminal ├─>│program││

│ Y │transaction │ shipped to CICA │Allocation│@─┤returns││

│ Y │routing │ │ │ │Program │ │netname││

│ Y └─────┬──────┘ │ │ │drives │ │"CICA" ││

│ Y X │ │ │XALTENF │ └───────┘│

│ Y │ │ │exit │ │

│ Y ┌────────────┐ │ Transaction │ └──────────┘ │

│ Y │CICS relay │ routing ┌─────────────┐ │

│ YYYYYY>│transaction │ @──────────────────> │TRANSACTION │YYYYYY │

│ │ │ link established │ X1 │ Y │

│ │ │ │ between T1 and │ │ │ Y │

│ └────────────┘ │ X1 and terminal │ └─────────────┘ X │

│ │ definition for │ ┌───────────────┐│

│ │ T1 shipped over │ │copy definition││

│ │ │ │for terminal T1││

│ │ │ └───────────────┘│

└──────────────────────────┘ └────────────────────────┘

Figure 22. Resolving a ‘terminal not known’ condition on a START request

The example in Figure 22 shows only one of many possible configurations. From
this elementary example, you can see how to approach a solution for the more
complex situations that can arise in multiregion networks.

Resource definition You do not have to be using autoinstalled terminals to make
use of the exits XICTENF and XALTENF. The technique also works with
CEDA-installed terminals, if they are defined with SHIPPABLE(YES) specified.: It
is important that, although there is no need to have all terminal definitions in place
before you operate your network, all links between systems must be fully defined,
and remote transactions must be known to the systems that want to use them.

| Note: The ‘terminal not known’ condition can arise in CICS terminal-allocation
| modules during restart, before any global user exit programs have been enabled. If
| you want to intervene here too, you must enable your XALTENF exit program in a
| first-phase PLTPI program (for programming information about PLTPI programs,
| see the CICS/ESA Customization Guide). This applies to both warm start and
| emergency start.

| Important

| The XICTENF and XALTENF exits can be used only if there is a direct link
| between the AOR and the TOR. In other words, the sysid or netname that you
| pass back to CICS from the exit program must not be for an indirectly
| connected system.

 Chapter 9. CICS transaction routing 75

The exit program for the XICTENF and XALTENF exits: How your exit program
identifies the TOR from the parameters supplied by CICS can only be decided by
reference to your system design. In the simplest case, you would hand back to
CICS the netname of the system that originated the START request. In a more
complex situation, you may decide to give each terminal a name that reflects the
system on which it resides.

For programming information about the exit program, see the CICS/ESA
Customization Guide. A sample program is also available in the library
CICS410.SDFHSAMP.

+ Shipping terminals for ATI from multiple TORs
+ Consider the following network setup:

+ 1. You have an application-owning region that is connected to two or more
+ terminal-owning regions (TORs) that use the same, or a similar, set of terminal
+ identifiers.

+ 2. One or more of the TORs issues EXEC CICS START requests for transactions
+ in the AOR.

+ 3. The START requests are associated with terminals.

+ 4. You are using shippable terminals, rather than statically defining remote
+ terminals in the AOR.

+ Now consider the following scenario:

+ Terminal-owning region TORB issues an EXEC CICS START request for
+ transaction TRANB, which is owned by region AOR1. It is to be run against
+ terminal T1. Meanwhile, terminal T1 on region TORA has been transaction routing
+ to AOR1.; a definition of T1 has been shipped to AOR1 from TORA. When the
+ START request arrives at AOR1, it is shipped to TORA, rather than TORB, for
+ transaction routing from terminal T1.

+ Figure 23 on page 77 illustrates what happens.

76 CICS for MVS/ESA Intercommunication Guide

+ Figure 23. Function-shipped START request started against an incorrect terminal. Because
+ a shipped definition of terminal T1 (owned by TORA) is installed on AOR1, the START
+ request received from TORB is shipped to TORA, for routing, rather than to TORB.

TORA

TORB

AOR1

TRANA

TRANB

T1

T1

START shipped to wrong
region for routing from T1

Transaction routing

Function shippedEXEC CICS START
TRANSID (TRANB)
TERMID (T1)

Shipped
definition
for T1
on TORA

T2

+ To prevent this situation, code 'YES' on the FSSTAFF system initialization
+ parameter in the AOR. This ensures that, when a START request is received from
+ a terminal-owning region, and a shipped definition for the terminal named on the
+ request is already installed in the AOR, the request is always shipped back to a
+ TOR, for routing, across the link it was received on, irrespective of the TOR
+ referenced in the remote terminal definition.

APAR PQ07579

Documentation for APAR PQ07579 added 12th November 1997.

(The only exception to this is if the START request supplies a TOR_NETNAME and
a remote terminal with the correct TOR_NETNAME is located; in which case, the
request is shipped to the appropriate TOR.)

+ If the TOR to which the START request is returned is not the one referenced in the
+ installed remote terminal definition, a definition of the terminal is shipped to the
+ AOR, and the autoinstall user program is called. Your autoinstall user program can
+ then allocate an alias termid in the AOR, to avoid a conflict with the previously
+ installed remote definition. Terminal aliases are described on page 184. For
+ information about writing an autoinstall program to control the installation of shipped
+ definitions, see the CICS/ESA Customization Guide.

+ For full details of the FSSTAFF system initialization parameter, see the CICS/ESA
+ System Definition Guide.

 Chapter 9. CICS transaction routing 77

| Allocation of remote APPC connections
A transaction running in the application-owning region can issue an ALLOCATE
command, to obtain a session to an APPC terminal or connection that is owned by
another system.

A relay program is started in the terminal-owning region to convey requests
between the transaction and the remote APPC system or terminal.

Transaction routing with APPC devices
An APPC device presents a data interface to CICS that is an implementation of the
APPC architecture. The APPC session linking it to a transaction represents the
principal facility of the transaction rather than the device itself. The transaction
converses across the link with a transaction program within the device, which may
be a hard-coded terminal device, a programmable system, or even another CICS
system.

There is no essential difference between transaction routing with APPC devices
and transaction routing with any other terminals. However, remember these points:

� APPC devices have their own “intelligence”. They can interpret operator input
data or the data received from CICS in any way the designer chooses.

� There are no error messages from CICS. The APPC device receives
indications from CICS, which it may translate into text for a human operator.

� CICS does not directly support pseudoconversational operation for APPC
devices, but the device itself could possibly be programmed to produce the
same effect.

� Basic mapping support (BMS) has no meaning for APPC devices.

� APPC devices can be linked by more than one session to the host system.

+ �
+ APAR PN75878

+ Documentation for PN75878 added on 20 December 1995.

+ TCTUAs will be shipped across the connection for APPC single-session
+ terminals, but not when the principal facility is an APPC parallel session.

You use the APPC application program interface to communicate with APPC
devices. For relevant introductory information, see Chapter 10, “Distributed
transaction processing” on page 85.

Allocating an alternate facility
One of the design criteria in transaction routing is that, if a transaction running in a
single-CICS environment is transferred to an alternative, linked system, there
should be no loss of function if the transaction now has to be routed to the original
terminal.

Because an APPC device can have more than one session, it is possible, in the
| single-CICS case, for a transaction to acquire further sessions to the same device

(but to different tasks) by using the ALLOCATE command. Each session thus

78 CICS for MVS/ESA Intercommunication Guide

acquired becomes an alternate facility to the transaction. Sessions can also be
established to other terminals or systems.

Similarly, transaction routing allows any transaction to acquire an alternate facility to
an APPC device by using ALLOCATE, even though there are intermediate systems

| between the APPC device and the AOR. For this, the AOR needs a remote
version of the APPC link definition that is installed in the TOR. Perhaps you can
rely on this having been shipped to the AOR by a transaction routing operation. If
not, you will have to install it expressly. You cannot use the user exits XICTENF
and XALTENF as an aid to routing the alternate facility.

The system as a terminal
Because the resource definitions for APPC devices can take the CONNECTION
and SESSIONS form, it is easy to confuse them with the definitions for the
intersystem links. It is important to remember that definitions for the intersystem
links are either direct or indirect, while those for APPC devices are direct in the
TOR and remote in the AOR and any intermediate systems. Note also that remote
CONNECTION definitions do not need corresponding SESSIONS definitions.

Figure 24 shows a network of three CICS systems chained together, of which the
first is linked to an APPC terminal.

 APPC terminal Terminal-owning Intermediate Application-owning
 (system) region (TOR) system region (AOR)
┌────────────┐ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐

│A │ │B │ │C │ │D │

│ │ │ │ │ │ │ │

│┌───────────────────────────┐ │ │ ┌────────────────────────────┐ │

││ Direct link │ │ │ │ Direct link Direct link │ │

││ defined to A │ │ │ │ defined to D defined to C │ │

│└───────────────────────────┘ │ │ └────────────────────────────┘ │

│ │ │ │ │ │ │ │

│ │ │ ┌────────────────────────────┐ │ │┌────────────┐│

│ │ │ │ Direct link Direct link │ │ ││Indirect ││

│ │ │ │ defined to C defined to B │ │ ││link defined││

│ │ │ └────────────────────────────┘ │ ││to B via C ││

│ │ │ │ │ │ │└────────────┘│

│ │ │ │ │ │ │ │

│ │ │┌────────────┐│ │YYYYYYYYYYYYYY│ │YYYYYYYYYYYYYY│

│ │ ││Indirect ││ │YRemote link Y│ │YRemote link Y│

│ │ ││link defined││ │Ydefinition Y│ │Ydefinition Y│

│ │ ││to D via C ││ │Yfor A Y│ │Yfor A Y│

│ │ │└────────────┘│ │YYYYYYYYYYYYYY│ │YYYYYYYYYYYYYY│

│ │ │ │ │ │ │ │

│ │ │┌────────────┐│ │┌────────────┐│ │┌────────────┐│

│ │ ││Transaction ││ ││Transaction ││ ││Transaction ││

│ │ ││defined as ││ ││defined as ││ ││defined on ││

│ │ ││owned by C ││ ││owned by D ││ ││system D ││

│ │ │└────────────┘│ │└────────────┘│ │└────────────┘│

└────────────┘ └──────────────┘ └──────────────┘ └──────────────┘

Figure 24. Transaction routing to an APPC terminal across daisy-chained systems

Notes:

1. The remote link definitions for A (shown dotted) could either be defined by the
user or be shipped from system B during transaction routing.

| 2. The indirect links are not necessary to this example, but are included to
| complete all possible linkage combinations. See “Indirect links for transaction

routing” on page 149.

3. The links B-C and C-D may be either MRO or APPC.

 Chapter 9. CICS transaction routing 79

System A (or any one of the four systems) can take on the role of a terminal. This
is a technique that allows a pair of transactions to converse across intermediate
systems. Consider this sequence of events:

1. A transaction running in A allocates a session on the link to B and makes an
attach request for a particular transaction.

2. B sees that the transaction is on C, and initiates the relay program in
conjunction with the principal facility represented by the link definition to A.

3. The attach request arrives at C together with details of the terminal; that is, B’s
link to A. C builds a remote definition of the terminal and goes to attach the
transaction.

4. C also finds the transaction remote and defined as owned by D. C initiates the
relay program, which tries to attach the transaction in D.

5. D also builds a remote definition of B’s link to A, and attaches the local
transaction.

6. The transaction in A that originated the attach request can now communicate
with the target transaction through the transaction routing mechanism.

Note these points:

� APPC terminals are always shippable. There is no need to define them as
such.

� Attach requests on other sessions of the A-B link could be routed to other
systems.

� Neither partner to a conversation made possible by transaction routing knows
where the other resides, although the routed-to transaction can find out the

| TERMINAL/CONNECTION name by using the EXEC CICS ASSIGN
PRINSYSID command. This name can be used to allocate one or more
additional sessions back to A.

� The transaction in D could start with an EXEC CICS (GDS) EXTRACT
PROCESS command, but it is more usual for the transaction to start with an
EXEC CICS (GDS) RECEIVE command.

The relay program
When a terminal operator enters a transaction code for a transaction that is in a
remote system, a transaction is attached in the TOR that executes a CICS-supplied
program known as the relay program. This program provides the communication
mechanism between the terminal and the remote transaction.

Although CICS determines the program to be associated with the transaction, the
user’s definition for the remote transaction determines the attributes. These are
usually those of the “real” transaction in the remote system.

Because it executes the relay program, the transaction is called the relay
transaction.

When the relay transaction is attached, it acquires an interregion or intersystem
session and sends a request to the remote system to cause the “real” user
transaction to be started. In the application-owning region, the terminal is
represented by a control block known as the surrogate TCTTE. This TCTTE

80 CICS for MVS/ESA Intercommunication Guide

becomes the transaction’s principal facility, and is indistinguishable by the
transaction from a “real” terminal entry. However, if the transaction issues a
request to its principal facility, the request is intercepted by the CICS terminal
control program and shipped back to the relay transaction over the interregion or
intersystem session. The relay transaction then issues the request or output to the
terminal. In a similar way, terminal status and input are shipped through the relay
transaction to the user transaction.

Automatic transaction initiation (ATI) is handled in a similar way. If a transaction
that is initiated by ATI requires a terminal that is connected to another system, a
request to start the relay transaction is sent to the terminal-owning region. When
the terminal is free, the relay transaction is connected to it.

The relay transaction remains in existence for the life of the user transaction and
has exclusive use of the session to the remote system during this period. When
the user’s transaction terminates, an indication is sent to the relay transaction,
which then also terminates and frees the terminal.

Basic mapping support (BMS)
The mapping operations of BMS are performed in the system on which the user’s
transaction is running; that is, in the application-owning region. The mapped
information is routed between the terminal and this transaction via the relay
transaction, as for terminal control operations.

For BMS page building and routing requests, the pages are built and stored in the
application-owning region. When the logical message is complete, the pages are
shipped to the terminal-owning region (or regions, if they were generated by a
routing request), and deleted from the application-owning region. Page retrieval
requests are processed by a BMS program running in the system to which the
terminal is connected.

BMS message routing to remote terminals and operators
You can use the BMS ROUTE command to route messages to remote terminals.
For programming information about the BMS ROUTE command, see the CICS/ESA
Application Programming Reference manual. You cannot, however, route a
message to a selected remote operator or operator class unless you also specify
the terminal at which the message is to be delivered.

Table 2 shows how the possible combinations of route list entries and OPCLASS
options govern the delivery of routed messages to remote terminals. In all cases,
the remote terminal must be defined in the system that issues the ROUTE
command (or a shipped terminal definition must already be available; see “Shipping
terminal and connection definitions” on page 175). Note that the facility described
in “Shipping terminals for automatic transaction initiation” on page 72 does not
apply to terminals addressed by the ROUTE command.

Table 2 (Page 1 of 2). BMS message routing to remote terminals and operators

LIST entry OPCLASS Result

None specified Not specified The message is routed to all the
remote terminals defined in the
originating system.

 Chapter 9. CICS transaction routing 81

Table 2 (Page 2 of 2). BMS message routing to remote terminals and operators

LIST entry OPCLASS Result

Entries specifying a terminal but
not an operator

Not specified The message is routed to the
specified remote terminal.

Entries specifying a terminal but
not an operator

Specified The message is delivered to the
specified remote terminal when
an operator with the specified
OPCLASS is signed on.

None specified Specified The message is not delivered to
any remote operator.

Entries specifying an operator
but not a terminal

(Ignored) The message is not delivered to
the remote operator.

Entries specifying both a
terminal and an operator

(Ignored) The message is delivered to the
specified remote terminal when
the specified operator is signed
on.

The routing transaction (CRTE)
The routing transaction (CRTE) is a CICS-supplied transaction that enables a
terminal operator to invoke transactions that are owned by a connected CICS
system. It differs from normal transaction routing in that the remote transactions do
not have to be defined in the local system. However, the terminal through which
CRTE is invoked must be defined on the remote system (or defined as “shippable”
in the local system), and the terminal operator needs RACF authority if the remote
system is protected. CRTE can be used from any 3270 display device.

To use CRTE, the terminal operator enters:

 CRTE SYSID=xxxx [TRPROF={DFHCICSS|profile_name}]

where xxxx is the name of the remote system, as specified in the CONNECTION
option of the DEFINE CONNECTION command, and profile_name is the name of
the profile to be used for the session with the remote system. (See “Defining
communication profiles” on page 191.) The transaction then indicates that a
routing session has been established, and the user enters input of the form:

 yyyyzzzzzz...

where yyyy is the name by which the required remote transaction is known on the
remote system, and zzzzzz... is the initial input to that transaction. Subsequently,
the remote transaction can be used as if it had been defined locally and invoked in
the ordinary way. All further input is directed to the remote system until the
operator terminates the routing session by entering CANCEL.

In secure systems, operators are normally required to sign on before they can
invoke transactions. The first transaction that is invoked in a routing session is
therefore usually the signon transaction CESN; that is, the operator signs on to the
remote system.

Although the routing transaction is implemented as a pseudoconversational
transaction, the terminal from which it is invoked is held by CICS until the routing
session is terminated. Any ATI requests that name the terminal are therefore
queued until the CANCEL command is issued.

82 CICS for MVS/ESA Intercommunication Guide

The CRTE facility is particularly useful for invoking the master terminal transaction,
CEMT, on a particular remote system. It avoids the necessity of installing a
definition of the remote CEMT in the local system. CRTE is also useful for testing
remote transactions before final installation.

System programming considerations
You have to perform the following operations to implement transaction routing in
your installation:

1. Install MRO or ISC support, or both, as described in Part 2, “Installation and
system definition” on page 95.

2. Define MRO or ISC links between the systems that are to be connected, as
described in Chapter 14, “Defining links to remote systems” on page 119.

3. Define the terminals and transactions that will participate in transaction routing,
as described in Chapter 15, “Defining remote resources” on page 165.

4. Ensure that the local communication profiles, transactions, and programs
required for transaction routing are defined and installed on the local system,
as described in Chapter 16, “Defining local resources” on page 191.

| 5. If you want to use dynamic transaction routing, customize the supplied dynamic
| transaction routing program, DFHDYP, or write your own version. For
| programming information about how to do this, see the CICS/ESA
| Customization Guide.

6. If you want to route to shippable terminals from regions where those terminals
might be ‘not known’, code and enable the global user exits XICTENF and
XALTENF. For programming information about coding these exits, see the
CICS/ESA Customization Guide.

| Intersystem queuing
| If the link to a remote region is established, but there are no free sessions
| available, transaction routing requests may be queued in the issuing region.
| Performance problems can occur if the queue becomes excessively long.

| For guidance information about controlling intersystem queues, see Chapter 26,
| “Intersystem session queue management” on page 261.

 Chapter 9. CICS transaction routing 83

84 CICS for MVS/ESA Intercommunication Guide

Chapter 10. Distributed transaction processing

| When CICS arranges function shipping, distributed program link (DPL),
asynchronous transaction processing, or transaction routing for you, it establishes a
logical data link with a remote system. A data exchange between the two systems
then follows. This data exchange is controlled by CICS-supplied programs, using
APPC, LUTYPE6.1, or MRO protocols. The CICS-supplied programs issue
commands to allocate conversations, and send and receive data between the
systems. Equivalent commands are available to application programs, to allow
applications to converse. The technique of distributing the functions of a
transaction over several transaction programs within a network is called distributed
transaction processing (DTP).

Of the five intercommunication facilities, DTP is the most flexible and the most
powerful, but it is also the most complex. This chapter introduces you to the basic
concepts.

For guidance on developing DTP applications, see the CICS/ESA Distributed
Transaction Programming Guide.

Advantages over function shipping and transaction routing
Function shipping gives you access to remote resources and transaction routing
lets a terminal communicate with remote transactions. At first sight, these two
facilities may appear sufficient for all your intercommunication needs. Certainly,
from a functional point of view, they are probably all you do need. However, there
are always design criteria that go beyond pure function. Machine loading, response
time, continuity of service, and economic use of resources are just some of the
factors that affect transaction design.

Consider the following example:

A supermarket chain has many branches, which are served by several
distribution centers, each stocking a different range of goods. Local stock
records at the branches are updated online from point-of-sale terminals.
Sales information has also to be sorted for the separate distribution
centers, and transmitted to them to enable reordering and distribution.

An analyst might be tempted to use function shipping to write each reorder record
to a remote file as it arises. This method has the virtue of simplicity, but must be
rejected for several reasons:

� Data is transmitted to the remote systems irregularly in small packets. This
means inefficient use of the links.

� The transactions associated with the point-of-sale devices are competing for
sessions with the remote systems. This could mean unacceptable delays at
point-of-sale.

� Failure of a link results in a catastrophic suspension of operations at a branch.

� Intensive intercommunication activity (for example, at peak periods) causes
reduction in performance at the terminals.

 Copyright IBM Corp. 1977, 1997 85

Now consider the solution where each sales transaction writes its reorder records
to a transient data queue. Here the data is quickly disposed of, leaving the
transaction to carry on its conversation with the terminal.

Restocking requests are seldom urgent, so it may be possible to delay the sorting
and sending of the data until an off-peak period. Alternatively, the transient data
queue could be set to trigger the sender transaction when a predefined data level is
reached. Either way, the sender transaction has the same job to do.

Again, it is tempting to use function shipping to transmit the reorder records. After
the sort process, each record could be written to a remote file in the relevant
remote system. However, this method is not ideal either. The sender transaction
would have to wait after writing each record to make sure that it got the right
response. Apart from using the link inefficiently, waiting between records would
make the whole process impossibly slow. This chapter tells you how to solve this
problem, and others, using distributed transaction processing.

The flexibility of DTP can, in some circumstances, be used to achieve improved
performance over function shipping. Consider an example in which you are
browsing a remote file to select a record that satisfies some criteria. If you use
function shipping, CICS ships the GETNEXT request across the link, and lets the
mirror perform the operation and ship the record back to the requester.

This is a lot of activity — two flows on the network; and the data flow can be quite
significant. If the browse is on a large file, the overhead can be unacceptably high.
One alternative is to write a DTP conversation that ships the selection criteria, and
returns only the keys and relevant fields from the selected records. This reduces
both the number of flows and the amount of data sent over the link, thus reducing
the overhead incurred in the function-shipping case.

Why distributed transaction processing?
In a multisystem environment, data transfers between systems are necessary
because end users need access to remote resources. In managing these
resources, network resources are used. But performance suffers if the network is
used excessively. There is therefore a performance gain if application design is
oriented toward doing the processing associated with a resource in the
resource-owning region.

DTP lets you process data at the point where it arises, instead of overworking
network resources by assembling it at a central processing point.

There are, of course, other reasons for using DTP. DTP does the following:

� Allows some measure of parallel processing to shorten response times

� Provides a common interface to a transaction that is to be attached by several
different transactions

� Enables communication with applications running on other systems, particularly
on non-CICS systems

� Provides a buffer between a security-sensitive file or database and an
application, so that no application need know the format of the file records

� Enables batching of less urgent data destined for a remote system.

86 CICS for MVS/ESA Intercommunication Guide

What is a conversation and what makes it necessary?
In DTP, transactions pass data to each other directly. While one sends, the other
receives. The exchange of data between two transactions is called a
conversation. Although several transactions can be involved in a single distributed
process, communication between them breaks down into a number of
self-contained conversations between pairs. Each such conversation uses a CICS
resource known as a session.

Conversation initiation and transaction hierarchy
A transaction starts a conversation by requesting the use of a session to a remote
system. Having obtained the session, it causes an attach request to be sent to the
other system to activate the transaction that is to be the conversation partner.

A transaction can initiate any number of other transactions, and hence,
conversations. In a complex process, a distinct hierarchy emerges, with the
terminal-initiated transaction at the very top. Figure 25 shows a possible
configuration. Transaction TRAA is attached over the terminal session.
Transaction TRAA attaches transaction TRBB, which, in turn, attaches transactions
TRCC and TRDD. Both these transactions attach the same transaction, SUBR, in
system CICSE. This gives rise to two different tasks of SUBR.

 ┌────────────────────┐

 ┌────────┐ │CICSA │

│┌──────┐│ │ ┌────────────────┐ │

││ │├────────┤Transaction TRAA│ │

 ┌┴┴──────┤│ │ └───────┬────────┘ │

 │Terminal├┘ └──────── │ ─────────┘

 └────────┘ │

 │

┌──────── │ ─────────┐

 │CICSB │ │

│ ┌───────┴────────┐ │

│ │Transaction TRBB│ │

│ └───┬────────┬───┘ │

└──── │ ────── │ ────┘

 │ │

 ┌────────┘ └────────┐

 │ │

┌───────── │ ────────┐ ┌──────── │ ─────────┐

 │CICSC │ │ │CICSD │ │

│ ┌────────┴───────┐ │ │ ┌───────┴────────┐ │

│ │Transaction TRCC│ │ │ │Transaction TRDD│ │

│ └────────┬───────┘ │ │ └───────┬────────┘ │

└───────── │ ────────┘ └──────── │ ─────────┘

 │ │

 │ │

┌───────── │ ──────────────────────── │ ─────────┐

 │CICSE │ │ │

 │ ┌────────┴────────┐ ┌───────┴────────┐ │

│ │Transaction SUBR │ │Transaction SUBR│ │

 │ └─────────────────┘ └────────────────┘ │

 └──┘

Figure 25. DTP in a multisystem configuration

 Chapter 10. Distributed transaction processing 87

The structure of a distributed process is determined dynamically by program; it
cannot be predefined. Notice that, for every transaction, there is only one inbound
attach request, but there can be any number of outbound attach requests. The
session that activates a transaction is called its principal facility. A session that is
allocated by a transaction to activate another transaction is called its alternate
facility. Therefore, a transaction can have only one principal facility, but any
number of alternate facilities.

When a transaction initiates a conversation, it is the front end on that conversation.
Its conversation partner is the back end on the same conversation. (Some books
refer to the front end as the initiator and the back end as the recipient.) It is
normally the front end that dominates, and determines the way the conversation
goes. You can arrange for the back end to take over if you want, but, in a complex
process, this can cause unnecessary complication. This is further explained in the
discussion on synchronization later in this chapter.

Dialog between two transactions
A conversation transfers data from one transaction to another. For this to function
properly, each transaction must know what the other intends. It would be
nonsensical for the front end to send data if all the back end wants to do is print
out the weekly sales report. It is therefore necessary to design, code, and test front
end and back end as one software unit. The same applies when there are several
conversations and several transaction programs. Each new conversation adds to
the complexity of the overall design.

In the example on page 85, the DTP solution is to transmit the contents of the
transient data queue from the front end to the back end. The front end issues a
SEND command for each record that it takes off the queue. The back end issues
RECEIVE commands until it receives an indication that the transmission has ended.

In practice, most conversations simply transfer a file of data from one transaction to
another. The next stage of complexity is to cause the back end to return data to
the front end, perhaps the result of some processing. Here the front end is
programmed to request conversation turnaround at the appropriate point.

Control flows and brackets
During a conversation, data passes over the link in both directions. A single
transmission is called a flow. Issuing a SEND command does not always cause a
flow. This is because the transmission of user data can be deferred; that is, held in
a buffer until some event takes place. The APPC architecture defines data formats
and packaging. CICS handles these things for you, and they concern you only if
you need to trace flows for debugging.

The APPC architecture defines a data header for each transmission, which holds
information about the purpose and structure of the data following. The header also
contains bit indicators to convey control information to the other side. For example,
if one side wants to tell the other that it can start sending, CICS sets a bit in the
header that signals a change of direction in the conversation.

To keep flows to a minimum, non-urgent control indicators are accumulated until it
is necessary to send user data, at which time they are added to the header.

88 CICS for MVS/ESA Intercommunication Guide

For the formats of the headers and control indicators used by APPC, see the SNA
Formats manual.

In complex procedures, such as establishing syncpoints, it is often necessary to
send control indicators when there is no user data available to send. This is called
a control flow.

BEGIN_BRACKET marks the start of a conversation; that is, when a transaction is
attached. CONDITIONAL_END_BRACKET ends a conversation. End bracket is
conditional because the conversation can be reopened under some circumstances.
A conversation is in bracket when it is still active.

MRO is not unlike APPC in its internal organization. It is based on LUTYPE6.1,
which is also an SNA-defined architecture.

Conversation state and error detection
As a conversation progresses, it moves from one state to another within both
conversing transactions. The conversation state determines the commands that
may be issued. For example, it is no use trying to send or receive data if there is
no session linking the front end to the back end. Similarly, if the back end signals
end of conversation, the front end cannot receive any more data on the
conversation.

Either end of the conversation can cause a change of state, usually by issuing a
particular command from a particular state. CICS tracks these changes, and stops
transactions from issuing the wrong command in the wrong state.

 Synchronization
There are many things that can go wrong during the running of a transaction. The
conversation protocol helps you to recover from errors and ensures that the two
sides remain in step with each other. This use of the protocol is called
synchronization.

Synchronization allows you to protect resources such as transient data queues and
files. If anything goes wrong during the running of a transaction, the associated
resources should not be left in an inconsistent state.

Examples of use
Suppose, for example, that a transaction is transmitting a queue of data to another
system to be written to a DASD file. Suppose also that for some reason, not
necessarily connected with the intercommunication activity, the receiving
transaction is abended. Even if a further abend can be prevented, there is the
problem of how to continue the process without loss of data. It is uncertain how
many queue items have been received and how many have been correctly written
to the DASD file. The only safe way of continuing is to go back to a point where
you know that the contents of the queue are consistent with the contents of the file.
However, you then have two problems. On one side, you need to restore the
queue entries that you have sent; on the other side, you need to delete the
corresponding entries in the DASD file.

The cancelation by an application program of all changes to recoverable resources
since the last known consistent state is called rollback. The physical process of

 Chapter 10. Distributed transaction processing 89

recovering resources is called backout. The condition that exists as long as there
is no loss of consistency between distributed resources is called data integrity.

There are cases in which you may want to recover resources, even though there
are no error conditions. Consider an order entry system. While entering an order
for a customer, an operator is told by the system that the customer’s credit limit
would be exceeded if the order went through. Because there is no use continuing
until the customer is consulted, the operator presses a PF key to abandon the
order. The transaction is programmed to respond by restoring the data resources
to the state they were in at the start of the order.

 Taking syncpoints
If you were to log your own data movements, you could arrange backout of your
files and queues. However, it would involve some very complex programming,
which you would have to repeat for every similar application. To save you this
overhead, CICS arranges resource recovery for you. LU management works with
resource management in ensuring that resources can be restored.

The points in the process where resources are declared to be in a known
consistent state are called synchronization points, often shortened to
syncpoints. Syncpoints are implied at the beginning and end of a transaction. A
transaction can define other syncpoints by program command. All processing
between two consecutive syncpoints belongs to a logical unit of work (LUW).

Taking a syncpoint commits all recoverable resources. This means that all
systems involved in a distributed process erase all the information they have been
keeping about data movements on recoverable resources. Now backout is no
longer possible, and all changes to the resources since the last syncpoint are made
irreversible.

Although CICS commits and backs out changes to resources for you, the service
must be paid for in performance. You might have transactions that do not need
such complexity, and it would be wasteful to employ it. If the recovery of resources
is not a problem, you can use simpler methods of synchronization.

The three sync levels
The APPC architecture defines three levels of synchronization (called sync levels):

Level 0 – NONE

Level 1 – CONFIRM

Level 2 – SYNCPOINT

At sync level 0, there is no system support for synchronization. It is nevertheless
possible to achieve some degree of synchronization through the interchange of
data, using the SEND and RECEIVE commands.

If you select sync level 1, you can use special commands for communication
between the two conversation partners. One transaction can confirm the continued
presence and readiness of the other. The user is responsible for preserving the
data integrity of recoverable resources.

The level of synchronization described earlier in this section corresponds to sync
level 2. Here, system support is available for maintaining the data integrity of
recoverable resources.

90 CICS for MVS/ESA Intercommunication Guide

CICS implies a syncpoint when it starts a transaction; that is, it initiates logging of
changes to recoverable resources, but no control flows take place. CICS takes a
full syncpoint when a transaction is normally terminated. Transaction abend causes
rollback. The transactions themselves can initiate syncpoint or rollback requests.
However, a syncpoint or rollback request is propagated to another transaction only
when the originating transaction is in conversation with the other transaction, and if
sync level 2 has been selected for the conversation between them.

Remember that syncpoint and rollback are not peculiar to any one conversation
within a transaction. They are propagated on every sync level 2 conversation that
is currently in bracket.

MRO or APPC for DTP?
You can program DTP applications for both MRO and APPC links. The two
conversation protocols are not identical. Although you seldom have the choice for
a particular application, an awareness of the differences and similarities will help
you to make decisions about compatibility and migration.

| Choosing between MRO and APPC can be quite simple. The options depend on
| the configuration of your CICS complex and on the nature of the conversation
| partner. You cannot use MRO to communicate with a partner in a non-CICS
| system. Further, it supports communication between transactions running in CICS
| systems in different MVS images only if the MVS images are in the same MVS
| sysplex, and are joined by cross-system coupling facility (XCF) links; the MVS
| images must be at MVS/ESA release level 5.1, or later. (For full details of the
| hardware and software requirements for XCF/MRO, see “Requirements for
| XCF/MRO” on page 98.)

| For communication with a partner in another CICS system, where the CICS
| systems are either in the same MVS image, or in the same MVS/ESA 5.1 (or later)
| sysplex, you can use either the MRO or the APPC protocol. There are good
| performance reasons for using MRO. But if there is any possibility that the
| distributed transactions will need to communicate with partners in other operating
| systems, it is better to use APPC so that the transaction remains unchanged.

Table 3 on page 92 summarizes the main differences between the two protocols.

 Chapter 10. Distributed transaction processing 91

Table 3. MRO compared with APPC

MRO APPC

Function is realized within CICS Depends on VTAM or similar

Nonstandard architecture SNA architecture

CICS-to-CICS links only Links to non-CICS systems possible

| Communicates within single MVS
| image, or (using XCF/MRO) between
| MVS images in same sysplex

Communicates across multiple MVS
images and other operating systems

PIP data not supported PIP data supported

Data transmission not deferred Deferred data transmission

Partner transaction identified in data Partner transaction defined by
program command

RECEIVE can only be issued in
receive state

RECEIVE causes conversation
turnaround when issued in send state
on mapped conversations

No expedited flow possible ISSUE SIGNAL command flows
expedited

WAIT command has no function WAIT command causes transmission
of deferred data

92 CICS for MVS/ESA Intercommunication Guide

APPC mapped or basic?
APPC conversations can either be mapped or basic. If you are interested in
CICS-to-CICS applications, you need only use mapped conversations. Basic
conversations (also referred to as “unmapped”) are useful only when
communicating with systems that do not support mapped conversations. These
include some APPC devices.

The two protocols are similar. The main difference lies in the way user data is
formatted for transmission. In mapped conversations, you send the data you want
your partner to receive; in basic conversations, you have to add a few control bytes
to convert the data into an SNA-defined format called a generalized data stream
(GDS). You also have to include the keyword GDS in EXEC CICS commands for
basic conversations.

Table 4 summarizes the differences between mapped and basic conversations.
Note that it only applies to the CICS API. CPI Communications, introduced in the
next section, has its own rules.

Table 4. APPC conversations – mapped or basic?

Mapped Basic

The conversation partners exchange
data that is relevant only to the
application.

Both partners must package the user
data before sending and unpackage it
on receipt.

All conversations for a transaction
share the same EXEC Interface Block
for status reporting.

Each conversation has its own area
for state information.

The transaction can handle
exceptional conditions or let them
default.

The transaction must test for
exceptional conditions in a data area
set aside for the purpose.

A RECEIVE command issued in send
state causes conversation turnaround.

A RECEIVE command is illegal in
send state.

Transactions can be written in any of
the supported languages.

| Transactions can be written in
| assembler language or C only.

 Chapter 10. Distributed transaction processing 93

EXEC CICS or CPI Communications?
CICS/ESA 4.1 gives you a choice of two application programming interfaces (APIs)
for coding your DTP conversations on APPC sessions. The first, the CICS API, is
the programming interface of the CICS implementation of the APPC architecture. It
consists of EXEC CICS commands and can be used with all CICS-supported
languages. The second, Common Programming Interface Communications
(CPI Communications) is the communication interface defined for the SAA
environment. It consists of a set of defined verbs, in the form of program calls,
which are adapted for the language being used.

Table 5 compares the two methods to help you to decide which API to use for a
particular application.

| You can mix CPI Communications calls and EXEC CICS commands in the same
| transaction, but not on the same side of the same conversation. You can

implement a distributed transaction where one partner to a conversation uses CPI
Communications calls and the other uses the CICS API. In such a case, it would
be up to you to ensure that the APIs on both sides map consistently to the APPC
architecture.

Table 5. CICS API compared with CPI Communications

CICS API CPI Communications

Portability between different members
of the CICS family.

Portability between systems that
support SAA facilities.

| Basic conversations can be
| programmed only in assembler
| language or C.

Basic conversations can be
programmed in any of the available
languages.

| Sync levels 0, 1, and 2 supported.| Sync levels 0, 1, and 2 supported,
| except for transaction routing, for
| which only sync levels 0 and 1 are
| supported.

PIP data supported. PIP data not supported.

Only a few conversation
characteristics are programmable.
The rest are defined by resource
definition.

Most conversation characteristics can
be changed dynamically by the
transaction program.

Can be used on the principal facility
to a transaction started by ATI.

Cannot be used on the principal
facility to a transaction started by ATI.

Limited compatibility with MRO. No compatibility with MRO.

94 CICS for MVS/ESA Intercommunication Guide

Part 2. Installation and system definition

This part of the Intercommunication Guide discusses the installation requirements
for a CICS system that is to participate in intersystem communication or multiregion
operation. For information about the general requirements for CICS installation,
see the CICS/ESA Installation Guide. For information about coding the CICS
system initialization parameters, see the CICS/ESA System Definition Guide.

Chapter 11, “Installation considerations for multiregion operation” on page 97
describes how to set up CICS for multiregion operation.

Chapter 12, “Installation considerations for intersystem communication” on
page 101 describes how to set up CICS for intersystem communication. It also
contains notes on the installation requirements of ACF/VTAM and IMS when these
products are to be used with CICS in an intersystem communication environment.

| Chapter 13, “Installation considerations for VTAM generic resources” on page 109
| describes how to register your terminal-owning regions as members of a VTAM
| generic resource group, and things you need to consider when doing so.

 Copyright IBM Corp. 1977, 1997 95

96 CICS for MVS/ESA Intercommunication Guide

Chapter 11. Installation considerations for multiregion
operation

This chapter discusses those aspects of installation that apply particularly to CICS
multiregion operation.

| The information on MVS/ESA given in this chapter is for guidance only.
| Always consult the current MVS/ESA publications for the latest information.
| See “Books from related libraries” on page xv.

| Installation steps
| To install support for multiregion operation, you must:

1. Define CICS as an MVS subsystem
2. Ensure that the required CICS modules are included in your CICS system

| 3. Place some modules in the MVS link pack area (LPA).

| Installing support for cross-system MRO (XCF/MRO) requires some additional
| administration. This is described in “Requirements for XCF/MRO” on page 98.

Adding CICS as an MVS subsystem
| Multiregion operation with CICS/ESA requires MVS/VS Subsystem Interface (SSI)
| support. You must therefore install CICS as an MVS subsystem. For information

about how to do this, see the CICS/ESA Installation Guide.

Modules required for MRO
You must include the intersystem communication management programs in your
system by specifying ISC=YES on the system initialization parameters.

| Note: If your system is required to access DL/I databases, you may have to
| regenerate some of the pregenerated CICS management programs. For
| information about this, see the CICS/ESA Installation Guide.

| MRO modules in the MVS link pack area
| For multiregion operation, there are some modules that, for integrity reasons, must
| be resident in the shared area or loaded into protected storage.

| You must place the CICS/ESA 4.1 versions of the following modules in the link
| pack area (LPA) of MVS.

� DFHCSVC – the CICS type 3 SVC module

Multiregion operation requires the CICS interregion communication modules to
run in supervisor state to transfer data between different regions. CICS
achieves this by using a normal supervisor call to this startup SVC routine,
which is in the pregenerated system load library (CICS410.SDFHLOAD).

The SVC must be defined to MVS. For information about how to do this, see
the CICS/ESA Installation Guide.

� DFHIRP – the CICS interregion communication program.

 Copyright IBM Corp. 1977, 1997 97

MRO data sets and starter systems
To help you get started with MRO, a CICS job and a CICS startup procedure are
supplied on the CICS distribution volume. For each MRO region, you must also

| create the CICS system data sets needed. See the CICS/ESA System Definition
| Guide for information about this.

| Requirements for XCF/MRO
| Communication across MVS images using XCF/MRO requires the MVS images to
| be joined in a sysplex.

| A sysplex consists of multiple MVS images, coupled together by hardware elements
| and software services. In a sysplex, MVS images provide a platform of basic
| services that multisystem applications like CICS can exploit. As an installation’s
| workload grows, additional MVS images can be added to the sysplex to enable the
| installation to meet the needs of the greater workload.

| Usually, a specific function (one or more modules/routines) of the MVS application
| subsystem (such as CICS) is joined as a member (a member resides on one MVS
| image in the sysplex), and a set of related members is the group (a group can
| span one or more of the MVS images in the sysplex). A group is a complete
| logical entity in the sysplex. To use XCF to communicate in a sysplex, each
| participating CICS region joins an XCF group as a member, using services
| provided by the CICS/ESA 4.1 version of DFHIRP.

| Sysplex hardware and software requirements
| The multiple MVS systems that comprise a sysplex can run in either:

| � One CPC15 (the CPC being an ESA/390-capable processing system) partitioned
| into one or more logical partitions (LPARs) using the PR/SM facility, or

| � One or more CPCs (possibly of different processor models), with each CPC
| running a single MVS image, or

| � A mixture of LPARs and separate CPCs.

| Note: In a multi-CPC sysplex, the processing systems are usually in the same
| machine room, but they can also reside in different locations if the distances
| involved are within the limits specified for communication with the external time
| reference facility.

| 15 CPC. One physical processing system, such as the whole of an ES/9000 9021 Model 820, or one physical partition of such a
| machine. A physical processing system consists of main storage, and one or more central processing units (CPUs), time-of-day
| (TOD) clocks, and channels, which are in a single configuration. A CPC also includes channel subsystems, service processors,
| and expanded storage, where installed.

98 CICS for MVS/ESA Intercommunication Guide

| To create a sysplex that supports XCF/MRO you require:

| � MVS/ESA 5.1—XCF is an integral part of the MVS base control program
| (BCP).

| � XCF couple data sets—XCF requires DASD data sets shared by all systems
| in the sysplex.

| � Channel-to-channel links, ESCON channels or high-speed coupling facility
| links—for XCF signaling.

| � External time reference (ETR) facility—when the sysplex consists of multiple
| MVS systems running on two or more CPCs, XCF requires that the CPCs be
| connected to the same ETR facility. XCF uses the synchronized time stamp
| that the ETR provides for monitoring and sequencing events within the sysplex.

| For definitive information about installing and managing MVS systems in a sysplex,
| see the MVS/ESA Setting Up a Sysplex manual, GC28-1449.

| Generating XCF/MRO support
| To generate XCF/MRO support across a sysplex, you must:

| 1. Install the CICS/ESA 4.1 version of DFHIRP in the extended link pack area
| (ELPA) of all the MVS images containing CICS systems to be linked. All the
| MVS images must be at the MVS/ESA 5.1, or later, level. See Table 6.

| 2. Ensure that each CICS APPLID is unique within the sysplex. You must do this
| even if the level of MVS/ESA in some MVS images is earlier than 5.1, which is
| the minimum level for XCF/MRO support. This is because CICS regions
| always issue the IXCJOIN macro to join the CICS XCF group when IRC is
| opened, regardless of the level of XCF in the MVS image.

| The requirement for unique APPLIDs applies to CICS/MVS version 2 and
| CICS/ESA version 3 regions, as well as to CICS/ESA Version 4 regions,
| because these regions too will join the CICS XCF group.

| 3. Ensure that the value of the MAXMEMBER MVS parameter, used to define the
| XCF couple datasets, is high enough to allow all your CICS regions to join the
| CICS XCF group. The maximum size of any XCF group within a sysplex is
| limited by this value. The theoretical maximum size of any XCF group is 511
| members, which is therefore also the maximum number of CICS regions that
| can participate in XCF/MRO in a single sysplex.

| External CICS interface (EXCI) users that use an XCF/MRO link will also join
| the CICS XCF group. You should therefore set the value of MAXMEMBER
| high enough to allow all CICS regions (with IRC support) and EXCI XCF/MRO
| users to join the CICS XCF group concurrently.

| Table 6. Release levels of DFHIRP, MVS, and CICS. The minimum required level of
| each component to use XCF/MRO.

| Required
| DFHIRP
| Required MVS| Versions of CICS
| supported

| XCF/MRO
| support
| CICS/ESA 4.1| MVS/ESA SP 5.1
| RACF 1.9
| CICS/MVS Version 2
| CICS/ESA Version 3
| CICS/ESA Version 4

 Chapter 11. Installation considerations for MRO 99

| To list the CICS regions and EXCI users in the CICS XCF group, use the MVS
| DISPLAY command. The name of the CICS group is always DFHIR000, so
| you could use the command:

| DISPLAY XCF,GROUP,DFHIRSSS,ALL

| Warning:

| Do not rely on the default value of MAXMEMBER, which may be too low to
| allow all your CICS regions and EXCI users to join the CICS XCF group.

| Likewise, do not set a value much larger than you need, because this will result
| in large couple data sets for XCF. The larger the data set, the longer it will
| take to locate entries.

| We suggest that you make the value of MAXMEMBER 10–15 greater than the
| combined number of CICS regions and EXCI users.

| Each CICS region joins the CICS XCF group when it logs on to DFHIRP. Its
| member name is its APPLID (NETNAME) used for MRO partners. The group
| name for CICS is always DFHIR000.

| At connect time, CICS invokes the IXCQUERY macro to determine whether the
| CICS region being connected to resides in the same MVS image. If it does, CICS
| uses IRC or XM as the MRO access method, as defined in the connection
| definition. If the partner resides in a different MVS image, and XCF is at the
| MVS/ESA 5.1 level or later, CICS uses XCF as the access method, regardless of
| the access method defined in the connection definition.

| Further steps
| Once you have installed MRO support, to enable CICS to use it you must:

| 1. Define MRO links to the remote systems. See “Defining links for multiregion
| operation” on page 121.

| 2. Define resources on both the local and remote systems. See Chapter 16 and
| Chapter 15, respectively.

| 3. Specify that CICS is to log on to the IRC access method. See the CICS/ESA
| System Definition Guide.

100 CICS for MVS/ESA Intercommunication Guide

Chapter 12. Installation considerations for intersystem
communication

This chapter discusses those aspects of installation that apply particularly when
CICS is used in an intersystem communication environment. It also contains notes
on the installation requirements of ACF/VTAM and IMS when these products are to
be used with CICS in an intersystem communication environment.

The information on ACF/VTAM and IMS given in this chapter is for guidance
only. Always consult the current ACF/VTAM or IMS publications for the latest
information. See “Books from related libraries” on page xv.

Modules required for ISC
You must include the intersystem communication programs in your system (by
specifying VTAM=YES and ISC=YES system initialization parameters). For
information about specifying the system initialization parameters, see the CICS/ESA
System Definition Guide.

Note: If your system is required to access DL/I databases, you may have to
regenerate some of the pregenerated CICS management programs. For
information about this, see the CICS/ESA Installation Guide.

ACF/VTAM definition for CICS
When you define your CICS system to ACF/VTAM, include the following operands
in the VTAM APPL statement:

MODETAB=logon-mode-table-name
This operand names the VTAM logon mode table that contains your
customized logon mode entries. (See “ACF/VTAM LOGMODE table entries for
CICS” on page 102.) You may omit this operand if you choose to add your
MODEENT entries to the IBM default logon mode table (without renaming it).

AUTH=(ACQ,SPO,VPACE[,PASS])
ACQ is required to allow CICS to acquire LU type 6 sessions. SPO is required
to allow CICS to issue the MVS MODIFY vtamname USERVAR command.
(For further information about the significance of USERVARs, see the
CICS/ESA 3.3 XRF Guide.) VPACE is required to allow pacing of the
intersystem flows.

PASS is required if you intend to use the EXEC CICS ISSUE PASS command,
which passes existing terminal sessions to other VTAM applications.

VPACING=number
This operand specifies the maximum number of normal-flow requests that
another logical unit can send on an intersystem session before waiting to
receive a pacing response.

Take care when selecting a suitable pacing count. Too low a value can lead to
poor throughput because of the number of line turnarounds required. Too high
a value can lead to excessive storage requirements.

 Copyright IBM Corp. 1977, 1997 101

EAS=number
This operand specifies the number of network-addressable units that CICS can
establish sessions with. The number must include the total number of parallel
sessions for this CICS system.

PARSESS=YES
This option specifies LU type 6 parallel session support.

SONSCIP=YES
This operand specifies session outage notification (SON) support. SON
enables CICS, in particular cases, to recover a failed session without requiring
operator intervention.

APPC=NO
For ACF/VTAM Version 3.2 and above, this is necessary to let CICS use VTAM
macros. CICS does not issue the APPCCMD macro.

For further information about the VTAM APPL statement, refer to the Advanced
Communication Function for VTAM (ACF/VTAM) Installation and Resource
Definition manual.

For information on ACF/VTAM definition for CICS OS/2, see the CICS OS/2
Intercommunication manual.

ACF/VTAM LOGMODE table entries for CICS
| For APPC sessions, you can use the MODENAME option of the CICS DEFINE
| SESSIONS command (see “Defining APPC links” on page 128) to identify a VTAM
| logmode entry that in turn identifies the required entry in the VTAM class-of-service
| table. Every modename that you supply, when you define a group of APPC
| sessions to CICS, must be matched by a VTAM LOGMODE name. All that is
| required in the VTAM LOGMODE table are entries of the following form:

 MODEENT LOGMODE=modename

 MODEEND

An entry is also required for the LU services manager modeset (SNASVCMG):

 MODEENT LOGMODE=SNASVCMG

 MODEEND

If you plan to use autoinstall for single-session APPC terminals, additional
information is required in the MODEENT entry. For programming information about
coding the VTAM LOGON mode table, see the CICS/ESA Customization Guide.

For CICS-to-IMS links that are cross-domain, you must associate the IMS
LOGMODE entry with the CICS applid (the generic applid for XRF systems), using
the DLOGMOD or MODETAB parameters.

Considerations for IMS
If your CICS installation is to use CICS-to-IMS intersystem communication, you
must ensure that the CICS and the IMS installations are fully compatible.

The following sections are intended to help you communicate effectively with the
person responsible for installing the IMS system. They may also be helpful if you
have that responsibility. You should also refer to Chapter 14, “Defining links to

102 CICS for MVS/ESA Intercommunication Guide

remote systems” on page 119, especially the section on defining compatible CICS
| and IMS nodes. For full details of IMS installation, refer to the IMS Installation
| Guide.

ACF/VTAM definition for IMS
When the IMS system is defined to VTAM, the following operands should be
included on the VTAM APPL statement:

AUTH=(ACQ,VPACE)
ACQ is required to allow IMS to acquire LU type 6 sessions. VPACE is
required to allow pacing of the intersystem flows.

VPACING=number
This operand specifies the maximum number of normal-flow requests that
another logical unit can send on an intersystem session before waiting to
receive a pacing response. An initial value of 5 is suggested.

EAS=number
The number of network addressable units must include the total number of
parallel sessions for this IMS system.

PARSESS=YES
This operand specifies LU type 6 parallel session support.

For further information about the VTAM APPL statement, see Advanced
Communication Function for VTAM (ACF/VTAM) Installation and Resource
Definition.

ACF/VTAM LOGMODE table entries for IMS
IMS allows the user to specify some BIND parameters in a VTAM logmode table
entry. The CICS logmode table entry must match that of the IMS system. IMS
uses (in order of priority) the mode table entry specified in:

1. The MODETBL parameter of the TERMINAL macro
2. The mode table entry specified in CINIT
3. The DLOGMODE parameter in the VTAMLST APPL statement or the MODE

parameter in the IMS /OPNDST command
4. The ACF/VTAM defaults.

Figure 26 shows a typical IMS logmode table entry:

LU6NEGPS MODEENT LOGMODE=LU6NEGPS, NEGOTIABLE BIND

PSNDPAC=X'S1', PRIMARY SEND PACING COUNT

SRCVPAC=X'S1', SECONDARY RECEIVE PACING COUNT

SSNDPAC=X'S1', SECONDARY SEND PACING COUNT

 TYPE=S, NEGOTIABLE

 FMPROF=X'12', FM PROFILE 18

 TSPROF=X'S4', TS PROFILE 4

 PRIPROT=X'B1', PRIMARY PROTOCOLS

 SECPROT=X'B1', SECONDARY PROTOCOLS

 COMPROT=X'7SAS', COMMON PROTOCOLS

RUSIZES=X'8585', RU SIZES 256

 PSERVIC=X'S6SS38SSSSSS38SSSSSSSSSS' SYSMSG/Q MODEL

 MODEEND

Figure 26. A typical IMS logmode table entry

 Chapter 12. Installation considerations for ISC 103

IMS system definition for intersystem communication
This section summarizes the IMS ISC-related macros and parameters that are used
in IMS system definition. You should also refer to “Defining compatible CICS and
IMS nodes” on page 142. For full details of IMS installation, refer to the installation
guide for the IMS product.

The COMM macro
APPLID=name

| Specifies the applid of the IMS system. For an IMS system generated without
| XRF support, this is usually the name that you should specify on the
| NETNAME option of DEFINE CONNECTION when you define the IMS system
| to CICS.

| However, bear the following in mind:

| � For an IMS system with XRF, the CICS NETNAME option should specify
| the USERVAR (that is, the generic applid) that is defined in the DFSHSBxx
| member of IMS.PROCLIB, not the applid from the COMM macro.

| � If APPLID on the COMM macro is coded as NONE, and XRF is not used,
| the CICS NETNAME option should specify the label on the EXEC
| statement of the IMS startup job.

| � If the IMS system is started as a started task, NETNAME should specify
| the started task name.

| For an explanation of how IMS system names are specified, see page 143.

RECANY=(number,size)
Specifies the number and size of the IMS buffers that are used for VTAM
“receive any” commands. For ISC sessions, the buffer size has a 22-byte
overhead. It must therefore be at least 22 bytes larger than the CICS buffer
size specified in the SENDSIZE option of DEFINE SESSIONS.

This size applies to all other ACF/VTAM terminals attached to the IMS system,
and must be large enough for input from any terminal in the IMS network.

EDTNAME=name
Specifies an alias for ISCEDT in the IMS system. For CICS-to-IMS ISC, an
alias name must not be longer than four characters.

The TYPE macro
UNITYPE=LUTYPE6

Must be specified for ISC.

Parameters of the TERMINAL macro can also be specified in the TYPE macro if
they are common to all the terminals defined for this type.

The TERMINAL macro
The TERMINAL macro identifies the remote CICS system to IMS. It therefore
serves the equivalent purpose to DEFINE CONNECTION in CICS.

NAME=name
Identifies the CICS node to IMS. It must be the same as the applid of the
CICS system (the generic applid for XRF systems).

104 CICS for MVS/ESA Intercommunication Guide

OUTBUF=number
Specifies the size of the IMS output buffer. It must be equal to or greater than
256, and should include the size of any function management headers sent
with the data. It must not be greater than the value specified in the
RECEIVESIZE option of the DEFINE SESSIONS commands for the intersystem
sessions.

SEGSIZE=number
Specifies the size of the work area that IMS uses for deblocking incoming
messages. We recommend that you use the size of the longest chain that
CICS may send. However, if IMS record mode (VLVB) is used exclusively, you
could specify the largest record (RU) size.

MODETBL=name
Specifies the name of the VTAM mode table entry to be used. You must omit
this parameter if the CICS system resides in a different SNA domain.

OPTIONS=[NOLTWA|LTWA]
Specifies whether Log Tape Write Ahead (LTWA) is required. For LTWA, IMS
logs session restart information for all active parallel sessions before sending a
syncpoint request. LTWA is recommended for integrity reasons, but it can
adversely affect performance. NOLTWA is the default.

OPTIONS=[SYNCSESS|FORCSESS]
Specifies the message resynchronization requirement following an abnormal
session termination. SYNCSESS is the default. It requires both the incoming
and the outgoing sequence numbers to match (or CICS to be cold-started) to
allow the session to be restarted. FORCSESS allows the session to be
restarted even if a mismatch occurs. SYNCSESS is recommended.

OPTIONS=[TRANSRESP|NORESP|FORCRESP]
Specifies the required response mode.

TRANSRESP
Specifies that the response mode is determined on a
transaction-by-transaction basis. This is the default.

NORESP
Specifies that response-mode transactions are not allowed. In CICS terms,
this means that a CICS application cannot initiate an IMS transaction by
using a SEND command, but only with a START command.

FORCRESP
Forces response mode for all transactions. In CICS terms, this means that
a CICS application cannot initiate an IMS transaction by using a START
command, but only by means of a SEND command.

TRANSRESP is recommended.

OPTIONS=[OPNDST|NOPNDST]
Specifies whether sessions can be established from this IMS system. OPNDST
is recommended.

{COMPT1|COMPT2|COMPT3|COMPT4}={SINGLEn|MULTn}
Specifies the IMS components for the IMS ISC node. Up to four components
can be defined for each node. The input and output components to be used
for each session are then selected by the ICOMPT and COMPT parameters of
the SUBPOOL macro.

 Chapter 12. Installation considerations for ISC 105

The following types of component can be defined:

SINGLE1
Used by IMS for asynchronous output. One output message is sent for
each SNA bracket. The message may or may not begin the bracket, but it
always ends the bracket.

SINGLE2
Each message is sent with the SNA change-direction indicator (CD).

MULT1
All asynchronous messages for a given LTERM are sent before the bracket
is ended. The end bracket (EB) occurs after the last message for the
LTERM is acknowledged and dequeued.

MULT2
The same as MULT1, but CD is sent instead of EB.

SESSION=number
Specifies the number of parallel sessions for the link. Each session is
represented by an IMS SUBPOOL macro and by a CICS DEFINE SESSIONS
command.

EDIT=[{NO|YES}][,{NO|YES}]
Specifies whether user-supplied physical output and input edit routines are to
be used.

The VTAMPOOL macro
The SUBPOOL macro heads the list of SUBPOOL macros that define the individual
sessions to the remote system.

The SUBPOOL macro
A SUBPOOL macro is required for each session to the remote system.

NAME=subpool-name
Specifies the IMS name for this session. A CICS-to-IMS session is identified
by a “session-qualifier pair” formed from the CICS name for the session and the
IMS subpool name.

The CICS name for the session is specified in the SESSNAME option of the
DEFINE SESSIONS command for the session.

The IMS subpool name is specified to CICS in the NETNAMEQ option of the
DEFINE SESSIONS command.

The NAME macro
The NAME macro defines the logical terminal names associated with the subpool.
Multiple LTERMs can be defined per subpool.

COMPT={1|2|3|4}
Specifies the output component associated with this session. The component
specified determines the protocol that IMS ISC uses to process messages. An
output component defined as SINGLE1 is strongly recommended.

106 CICS for MVS/ESA Intercommunication Guide

ICOMPT={1|2|3|4}
Specifies the input component associated with this session. When IMS
receives a message, it determines the input source terminal by finding the
NAME macro that has the matching input component number. A COMPT1
input component must be defined for each session that CICS uses to send
START commands.

EDIT=[{NO|YES}][,{ULC|UC}]
The first parameter specifies whether the user-supplied logical terminal edit
routine (DFSCNTEO) is to be used.

The second parameter specifies whether the output is to be translated to
uppercase (UC) or not (ULC) before transmission.

 Chapter 12. Installation considerations for ISC 107

108 CICS for MVS/ESA Intercommunication Guide

| Chapter 13. Installation considerations for VTAM generic
| resources

| The information on ACF/VTAM and MVS/ESA given in this chapter is for
| guidance only. Always consult the current ACF/VTAM or MVS/ESA
| publications for the latest information. See “Books from related libraries” on
| page xv.

| A note about terminology

| Because you cannot use XRF with VTAM generic resources, the concept of
| “specific” and “generic” CICS applids is not meaningful to regions that are
| members of a generic resource group.

| In this chapter, the term applid means the network name, defined on a VTAM
| APPL statement, that uniquely identifies CICS to VTAM.

| For a full explanation of the relationships between generic and specific CICS
| applids, VTAM APPL statements, and VTAM generic resource names, see
| “Generic and specific applids for XRF” on page 163.

| For an overview of VTAM generic resources, see “Workload balancing in a sysplex”
| on page 17.

| If you have a CICSplex containing a set of functionally-equivalent CICS
| terminal-owning regions (TORs), you can use the VTAM generic resource function
| to balance terminal sessions across the available TORs.

| Requirements
| To use VTAM generic resources in CICS/ESA 4.1:

| � You need ACF/VTAM Version 4 Release 2 or a later, upward-compatible,
| release.

| � Each VTAM 4.2 must be:

| – Running under an MVS that is part of the same sysplex.

| – Connected to the sysplex coupling facility. For information about the
| sysplex coupling facility, see the MVS/ESA Setting Up a Sysplex manual,
| GC28-1449.

| – At least one VTAM in the sysplex must be an advanced peer-to-peer
| networking (APPN) network node, with the other VTAMs being APPN end
| nodes.

| Generating VTAM generic resource support
| To generate VTAM generic resource support for your CICS TORs, you must:

| 1. Use the GRNAME system initialization parameter to define the generic resource
| name under which CICS is to register to VTAM. To comply with the CICS
| naming conventions, it is recommended that you pad the name to the permitted
| 8 characters with one of the characters #, @, or $.

 Copyright IBM Corp. 1977, 1997 109

| For example:

| GRNAME=CICSH###

| For details of the GRNAME system initialization parameter, see the CICS/ESA
| System Definition Guide. The CICS naming conventions are described in the
| System/390 MVS Sysplex Application Migration manual.

| 2. Use an APPL statement to define the attributes of each participating TOR to
| VTAM. The attributes defined on each individual APPL statement should be
| identical. The name on each APPL statement must be unique. It identifies the
| TOR individually, within the generic resource group.

| Notes:

| 1. If your CICSplex comprises separate terminal-owning regions and
| application-owning regions, you should ensure that you define a VTAM generic
| resource name to the terminal-owning regions only.

| 2. You cannot use VTAM generic resources with XRF. If you specify 'YES' on
| the XRF system initialization parameter, any value specified for GRNAME is set
| to blanks.

| 3. If you specify a valid generic resource name on GRNAME, you should specify
| only name1 on the APPLID system initialization parameter. If you specify both
| name1 and name2 on the APPLID parameter, CICS ignores name1 and uses
| name2 as the VTAM applid.

| 4. You must shut a terminal-owning region down cleanly before registering it as a
| member of a generic resource group for the first time (or before reregistering it
| under a new generic resource name). “Cleanly” means that CICS must be shut
| down by means of a CEMT PERFORM SHUTDOWN command: a CEMT
| PERFORM SHUTDOWN IMMEDIATE is not sufficient; nor is a CICS failure
| followed by a cold start.

| If CICS has not been shut down cleanly before you try to register it as a
| member of a generic resource group for the first time (or reregister it under a
| new generic resource name), it may fail to open the VTAM ACB with a return
| code-feedback (RTNCD-FDB2) of X'14', X'86'. (VTAM RTNCD-FDB2s are
| described in the VTAM Version 4.2 Programming manual.) To correct this, you
| must restart CICS with the original APPLID and GRNAME (if any), and ensure
| that the VTAM ACB closes correctly. (Use a CEMT PERFORM SHUTDOWN
| or CEMT SET VTAM CLOSED command). Alternatively, you can run the utility
| described in the CICS/ESA Customization Guide, which opens the original ACB
| with the original GRNAME, unbinds any persisting sessions, and closes the
| ACB.

| For detailed information about generating VTAM generic resource support, see the
| VTAM Network Implementation Guide and the CICS/ESA Installation Guide.

110 CICS for MVS/ESA Intercommunication Guide

| Rules and restrictions
| When planning for VTAM generic resources, you should bear in mind the following
| rules governing CICS use of the VTAM generic resources function:

| � Generic resource names must be unique in the network.

| � A generic resource name cannot be the same as a VTAM applid in the
| network.

| � A CICS region that is a member of a generic resource group can have only one
| generic resource name and only one applid.

| There are some restrictions on the use of generic resources by certain types of
| device:

| � Devices using message protection cannot log on using the generic resource
| name. They must use the applid and therefore cannot take advantage of
| session balancing.

| � LU6 connections must log on using the generic resource name. They cannot
| log on using an applid if the applid is a member of a generic resource.

| � If an LU6.2 connection is bound at sync level 2 to a specific member of a
| generic resource, it is reconnected to that member (applid) every time it is
| re-bound (the VTAM generic resources function ensures that this requirement is
| met). If, for some reason, the member is not available, connection to the
| generic resource as a whole is denied.

| � If an LU6.2 limited resource connection is bound to a specific member of a
| generic resource, it is reconnected to that member (applid) every time it is
| re-bound. If, for some reason, the member is not available, connection to the
| generic resource as a whole is denied.

| LU6.2 limited resource connections are described on page 23.

| � If an LU6.1 connection is bound to a specific member of a generic resource, it
| is reconnected to that member (applid) every time it is re-bound. If for some
| reason the member is not available, connection to the generic resource as a
| whole is denied.

| In addition, certain configurations are prohibited by the following restrictions:

| � A remote LU6 partner cannot be accessed from more than one member of a
| generic resource.

| � You cannot use ISC to connect to more than one member of the same generic
| resource. If a region (for example, an AOR) must connect to more than one
| member of a generic resource, it must connect to them using MRO: it cannot
| use ISC.

+ Using the ISSUE PASS command
+ The EXEC CICS ISSUE PASS command can be used (either from an application
+ program, or by means of CECI) to disconnect a terminal from CICS, and transfer it
+ to the VTAM application specified on the LUNAME option. For example, to transfer
+ a terminal from this CICS to another terminal-owning region, you could issue the
+ command:

+ CECI ISSUE PASS LUNAME(applid)

 Chapter 13. Installation considerations for VTAM generic resources 111

+ where applid is the applid of the TOR to which the terminal is to be transferred.

+ When your TORs are members of a VTAM generic resource group, you can
+ transfer a terminal to any member of the group by specifying LUNAME as the
+ generic resource name. For example:

+ CECI ISSUE PASS LUNAME(grname)

+ where grname is the generic resource name. VTAM chooses the most suitable
+ group member to which to transfer the terminal. (If you need to transfer a terminal
+ to a specific TOR within the CICS generic resource group, you must specify
+ LUNAME as the member name—that is, the CICS APPLID, as in the first example.)

+ Note that, if the system that issues an ISSUE PASS LUNAME(grname) command
+ is the only CICS currently registered under the generic resource name (for
+ example, the others have all been shut down), the ISSUE PASS command does
+ not fail with an INVREQ. Instead, the terminal is logged off and message
+ DFHZC3490 is written to the CSNE log. You can code your node error program to
+ deal with this situation. For advice on coding a node error program, see the
+ CICS/ESA Customization Guide.

| Migrating your TORs to membership of a VTAM generic resource
| Note: In the discussion that follows, a “terminal-owning region” is any CICS region
| that owns terminals and is a candidate to be a member of the generic resource.
| Thus a combined TOR/AOR is considered to be a terminal-owning region.

| If you have no LU6 connections to your terminal-owning region, you could choose a
| new name for the generic resource and retain your old applid. Non-LU6 terminals
| can log on by either applid or generic resource name, hence they would not be
| affected by the introduction of the generic resource name. You could then
| gradually migrate the terminals to using the generic resource name.

| However, if you have LU6 terminals in your network you will probably want to
| migrate to generic resource without requiring all your LU6 network partners to
| change their logon procedures. A solution to this is to use the applid of your
| existing terminal-owning region as the new generic resource name. Since this
| requires you to choose a new applid, it is also necessary to change the
| CONNECTION definitions of MRO-connected application-owning regions and RACF
| profiles that specify the old applid. Note, however, that you do not need to change
| the APPL profile to which the users are authorized—CICS passes the GRNAME to
| RACF as the APPL name during signon validation, and the old applid is now the
| GRNAME.

| Recommended method
| The recommended migration steps are:

| 1. Configure your CICSplex with a single terminal-owning region.

| 2. Set the generic resource name to be the current applid of that terminal-owning
| region.

| 3. Change the current applid to a new value.

| 4. Change CONNECTION definitions in MRO partners to use the new applid for
| the terminal-owning region.

112 CICS for MVS/ESA Intercommunication Guide

| 5. Change RACF profiles that specify the old applid.

| 6. Restart the CICSplex.

| At this point:

| � Non-LU6 terminals can log on using the old name (without being aware that
| they are now using a VTAM generic resource). They will, of course, be
| connected to the same TOR as before because there is only one in the generic
| resource set.

| � LU6 connections log on using the old name (thereby conforming to the rule that
| they must connect by generic resource name).

| � Devices using message protection must change to use the new applid before
| the existing terminal-owning region is cloned. Up to that point they are rebound
| to the only TOR.

| 7. Install new cloned terminal-owning regions with the same generic resource
| name and the same connectivity to the set of AORs.

| At this point:

| � Autoinstalled non-LU6 terminals start to exploit session balancing.

| � Autoinstalled LU6.2 sync level 1 terminals start to exploit session balancing.

| � Existing LU6.1 and LU6.2 sync level 2 terminals continue to be connected to
| the original terminal-owning region (by generic resource name).

| � Special considerations apply to non-autoinstalled terminals and LU6
| connections used for outbound requests.

| Special considerations for non-autoinstalled terminals and
| connections
| If an LU is predefined to a specific terminal-owning region, and the LU initiates the
| connection, the generic resource function cannot be allowed to choose any
| terminal-owning region in the generic resource. The connection must be made to
| the terminal-owning region that has the definition. This requirement means that you
| must install the VTAM generic resource resolution exit program, ISTEXCGR, to
| enforce selection of the correct applid (for the terminal-owning region).

| Note that this is not necessary if the connection is always initiated by the
| terminal-owning region (by means, for example, of a START request).

| A sample ISTEXCGR exit program is supplied with VTAM 4.2. For details, see the
| ACF/VTAM Customization manual.

| Special considerations for outbound LU6 connections
| This section discusses outbound LU6 connections from TORs that are members of
| a generic resource group. By “outbound” we mean connections to systems outside
| the CICSplex. We assume that you are using MRO for connections within the
| CICSplex.

 Chapter 13. Installation considerations for VTAM generic resources 113

| Transaction routing to a pre-CICS/ESA 4.1 system
| For transaction routing across an LU6.2 (APPC) link, from a TOR that is a member
| of a generic resource group to a pre-CICS/ESA 4.1 back-end system, you must
| define an indirect link to the TOR, on the back-end system. (The indirect link to
| the TOR is needed as well as the direct link.)

| The indirect link is required to supply the netname (applid) of the TOR. This is
| necessary to enable the back-end system to build fully-qualified identifiers of
| terminals owned by the TOR. (The NETNAME option of the CONNECTION
| definition, for the direct link to the TOR, will contain the generic resource name of
| the TOR, not its applid.)

| Note that, if the back-end is a CICS/ESA 4.1 system, the only circumstance in
| which it is necessary to define an indirect link is if you are using non-VTAM
| terminals for transaction routing.

| For a full description of indirect links, when they are required, and how to
| implement them, see “Indirect links for transaction routing” on page 149.

| Using a “hub”
| As already stated, a remote LU6 partner cannot be accessed from more than one
| member of a generic resource. This can create a problem when the LU6 partner is
| to be used as the target for function shipping or distributed transaction processing
| (DTP) requests from a terminal-owning region. There is no problem if
| application-owning regions function ship, or use DTP, or even transaction route to a
| remote LU. The restriction does not apply because the application-owning regions
| are not members of a generic resource. However, if a terminal-owning region in a
| generic resource needs to function ship or participate in DTP to a remote LU, the
| restriction means that no other terminal-owning region in the generic resource can
| access the remote LU directly.

| One option is to choose one terminal-owning region to act as a network hub for
| connections to all LU6 partners that are targets of outbound requests. This hub
| owns all such connections, which are almost certainly predefined, because they are
| referenced by existing applications or resource definitions in the CICSplex. All
| applications running in application-owning regions or other terminal-owning regions
| must daisy-chain their requests for services from the remote LUs through the hub.

| The network hub can be a member of the generic resource, in which case (since
| LU6 partners must log on using the generic resource name) it is necessary to
| install a VTAM generic resource resolution exit program to direct any incoming
| binds from the LU6 partners to the network hub terminal-owning region.

| A simpler option is to have a network hub that is not a member of the generic
| resource. This avoids the need for the VTAM generic resource resolution exit
| program, but requires that all the predefined LU6 partners that may initiate
| connections to the CICSplex log on using the applid of the network hub
| terminal-owning region. This is the recommended option, unless it is not possible
| to change the logon name used by existing LU6 partners.

| Figure 27 on page 115 illustrates the concept of a network hub.

114 CICS for MVS/ESA Intercommunication Guide

| ┌─ ─┐

| CICSplex CIC1

| │ │

| │ GRNAME=CICSG │

| │ ┌──────────┐ ┌──────────┐ │

| │ │ │CICSG │

| │ │ AOR │ │ TOR │ MRO │

| │ ├───────┐ ┌───────┤ ├──────┐

| │ │ A1 │ │ │ │ T1 │ │ │

| │ │ │ │ │ │ │

| │ └──────────┘ │ │ └──────────┘ │ │

| │ │ │

| │ │ │ │ │

| │ │ │

| │ ┌──────────┐ │ │ ┌──────────┐ │ ┌────────────┐ │ ┌────────────┐

| │ │ │ │ │CICSG │ └──────┤ HUB │ │ REMOTE │

| │ │ AOR │ │ MRO │ │ TOR │ MRO │ TOR │ │ │ REGION │

| │ ├───────┼───────┼───────┤ ├─────────────┤ ┌──┐│ LU6 │┌──┐ │

| │ │ A2 │ │ links │ │ T2 │ │ H │R ├┼────┼────────────┼┤ H│ R │

| │ │ │ │ │ │ ┌─────┤ └──┘│ │└──┘ │

| │ └──────────┘ │ │ └──────────┘ │ └────────────┘ │ └────────────┘

| │ │ │

| │ │ │ │ │

| │ │ │

| │ ┌──────────┐ │ │ ┌──────────┐ │ │

| │ │ │ │ │CICSG │ │

| │ │ AOR │ │ │ │ TOR │ MRO │ │

| │ ├───────┘ └───────┤ ├───────┘

| │ │ A3 │ │ T3 │ │

| │ │ │ │

| │ └──────────┘ └──────────┘ │

| │

| └── ─┘

| Figure 27. A network hub, used for outbound LU6 requests from members of a VTAM generic resource group. In
| this example, the regions in CICSplex CIC1 are connected by MRO links. The terminal-owning regions T1, T2, and
| T3 are members of the generic resource group, CICSG, but the hub TOR, H, is not. H has an LU6 connection to the
| remote region, R. All the TORs must daisy-chain their function shipping and DTP requests to R through H.

| Note: If R is a terminal-owning region in another CICSplex that, like CIC1, uses
| VTAM generic resources, it too (like H) will be a hub.

 Chapter 13. Installation considerations for VTAM generic resources 115

116 CICS for MVS/ESA Intercommunication Guide

 Part 3. Resource definition

This part tells you how to define the various resources that may be required in a
CICS intercommunication environment.

CICS resources are defined by using resource definition online (RDO) or, for some
resource types, by coding CICS table definition macros. For further information
about resource definition, see the CICS/ESA Resource Definition Guide.

Chapter 14, “Defining links to remote systems” on page 119 tells you how to define
links to remote systems. The links can be MRO links, LUTYPE6.1 links to remote
CICS or IMS systems, or APPC links to remote CICS systems or to other APPC
systems or terminals. The chapter also contains information on managing APPC
links using the master terminal transaction (CEMT).

Chapter 15, “Defining remote resources” on page 165 tells you how to define
remote resources to the local CICS system. The resources can be:

 � Remote files

� Remote DL/I PSBs

� Remote transient-data queues

� Remote temporary-storage queues

 � Remote terminals

� Remote APPC connections

 � Remote programs

 � Remote transactions.

Chapter 16, “Defining local resources” on page 191 tells you how to define local
resources for ISC and MRO. In general, these resources are those that are
required for ISC and MRO and are obtained by including the relevant functional
groups in the appropriate tables. However, you have the opportunity to modify
some of the supplied definitions and to provide your own communication profiles.

 Copyright IBM Corp. 1977, 1997 117

118 CICS for MVS/ESA Intercommunication Guide

Chapter 14. Defining links to remote systems

This chapter tells you how to define and manage communication connections to
other systems or to other CICS regions.

The types of link described are:

� Links for multiregion operation

| � Links for use by the external CICS interface (EXCI)

� Links to remote systems using logical unit type 6.2 (APPC) protocols

� Links to remote systems using logical unit type 6.1 protocols

� Indirect links for CICS transaction routing.

Links using the ACF/VTAM application-to-application facilities are treated exactly as
though they are intersystem links, and can be defined as either LUTYPE6.1 or
APPC links.

Introduction to link definition
The definition of a link to a remote system consists of two basic parts:

1. The definition of the remote system itself

2. The definition of sessions with the remote system.

The remote system is defined by the DEFINE CONNECTION command. Each
session, or group of parallel sessions, is defined by the DEFINE SESSIONS
command. The definitions of the remote system and the sessions are always
separate, and are not associated with each other until they are installed.

For single-session APPC terminals, an alternative method of definition, using
DEFINE TERMINAL and DEFINE TYPETERM, is available.

If the remote system is CICS, or any other system that uses resource definition to
define intersystem sessions (for example, IMS), the link definition must be matched
by a compatible definition in the remote system. For remote systems with little or
no flexibility in their session properties (for example, APPC terminals), the link
definition must match the fixed attributes of the remote system concerned.

| Naming the local CICS system
| A CICS/ESA system can be known by more than one name:

| � Application identifier (applid)
| � System identifier (sysidnt)
| � VTAM generic resource name.

| All CICS systems have an applid and a sysidnt. A terminal-owning region that is a
| member of a VTAM generic resource group also has a VTAM generic resource
| name (VTAM generic resource names are described in Chapter 13, “Installation
| considerations for VTAM generic resources” on page 109).

 Copyright IBM Corp. 1977, 1997 119

| The applid of the local CICS system
| The applid of a CICS system is the name by which it is known in the
| intercommunication network; that is, its netname.

| For MRO, CICS uses the applid name to identify itself when it signs on to the CICS
| interregion SVC, either during startup or in response to a SET IRC OPEN master
| terminal command.

| For ISC, the applid is used on a VTAM APPL statement, to identify CICS to VTAM.

| You specify the applid on the APPLID system initialization parameter. The default
| value is DBDCCICS. This value can be overridden during CICS startup.

All applids in your intercommunication network should be unique.

| Note: CICS systems that use XRF have two applids, to distinguish between the
| active and alternate systems. This special case is described in “Generic and
| specific applids for XRF” on page 163.

The sysidnt of the local CICS system
The sysidnt of a CICS system is a name (1–4 characters) known only to the CICS
system itself.

It is obtained (in order of priority) from:

1. The startup override

2. The SYSIDNT operand of the DFHSIT macro

3. The default value CICS.

Note: The sysidnt of your CICS system may also have to be specified in the
DFHTCT TYPE=INITIAL macro if you are using macro-level resource definition.
The only purpose of the SYSIDNT operand of DFHTCT TYPE=INITIAL is to control
the assembly of local and remote terminal definitions in the terminal control table.
(Terminal definition is described in Chapter 15, “Defining remote resources” on
page 165.) The sysidnt of a running CICS system is always the one specified by
the system initialization parameters.

Identifying remote systems
In addition to having a sysidnt for itself, a CICS system requires a sysidnt for every
other system with which it can communicate. Sysidnt names are used to relate
session definitions to system definitions; to identify the systems on which remote
resources, such as files, reside; and to refer to specific systems in application
programs.

Sysidnt names are private to the CICS system in which they are defined; they are
not known by other systems. In particular, the sysidnt defined for a remote CICS
system is independent of the sysidnt by which the remote system knows itself; you
need not make them the same.

120 CICS for MVS/ESA Intercommunication Guide

The mapping between the local (private) sysidnt assigned to a remote system and
| the applid by which the remote system is known globally in the network (its
| netname), is made when you define the intercommunication link. For example:

DEFINE CONNECTION(sysidnt) The local name for the remote system

NETNAME(applid) The applid of the remote system

If NETNAME is omitted, sysidnt must be coded explicitly as the applid of the
remote system. Each sysidnt name defined to a CICS system must be unique.

Defining links for multiregion operation
This section describes how to define an interregion communication connection

| between the local CICS system and another CICS region in the same operating
| system.

| Note: The external CICS interface (EXCI) uses a specialized form of MRO link,
| that is described on page 126. This present section describes MRO links between
| CICS systems. However, most of its contents apply also to EXCI links, except
| where noted otherwise on page 126.

From the point of view of the local CICS system, each session on the link is
characterized as either a SEND session or a RECEIVE session. SEND sessions
are used to carry an initial request from the local to the remote system and to carry
any subsequent data flows associated with the initial request. Similarly, RECEIVE
sessions are used to receive initial requests from the remote system.

Interregion communication protocols are basically similar to SNA protocols, and an
initial request is a request that carries a begin-bracket indicator. However, there is
no concept of bidding on an interregion link, so initial requests can never be sent
on a RECEIVE session. You should keep this fact in mind when you decide how
many send and receive sessions you will require.

You must always specify at least one send session and one receive session.

Defining an MRO link
The definition for an MRO link is shown in Figure 28 on page 122.

| Note: For reasons of clarity and conciseness, inapplicable and inessential options
| have been omitted from Figure 28 on page 122, and from all the example
| definitions in this chapter, and no attempt has been made to mimic the layout of the
| CEDA DEFINE panels. For details of all RDO options, refer to the CICS/ESA
| Resource Definition Guide.

You define the connection and the associated group of sessions separately. The
two definitions are individual “objects” on the CICS system definition file (CSD), and
they are not associated with each other until the group is installed. The following
rules apply for MRO links:

� The CONNECTION and SESSIONS must be in the same GROUP.

� The SESSIONS must have PROTOCOL(LU61), but the PROTOCOL option of
CONNECTION must be left blank.

� The CONNECTION option of SESSIONS must match the sysidnt specified for
the CONNECTION.

 Chapter 14. Defining links to remote systems 121

� Only one SESSIONS definition can be related to an MRO CONNECTION.

� There can be only one MRO link between any two CICS regions; that is, each
DEFINE CONNECTION must specify a unique netname.

As explained earlier in this chapter, the sysidnt is the local name for the CICS
system to which the link is being defined. The netname must be the name with
which the remote system logs on to the interregion SVC; that is, its applid. If you
do not specify a netname, then sysidnt must satisfy these requirements.

DEFINE

 CONNECTION(sysidnt)

 GROUP(groupname)

 NETNAME(name)

 ACCESSMETHOD(IRC|XM)

| QUEUELIMIT(NO|S-9999)

| MAXQTIME(NO|S-9999)

 INSERVICE(YES)

 ATTACHSEC(LOCAL|IDENTIFY)

+ USEDFLTUSER(NO|YES)

DEFINE

 SESSIONS(csdname)

 GROUP(groupname)

 CONNECTION(sysidnt)

 PROTOCOL(LU61)

 RECEIVEPFX(prefix1)

 RECEIVECOUNT(number1)

 SENDPFX(prefix2)

 SENDCOUNT(number2)

 SESSPRIORITY(number)

 IOAREALEN(value)

Figure 28. Defining an MRO link

| On the CONNECTION definition, the QUEUELIMIT option specifies the maximum
| number of requests permitted to queue for free sessions to the remote system.
| The MAXQTIME option specifies the maximum time between a queue becoming full
| and it being purged because the remote system is unresponsive. Further
| information is given in Chapter 26, “Intersystem session queue management” on
| page 261.

+ APAR PN63960

+ Documentation for PN63960 added on 13 January 1995.

+ For information about the ATTACHSEC and USEDFLTUSER security options see
+ the CICS/ESA CICS-RACF Security Guide.

On the SESSIONS definition, you must specify the number of SEND and RECEIVE
| sessions that are required (at least one of each). You can also specify the prefixes
| which allow the sessions to be named. A prefix is a one-character or two-character
| string that is used to generate session identifiers (TRMIDNTs). If you do not
| specify prefixes, they default to '>' (for SEND) and '<' (for RECEIVE). It is
| recommended that you allow the prefixes to default, because:

122 CICS for MVS/ESA Intercommunication Guide

| � This guarantees that the session names generated by CICS are
| unique—prefixes must not cause a conflict with an existing connection or
| terminal name.

| � If you specify your own 2-character prefixes, the number of sessions you can
| define for each connection is limited to 99. If you specify your own 1-character
| prefixes, the limit increases to 999—the same as for default prefixes—but you
| may find it harder to guarantee unique session names.

| If you want to specify your own MRO session prefixes, the method is the same as
| that for LUTYPE6.1 sessions, described on page 139.

| For an explanation of how CICS generates names for MRO sessions, see the
| CICS/ESA Resource Definition Guide.

Choosing the access method for MRO
You can specify ACCESSMETHOD(XM) to select MVS cross-memory services for
an MRO link. Cross-memory services are used only if the other end of the link also
specifies cross-memory. To select the CICS Type 3 SVC for interregion
communication, use ACCESSMETHOD(IRC).

The use of MVS cross-memory services reduces the number of instructions
necessary to transmit messages between regions. Also, because commonly
addressable data buffers are not needed, less virtual storage is required in the
MVS common service area.

+ Cross-memory services may be less attractive from the security point of view (see
+ the CICS/ESA CICS-RACF Security Guide).

Cross-memory services also require CICS address spaces to be nonswappable.
For low-activity systems that would otherwise be eligible for address space
swapping, you may prefer to accept the greater path length of the CICS interregion
SVC rather than the greater real storage requirements of nonswappable address
spaces.

| Note: If you are using cross-system multiregion operation (XCF/MRO), CICS
| selects the XCF access method dynamically—overriding the CONNECTION
| definition, which can specify either XM or IRC.

Figure 29 on page 124 shows a typical definition for an MRO link.

 Chapter 14. Defining links to remote systems 123

DEFINE

CONNECTION(CICB) local name for remote system

GROUP(groupname) groupname of related definitions

| NETNAME(CICSB) applid of remote system

 ACCESSMETHOD(XM) cross-memory services

| QUEUELIMIT(NO) if no free sessions, queue all requests

| INSERVICE(YES)

| ATTACHSEC(LOCAL) use security of the link only

+ USEDFLTUSER(NO)

DEFINE

SESSIONS(csdname) unique csd name

GROUP(groupname) same group as the connection

 CONNECTION(CICB) related connection

 PROTOCOL(LU61)

| RECEIVEPFX(<)

| RECEIVECOUNT(5) 5 receive sessions

| SENDPFX(>)

| SENDCOUNT(3) 3 send sessions

 SESSPRIORITY(1SS)

IOAREALEN(3SS) minimum TIOA size for sessions

Figure 29. Example of MRO link definition

124 CICS for MVS/ESA Intercommunication Guide

Defining compatible MRO nodes
An MRO link must be defined in both of the systems that it connects. You must
ensure that the two definitions are compatible with each other. For example, if one
definition specifies six sending sessions, the other definition requires six receiving
sessions.

The compatibility requirements are shown in Figure 30.

 CICSA CICSB
 DFHSIT TYPE=CSECT

 DFHSIT TYPE=CSECT

 ,APPLID=CICSA ───1───┐

 ├───4─── ,APPLID=CICSB

 │

 DEFINE │

 CONNECTION(CICB) ───2───┤ DEFINE

 ├───8─── CONNECTION(CICA)

 GROUP(PRODSYS) ───3───┤

 ├───9─── GROUP(TESTSYS)

 NETNAME(CICSB) ───4───┤

 ├───1─── NETNAME(CICSA)

 ACCESSMETHOD(IRC) │

 │ ACCESSMETHOD(IRC)

| QUEUELIMIT(5SS) │

| MAXQTIME(5SS) │

| │ QUEUELIMIT(NO)

| INSERVICE(YES) │

| │ INSERVICE(YES)

| │ ATTACHSEC(LOCAL)

 DEFINE │

 SESSIONS(SESSS1) │ DEFINE

 │ SESSIONS(SESSS2)

 GROUP(PRODSYS) ───3───┤

 ├───9─── GROUP(TESTSYS)

 CONNECTION(CICB) ───2───┤

 ├───8─── CONNECTION(CICA)

 PROTOCOL(LU61) ───5───┤

 ├───5─── PROTOCOL(LU61)

| RECEIVEPFX(<) │

| │ RECEIVEPFX(<)

| RECEIVECOUNT(8) ───6───┤

| ├───7─── RECEIVECOUNT(1S)

| SENDPFX(>} │

| │ SENDPFX(>)

 SENDCOUNT(1S) ───7───┤

 └───6─── SENDCOUNT(8)

Figure 30. Defining compatible MRO nodes

In Figure 30, related options are shown by the numbered paths, all of which pass
through the central connecting line.

 Chapter 14. Defining links to remote systems 125

| Defining links for use by the external CICS interface
| This section describes how to define connections for use by non-CICS programs
| using the external CICS interface (EXCI) to link to CICS server programs. The
| definitions required are similar to those needed for MRO links between CICS
| systems. Each connection requires a CONNECTION and a SESSIONS definition.

| Because EXCI connections are used for processing work from external sources,
| you must not define any SEND sessions.

| EXCI connections can be defined as “specific” or “generic”. A specific EXCI
| connection is an MRO link on which all the RECEIVE sessions are dedicated to a
| single user (client program). A generic EXCI connection is an MRO link on which
| the RECEIVE sessions are shared by multiple users. Only one generic EXCI
| connection can be defined on each CICS region.

| On definitions of both specific and generic connections, you must:

| � Specify PROTOCOL(EXCI).

| � Specify ACCESSMETHOD(IRC). The external CICS interface does not support
| the MRO cross-memory access method (XM). The cross-system coupling
| facility (XCF) is supported.

| � Let SENDCOUNT and SENDPFX default to blanks.

| Figure 31 shows the definition of a specific EXCI connection.

| DEFINE

| CONNECTION(EIP1) local name for connection

| GROUP(groupname) groupname of related definitions

| NETNAME(CLAP1) User name on INITIALIZE_USER command

| ACCESSMETHOD(IRC)

| PROTOCOL(EXCI)

| CONNTYPE(Specific) pipes dedicated to a single user

| INSERVICE(YES)

| ATTACHSEC(LOCAL)

| DEFINE

| SESSIONS(csdname) unique csd name

| GROUP(groupname) same group as the connection

| CONNECTION(EIP1) related connection

| PROTOCOL(EXCI) external CICS interface

| RECEIVEPFX(<)

| RECEIVECOUNT(5) 5 receive sessions

| SENDPFX leave blank

| SENDCOUNT leave blank

| Figure 31. Example definition for a specific EXCI connection. For use by a non-CICS client
| program using the external CICS interface.

| For a specific connection, NETNAME must be coded with the name of the user
| program that will be passed on the EXCI INITIALIZE_USER command.
| CONNTYPE must be Specific.

| Figure 32 on page 127 shows the definition of a generic EXCI connection.

126 CICS for MVS/ESA Intercommunication Guide

| DEFINE

| CONNECTION(EIP2) local name for connection

| GROUP(groupname) groupname of related definitions

| ACCESSMETHOD(IRC)

| NETNAME() must be blank for generic connection

| INSERVICE(YES)

| PROTOCOL(EXCI)

| CONNTYPE(Generic) pipes shared by multiple users

| ATTACHSEC(LOCAL)

| DEFINE

| SESSIONS(csdname) unique csd name

| GROUP(groupname) same group as the connection

| CONNECTION(EIP2) related connection

| PROTOCOL(EXCI) external CICS interface

| RECEIVEPFX(<)

| RECEIVECOUNT(5) 5 receive sessions

| SENDPFX leave blank

| SENDCOUNT leave blank

| Figure 32. Example definition for a generic EXCI connection. For use by non-CICS client
| programs using the external CICS interface.

| For a generic connection, NETNAME must be blank. CONNTYPE must be
| Generic.

| Installing MRO and EXCI link definitions
| You can install new MRO and EXCI connections dynamically, while CICS is fully
| operational—there is no need to close down interregion communication (IRC) to do
| so. Note that CICS commits the installation of connection definitions at the group
| level—if the install of any connection or terminal fails, CICS backs out the
| installation of all connections in the group. Therefore, when adding new
| connections to a CICS region with IRC open, ensure that the new connections are
| in a group of their own.

| You cannot modify existing MRO (or EXCI) links while IRC is open. You should
| therefore ensure, when defining an MRO link, that you specify enough SEND and
| RECEIVE sessions to cater for the expected workload.

| For further information about installing MRO links, see the CICS/ESA Resource
| Definition Guide.

 Chapter 14. Defining links to remote systems 127

Defining APPC links
An APPC link consists of one or more “sets” of sessions. The sessions in each set
have identical characteristics, apart from being either contention winners or
contention losers. Each set of sessions can be assigned a modename that
enables it to be mapped to a VTAM logmode name and from there to a class of
service (COS). A set of APPC sessions is therefore referred to as a modeset.

Note: An APPC terminal is often an APPC system that supports only a single
session and which does not support an LU services manager. There are several
ways of defining such terminals; further details are given under “Defining
single-session APPC terminals” on page 133. This section describes the definition
of one or more modesets containing more than one session.

To define an APPC link to a remote system, you must:

1. Use DEFINE CONNECTION to define the remote system.
2. Use DEFINE SESSIONS to define each set of sessions to the remote system.

However, you must not have more than one APPC connection installed at the same
time between an LU-LU pair. Nor should you have an APPC and an LUTYPE6.1
connection installed at the same time between an LU-LU pair.

For all APPC links, except single-session links to APPC terminals, CICS
automatically builds a set of special sessions for the exclusive use of the LU
services manager, using the modename SNASVCMG. This is a reserved name,
and cannot be used for any of the sets that you define.

If you are defining a VTAM logon mode table, remember to include an entry for the
SNASVCMG sessions. (See “ACF/VTAM LOGMODE table entries for CICS” on
page 102.)

Defining the remote APPC system
The form of definition for an APPC system is shown in Figure 33 on page 129.

128 CICS for MVS/ESA Intercommunication Guide

DEFINE

 CONNECTION(name)

 GROUP(groupname)

 NETNAME(name)

 ACCESSMETHOD(VTAM)

 PROTOCOL(APPC)

 SINGLESESS(NO)

| QUEUELIMIT(NO|S-9999)

| MAXQTIME(NO|S-9999)

 AUTOCONNECT(NO|YES|ALL)

| SECURITYNAME(value)

| ATTACHSEC(LOCAL|IDENTIFY|VERIFY|PERSISTENT|MIXIDPE)

 BINDPASSWORD(password)

 BINDSECURITY(YES|NO)

+ USEDFLTUSER(NO|YES)

| PSRECOVERY(SYSDEFAULT|NONE)

For LUTYPE6.1 on APPC
 DATASTREAM(USER|327S|SCS|STRFIELD|LMS)

 RECORDFORMAT(U|VB)

Figure 33. Defining an APPC system

You must specify ACCESSMETHOD(VTAM) and PROTOCOL(APPC) to define an
APPC system. The CONNECTION name (that is, the sysidnt) and the netname
have the meanings explained in “Identifying remote systems” on page 120 (but see
the box that follows).

| Important

| If you are defining an APPC link to a terminal-owning region that is a member
| of a VTAM generic resource group, NETNAME must specify the TOR’s generic
| resource name, not its applid. (See the note about VTAM generic resource
| names on page 163.)

Because this connection will have multiple sessions, you must specify
SINGLESESS(N), or allow it to default. (The definition of single-session APPC
terminals is described in “Defining single-session APPC terminals” on page 133.)

The AUTOCONNECT option specifies which of the sessions associated with the
connection are to be bound when CICS is initialized. Further information is given in
“The AUTOCONNECT option” on page 134.

| The QUEUELIMIT option specifies the maximum number of requests permitted to
| queue for free sessions to the remote system. The MAXQTIME option specifies
| the maximum time between a queue becoming full and it being purged because the
| remote system is unresponsive. Further information is given in Chapter 26,
| “Intersystem session queue management” on page 261.

| If you are using VTAM persistent session support, the PSRECOVERY option
| specifies whether sessions to the remote system are recovered, if the local CICS
| fails and restarts within the persistent session delay interval. Further information is
| given in “Using VTAM persistent sessions on APPC links” on page 136.

 Chapter 14. Defining links to remote systems 129

| For information about security options, see the CICS/ESA CICS-RACF Security
| Guide.

Note: If the intersystem link is to be used by existing applications that were
designed to run on LUTYPE6.1 links, you can use the DATASTREAM and
RECORDFORMAT options to specify data stream information for asynchronous
processing. The information provided by these options is not used by APPC
application programs.

Defining groups of APPC sessions
Each group of sessions for an APPC system is defined by means of a DEFINE
SESSIONS command. The definition is shown in Figure 34.

Each individual group of sessions is referred to as a modeset.

DEFINE

 SESSIONS(csdname)

 GROUP(groupname)

 CONNECTION(name)

 MODENAME(name)

 PROTOCOL(APPC)

 MAXIMUM(m1,m2)

 SENDSIZE(size)

 RECEIVESIZE(size)

 SESSPRIORITY(number)

 AUTOCONNECT(NO|YES|ALL)

 USERAREALEN(value)

| RECOVOPTION(SYSDEFAULT|CLEARCONV|RELEASESESS|UNCONDREL|NONE)

Figure 34. Defining a group of APPC sessions

The CONNECTION option specifies the name (1–4 characters) of the APPC
system for which the group is being defined; that is, the CONNECTION name in the
associated DEFINE CONNECTION command.

The MODENAME option enables you to specify a name (1–8 characters) to identify
this group of related sessions. The name must be unique among the modenames
for any one APPC intersystem link, and you must not use the reserved name
SNASVCMG.

The MAXIMUM(m1,m2) option specifies the maximum number of sessions that are
to be supported for the group. The parameters of this option have the following
meanings:

� m1 specifies the maximum number of sessions in the group. The default value
is 1.

� m2 specifies the maximum number of sessions to be supported as contention
winners. The number specified for m2 must not be greater than the number
specified for m1. The default value for m2 is zero.

| The RECEIVESIZE option, which specifies the maximum size of request unit (RU)
| to be received, must be in the range 256 through 30 720.

130 CICS for MVS/ESA Intercommunication Guide

The AUTOCONNECT option specifies whether the sessions are to be bound when
CICS is initialized. Further information is given in “The AUTOCONNECT option” on
page 134.

| If you are using VTAM persistent session support, and CICS fails and restarts
| within the persistent session delay interval, the RECOVOPTION option specifies
| how CICS recovers the sessions. (The RECOVNOTIFY option does not apply to
| APPC sessions.) Further information is given in “Using VTAM persistent sessions
| on APPC links” on page 136.

Defining compatible CICS APPC nodes
When you are defining an APPC link between two CICS systems, you must ensure
that the definitions of the link in each of the systems are compatible.

The compatibility requirements are summarized in Figure 35.

 CICSA CICSB
 DFHSIT TYPE=CSECT

 DFHSIT TYPE=CSECT

 ,APPLID=CICSA ───1───┐

 ├───3─── ,APPLID=CICSB

 │

 DEFINE CONNECTION(CICB) ───2───┤

GROUP(groupname) ├──1S─── DEFINE CONNECTION(CICA)

 NETNAME(CICSB) ───3───┤ GROUP(groupname)

 ├───1─── NETNAME(CICSA)

 ACCESSMETHOD(VTAM) │

 │ ACCESSMETHOD(VTAM)

 PROTOCOL(APPC) │

 │ PROTOCOL(APPC)

 SINGLESESS(N) ───4───┤

 ├───4─── SINGLESESS(N)

| QUEUELIMIT(5SS) │

| MAXQTIME(5SS) │

| │ QUEUELIMIT(NO)

| │ ATTACHSEC(IDENTIFY)

 BINDPASSWORD(pw) ───5───┤

 ├───5─── BINDPASSWORD(pw)

 │

 DEFINE SESSIONS(csdname) │ DEFINE SESSIONS(csdname)

 GROUP(groupname) │ GROUP(groupname)

 CONNECTION(CICB) ───2───┤

 ├──1S─── CONNECTION(CICA)

 MODENAME(M1) ───6───┤

 ├───6─── MODENAME(M1)

 PROTOCOL(APPC) │ PROTOCOL(APPC)

 │

 MAXIMUM(ss,ww) ───7────┤

 ├───7─── MAXIMUM(ss,ww)

 SENDSIZE(kkk) ───9────┤

 ├───8─── SENDSIZE(jjj)

 RECEIVESIZE(jjj) ───8────┤

 └───9─── RECEIVESIZE(kkk)

Figure 35. Defining compatible CICS APPC ISC nodes

In Figure 35, related options and operands are shown by the numbered paths, all
of which pass through the central connecting line.

 Chapter 14. Defining links to remote systems 131

Notes:

1. The values specified for MAXIMUM on either side of the link need not match,
because they are negotiated by the LU services managers. However, a
matching specification avoids unusable TCTTE entries, and also avoids
unexpected bidding because of the “contention winners” negotiation.

2. If the value specified for SENDSIZE on one side of the link does not match that
specified for RECEIVESIZE on the other, CICS negotiates the values at BIND
time.

| Automatic installation of APPC links
| You can use the CICS autoinstall facility to allow APPC links to be defined
| dynamically on their first usage, thereby saving on storage for installed definitions,
| and on time spent creating the definitions.

| Note: The method described here applies only to APPC parallel-session and
| single-session links initiated by BIND requests. The method to be used for APPC
| single-session links initiated by VTAM CINIT requests is described in “Defining
| single-session APPC terminals” on page 133. You cannot autoinstall APPC
| parallel-session links initiated by CINIT requests.

| If autoinstall is enabled, and an APPC BIND request is received for an APPC
| service manager (SNASVCMG) session (or for the only session of a single-session
| connection), and there is no matching CICS CONNECTION definition, a new
| connection is created and installed automatically.

| Like autoinstall for terminals, autoinstall for APPC links requires model definitions.
| However, unlike the model definitions used to autoinstall terminals, those used to
| autoinstall APPC links do not need to be defined explicitly as models. Instead,
| CICS can use any previously-installed link definition as a “template” for a new
| definition. In order for autoinstall to work, you must have a template for each kind
| of link you want to be autoinstalled.

| The purpose of a template is to provide CICS with a definition that can be used for
| all connections with the same properties. You customize the supplied autoinstall
| user program, DFHZATDY, to select an appropriate template for each new link,
| based on the information it receives from VTAM.

| A template consists of a CONNECTION definition and its associated SESSIONS
| definitions. You should have a definition installed for each different set of session
| properties you are going to need.

| Any installed link definition can be used as a template but, for performance
| reasons, your template should be an installed link definition that you do not actually
| use. The definition is locked while CICS is copying it, and if you have a very large
| number of sessions autoinstalling, the delay may be noticeable.

| Autoinstall support is likely to be beneficial if you have large numbers of APPC
| parallel session devices with identical characteristics. For example, if you had 1000
| PS/2s, all with the same characteristics, you would set up one template to
| autoinstall all of them. If 500 of your PS/2s had one set of characteristics, and 500
| had another set, you would set up two templates to autoinstall them.

132 CICS for MVS/ESA Intercommunication Guide

| For further information about using autoinstall with APPC links, see the CICS/ESA
| Resource Definition Guide. For programming information about the autoinstall user
| program, see the CICS/ESA Customization Guide.

Defining single-session APPC terminals
There are two methods available for defining a single-session APPC terminal: you
can define a CONNECTION-SESSIONS pair, with SINGLESESS(Y) specified for
the connection; or you can define a TERMINAL-TYPETERM pair.

Defining an APPC terminal – method 1
You can define a CONNECTION-SESSIONS pair to represent a single-session
APPC terminal.

The forms of DEFINE CONNECTION and DEFINE SESSIONS commands that are
required are similar to those shown in Figure 33 on page 129 and Figure 34 on
page 130. The differences are shown below:

DEFINE CONNECTION(sysidnt)

 .

 SINGLESESS(Y)

 .

DEFINE SESSIONS(csdname)

 .

| MAXIMUM(1,S)

 .

| You must specify SINGLESESS(Y) for the connection. The MAXIMUM option must
| specify only one session. The second value has no meaning for a single session
| definition as CICS always binds as a contention winner. However, CICS accepts a
| negotiated bind or a negotiated bind response in which it is changed to the
| contention loser.

Defining an APPC terminal – method 2
You can define a single-session APPC terminal as a TERMINAL with an associated
TYPETERM. This method of definition has two principal advantages:

1. You can use a single TYPETERM for all your APPC terminals of the same
type.

| 2. It makes the AUTOINSTALL facility available for APPC single-session
| terminals.

| Autoinstall for APPC single sessions initiated by a VTAM CINIT works in the
| same way as autoinstall for other terminals, in that you must supply a
| TERMINAL—TYPETERM model pair. For further information about using
| autoinstall with APPC single-session terminals, see the CICS/ESA Resource
| Definition Guide.

The basic method for defining an APPC terminal is as follows:

 Chapter 14. Defining links to remote systems 133

DEFINE TERMINAL(sysid)

 MODENAME(modename)

 TYPETERM(typeterm)

 .

 .

DEFINE TYPETERM(typeterm)

 DEVICE(APPC)

 .

 .

Note that, because all APPC devices are seen as systems by CICS, the name in
the TERMINAL option is effectively a system name. You would, for example, use
CEMT INQUIRE CONNECTION, not CEMT INQUIRE TERMINAL, to inquire about
an APPC terminal.

A single, contention-winning session is implied by DEFINE TERMINAL. However,
for APPC terminals, CICS accepts a negotiated bind in which it is changed to the
contention loser.

The CICS-supplied CSD group DFHTYPE contains a TYPETERM, DFHLU62T,
suitable for APPC terminals. You can either use this TYPETERM as it stands, or
use it as the basis for your own definition.

If you plan to use automatic installation for your APPC terminals, you need the
model terminal definition (LU62) that is provided in the CICS-supplied CSD group
DFHTERM. You also have to write an autoinstall user program, and provide
suitable VTAM LOGMODE entries.

For further information about TERMINAL and TYPETERM definition, the
CICS-supplied CSD groups, and automatic installation, see the CICS/ESA
Resource Definition Guide. For guidance about VTAM LOGMODE entries, and for
programming information about the autoinstall user program, see the CICS/ESA
Customization Guide.

The AUTOCONNECT option
You can use the AUTOCONNECT option of DEFINE CONNECTION and DEFINE
SESSIONS (and of DEFINE TYPETERM for APPC terminals) to control CICS
attempts to establish communication with the remote APPC system.

Except for single-session APPC terminals (see “Defining single-session APPC
terminals” on page 133), two events are necessary to establish sessions to a
remote APPC system.

1. The connection to the remote system must be established. This means binding
the LU services manager sessions (SNASVCMG) and carrying out initial
negotiations.

2. The sessions of the modeset in question must be bound.

These events are controlled in part by the AUTOCONNECT option of the DEFINE
CONNECTION command, and in part by the AUTOCONNECT of the DEFINE
SESSIONS command.

134 CICS for MVS/ESA Intercommunication Guide

The AUTOCONNECT option of DEFINE CONNECTION
On the DEFINE CONNECTION command, the AUTOCONNECT option specifies
whether CICS is to try to bind the LU services manager sessions at the earliest
opportunity (when the VTAM ACB is opened). It can have the following values:

AUTOCONNECT(NO)
specifies that CICS is not to try to bind the LU services manager sessions.

AUTOCONNECT(YES)
specifies that CICS is to try to bind the LU services manager sessions.

AUTOCONNECT(ALL)
the same as YES; you could, however, use it as a reminder that the associated
DEFINE SESSIONS is to specify ALL.

The LU services manager sessions cannot, of course, be bound if the remote
system is not available. If for any reason they are not bound during CICS
initialization, they can be bound by means of a CEMT SET CONNECTION
INSERVICE ACQUIRED command. They are also bound if the remote system
itself initiates communication. For a single-session APPC terminal,
AUTOCONNECT(YES) or AUTOCONNECT(ALL) on the DEFINE CONNECTION
command has no effect. This is because a single-session connection has no LU
services manager.

The AUTOCONNECT option of DEFINE SESSIONS
On the DEFINE SESSIONS command, the AUTOCONNECT option specifies which
sessions are to be bound when the associated LU services manager sessions have
been bound. (No user sessions can be bound before this time.)

The option can have the following values:

AUTOCONNECT(NO)
specifies that no sessions are to be bound.

AUTOCONNECT(YES)
specifies that the contention-winning sessions are to be bound.

AUTOCONNECT(ALL)
specifies that the contention-winning and the contention-losing sessions are to
be bound.

AUTOCONNECT(ALL) allows CICS to bind contention-losing sessions with remote
systems that cannot send bind requests. By specifying AUTOCONNECT(ALL),
you may cause CICS to bind a number of contention winners other than the
number originally specified in this system. The number of contention winners that
CICS binds depends on the reply that the partner system gives to the request to

| initiate sessions (CNOS exchange). CICS will try to bind as contention winners all
| sessions that are not designated as contention losers in the CNOS reply. For
| example, suppose that you define a modegroup with DEFINE SESSIONS
| MAXIMUM(10,4) on this system and DEFINE SESSIONS MAXIMUM(10,2) on the
| remote system. If the sessions are acquired from this system, and the
| contention-losing sessions bind successfully, the result is 8 primary
| contention-winning sessions.

 Chapter 14. Defining links to remote systems 135

Warning: Never specify AUTOCONNECT(ALL) for sessions to another CICS
system, or to any system that may send a bind request. This could lead to
bind-race conditions that CICS cannot resolve.

| If AUTOCONNECT(NO) is specified, the sessions can be bound and made
| available by means of a CEMT SET MODENAME ACQUIRED AVAILABLE
| command. (For details of the CEMT SET MODENAME command, see the
| CICS/ESA CICS-Supplied Transactions manual.) If this is not done, sessions are

bound individually according to the demands of your application program.

For a single-session APPC terminal, the value specified for AUTOCONNECT on
DEFINE SESSIONS or DEFINE TYPETERM determines whether CICS tries to bind
the single session or not.

| Using VTAM persistent sessions on APPC links
| You can use VTAM persistent sessions to improve the availability of APPC links.
| After a failed CICS has been restarted, CICS persistent session support enables
| sessions to be recovered without the need for network flows. CICS determines for
| how long the sessions should be retained from the PSDINT system initialization
| parameter. Thus, for persistent session support you must specify a PSDINT value
| greater than zero (and, on the XRF system initialization parameter, a value of
| 'NO'—persistent session support is incompatible with XRF). If a failed CICS is
| restarted within the PSDINT interval, it can use the retained sessions
| immediately—there is no need for network flows to rebind them. The interval can
| be changed using the CEMT SET VTAM command, or the EXEC CICS SET VTAM
| command.

| If CICS is terminated through CEMT PERFORM SHUTDOWN IMMEDIATE, or if it
| fails, sessions are placed in “recovery pending” state. During emergency restart,
| CICS restores APPC sessions that are defined as persistent to an “in session”
| state.

| The PSRECOVERY option of DEFINE CONNECTION
| In a CICS region running with persistent session support, you use this to specify
| whether the APPC sessions used by this connection are recovered on system
| restart within the persistent session delay interval. It can have the following values:

| SYSDEFAULT
| If a failed CICS system is restarted within the persistent session delay interval,
| the following actions occur:

| � User modegroups are recovered to the SESSIONS RECOVOPTION value.

| � The SNASVCMG modegroup is recovered.

| � The connection is returned in ACQUIRED state and the last negotiated
| CNOS state is returned.

| NONE
| All sessions are unbound as out-of-service with no CNOS recovery.

136 CICS for MVS/ESA Intercommunication Guide

| The RECOVOPTION option of DEFINE SESSIONS and DEFINE
| TYPETERM
| In a CICS region running with persistent session support, the RECOVOPTION
| option of DEFINE SESSIONS specifies how APPC sessions are to be recovered,
| after a system restart within the persistent session delay interval.

| If you want the sessions to be persistent, you should allow the value to default to
| SYSDEFAULT. This specifies that CICS is to select the optimum procedure to
| recover a session on system restart within the persistent delay interval.

| For a single-session APPC terminal, the RECOVOPTION option of DEFINE
| SESSIONS or DEFINE TYPETERM specifies how the terminal is to be returned to
| service after a system restart within the persistent session delay interval.

| Without persistent session support, if AUTOCONNECT(YES) is specified for a
| terminal, the end-user must wait until the GMTRAN transaction has run before
| being able to continue working. If AUTOCONNECT(NO) is specified, the user has
| no way of knowing (unless told by support staff) when CICS is operational again
| unless he or she tries to log on. In either case, the user is disconnected from CICS
| and needs to reestablish his session, to regain his working environment. With
| persistent session support, the session is put into recovery pending state on a
| CICS failure. If CICS starts within the specified interval, and RECOVOPTION is set
| to SYSDEFAULT, the user does not need to reestablish his session to regain his
| working environment.

| For definitive information about the SYSDEFAULT value, and about the other
| possible values of RECOVOPTION, see the CICS/ESA Resource Definition Guide.

| For further information about CICS support for persistent sessions, see Chapter 30,
| “Intercommunication and VTAM persistent sessions” on page 293.

Defining logical unit type 6.1 links
LUTYPE6.1 links are necessary for intersystem communication between CICS and
any system, such as IMS, that supports LUTYPE6.1 protocols but not APPC
protocols.

You must not have an LUTYPE6.1 and an APPC connection installed at the same
time between an LU-LU pair.

You can also, of course, define LUTYPE6.1 links between CICS systems.
| However, you are advised to use MRO or APPC links for CICS-to-CICS
| communication whenever possible.

A DEFINE CONNECTION is always required to define the remote system on an
LUTYPE6.1 link. The sessions, however, can be defined in either of the following
ways:

1. By using a single DEFINE SESSIONS command to define a pool of sessions
with identical characteristics. This is the most convenient method for
CICS-to-CICS communication.

2. By using a separate DEFINE SESSIONS command to define each individual
session. This method must be used to define sessions with systems, such as
IMS, that require individual sessions to be explicitly named.

 Chapter 14. Defining links to remote systems 137

Defining CICS-to-CICS LUTYPE6.1 links
This section describes how to define a pool of LUTYPE6.1 sessions of identical
characteristics.

From the point of view of the local CICS system, each session on the link is
characterized as either a SEND session or a RECEIVE session. A SEND session
is one in which the local CICS is the secondary (that is, bind receiver) and is the
contention winner. A RECEIVE session is one in which the local CICS is the
primary (that is, bind sender) and is the contention loser. When CICS allocates an
intersystem session to the remote system, it always tries to allocate a contention
winner. Only if no contention winners are available does it select a contention
loser. It then has to bid for permission to begin a bracket.

To avoid the overhead of bidding, you should base the numbers of SEND and
RECEIVE sessions on the expected directions and frequencies of flows between
the two systems.

The definition for an LUTYPE6.1 link is shown in Figure 36 on page 140.

You define the connection and the associated group of sessions separately. The
two definitions are individual “objects” on the CICS system definition file (CSD), and
they are not associated with each other until the group is installed. The following
rules apply for LUTYPE6.1 links:

� The CONNECTION and SESSIONS must be in the same GROUP.

� Both the CONNECTION and the SESSIONS must have PROTOCOL(LU61).

| � On the CONNECTION definition, you must specify ATTACHSEC(LOCAL).

� On the SESSIONS definition, the value of the CONNECTION option must
match the sysidnt specified on the CONNECTION definition.

| Important

| If you are defining an LUTYPE6.1 link to a terminal-owning region that is a
| member of a VTAM generic resource group, NETNAME must specify the TOR’s
| generic resource name, not its applid. (See the note about VTAM generic
| resource names on page 163.)

| On the SESSIONS definition, you must specify the number of SEND and RECEIVE
| sessions that are required (at least one of each). You must also specify the
| prefixes which allow the sessions to be named. A prefix is a one-character or
| two-character string that is used to generate session identifiers (TRMIDNTs). Do
| not use the characters ‘>’ or ‘<’, because these are the default prefixes for MRO
| sessions.

138 CICS for MVS/ESA Intercommunication Guide

| The prefixes and the number of sessions are specified separately. The
| combination of the prefix and the number of sessions must not exceed four
| characters. For example:

| RECEIVEPFX(RR)

| RECEIVECOUNT(1S)

| generates 10 receive sessions with identifiers RR01 through RR10.

| RECEIVEPFX(R)

| RECEIVECOUNT(15S)

| generates 150 receive sessions with identifiers R001 through R150.

The AUTOCONNECT and INSERVICE options
The AUTOCONNECT option on the DEFINE CONNECTION command has no
function for a LUTYPE6.1 connection.

On the DEFINE SESSIONS commands, AUTOCONNECT(YES|ALL) specifies that
CICS is to bind all the sessions of the group as part of the initialization of the
system. For this to take effect, however, INSERVICE(YES) must be specified on
the DEFINE CONNECTION command.

INSERVICE(NO) on the DEFINE CONNECTION command initializes the sessions
in an ‘out of service’ state only if AUTOCONNECT(NO) is specified on the
corresponding DEFINE SESSIONS command.

Each CICS system binds its own contention losers; that is, its receive sessions. At
the same time, it passes an indication to request the remote system to do the
same. In this way, all sessions are bound in one operation.

 Chapter 14. Defining links to remote systems 139

DEFINE

 CONNECTION(sysidnt)

 GROUP(groupname)

 NETNAME(name)

 ACCESSMETHOD(VTAM)

 PROTOCOL(LU61)

 DATASTREAM(USER|327S|SCS|STRFIELD|LMS)

 RECORDFORMAT(U|VB)

| QUEUELIMIT(NO|S-9999)

| MAXQTIME(NO|S-9999)

 INSERVICE(YES)

 SECURITYNAME(name)

| ATTACHSEC(LOCAL)

DEFINE

 SESSIONS(csdname)

 GROUP(groupname)

 CONNECTION(sysidnt)

 PROTOCOL(LU61)

 RECEIVEPFX(prefix1)

 RECEIVECOUNT(number1)

 SENDPFX(prefix2)

 SENDCOUNT(number2)

 SENDSIZE(size)

 RECEIVESIZE(size)

 SESSPRIORITY(number)

 AUTOCONNECT(NO|YES|ALL)

 INSERVICE(YES)

 BUILDCHAIN(YES)

 IOAREALEN(value)

Figure 36. Defining an LUTYPE6.1 Link

140 CICS for MVS/ESA Intercommunication Guide

Defining compatible CICS LUTYPE6.1 nodes
When you are defining an LUTYPE6.1 link between two CICS systems, you must
ensure that the definitions of the link in each of the systems are compatible.

The compatibility requirements are shown in Figure 37.

 CICSA CICSB
 DFHSIT TYPE=CSECT

 DFHSIT TYPE=CSECT

 ,APPLID=CICSA ───1───┐

 ├───5─── ,APPLID=CICSB

 │

 DEFINE │

 CONNECTION(CICB) ───2───┤ DEFINE

 ├───8─── CONNECTION(CICA)

 GROUP(PRODSYS) ───3───┤

 ├───9─── GROUP(TESTSYS)

 NETNAME(CICSB) ───5───┤

 ├───1─── NETNAME(CICSA)

 ACCESSMETHOD(VTAM) │

 │ ACCESSMETHOD(VTAM)

 PROTOCOL(LU61) ───4───┤

 ├───4─── PROTOCOL(LU61)

| QUEUELIMIT(5SS) │

| MAXQTIME(5SS) │

| │ QUEUELIMIT(NO)

 SECURITYNAME(OPA) │

 │ SECURITYNAME(OPB)

| ATTACHSEC(LOCAL) │ ATTACHSEC(LOCAL)

 │

 DEFINE │

 SESSIONS(SESSS1) │ DEFINE

 │ SESSIONS(SESSS2)

 GROUP(PRODSYS) ───3───┤

 ├───9─── GROUP(TESTSYS)

 CONNECTION(CICB) ───2───┤

 ├───8─── CONNECTION(CICA)

 PROTOCOL(LU61) ───4───┤

 ├───4─── PROTOCOL(LU61)

 RECEIVEPFX(TR) │

 │ RECEIVEPFX(PR)

 RECEIVECOUNT(8) ───6───┤

 ├───7─── RECEIVECOUNT(1S)

 SENDPFX(TS) │

 │ SENDPFX(PS)

 SENDCOUNT(1S) ───7───┤

 ├───6─── SENDCOUNT(8)

 RECEIVESIZE(jjj) ───1S───┤

 ├──1S─── SENDSIZE(jjj)

 SENDSIZE(kkk) ───11───┤

 └──11─── RECEIVESIZE(kkk)

Figure 37. Defining compatible CICS LUTYPE6.1 ISC nodes

In Figure 37, related attributes are shown by the numbered paths, all of which pass
through the central connecting line.

Note: If the value specified for SENDSIZE on one side of the link does not match
that specified for RECEIVESIZE on the other, CICS negotiates the values at BIND
time.

 Chapter 14. Defining links to remote systems 141

Defining CICS-to-IMS LUTYPE6.1 links
A link to an IMS system requires a definition of the connection (or system) and a
separate definition of each of the sessions.

Note: This method can also be used for defining CICS-to-CICS links if you require
sessions of differing characteristics. However, you are advised to use APPC links
for CICS-to-CICS communication whenever possible.

The form of definition for individual LUTYPE6.1 sessions is shown in Figure 38.

DEFINE

 CONNECTION(sysidnt)

 GROUP(groupname)

 NETNAME(name)

 ACCESSMETHOD(VTAM)

 PROTOCOL(LU61)

 DATASTREAM(USER|327S|SCS|STRFIELD|LMS)

 RECORDFORMAT(U|VB)

| QUEUELIMIT(NO|S-9999)

| MAXQTIME(NO|S-9999)

 INSERVICE(YES)

 SECURITYNAME(name)

| ATTACHSEC(LOCAL)

Each individual session is then defined as follows:

DEFINE

 SESSIONS(csdname)

 GROUP(groupname)

 CONNECTION(sysidnt)

 SESSNAME(name)

 NETNAMEQ(name)

 PROTOCOL(LU61)

 RECEIVECOUNT(1|S)

 SENDCOUNT(S|1)

 SENDSIZE(size)

 RECEIVESIZE(size)

 SESSPRIORITY(number)

 AUTOCONNECT(NO|YES|ALL)

 BUILDCHAIN(YES)

 IOAREALEN(value)

Figure 38. Defining an LUTYPE6.1 link with individual sessions

Defining compatible CICS and IMS nodes
This section describes the writing of suitable CICS definitions that are compatible
with the corresponding IMS definitions.

An overview of IMS system definition is given in Chapter 12, “Installation
considerations for intersystem communication” on page 101. The relationships
between CICS and IMS definitions are summarized in Figure 39 on page 146.

142 CICS for MVS/ESA Intercommunication Guide

 System names
The network name of the CICS system (its applid) is specified on the APPLID CICS
system initialization parameter. This name must be specified on the NAME

+ operand of the IMS TERMINAL macro that defines the CICS system. For CICS
+ systems that use XRF, the name will be the CICS generic applid. For non-XRF
+ CICS systems, the name will be the single applid specified on the APPLID SIT
+ parameter (see “Generic and specific applids for XRF” on page 163).

| The network name of the IMS system may be specified in various ways:

| � For systems with XRF support, as the USERVAR that is defined in the
| DFSHSBxx member of IMS.PROCLIB.

| � For systems without XRF:

| – on the APPLID operand of the IMS COMM macro

| – as a label on the EXEC statement of the IMS startup job (if APPLID is
| coded as NONE)

| – as a started task name (if APPLID is coded as NONE).

| You must specify the network name of the IMS system on the NETNAME option of
| the CICS DEFINE CONNECTION command that defines the IMS system.

Number of sessions
In IMS, the number of parallel sessions that are required between the CICS and
IMS system must be specified in the SESSION operand of the IMS TERMINAL
macro. Each session is then represented by a SUBPOOL entry in the IMS
VTAMPOOL. In CICS, each of these sessions is represented by an individual
session definition.

 Session names
Each CICS-to-IMS session is uniquely identified by a session-qualifier pair, which is
formed from the CICS name for the session and the IMS name for the session.

The CICS name for the session is specified in the SESSNAME option of the
DEFINE SESSIONS command. For sessions that are to be initiated by IMS, this
name must correspond to the ID parameter of the IMS OPNDST command for the
session. For sessions initiated by CICS, the name is supplied on the CICS
OPNDST command and is saved by IMS.

The IMS name for the session is specified in the NAME operand of the IMS
SUBPOOL macro. You must make the relationship between the session names
explicit by coding this name in the NETNAMEQ option of the corresponding
DEFINE SESSIONS command.

The CICS and the IMS names for a session can be the same, and this approach is
recommended for operational convenience.

Other session parameters
This section lists the remaining options of the DEFINE CONNECTION and DEFINE
SESSIONS commands that are of significance for CICS-to-IMS sessions.

| ATTACHSEC
| Must be specified as LOCAL.

 Chapter 14. Defining links to remote systems 143

BUILDCHAIN(YES)
Specifies that multiple RU chains are to be assembled before being passed to
the application program. A complete chain is passed to the application
program in response to each RECEIVE command, and the application performs
any required deblocking.

BUILDCHAIN(YES) must be specified (or allowed to default) for LUTYPE6.1
sessions.

DATASTREAM(USER)
Must be specified with the value USER or allowed to default.

This option is used only when CICS is communicating with IMS by using the
START command (asynchronous processing). CICS messages generated by
the START command always cause IMS to interpret the data stream profile as
input for component 1.

The data stream profile for distributed transaction processing can be specified
by the application program by means of the DATASTR option of the BUILD
ATTACH command.

| QUEUELIMIT(NO|0-9999)
| Specifies the maximum number of requests permitted to queue for free
| sessions to the remote system. Further information is given in Chapter 26,
| “Intersystem session queue management” on page 261.

| MAXQTIME(NO|0-9999)
| Specifies the maximum time, in seconds, between the queue for sessions to
| the remote system becoming full (that is, reaching the limit specified on
| QUEUELIMIT) and the queue being purged because the remote system is
| unresponsive. Further information is given in Chapter 26, “Intersystem session
| queue management” on page 261.

RECORDFORMAT(U|VB)
Specifies the type of chaining that CICS is to use for transmissions on this
session that are initiated by START commands (asynchronous processing).

Two types of data-handling algorithms are supported between CICS and IMS:

Chained
Messages are sent as SNA chains. The user can use private
blocking and deblocking algorithms. This format corresponds to
RECORDFORMAT(U).

Variable-length variable-blocked records (VLVB)
Messages are sent in variable-length variable-blocked format with a
halfword length field before each record. This format corresponds to
RECORDFORMAT(VB).

The data stream format for distributed transaction processing can be specified
by the application program by means of the RECFM option of the BUILD
ATTACH command.

Additional information on these data formats is given in Chapter 24,
“CICS-to-IMS applications” on page 227.

144 CICS for MVS/ESA Intercommunication Guide

SENDCOUNT and RECEIVECOUNT
Used to specify whether the session is a SEND session or a RECEIVE session.

A SEND session is one in which the local CICS is the secondary and is the
| contention winner. Specify:

| SENDCOUNT(1)

| Allow RECEIVECOUNT to default. Do not specify RECEIVECOUNT(S).

A RECEIVE session is one in which the local CICS is the primary and is the
| contention loser. Specify:

| RECEIVECOUNT(1)

| Allow SENDCOUNT to default. Do not specify SENDCOUNT(S).

SEND sessions are recommended for all CICS-to-IMS sessions.

You need not specify a SENDPFX or a RECEIVEPFX; the name of the session
is taken from the SESSNAME option.

SENDSIZE
Specifies the maximum request unit (RU) size that the remote IMS system can
receive. The equivalent IMS value is specified in the RECANY parameter of
the IMS COMM macro. You must specify a size that is:

� Not less than 256 bytes
� At least the value in the RECANY parameter minus 22 bytes.

 Chapter 14. Defining links to remote systems 145

| CICS IMS
| DFHSIT TYPE=CSECT COMM APPLID=SYSIMS

| ,SYSIDNT=CICL ┌───7─── RECANY=nnn+22

 ,APPLID=SYSCICS ───1───┤ EDTNAME=ISCEDT

 │

 ├───4─── TYPE UNITYPE=LUTYPE6

 │

 DEFINE ├───1─── TERMINAL NAME=SYSCICS

 CONNECTION(IMSR) ───2───┤ SESSION=2

 GROUP(groupname) │ COMPT1=

 NETNAME(SYSIMS) ───3───┤ COMPT2=

| ACCESSMETHOD(VTAM) ├───6─── OUTBUF=mmm

 PROTOCOL(LU61) │

 DATASTREAM(USER) │

| ATTACHSEC(LOCAL) │

 │

 DEFINE │

 SESSIONS(csdname) │

 GROUP(groupname) │ VTAMPOOL

 CONNECTION(IMSR) ───2───┤

 SESSNAME(IMS1) ├───5─── SUBPOOL NAME=CIC1

 NETNAMEQ(CIC1) ───5───┤ NAME CICLT1 COMPT=1

 PROTOCOL(LU61) ───4───┤

 SENDCOUNT(1) │

 SENDSIZE(nnn) ───7───┤ NAME CICLT1A

 RECEIVESIZE(mmm) ───6───┤

 IOAREALEN(nnn,16364) │

 │

 │

 DEFINE ├───8─── SUBPOOL NAME=CIC2

 SESSIONS(csdname) │

 GROUP(groupname) │ NAME CICLT2 COMPT=2

 CONNECTION(IMSR) ───2───┤

 SESSNAME(IMS2) │

 NETNAMEQ(CIC2) ───8───┤

 PROTOCOL(LU61) ───4───┤

SENDCOUNT(1) ├───3─── DFSHSBxx USERVAR=SYSIMS

 SENDSIZE(nnn) ───7───┤

 RECEIVESIZE(mmm) ───6───┘

 IOAREALEN(nnn,16364)

| Note: For SEND sessions, allow RECEIVECOUNT to
| default. For RECEIVE sessions, allow SENDCOUNT to default.

Figure 39. Defining compatible CICS and IMS nodes

Figure 39 shows the relationship between the CICS and IMS definitions of an
intersystem link. Related options and operands are shown by the numbered paths,
all of which pass through the central connecting line.

+ Note: For an example of a VTAM logmode table entry for IMS, see Figure 26 on
+ page 103.

Defining multiple links to an IMS system
You can define more than one intersystem link between a CICS and an IMS
system. This is done by creating two or more CONNECTION definitions (with their
associated SESSION definitions), with the same netname but with different sysidnts
(Figure 40 on page 148). Although all the system definitions resolve to the same
netname, and therefore to the same IMS system, the use of a sysidnt name in
CICS causes CICS to allocate a session from the link with the specified sysidnt.

146 CICS for MVS/ESA Intercommunication Guide

It is recommended that you define up to three links (that is, groups of sessions)
between a CICS and an IMS system, depending upon the application requirements
of your installation:

1. For CICS-initiated distributed transaction processing (synchronous processing).

CICS applications that use the SEND/RECEIVE interface can use the sysidnt of
this group to allocate a session to the remote system. The session is held
(‘busy’) until the conversation is terminated.

2. For CICS-initiated asynchronous processing.

CICS applications that use the START command can name the sysidnt of this
group. CICS uses the first ‘non-busy’ session to ship the start request.

IMS sends a positive response to CICS as soon as it has queued the start
request, so that the session is in use for a relatively short period.
Consequently, the first session in the group shows the heaviest usage, and the
frequency of usage decreases towards the last session in the group.

3. For IMS-initiated asynchronous processing.

This group is also useful as part of the solution to a performance problem that
can arise with CICS-initiated asynchronous processing. An IMS transaction
that is initiated as a result of a START command shipped on a particular
session uses the same session to ship its “reply” START command to CICS.
For the reasons given in (2) above, the CICS START command was probably
shipped on the busiest session and, because the session is busy and CICS is
the contention winner, the replies from IMS may be queuing for a chance to
use the session.

However, facilities exist in IMS for a transaction to alter its default output
session, and a switch to a session in this third group can reduce this sort of
queuing problem.

 Chapter 14. Defining links to remote systems 147

 DFHSIT TYPE=CSECT,

 SYSIDNT=CICL,

 APPLID=SYSCICS

CICS-initiated distributed transaction processing
 DEFINE CONNECTION(IMSA)

 NETNAME(SYSIMS)

 ACCESSMETHOD(VTAM)

 DEFINE SESSIONS(csdname)

 CONNECTION(IMSA)

 SESSNAME(IMS1)

 NETNAMEQ(DTP1)

 PROTOCOL(LU61)

 DEFINE SESSIONS(csdname)

 .

 .

CICS-initiated asynchronous processing
 DEFINE CONNECTION(IMSB)

 NETNAME(SYSIMS)

 ACCESSMETHOD(VTAM)

 DEFINE SESSIONS(csdname)

 CONNECTION(IMSB)

 SESSNAME(IMS1)

 NETNAMEQ(ASP1)

 PROTOCOL(LU61)

 DEFINE SESSIONS(csdname)

 .

 .

IMS-initiated asynchronous processing
 DEFINE CONNECTION(IMSC)

 NETNAME(SYSIMS)

 ACCESSMETHOD(VTAM)

 DEFINE SESSIONS(csdname)

 CONNECTION(IMSC)

 SESSNAME(IMS1)

 NETNAMEQ(IST1)

 PROTOCOL(LU61)

 DEFINE SESSIONS(csdname)

 . .

 . .

Figure 40. Defining multiple links to an IMS node

148 CICS for MVS/ESA Intercommunication Guide

| Indirect links for transaction routing
| In releases prior to CICS/ESA 4.1, indirect links between CICS systems were
| required for transaction routing across intermediate systems. In a CICS/ESA 4.1
| network (that is, a network in which all CICS systems are at release levels later
| than CICS/ESA 3.3), indirect links are only required if you are using non-VTAM
| terminals. Optionally, you can define them for use with VTAM terminals. In a
| mixed-release network, you must still define them, as before, on the pre-CICS/ESA
| 4.1 systems. Indirect links are never used for function-shipping, distributed
| program link, asynchronous processing, or distributed transaction processing.

The following figure shows the concept of an indirect link.

Terminal-owning Intermediate systems Application-owning
region (TOR) region (AOR)

┌─────────────┐ ┌─────────────┐ ┌────────────────┐ ┌────────────────┐

│A │ │B │ │C │ │D │

│ │ │ │ │ │ │ │

│┌───────────┐│ │┌───────────┐│ │ ┌────────────┐ │ │ ┌────────────┐ │

││Transaction││ ││Transaction││ │ │Transaction │ │ │ │Transaction │ │

││defined as ││ ││defined as ││ │ │defined as │ │ │ │defined on │ │

││owned by B ││ ││owned by C ││ │ │owned by D │ │ │ │system D │ │

│└──────┐┌───┘│ │└──────┐┌───┘│ │ └──────┐┌────┘ │ │ └────────────┘ │

│ ││ │ │ ││ │ │ ││ │ │ │

│ ││ │ │ ││ │ │ ││ │ │ │

│ ││ │ │ ││ │ │ ┌───┘└─────────────────────┐ │

│ ││ │ │ ││ │ │ │Direct link Direct link │ │

│ ││ │ │ ││ │ │ │defined to D defined to C│ │

│ ││ │ │ ││ │ │ └───────────────────┐┌─────┘ │

│ ││ │ │ ││ │ │ │ │ ││ │

│ ││ │ │ ┌─────┘└───────────────────┐ │ │ ││ │

│ ││ │ │ │Direct link Direct link │ │ │ ││ │

│ ││ │ │ │defined to C defined to B│ │ │ ││ │

│ ││ │ │ └───────────────────┐┌─────┘ │ │ ││ │

│ ││ │ │ │ │ ││ │ │ ││ │

│ ││ │ │ │ │ ││ │ │ ││ │

│ ││ │ │ │ │ ││ │ │ ││ │

│ ││ │ │ │ │┌───┘└─────────┐│ │┌───┘└─────────┐│

│ ┌─────┘└───────────────────┐ │ ││ Indirect ││ ││ Indirect ││

│ │Direct link Direct link │ │ ││ link defined ││ ││ link defined ││

│ │defined to B defined to A│ │ ││ to A via B ││ ││ to A via C ││

│ └───────────────────┐┌─────┘ │ │└────┐┌────────┘│ │└────┐┌────────┘│

│ │ │ ││ │ │ ││ │ │ ││ │

│ │ │ ││ │ │ ││ │ │ ││ │

│┌───────────┐│ │┌───┘└──────┐│ │ ┌───┘└───────┐ │ │ ┌───┘└───────┐ │

││Terminal or││ ││Terminal or││ │ │Terminal or │ │ │ │Terminal or │ │

││connection ││ ││connection ││ │ │connection │ │ │ │connection │ │

││defined on ││ ││defined as ││ │ │defined as │ │ │ │defined as │ │

││system A ││ ││owned by A ││ │ │owned by A │ │ │ │owned by A │ │

│└───────────┘│ │└───────────┘│ │ └────────────┘ │ │ └────────────┘ │

│ │ │ │ │ │ │ │

└─────────────┘ └─────────────┘ └────────────────┘ └────────────────┘

Figure 41. Indirect links for transaction routing

This figure illustrates a chain of systems (A, B, C, D) linked by MRO or APPC links
(you cannot do transaction routing over LUTYPE6.1 links).

It is assumed that you want to establish a transaction-routing path between a
terminal-owning region A and an application-owning region D. There is no direct
link available between system A and system D, but a path is available via the
intermediate systems B and C.

To enable transaction-routing requests to pass along the path, resource definitions
for both the terminal (which may be an APPC connection) and the transaction must

 Chapter 14. Defining links to remote systems 149

be available in all four systems. The terminal is a local resource in the
terminal-owning system A, and a remote resource in systems B, C, and D.
Similarly, the transaction is a local resource in the transaction-owning system D,
and a remote resource in the systems A, B, and C.

| Why you may want to define indirect links in CICS/ESA 4.1
| As explained in Chapter 15, “Defining remote resources” on page 165, CICS
| systems reference remote terminals by means of a unique identifier that is formed
| from:

| � The applid (netname) of the terminal-owning region
| � The identifier by which the terminal is known on the terminal-owning region.

| For CICS to form the fully-qualified terminal identifier, it must have access to the
| netname of the TOR. In earlier releases of CICS, an indirect link definition had two
| purposes. Where there was no direct link to the TOR, it:

| 1. Supplied the netname of the terminal-owning region.

| 2. Identified the direct link that was the start of the path to the terminal-owning
| region.

| Thus, in Figure 41 on page 149, the indirect link definition in system D provides
| the netname of system A and identifies system C as the next system in the path.
| Similarly, the indirect link definition in system C provides the netname of system A
| and identifies system B as the next system in the path. System B has a direct link
| to system A, and therefore does not require an indirect link.

| In CICS/ESA 4.1, unless you are using non-VTAM terminals, indirect links are
| optional. Different considerations apply, depending on whether you are using
| shippable or hard-coded terminal definitions.

| Shippable terminals
| Indirect links are not necessary to allow terminal definitions to be shipped to an
| AOR across intermediate systems. Each shipped definition contains a pointer
| to the previous system in the transaction routing path (or to an indirect
| connection to the TOR, if one exists). This allows routed transactions to be
| attached, by identifying the netname of the TOR and the path from the AOR to
| the TOR.

| If several paths are available, you can use indirect links to specify the preferred
| path to the TOR.

| Note: Non-VTAM terminals are not shippable.

| Hard-coded terminals
| If you are using VTAM terminals exclusively, indirect links are not required.
| You use the REMOTESYSNET option of the TERMINAL definition (or the
| CONNECTION definition, if the “terminal” is an APPC device) to specify the
| netname of the TOR; and the REMOTESYSTEM option to specify the next
| system in the path to the TOR. If several paths are available, use
| REMOTESYSTEM to specify the next system in the preferred path.

| If you are using non-VTAM terminals, indirect links are required. This is
| because you cannot use RDO to define non-VTAM terminals; the DFHTCT
| TYPE=REMOTE or TYPE=REGION macros used to create the remote
| definitions do not include an equivalent of the REMOTESYSNET option of
| CEDA DEFINE TERMINAL.

150 CICS for MVS/ESA Intercommunication Guide

| Thus, in CICS/ESA 4.1, you may decide to define indirect links:

| � If you are using non-VTAM terminals for transaction routing across intermediate
| systems.

| � To enable you to use existing remote terminal definitions that do not specify the
| REMOTESYSNET option. For example, you may have hundreds of remote
| VTAM terminals defined to a CICS/ESA 3.3 system. If you introduce a new
| CICS/ESA 4.1 back-end system into your network, you may want to copy the
| existing definitions to the CSD of the new system. If the structure of your
| network means that there is no direct link to the TOR, it may be quicker to
| define a single indirect link, rather than change all the copied definitions to
| include the REMOTESYSNET option.

| � To specify the preferred path to the TOR, if more than one exists, and you are
| using shippable terminals.

| Mixed-release networks
| In a mixed-release network, you must continue to define indirect links on the
| pre-CICS/ESA 4.1 systems, as in CICS/ESA 3.3.

| In addition, if a pre-CICS/ESA 4.1 back-end system is directly connected by an
| APPC link to a terminal-owning region that is a member of a VTAM generic
| resource group, you must define, on the back-end system, an indirect link to the
| TOR. The indirect link is required to supply the netname of the TOR. This is
| because the NETNAME option of the APPC CONNECTION definition (for a link to
| a TOR that is a member of a VTAM generic resource group) specifies the generic
| resource name of the TOR; and the CICS/ESA 4.1 methods for obtaining the
| netname from the terminal definition, described above, are not available.

| The INDSYS option of the indirect CONNECTION definition must name the direct
| link to the TOR.

| Resource definition for transaction routing using indirect links
| This section outlines the resource definitions required to establish a
| transaction-routing path between a terminal-owning region SYS01 and an
| application-owning region SYS04 via two intermediate systems SYS02 and SYS03,
| using indirect links.

| The resource definitions required are shown in Figure 42 on page 152.

| Note: For clarity, the figure shows hard-coded remote terminal definitions that do
| not use the REMOTESYSNET option (if REMOTESYSNET had been used, indirect
| links would not be required). Shippable terminals could equally well have been
| used.

 Chapter 14. Defining links to remote systems 151

 SYS.1 │ SYS.2 │ SYS.3 │ SYS.4
 │ │ │

┌──────────────┐ │ ┌──────────────┐ │ ┌──────────────┐ │ ┌──────────────┐

 DFHSIT │ DFHSIT │ DFHSIT │ DFHSIT

 APPLID=SYSS1 │ APPLID=SYSS2 │ APPLID=SYSS3 │ APPLID=SYSS4

 . │ . │ . │ .

└──────────────┘ │ └──────────────┘ │ └──────────────┘ │ └──────────────┘

 │ │ │

 │

Link between SYS.1 and SYS.2 | Link between SYS.3 and SYS.4
┌───┐ │ ┌───┐

│ DEFINE DEFINE │ │ │ DEFINE DEFINE │

│ CONNECTION(NEXT) CONNECTION(PREV) │ │ │ CONNECTION(NEXT) CONNECTION(PREV) │

│ NETNAME(SYSS2) NETNAME(SYSS1) │ │ │ NETNAME(SYSS4) NETNAME(SYSS3) │

│ . . │ │ │ . . │

│ │ │ │ │

│ DEFINE DEFINE │ │ │ DEFINE DEFINE │

│ SESSIONS(csdname) SESSIONS(csdname)│ │ │ SESSIONS(csdname) SESSIONS(csdname)|

│ CONNECTION(NEXT) CONNECTION(PREV) │ │ │ CONNECTION(NEXT) CONNECTION(PREV) │

│ . . │ │ │ . . │

└───┘ │ └───┘

 │ │ │

│ │ │ Indirect link from
│ │ SYS.4 to SYS.1
│ Link between SYS.2 and SYS.3 | routed via SYS.3
│ ┌───┐ │ ┌────────────────┐

 │ │ DEFINE DEFINE │ │ DEFINE

 │ │ CONNECTION(NEXT) CONNECTION(PREV) │ │ CONNECTION(REMT)

 │ │ NETNAME(SYSS3) NETNAME(SYSS2) │ │ NETNAME (SYSS1)

 │ │ . . │ │ ACCESSMETHOD

 │ │ │ │ (INDIRECT)

 │ │ DEFINE DEFINE │ │ INDSYS(PREV)

│ │ SESSIONS(csdname) SESSIONS(csdname)│ │ └────────────────┘

 │ │ CONNECTION(NEXT) CONNECTION(PREV) │ │

 │ │ . . │ │

 │ └───┘ │

 │ │ │

│ │ Indirect link from │

│ │ SYS.3 to SYS.1 │

│ │ routed via SYS.2 │

│ │ ┌─────────────────┐ │

 │ │ DEFINE │

 │ │ CONNECTION(REMT) │

 Note: │ │ NETNAME(SYSS1) │

This figure shows TERMINAL definitions. │ ACCESSMETHOD │

CONNECTION definitions are appropriate │ (INDIRECT) │

when the "terminal" is an APPC device. │ INDSYS(PREV) │

│ │ └─────────────────┘ │

 │ │ │

The terminal │ The terminal │ The terminal │ The terminal
┌─────────────────┐ │ ┌─────────────────┐ │ ┌─────────────────┐ │ ┌─────────────────┐

 DEFINE │ DEFINE │ DEFINE │ DEFINE

 TERMINAL(T42A) │ TERMINAL(T42A) │ TERMINAL(T42A) │ TERMINAL(T42A)

NETNAME(XXXXX) │ REMOTESYSTEM(PREV) │ REMOTESYSTEM(REMT) │ REMOTESYSTEM(REMT)

 TYPETERM(DFHLU2) │ TYPETERM(DFHLU2) │ TYPETERM(DFHLU2) │ TYPETERM(DFHLU2)

 . │ . │ . │ .

└─────────────────┘ │ └─────────────────┘ │ └─────────────────┘ │ └─────────────────┘

 │ │ │

The transaction │ The transaction │ The transaction │ The transaction
┌─────────────────┐ │ ┌─────────────────┐ │ ┌─────────────────┐ │ ┌─────────────────┐

 DEFINE │ DEFINE │ DEFINE | DEFINE

TRANSACTION(TRTN) │ TRANSACTION(TRTN) │ TRANSACTION(TRTN) | TRANSACTION(TRTN)

REMOTESYSTEM(NEXT) │ REMOTESYSTEM(NEXT) │ REMOTESYSTEM(NEXT) | PROGRAM(TRNP)

 . │ . │ . | .

└─────────────────┘ │ └─────────────────┘ │ └─────────────────┘ │ └─────────────────┘

| Figure 42. Defining indirect links for transaction routing. Because the remote terminal
| definitions in SYS04 and SYS03 do not specify the REMOTESYSNET option, indirect links
| are required.

152 CICS for MVS/ESA Intercommunication Guide

Defining the direct links
The direct links between SYS01 and SYS02, SYS02 and SYS03, and SYS03 and
SYS04 are MRO or APPC links defined as described earlier in this chapter.

Defining the indirect links
| Indirect links to the TOR can be defined to some systems in a transaction-routing
| path and not to others, depending on the structure of your network and how you
| have coded your remote terminal definitions. For example, if one of the
| intermediate systems is a CICS/ESA 3.3 system that does not have a direct link to
| the TOR, an indirect link will be required. Indirect links are never required in the
| system to which the terminal-owning region has a direct link.

| In the current example, indirect links are defined in SYS04 and SYS03. The
following rules apply to the definition of an indirect link:

� ACCESSMETHOD must be INDIRECT.

� NETNAME must be the applid of the terminal-owning region.

� INDSYS (meaning indirect system) must name the CONNECTION name of an
MRO or APPC link that is the start of the path to the terminal-owning region.

� No SESSIONS definition is required for the indirect connection; the sessions
that are used are those of the direct link named in the INDSYS option.

Defining the terminal
| The recommended methods for defining remote terminals and connections to a
| CICS/ESA 4.1 system are described in Chapter 15, “Defining remote resources” on
| page 165.

| If shippable terminals are used, no remote terminal definitions are required.

| Figure 42 on page 152 shows hard-coded remote terminal definitions that (as in
| CICS/ESA 3.3) do not specify the REMOTESYSNET option. If you use these:

| � The REMOTESYSTEM (or SYSIDNT) option in the remote terminal or
| connection definition must always name a link to the TOR (that is, a
| CONNECTION definition on which NETNAME specifies the applid of the
| terminal-owning region).

| � The named link must be the direct link to the terminal-owning region, if one
| exists. Otherwise, it must be an indirect link.

Defining the transaction
The definition of remote transactions is described in Chapter 15, “Defining remote
resources” on page 165.

Managing APPC links
The following sections offer advice on managing APPC connections using the
master terminal transaction (CEMT), and the interaction between these commands
and the way these resources have been defined to CICS.

The commands are described under the headings:

� Acquiring the connection
� Controlling and monitoring sessions on the connection

 Chapter 14. Defining links to remote systems 153

� Releasing the connection.

The commands used to achieve these actions are:

� CEMT SET CONNECTION ACQUIRED|RELEASED
� CEMT SET MODENAME AVAILABLE|ACQUIRED|CLOSED

Detailed formats and options of CEMT commands are given in the CICS/ESA
CICS-Supplied Transactions.

The information is mainly about parallel-sessions connections between CICS
systems.

 General information
The operator commands controlling APPC connections cause CICS to execute
many internal processes, some of which involve communication with the partner
systems. The major features of these processes are described on the following
pages but you should note that the processes are sometimes independent of one
another and can be asynchronous. This makes simple descriptions of them
imprecise in some respects. The execution can occasionally be further modified by
independent events occurring in the network, or simultaneous operator activity at
both ends of an APPC connection; these circumstances are more likely when a
component of the network has failed and recovery is in progress. The following
sections explain the normal operation of the commands.

Note: The principles of operation described in these sections also apply to the
EXEC CICS INQUIRE CONNECTION, INQUIRE MODENAME, SET
CONNECTION, and SET MODENAME commands. For programming information

| about these commands, see the CICS/ESA System Programming Reference.

Acquiring a connection
The SET CONNECTION ACQUIRED command causes CICS to establish a
connection with a partner system. The major processes involved in this operation
are:

� Establishing of the two LU services manager sessions in the modegroup
SNASVCMG.

� Initiating of the change-number-of-sessions (CNOS) process by the partner
initiating the connection.

CNOS negotiation is executed (using one of the LU services manager
sessions) to determine the numbers of contention-winner and contention-loser
sessions defined in the connection. The results of the negotiation are reported
in messages DFHZC4900 and DFHZC4901.

� Establishing of the sessions that carry CICS application data.

The following processes, also part of connection establishment, are described in
Part 6, “Recovery and restart” on page 271:

 � Exchanging lognames

� Resolving and reporting synchronization information.

154 CICS for MVS/ESA Intercommunication Guide

Connection status during the acquire process
The status of the connection before and during the acquire process is reported by
the INQUIRE CONNECTION command as follows:

Released Initial state before the SET CONNECTION ACQUIRED command. All
the sessions in the connection are released.

Obtaining Contact has been made with the partner system, and CNOS negotiation
is in progress.

Acquired CNOS negotiation has completed for all modegroups. In this status
CICS has bound the LU services manager sessions in the modegroup
SNASVCMG. Some of the sessions in the user modegroups may also
have been bound, either as a result of the AUTOCONNECT option on
the SESSIONS definition, or to satisfy allocate requests from
applications.

The results of requests for the use of a connection by application programs depend
on the status of the sessions. You can control the status of the sessions with the
AUTOCONNECT option of the SESSIONS definition as described in the following
section.

Effects of the AUTOCONNECT option
The meanings of the AUTOCONNECT option for APPC connections are described
in “The AUTOCONNECT option” on page 134. The effect of the AUTOCONNECT
option of the SESSIONS definition is to control the acquisition of sessions in
modegroups associated with the connection. Each modegroup has its own
AUTOCONNECT option and the setting of this option affects the sessions in the
modegroup as described in Table 7.

When the connection is in ACQUIRED status, the INQUIRE MODENAME
command can be used to determine whether the user sessions have been made
available and activated as required. The binding of user sessions is not completed
instantaneously, and you may have to repeat the command to see the final results
of the process.

CICS can bind contention-winner sessions to satisfy an application request, but not
contention losers. However, it can assign contention-loser sessions to application

Table 7. Effect of AUTOCONNECT on the SESSIONS definition

Setting Effect

YES CNOS negotiation with the partner system is performed for the
modegroup, and all negotiated contention-winner sessions are acquired
when the connection is acquired.

NO CNOS negotiation with the partner system is performed, but no sessions
are acquired. Contention-winner sessions can be bound individually
according to the demands of application programs (for example, when a
program issues an ALLOCATE command), or the SET MODENAME
ACQUIRED command can be used to bind contention-winner sessions.

ALL CNOS negotiation with the partner system is performed for the
modegroup, and all negotiated sessions, contention winners, and
contention losers are acquired when the connection is acquired. This
setting should be necessary only on connections to non-CICS systems.

 Chapter 14. Defining links to remote systems 155

requests if they are already bound. Considerations for binding contention losers
are described in the next section.

Binding contention-loser sessions
Contention-loser sessions on one system are contention-winner sessions on the
partner system, and should be bound by the partner as described above. If you
want all sessions to be bound, you must make sure each side binds its contention
winners.

If the connection is between two CICS systems, specify AUTOCONNECT(YES) on
the SESSIONS definition for each system, or issue CEMT SET MODENAME
ACQUIRED from both systems. If you are linked to a non-CICS system that is
unable to send bind requests, specify AUTOCONNECT(ALL) on your SESSIONS
definition.

If the remote system can send bind requests, find out how you can make it bind its
contention winners so that it does so immediately after the SNASVCMG sessions
have been bound.

The ALLOCATE command, either as an explicit command in your application or as
implied in automatic transaction initiation (ATI), cannot bind contention-loser
sessions, although it can assign them to conversations if they are already bound.

Effects of the MAXIMUM option
The MAXIMUM option of the SESSIONS definition specifies

� The maximum number of sessions that can be supported for the modegroup
� The number of these that are supported as contention winners.

Operation of APPC connections is made easier if the maximum number of sessions
at each end of the connection match, and the number of contention-winner
sessions specified at the two ends add up to this maximum number. If this is done,
CNOS negotiation does not change the numbers specified.

If the specifications at each end of the connection do not match, as has just been
described, the actual values are negotiated by the LU services managers. The
effect of the negotiation on the maximum number of sessions is to adopt the lower
of the two values. An architected algorithm is used to determine the number of
contention winners for each partner, and the results of the negotiation are reported
in messages DFHZC4900 and DFHZC4901.

These results can also be deduced, as shown in Table 8 on page 157, by issuing
a CEMT INQUIRE MODENAME command.

156 CICS for MVS/ESA Intercommunication Guide

To change the MAXIMUM values, release the connection, set it OUTSERVICE,
redefine it with new values, and install it using the CEDA transaction.

Table 8. Data displayed by INQ MODENAME

Display Interpretation

MAXimum The value specified in the sessions definition for this modegroup. This
represents the true number of usable sessions only if it is equal to or
less than the corresponding value displayed on the partner system.

AVAilable Represents the result of the most recent CNOS negotiation for the
number of sessions to be made available and potentially active.

Following the initial CNOS negotiation, it reports the result of the
negotiation of the first value of the MAXIMUM option.

ACTive The number of sessions currently bound.

Controlling sessions with the SET MODENAME commands
The SET MODENAME commands can be used to control the sessions within the
modegroups associated with an APPC connection, without releasing or reacquiring
the connection. The processes executed to accomplish this are:

� CNOS negotiation with the partner system to define the changes that are to
take place.

� Binding or unbinding of the appropriate sessions.

The algorithms used by CICS to negotiate with the partner the numbers of sessions
to be made available are complex, and the numbers of sessions actually acquired
may not match your expectation. The outcome can depend on the following:

� The history of preceding SET MODENAME commands
� The activity in the partner system
� Errors that have caused CICS to place sessions out of service.

Modegroups can normally be controlled with the few simple commands described in
Table 9 on page 158.

 Chapter 14. Defining links to remote systems 157

Table 9. SET MODENAME commands

Command Effect

SET MODENAME ACQUIRED Acquires all negotiated contention-winner sessions.

SET MODENAME CLOSED Negotiates with the partner to reduce the available
number of sessions to zero, releases the sessions,
and prevents any attempt by the partner to
negotiate or activate any sessions in the
modegroup. Only the system issuing the command
can subsequently increase the session count.

| Queued session requests are honored before
| sessions are unbound.

SET MODENAME
AVAIL(maximum) ACQUIRED

If this command is issued when the modegroup is
closed, the sessions are negotiated as if the
connection had been newly acquired, and the
contention-winner sessions are acquired. It can
also be used to rebind sessions that have been lost
due to errors that have caused CICS to place
sessions out of service.

Command scope and restrictions
User modegroups, which are built from CEDA DEFINE SESSIONS (or equivalent
macro) definitions, can be modified by using the SET MODENAME command or by
overtyping the INQUIRE MODENAME display data.

The SNASVCMG modegroup is built from the CONNECTION definition and any
attempts to modify its status with a SET MODENAME command, or by overtyping
the INQUIRE MODENAME display data, are suppressed. It is controlled by the
SET CONNECTION command, or by overtyping the INQUIRE CONNECTION
display data, which also affects associated user modegroups.

CEMT INQUIRE NETNAME, where the netname is the applid of the partner
system, displays the status of all sessions associated with that connection, and can
be useful in error diagnosis. Any attempt to alter the status of these sessions by
overtyping, is suppressed.

You must use the SET|INQ CONNECTION|MODENAME to manage the status of
user sessions and to control negotiation with remote systems.

A change to an APPC connection or modegroup can be requested by an operator
issuing CEMT SET commands or by an application program issuing EXEC CICS
SET commands. It is possible to issue one of these SET commands while a
previous, perhaps contradictory, SET command is still in progress. This is
particularly likely to occur in systems configured with large numbers of parallel
sessions, in which the status of many sessions may be affected by an individual
change to a connection or modegroup. Such overlapping SET commands can
produce unpredictable results. You should therefore ensure that previously issued
SET commands have fully completed before issuing the next SET command.

A similar situation can occur at startup if a SET CONNECTION or SET
MODEGROUP command is issued while sessions are autoconnecting. You should
therefore also ensure that all sessions have finished autoconnecting before issuing
such a SET command.

158 CICS for MVS/ESA Intercommunication Guide

Releasing the connection
The SET CONNECTION RELEASED command causes CICS to quiesce a
connection and release all sessions associated with it. The major processes
involved in this operation are:

� Executing the CNOS process to inform the partner system that the connection
is closing down. The number of available sessions on all modegroups is
reduced to zero.

� Quiescing transaction activity using the connection. This process allows the
completion of transactions that are using sessions and queued ALLOCATE
requests; new requests for session allocation are refused with the SYSIDERR
condition.

� Unbinding of the user and LU services manager sessions.

Connection status during the release process
The following states are reported by the CEMT INQUIRE CONNECTION command
before and during the release process.

Acquired Sessions are acquired; the sessions can be allocated to transactions.

Freeing Release of the connection has been requested and is in progress.

Released All sessions are released.

If you have control over both ends of the connection, or if your partner is unlikely to
issue commands that conflict with yours, you can use SET CONNECTION
RELEASED to quiesce activity on the connection. When the connection is in the
RELEASED state, SET CONNECTION OUTSERVICE can be used to prevent any
attempt by the partner to reacquire the connection.

If you do not have control over both ends of the connection, you should use the
sequence of commands described in “Making the connection unavailable” on
page 160.

The effects of limited resources
If an APPC connection traverses nonleased links (such as Dial, ISDN, X.25, X.21,
or Token Ring links) to communicate to remote systems, the links can be defined
within the network as limited resources. CICS recognizes this definition and
automatically unbinds the sessions as soon as no transactions require them. If
new transactions are invoked that require the connections, CICS binds the
appropriate number of sessions. The connection status is shown by the CEMT
INQUIRE CONNECTION command as follows:

Acquired Some of the sessions in the connection are bound, and are probably in
use. The LU services manager sessions in modegroup SNASVCMG
may be unbound.

Available The connection has been acquired, but there are no transactions that
currently require the use of the connection. All the sessions have been
unbound because they are defined in the network as limited resources.

The connection behaves in other ways exactly as for a connection over
non-limited-resource links. The SET MODENAME and SET CONNECTION
RELEASED commands operate normally.

 Chapter 14. Defining links to remote systems 159

Making the connection unavailable
The SET CONNECTION RELEASED command quiesces transactions using the
connection and releases the connection. It cannot, on its own, prevent
reacquisition of the connection from the partner system. To prevent your partner
from reacquiring the connection, you must execute a sequence of commands. The
choice of command sequence determines the status the connection adopts and
how it responds to further commands from either partner.

If the number of available sessions for every modegroup of a connection is reduced
to zero (by, for example, a CEMT SET MODENAME AVAILABLE(0) command),
ALLOCATE requests are rejected. Transaction routing and function shipping
requests are also rejected. The connection is effectively unavailable. However,
because the remote system can renegotiate the availability of sessions and cause
those sessions to be bound, you cannot be sure that this state will be held.

To prevent your partner from acquiring sessions that you have made unavailable,
use the CEMT SET MODENAME CLOSED command. This reduces the number of
available user sessions in the modegroup to zero and also locks the modegroup.
Even if your partner now issues SET CONNECTION RELEASED followed by SET
CONNECTION ACQUIRED, no sessions in the locked modegroup become bound
until you specify an AVAILABLE value greater than zero.

If you lock all the modegroups, you make the connection unavailable, because the
remote system can neither bind sessions nor do anything to change the state.

Having closed all the modegroups for a connection, you can go a step further by
issuing CEMT SET CONNECTION RELEASED. This unbinds the SNASVCMG (LU
services manager) sessions. An inquiry on the CONNECTION returns INSERVICE
RELEASED (or INSERVICE FREEING if the release process is not complete).

If you now enter SET CONNECTION ACQUIRED, you free all locked modegroups
and the connection is fully established. If, instead, your partner issues the same
command, only the SNASVCMG sessions are bound.

You can prevent your partner from binding the SNASVCMG sessions by invoking
CEMT SET CONNECTION OUTSERVICE, which is ignored unless the connection
is already in the RELEASED state.

160 CICS for MVS/ESA Intercommunication Guide

To summarize, you can make a connection unavailable and retain it under your
control by issuing these commands in the order shown:

CEMT SET MODENAME(?) CONNECTION(....) CLOSED

[The CONNECTION option is significant only if
the MODENAME applies to more than one

 connection.]

INQ MODENAME(?) CONNECTION(....)

[Repeat this command until the AVAILABLE count
for all non-SNASVCMG modegroups becomes zero.]

SET CONNECTION(....) RELEASED

 INQ CONNECTION(....)
[Repeat this command until the RELEASED status

 is displayed.]

SET CONNECTION(....) OUTSERVICE

Figure 43. Making the connection unavailable

Allocating from APPC mode groups with no available sessions
An application program can issue ALLOCATE commands for APPC sessions that
can be satisfied in either of two ways:

1. Only by a session in a particular mode group

2. By a session in any mode group on the connection.

An operator can issue CEMT SET MODENAME AVAILABLE(0) or CEMT SET
MODENAME CLOSE to reduce the number of available sessions on an individual
mode group to zero.

If an ALLOCATE for a particular mode group is issued when that mode group has
no available sessions, the command is immediately rejected with the SYSIDERR
condition.

If an ALLOCATE command is issued without specifying a particular mode group,
and no mode groups on the connection have any sessions available, this command
is immediately rejected with the SYSIDERR condition.

If a relevant mode group is still draining when an allocate request is received, the
allocate is satisfied and added to the drain queue. An operator command to reduce
the number of available sessions to zero does not complete until draining
completes. In a very busy system allocating many sessions, this may mean that
such modegroup operator commands take a long time to complete.

 Chapter 14. Defining links to remote systems 161

Diagnosing and correcting error conditions
User sessions that have become unavailable because of earlier failures can be
brought back into use by restoring or increasing the available count with the SET
MODENAME AVAILABLE(n) command. The addition of the ACQUIRED option to
this command will result in the binding of any unbound contention-winner sessions.

If the SNASVCMG sessions become unbound while user sessions are active, the
connection is still acquired. A SET CONNECTION ACQUIRED command binds all
contention-winner sessions in all modegroups, and may be sufficient to reestablish
the SNASVCMG sessions.

Sometimes, you may not be able to recover sessions, although the original cause
of failure has been removed. Under these circumstances, you should first release,
then reacquire, the connection.

 Summary
Figure 44 summarizes the effect of CEMT commands on the status of an APPC
link.

Command scope and restrictions
User modesets, which are built from CEDA DEFINE SESSIONS definitions, may be
modified by using the SET MODENAME command or by overtyping the INQUIRE
MODENAME display data. The SNASVCMG modeset, on the other hand, is built
from the CONNECTION definition and any attempts to modify its status with a SET
or INQUIRE MODENAME command is suppressed. It is, however, controlled by
the SET|INQ CONNECTION, which also affects the user modesets.

CEMT INQUIRE NETNAME, where the netname is the applid of the partner
system, displays the status of all sessions associated with that link. Any attempt to
alter the status of these sessions is suppressed. You must use SET|INQ
CONNECTION|MODENAME to manage the status of user sessions and to control
negotiation with remote systems. INQ NETNAME may also be useful in error
diagnosis.

 ┌──┬──┬──┬──┬──┬──┬──┬──┐

Commands ┌─│1 │1 │1 │ │ │ │ │ │ SET MODENAME AVAILABLE(S)

issued in │ │ │ │ │1 │1 │1 │ │ │ SET MODENAME CLOSED

sequence │ │ │2 │2 │ │2 │2 │1 │1 │ SET CONNECTION RELEASED

shown └─│ │ │3 │ │ │3 │ │2 │ SET CONNECTION OUTSERVICE

│ │ │ │ │ │ │ │ │

 ┌─├──┼──┼──┼──┼──┼──┼──┼──┼────────────────────────────────┐

│ │N │N │N │N │N │N │N │N │ ALLOCATE requests suspended │

 Resulting │ ├──┼──┼──┼──┼──┼──┼──┼──┼────────────────────────────────┤

 states │ │Y │Y │N │N │N │N │Y │N │ Partner can renegotiate │

 and │ ├──┼──┼──┼──┼──┼──┼──┼──┼────────────────────────────────┤

 reactions │ │Y │Y │Y │Y │Y │Y │Y │Y │ ALLOCATE rejected with SYSIDERR│

 │ ├──┼──┼──┼──┼──┼──┼──┼──┼────────────────────────────────┤

│ │N │Y │Y │N │Y │Y │Y │Y │ SNASVCMG sessions released │

 │ ├──┼──┼──┼──┼──┼──┼──┼──┼────────────────────────────────┤

│ │- │Y │N │- │Y │N │Y │N │ Partner can rebind SNASVCMG │

 └─└──┴──┴──┴──┴──┴──┴──┴──┴────────────────────────────────┘

Figure 44. Effect of CEMT commands on an operational APPC link

162 CICS for MVS/ESA Intercommunication Guide

| Generic and specific applids for XRF
| CICS/ESA systems that use XRF have two applid names: a generic name and a
| specific name. The names are specified on the
| APPLID(=generic-applid,specific-applid) system initialization parameter.

| If you are using XRF, you must specify both names on the APPLID parameter.
| This is because the active and alternate CICS systems must have the same
| generic applid and different specific applids.

| Note: The active and alternate systems that have the same generic applid must
| also have the same sysidnt. For further information about generic and specific
| applids, see the CICS/ESA 3.3 XRF Guide.

| Important

| Do not confuse the term “generic applid” with “generic resource name”.

| Remember that “generic” and “specific” applids apply only to systems that use
| XRF; CICS systems that don’t use XRF have only one applid.

| For XRF, a CICS system’s generic applid is defined on the APPLID system
| initialization parameter and is the name by which CICS is known in the network.
| (That is, it is the name quoted by remote CICS systems, on the NETNAME
| option of CONNECTION definitions, to identify this CICS.)

| A CICS system’s specific applid is used to distinguish between the pair of XRF
| systems. It is the name quoted on a VTAM APPL statement, to identify this
| CICS to VTAM.

| A CICS system’s generic resource name is defined on the GRNAME system
| initialization parameter, and enables CICS to become a member of a VTAM
| generic resource group. See Chapter 13, “Installation considerations for VTAM
| generic resources” on page 109.

| Note, in particular, that:

| � You cannot use both VTAM generic resources and XRF.

| � If you use VTAM generic resources, you should specify only one name on
| the APPLID system initialization parameter.

 Chapter 14. Defining links to remote systems 163

164 CICS for MVS/ESA Intercommunication Guide

Chapter 15. Defining remote resources

| Note: This chapter contains guidance information about identifying and defining
| remote resources. For detailed information about the macros and commands used
| to define CICS resources, you should refer to the CICS/ESA Resource Definition
| Guide.

Remote resources are resources that reside on a remote system but which need to
be accessed by the local CICS system. In general, you have to define all these
resources in your local CICS system, in much the same way as you define your
local resources, by using CICS resource definition online (RDO) or resource
definition macros, depending on the resource type.

You may need to define remote resources for CICS function shipping, DPL,
+ asynchronous processing (START command shipping), and transaction routing. No
+ remote resource definition is required for distributed transaction processing, nor for
+ link requests to CICS programs made via the external CICS interface or DCE
+ remote procedure calls16.

The remote resources that can be defined are:

� Remote files (function shipping)
� Remote DL/I PSBs (function shipping)
� Remote transient data destinations (function shipping)
� Remote temporary storage queues (function shipping)
� Remote programs for distributed program link (DPL)
� Remote terminals (transaction routing)
� Remote APPC connections (transaction routing)
� Remote transactions (transaction routing and asynchronous processing).

All remote resources must, of course, also be defined on the systems that own
them.

| A note on “daisy-chaining”
| The descriptions of how to define remote resources in this chapter usually assume
| that there is a direct link between the local CICS and that on which the remote
| resource resides. In fact, in all types of CICS intercommunication, the local and
| remote systems need not be directly connected. A request for a remote resource
| can be “daisy-chained” across CICS systems by defining the resource as remote in
| each intermediate system, as well as (where necessary) in the local system.

| 16 But see “A note on “daisy-chaining””.

 Copyright IBM Corp. 1977, 1997 165

Local and remote names for resources
CICS resources are usually referred to by name: a file name for a file, a data
identifier for a temporary storage queue, and so on. When you are defining remote
resources, you must consider both the name of the resource on the remote system
and the name by which it is known in the local system.

CICS definitions for remote resources all have a REMOTENAME option
(RMTNAME on macro-level definitions) to enable you to specify the name by which
the resource is known on the remote system. If you omit this option, CICS
assumes that the local and remote names of the resource are identical.

Local and remote resource naming is illustrated in Figure 45.

 CICSA CICSB
 (Local System) (Remote System)

 DFHSIT TYPE=

 DFHSIT TYPE=

 ,APPLID=CICSA ───1───┐

 ├───3─── ,APPLID=CICSB

 │

 DEFINE CONNECTION(CICR) ───2───┤

 NETNAME(CICSB) ───3───┤

 │ DEFINE CONNECTION(CICL)

 ├───1─── NETNAME(CICSA)

 │

 │

├───4─── DEFINE FILE(FILEA)

 DEFINE FILE(FILEA) ───4───┤

 REMOTESYSTEM(CICR) ───2───┤

 │

 DEFINE FILE(FILEB) │

 │

├───5─── DEFINE FILE(FILEB)

 DEFINE FILE(local-name) │

 REMOTESYSTEM(CICR) ───2───┤

 REMOTENNAME(FILEB) ───5───┘

Figure 45. Local and remote resource names

Figure 45 illustrates the relationship between local and remote resource names. It
shows two files, FILEA and FILEB, which are owned by a remote CICS system
(CICSB), together with their definitions as remote resources in the local CICS
system CICSA.

FILEA has the same name on both systems, so that a reference to FILEA on either
system means the same file.

FILEB is provided with a local name on the local system, so that the file is referred
to by its local name in the local system and by FILEB on the remote system. The
“real” name of the remote file is specified in the REMOTENAME option. Note that
CICSA can also own a local file called FILEB.

In naming remote resources, be careful not to create problems for yourself. You
could, for instance, in Figure 45, define FILEA in CICSB with
REMOTESYSTEM(CICL). If you did that, CICS would recursively reship any
request for FILEA until all available sessions had been allocated.

166 CICS for MVS/ESA Intercommunication Guide

CICS function shipping
The remote resources that you may have to define if you are using CICS function
shipping are:

 � Remote files
� Remote DL/I PSBs
� Remote transient data destinations
� Remote temporary storage queues.

Defining remote files
A remote file is a file that resides on another CICS system. CICS file control
requests that are made against a remote file are shipped to the remote system by
means of CICS function shipping.

| Applications can be designed to access files without being aware of their location.
| To support this facility, the remote file must be defined (with the REMOTESYSTEM
| option) in the local system.

| Alternatively, CICS application programs can name a remote system explicitly on
file control requests, by means of the SYSID option. If this is done, there is no
need for the remote file to be defined on the local CICS system.

A remote file can be defined using a DFHFCT TYPE=REMOTE macro or, for
VSAM files, using RDO. The definitions shown below provide CICS with sufficient
information to enable it to ship file control requests to a specified remote system.

Resource definition online Macro-level definition

DEFINE DFHFCT TYPE=REMOTE

 FILE(name) ,FILE=name

 GROUP(.....)

 DESCRIPTION(......)

 Remote Attributes

 REMOTESYSTEM(name) ,SYSIDNT=name

 REMOTENAME(name) [,RMTNAME=name]

 RECORDSIZE(record-size) [,LRECL=record-size]

 KEYLENGTH(key-length) [,KEYLEN=key-length]

Figure 46. Defining a remote file (function shipping)

Although MRO is supported for both user-maintained and CICS-maintained remote
data tables, CICS does not allow you to define a local data table based on a
remote source data set. However, there are ways around this restriction. (See
“File control” on page 26.)

The name of the remote system
The name of the remote system to which file control requests for this file are to be

| shipped is specified in the REMOTESYSTEM option. If the name specified is that
| of the local system, the request is not shipped.

 Chapter 15. Defining remote resources 167

 File names
The name by which the file is known on the local CICS system is specified in the
FILE option. This is the name that is used in file control requests by application
programs in the local system.

The name by which the file is known on the remote CICS system is specified in the
REMOTENAME option. This is the name that is used in file control requests that
are shipped by CICS to the remote system.

If the name of the file is to be the same on both the local and the remote systems,
the REMOTENAME option need not be specified.

 Record lengths
The record length of a remote file can be specified in the RECORDSIZE option.

| If your installation uses C/370, you should specify the record length for any file that
has fixed-length records.

In all other cases, the record length either is a mandatory option on file control
commands or can be deduced by the command-language translator.

| Sharing file definitions
| In some circumstances, two or more CICS systems can share a common CICS
| system definition (CSD) file. (For information about sharing a CSD, see the
| CICS/ESA System Definition Guide.) If the local and remote systems share a CSD,
| you need define each VSAM file used in function shipping only once.

| A file must be fully defined by means of DEFINE FILE, just like a local file
| definition. In addition, the REMOTESYSTEM option must specify the sysidnt of the
| file-owning region. When such a file is installed on the file-owning region, a full,
| local, file definition is built. On any other system, a remote file definition is built.

Defining remote DL/I PSBs with CICS/ESA
To enable the local CICS system to access remote DL/I databases, you must
define the remote PSBs in the local PSB directory (PDIR). The form of macro used
for this purpose is:

DFHDLPSB TYPE=ENTRY

 ,PSB=psbname

 ,SYSIDNT=name

 ,MXSSASZ=value

 [,RMTNAME=name]

Figure 47. Macro for defining remote DL/I PSBs

This entry refers to a PSB that is known to IMS/ESA DM on the system identified
by the SYSIDNT option.

A database descriptor (DBD) entry in the local CICS DMB directory (DDIR) is not
required if the DBD resides on a remote system.

168 CICS for MVS/ESA Intercommunication Guide

If there are no local DL/I databases on your CICS/ESA system, all the entries in
the PDIR are defined as remote by inclusion of the SYSIDNT operand. In this
case, a DDIR is not required.

Defining remote transient data destinations
A remote transient data destination is one that resides on another CICS system.
CICS transient data requests that are made against a remote destination are
shipped to the remote system by CICS function shipping.

CICS application programs can name a remote system explicitly on transient data
requests, by using the SYSID option. If this is done, there is no need for the
remote transient data destination to be defined on the local CICS system.

More generally, however, applications are designed to access transient data
destinations without being aware of their location, and in this case the remote
destination must be defined in the local destination control table.

A remote entry in the destination control table provides CICS with sufficient
information to enable it to ship transient data requests to a specified remote
system. It is defined by a DFHDCT TYPE=REMOTE resource definition macro.
The format of this macro is shown in Figure 48.

DFHDCT TYPE=REMOTE

 ,DESTID=name

 ,SYSIDNT=name

 [,LENGTH=length]

 [,RMTNAME=name]

Figure 48. Macro for defining remote transient data destinations

Defining remote temporary storage queues
A remote temporary storage queue is one that resides on another CICS system.
CICS temporary storage requests that are made against a remote queue are
shipped to the remote system by CICS function shipping.

CICS application programs can name a remote system explicitly on temporary
storage requests, by using the SYSID option. If this is done, there is no need for
the remote temporary storage queue to be defined on the local CICS system.

| More generally, however, applications are designed to access temporary storage
| queues without being aware of their location. Whether or not the SYSID option has
| been coded on the temporary storage request, you could use an XTSEREQ global
| user exit program to direct the request to a system on which the appropriate queue
| is defined. If you use this method, there is again no need for the remote temporary
| storage queue to be defined on the local system. For programming information
| about the XTSEREQ and XTSEREQC global user exits, see the CICS/ESA
| Customization Guide.

| If the temporary storage request does not explicitly name the remote system, and
| you are not using an XTSEREQ exit, then the remote destination must be defined
| in the local temporary storage table.

 Chapter 15. Defining remote resources 169

A remote entry in the temporary storage table provides CICS with sufficient
information to enable it to ship temporary storage requests to a specified remote
system. It is defined by a DFHTST TYPE=REMOTE resource definition macro.
The format of this macro is shown in Figure 49.

DFHTST TYPE=REMOTE

 ,SYSIDNT=name

 ,DATAID=character-string

 [,RMTNAME=character-string]

Figure 49. Macro for defining remote temporary storage queues

CICS distributed program link (DPL)
You may have to define remote server programs if you are using CICS DPL. A
remote server program is a program that resides on another CICS system. CICS
program-control LINK requests that are made against a remote program are
shipped to the remote system by means of CICS DPL.

Applications can be designed to link to programs without being aware of their
location. To support this facility, the remote programs must be defined (with the
REMOTESYSTEM option) in the local system.

Alternatively, the client programs can name a remote system explicitly on
program-control LINK requests, by means of the SYSID option. If this is done,
there is no need for the remote server program to be defined on the local CICS
system.

Defining remote server programs
A remote server program can be defined using the CEDA transaction. The
definitions shown below provide CICS with sufficient information to enable it to ship
DPL requests to a specified remote system.

DEFINE

 PROGRAM(name)

 GROUP(.....)

 DESCRIPTION(......)

 Remote Attributes

 REMOTESYSTEM(name)

 REMOTENAME(name)

 TRANSID(name)

Figure 50. Defining a remote program (DPL)

The name of the remote system
The name of the server system to which LINK requests for this program are to be
shipped is specified in the REMOTESYSTEM option.

170 CICS for MVS/ESA Intercommunication Guide

 Program names
The name by which the server program is known on the local CICS system is
specified in the PROGRAM option. This is the name that is used in LINK requests
by client programs in the local system.

The name by which the server program is known on the remote CICS system is
specified in the REMOTENAME option. This is the name that is used in LINK
requests that are shipped by CICS to the remote system.

If the name of the server program is to be the same on both the local and the
remote systems, the REMOTENAME option need not be specified.

 Transaction names
It is possible to use the program resource definition to specify the name of the
mirror transaction under which the program, when used as a DPL server, is to run.
The TRANSID option is used for this purpose.

| Using autoinstall
| As an alternative to being statically defined in the client system, the remote server
| program can be autoinstalled when a DPL request for it is first issued. If you use
| this method, you need to write an autoinstall user program to supply the name of
| the remote system. (For details of the CICS autoinstall facility for programs, see
| the CICS/ESA Resource Definition Guide. For programming information about
| writing program-autoinstall user programs, see the CICS/ESA Customization
| Guide.)

 Asynchronous processing
The only remote resource definitions needed for asynchronous processing are for
transactions that are named in the TRANSID option of START commands.

Note, however, that an application can use the CICS RETRIEVE command to
obtain the name of a remote temporary-storage queue which it subsequently names
in a function shipping request.

Defining remote transactions
A remote transaction for CICS asynchronous processing is a transaction that is
owned by another system and is invoked from the local CICS system only by
START commands.

CICS application programs can name a remote system explicitly on START
commands, by means of the SYSID option. If this is done, there is no need for the
remote transaction to be defined on the local CICS system.

More generally, however, applications are designed to start transactions without
being aware of their location, and in this case an installed transaction definition for
the transaction must be available.

Note: If the transaction is owned by another CICS system and may be invoked by
CICS transaction routing as well as by START commands, you must define the
transaction for transaction routing.

 Chapter 15. Defining remote resources 171

Remote transactions that are invoked only by START commands without the
SYSID option require only basic information in the installed transaction definition.
The form of resource definition used for this purpose is shown in Figure 51.

DEFINE

 TRANSACTION(name)

 GROUP(groupname)

 Remote attributes

 REMOTESYSTEM(sysidnt)

 REMOTENAME(name)

 LOCALQ(NO|YES)

Figure 51. Defining a remote transaction (asynchronous processing)

Local queuing (LOCALQ) can be specified for remote transactions that are initiated
by START requests. For further details, see Chapter 8, “Asynchronous processing”
on page 55.

Restriction on the REMOTENAME option
Some asynchronous-processing requests are for processes that involve transaction
routing. One example is a START command to attach a remote transaction on a
local terminal. To support such requests, the value of the REMOTENAME option
and the transaction name must be the same on the local resource definition of the
transaction to be started. If they are different, the requested transaction does not
start, and the message DFHCR4310 is sent to the CSMT transient-data queue in
the requesting system.

CICS transaction routing
CICS transaction routing enables a “terminal” that is owned by one CICS system
(the terminal-owning region) to be connected to a transaction that is owned by
another CICS system (the application-owning region). The terminal- and
application-owning regions must be connected either by MRO or by an APPC link.

Most of the terminal and session types supported by CICS are eligible for
transaction routing. However, the following terminals are not eligible, and cannot
be defined as remote resources:

� LUTYPE6.1 connections and sessions
� MRO connections and sessions
� Pooled TCAM terminals
� IBM 7770 or 2260 terminals
� Pooled 3600 or 3650 pipeline logical units
� MVS system consoles.

172 CICS for MVS/ESA Intercommunication Guide

Both the terminal and the transaction must be defined in both CICS systems, as
follows:

1. In the terminal-owning region:

a. The terminal must be defined as a local resource (or must be
autoinstallable).

b. The transaction must be defined as a remote resource if it is to be initiated
from a terminal or by ATI.

2. In the application-owning region:

a. The terminal must be defined as a remote resource (unless a shipped
terminal definition will be available; see “Shipping terminal and connection
definitions” on page 175).

b. The transaction must be defined as a local resource.

If transaction routing requests are to be “daisy-chained” across intermediate
systems, the rules that have just been stated still apply. In addition, both the
terminal and the transaction must be defined as remote resources in the

| intermediate CICS systems. If you are using non-VTAM terminals, you also need
| to define indirect links to the TOR on the AOR and the intermediate systems (see
| “Indirect links for transaction routing” on page 149).

Transactions are defined by resource definition online (RDO).

VTAM terminals are also defined by RDO, but for non-VTAM terminals you must
use macro-level definition.

Defining remote VTAM terminals
This section tells you how to define remote VTAM terminals using RDO. However,
you do not have to define the terminal on the application-owning region. Instead,
you can arrange for a suitable definition to be shipped from the terminal-owning
region when it is required. This method is described in “Shipping terminal and
connection definitions” on page 175.

| Remote VTAM terminals are defined by means of a DEFINE TERMINAL command
| on which:

| � The REMOTESYSNET option specifies the netname (applid) of the TOR. This
| enables CICS to form the fully-qualified identifier of the remote terminal, even
| where there is no direct link to the TOR. (See “Local and remote names for
| terminals” on page 182.)

| � The REMOTESYSTEM option specifies the name of the next link in the path to
| the TOR. If there is more than one possible path to the TOR, use
| REMOTESYSTEM to specify the next link in the preferred path.

| If REMOTESYSTEM names a direct link to the TOR, normally you do not need
| to specify REMOTESYSNET. However, if the direct link is an APPC
| connection to a TOR that is a member of a VTAM generic resource group, you
| do need to specify REMOTESYSNET. REMOTESYSNET is needed in this
| case because the NETNAME specified on the CONNECTION definition will be
| the generic resource name of the TOR (not the applid).

 Chapter 15. Defining remote resources 173

Only a few of the various terminal properties need be specified for a remote
terminal definition. They are:

DEFINE

 TERMINAL(trmidnt)

 GROUP(groupname)

Terminal identifiers

 TYPETERM(terminal-type)

| REMOTESYSTEM(sysidnt_of_next_system)

| REMOTESYSNET(netname_of_TOR)

| REMOTENAME(trmidnt_on_TOR)

Figure 52. Defining a remote VTAM terminal (transaction routing)

The TYPETERM referenced by a remote terminal definition can be a CICS-supplied
version for the particular terminal type, or one defined by a DEFINE TYPETERM
command. If you are defining a TYPETERM that will be used only for remote
terminals, you can ignore the session properties, the paging properties, and the
operational properties. You can also ignore BUILDCHAIN in the application
features.

Defining remote APPC connections
Remote single-session APPC terminals can be defined by means of TERMINAL
and TYPETERM definitions, as described for VTAM terminals in the previous
section.

For remote parallel-session APPC systems and devices, you must define a remote
connection, as shown in Figure 53. A SESSIONS definition is not required for a
remote connection.

DEFINE

| CONNECTION(sysidnt_of_device)

| GROUP(groupname)

| Connection identifiers

| NETNAME(netname_of_device)

| Remote attributes

| REMOTESYSTEM(sysidnt_of_next_system)

| REMOTESYSNET(netname_of_TOR)

| REMOTENAME(sysidnt_of_device_on_TOR)

Connection properties

 ACCESSMETHOD(VTAM)

 PROTOCOL(APPC)

Figure 53. Defining a remote APPC connection (transaction routing)

Sharing terminal and connection definitions
| In some circumstances, two or more CICS systems can share a common CICS
| system definition (CSD) file. (For information about sharing a CSD, see the
| CICS/ESA System Definition Guide.) If the local and remote systems share a CSD,
| you need define each terminal and APPC connection only once.

174 CICS for MVS/ESA Intercommunication Guide

A terminal must be fully defined by means of DEFINE TERMINAL, and must have
| an associated TYPETERM definition, just like a local terminal definition. In
| addition:

| � The REMOTESYSNET option should specify the netname of the
| terminal-owning region.

| � The REMOTESYSTEM option should specify the sysidnt by which the
| terminal-owning region knows itself.

When such a terminal is installed on the terminal-owning region, a full, local,
terminal definition is built. On any other system, a remote terminal definition is
built.

Similarly, an APPC connection must be fully defined by means of DEFINE
| CONNECTION, and must have one or more associated SESSIONS definitions. In
| addition, the REMOTESYSNET option should specify the netname of the TOR, and
| the REMOTESYSTEM option the sysidnt by which the TOR knows itself. When

such a connection is installed on the terminal-owning region, a full, local,
connection definition is built. On any other system, a remote connection definition
is built, and the SESSIONS definition is ignored.

| Note: The links you define between systems on the transaction routing path that
| share common terminal (or connection) definitions must be given the same name.
| That is, the CONNECTION definitions must be given the name that you specify on
| the REMOTESYSTEM option of the common TERMINAL definitions.

Shipping terminal and connection definitions
| If you are using VTAM terminals on your terminal-owning region, you can arrange
| for a terminal definition to be shipped from the terminal-owning region to the
| application-owning region whenever it is required. If you use this method, you need

not define the terminal on the application-owning region.

When a remote transaction is invoked from a shippable terminal, the request that is
transmitted to the application-owning region is flagged to show that a shippable

| terminal definition is available. If the application-owning region already has a valid
| definition of the terminal (which may have been shipped previously), it ignores the
| flag. Otherwise, it asks for the definition to be shipped.

Shipped terminal definitions are propagated to the connected CICS system using
the ISC or MRO sessions providing the connection.

+ APAR PN75878

+ Documentation for PN75878 added on 20 December 1995.

+ When a terminal definition is shipped to another region, the TCTUA is also shipped,
+ except where the principal facility is an APPC parallel session. When a routed

transaction terminates, information from the TCTTE and the TCTUA is
communicated back to the region that owns the terminal.

Note: APPC connection definitions and APPC terminal definitions are always
shippable; no special resource definition is required.

| Terminal definitions can be shipped across intermediate systems. If you use
| shippable terminals and there is more than one possible path from the AOR to the

 Chapter 15. Defining remote resources 175

| TOR, you may want to specify the preferred path by defining indirect links to the
| TOR on the AOR and the intermediate systems (see “Indirect links for transaction
| routing” on page 149).

+ When a shipped definition is to be installed on an intermediate or
+ application-owning region, the autoinstall user program is invoked in that region. If
+ the name of the shipped terminal clashes with that of a remote terminal or
+ connection already installed on the region, your autoinstall user program can assign
+ an alias to the shipped terminal. (Terminal aliases are described on page 184.)
+ This might be useful if, for example, you have two or more terminal-owning regions
+ that use similar sets of terminal identifiers, and use transaction routing to the same
+ AOR. For information about writing an autoinstall user program to control the
+ installation of shipped terminals, see the CICS/ESA Customization Guide.

| Shipping terminals for ATI requests
| If you require a transaction that is started by ATI to acquire a remote terminal, you
| normally statically define the terminal to the AOR and any intermediate systems.

For example, specifying a remote terminal in DFHDCT
DESTFAC=(TERMINAL,trmidnt) for an intrapartition transient data queue (see
“Defining intrapartition transient data queues” on page 197) does not cause a
terminal definition to be shipped from the remote system. However, if a shipped
terminal definition has already been received, following a previous transaction
routing request, the terminal is eligible for ATI requests.

Similarly, you normally statically define a remote APPC terminal or connection that
is named in an ALLOCATE command.

| However, if the TOR and AOR are directly connected, CICS does allow you to
| cause terminal definitions to be shipped to the AOR to satisfy ATI requests. If you

enable the user exit XALTENF in the AOR, CICS invokes this exit whenever it
meets a ‘terminal not known’ condition. The program you code has access to
parameters, giving details of the origin and nature of the ATI request. You use
these to decide the identity of the region that owns the terminal definition you want
CICS to ship for you. A similar user exit, XICTENF, is available for start requests
that result from EXEC CICS START.

| Remember that XALTENF and XICTENF can be used to ship terminal
| definitions only if there is a direct link between the TOR and the AOR. See

“Shipping terminals for automatic transaction initiation” on page 72 for more
information.

+ If you function ship ATI requests from a terminal-owning region to the
+ application-owning region, you may need to consider using the FSSTAFF
+ (function-shipped START affinity) system initialization parameter. See “Shipping
+ terminals for ATI from multiple TORs” on page 76 for more details.

Defining terminals as shippable
To make a terminal definition eligible for shipping, you must associate it with a
TYPETERM that specifies SHIPPABLE(YES):

176 CICS for MVS/ESA Intercommunication Guide

DEFINE

 TERMINAL(trmidnt)

 GROUP(groupname)

 AUTINSTMODEL(YES|NO|ONLY)

 AUTINSTNAME(name)

 TYPETERM(TRTERM1)

 .

 .

DEFINE

 TYPETERM(TRTERM1)

 .

 .

 SHIPPABLE(YES)

Figure 54. Defining a shippable terminal (transaction routing)

| This method can be used for any VTAM terminal. It is particularly efficient if you
| use autoinstall in the TOR. In effect, it gives automatic installation of remote
| terminal definitions. For further information about autoinstall, see the CICS/ESA

Resource Definition Guide. For programming information about the autoinstall user
program for terminals, see the CICS/ESA Customization Guide.

| Terminal definitions that have been shipped to an application-owning region
| eventually become redundant, and must be deleted from the AOR (and from any
| intermediate systems between the TOR and AOR). For information about this, see
| Chapter 27, “Efficient deletion of shipped terminal definitions” on page 265.

Defining remote non-VTAM terminals
A remote non-VTAM terminal requires a full terminal control table entry in the
remote system (TOR), and a terminal control table entry in the local system (AOR)
that contains sufficient information about the terminal to enable CICS to perform the
transaction routing. Data set control information and line information is not required
for the definition of a remote terminal.

| Non-VTAM terminal definitions are not shippable.

With resource definition macros, you can define remote terminals in either of two
ways:

� By means of DFHTCT TYPE=REMOTE macros

� By means of normal DFHTCT TYPE=TERMINAL macros preceded by a
DFHTCT TYPE=REGION macro.

The choice of a method is largely a matter of convenience in the particular
circumstances. Both methods allow the same terminal definitions to be used to
generate the required entries in both the local and the remote system.

Note: CICS/ESA 4.1 does not support the telecommunication access method
BTAM. However, BTAM terminals can use transaction routing from a TOR that
runs an earlier CICS release to gain access to a CICS/ESA 4.1 system in the
AOR. It follows from this that BTAM terminals can only be defined as remote in a
CICS/ESA 4.1 system. For information about how to define remote BTAM
terminals, refer to the manuals for the earlier CICS release.

 Chapter 15. Defining remote resources 177

Definition using DFHTCT TYPE=REMOTE
The format of the DFHTCT TYPE=REMOTE macro is reproduced here for ease of
reference.

DFHTCT TYPE=REMOTE

 ,ACCMETH=access-method

| ,SYSIDNT=name-of-CONNECTION-to-TOR

 ,TRMIDNT=name

 ,TRMTYPE=terminal-type

 [,ALTPGE=(lines,columns)]

 [,ALTSCRN=(lines,columns)]

 [,ALTSFX=number]

 [,DEFSCRN=(lines,columns)]

 [,ERRATT={NO|([LASTLINE][,INTENSIFY]

 [,{BLUE|RED|PINK|GREEN|TURQUOISE|YELLOW

 |NEUTRAL}]

 [,{BLINK|REVERSE|UNDERLINE}])}]

 [,FEATURE=(feature[,feature],...)]

 [,LPLEN={132|value}]

 [,PGESIZE=(lines,columns)]

 [,RMTNAME={name-specified-in-TRMIDNT|name}]

 [,STN298S=number]

 [,TAB298S={1|value}]

 [,TCTUAL=number]

 [,TIOAL={value|(value1,value2)}]

 [,TRMMODL=numbercharacter]

TCAM SNA Only

 [,BMSFEAT=([FMHPARM][,NOROUTE][,NOROUTEALL]

 [,OBFMT][,OBOPID])]

 [,HF={NO|YES}]

 [,LDC={listname|(aa[=nnn],bb[=nnn],cc[=nnn],...)

 [,SESTYPE=session-type]

 [,VF={NO|YES}]

Figure 55. Defining a remote non-VTAM terminal (transaction routing)

| SYSIDNT specifies the name of the connection to the terminal-owning region. If
| there is no direct link to the TOR, SYSIDNT must specify the name of an indirect
| link (see “Indirect links for transaction routing” on page 149).

| Sharing terminal definitions: With the exception of SYSIDNT, the operands of
DFHTCT TYPE=REMOTE form a subset of those that can be specified with
DFHTCT TYPE=TERMINAL. Any of the remaining operands can be specified.
They are ignored unless the SYSIDNT operand names the local system, in which
case the macro becomes equivalent to the DFHTCT TYPE=TERMINAL form.

A single DFHTCT TYPE=REMOTE macro can therefore be used to define the
same terminal in both the local and the remote systems. A typical use of this
method of definition is shown in Figure 56 on page 179.

178 CICS for MVS/ESA Intercommunication Guide

┌──────────────────────────────┬───────────────────────────────┐

│ Local System CICL │ Remote System CICR │

│ AOR │ TOR │

│ │ │

│ DFHSIT TYPE= │ DFHSIT TYPE= │

| │ SYSIDNT=CICL │ SYSIDNT=CICR │

│ │ │

│ DFHTCT TYPE=INITIAL, │ DFHTCT TYPE=INITIAL, │

│ ACCMETH=NONVTAM, │ ACCMETH=NONVTAM, │

│ SYSIDNT=CICL, │ SYSIDNT=CICR, │

│ . │ . │

│ . │ . │

│ │ │

│ │ DFHTCT TYPE=SDSCI │

│ │ DEVICE=TCAM │

│ │ . │

│ │ . │

│ │ DFHTCT TYPE=SDSCI │

│ │ DEVICE=TCAM │

│ │ . │

│ │ . │

│ │ │

│ │ DFHTCT TYPE=LINE │

│ │ . │

│ │ . │

│ │ │

│ DFHTCT TYPE=REMOTE, │ DFHTCT TYPE=REMOTE, │

│ SYSIDNT=CICR, │ SYSIDNT=CICR, │

│ TRMIDNT=aaaa, │ TRMIDNT=aaaa, │

│ TRMTYPE=LUTYPE2, │ TRMTYPE=LUTYPE2, │

│ TRMMODL=2, │ TRMMODL=2, │

│ ALTSCRN=(43,8S) │ ALTSCRN=(43,8S) │

│ . │ . │

│ . │ . │

│ DFHTCT TYPE=FINAL │ DFHTCT TYPE=FINAL │

└──────────────────────────────┴───────────────────────────────┘

Figure 56. Typical use of DFHTCT TYPE=REMOTE macro

In Figure 56, the same terminal definition is used in both the local and the remote
systems.

In the local system, the fact that the terminal sysidnt differs from that of the local
system (specified on the DFHTCT TYPE=INITIAL macro) causes a remote terminal
entry to be built. In the remote system, the fact that the terminal sysidnt is that of
the remote system itself causes the TYPE=REMOTE macro to be treated exactly
as if it were a TYPE=TERMINAL macro.

| Note: For this method to work, the CONNECTION from the local system to the
| remote system must be given the name of the sysidnt by which the remote system
| knows itself (CICR in the example).

The terminal identification is "aaaa" in both systems.

Definition using DFHTCT TYPE=REGION
If you use the DFHTCT TYPE=REGION macro, you can define terminals in the
same way as local terminals, using DFHTCT TYPE=SDSCI, TYPE=LINE, and
TYPE=TERMINAL macros. The definitions must, however, be preceded by a
DFHTCT TYPE=REGION macro, which has the following form:

 Chapter 15. Defining remote resources 179

DFHTCT TYPE=REGION

| ,SYSIDNT={name-of-CONNECTION-to-TOR|LOCAL}

| SYSIDNT specifies the name of the connection to the terminal-owning region. If
| there is no direct link to the TOR, SYSIDNT must specify the name of an indirect
| link (see “Indirect links for transaction routing” on page 149).

| Sharing terminal definitions: If SYSIDNT does not name the local system, only
the information required to build a remote terminal entry is extracted from the
succeeding definitions. DFHTCT TYPE=SDSCI and TYPE=LINE definitions are
ignored. Parameters of TYPE=TERMINAL definitions that are not part of the
TYPE=REMOTE subset are also ignored.

A return to local system definitions is made by using DFHTCT
TYPE=REGION,SYSIDNT=LOCAL.

A typical use of this method of definition is shown in Figure 57 on page 181.

180 CICS for MVS/ESA Intercommunication Guide

┌───────────────────────────────┬────────────────────────────────┐

│ Terminal-Owning Region │Application-Owning Region │

│ │ │

│ DFHTCT TYPE=INITIAL, │ DFHTCT TYPE=INITIAL, │

│ SYSIDNT=TERM, │ SYSIDNT=TRAN, │

│ ACCMETH=NONVTAM │ ACCMETH=NONVTAM │

│ . │ . │

│ │ │

│ │ DFHTCT TYPE=REGION, │

│ │ SYSIDNT=TERM │

│ │ │

│ COPY TERMDEFS │ COPY TERMDEFS │

│ │ │

│ │ DFHTCT TYPE=REGION, │

│ │ SYSIDNT=LOCAL │

│ │ │

│ DFHTCT TYPE=FINAL │ DFHTCT TYPE=FINAL │

│ │ │

├───────────────────────────────┴────────────────────────────────┤

│ │

│ ? TERMDEFS COPYBOOK │

│ │

│ DFHTCT TYPE=SDSCI,DEVICE=TCAM,DSCNAME=R7SIN,DDNAME=R327SIN,│

│ OPTCD=WU,MACRF=R,RECFM=U,BLKSIZE=2S24 │

│ DFHTCT TYPE=SDSCI,DEVICE=TCAM,DSCNAME=R7SOUT, │

│ DDNAME=R327SOUT,OPTCD=WU,MACRF=W,RECFM=U, │

│ BLKSIZE=2S24 │

│ ??? INPUT LINE ??? │

│ DFHTCT TYPE=LINE,ACCMETH=TCAM,NPDELAY=16SSS,INAREAL=2S24, │

│ DSCNAME=R7SIN,TCAMFET=SNA,TRMTYPE=3277,OUTQ=OUTQ7S │

│ DFHTCT TYPE=TERMINAL,TRMIDNT=L7IN,TRMPRTY=32,LASTTRM=LINE, │

│ TIOAL=8S,TRMMODL=2 │

│ ??? OUTPUT LINE ??? │

│ OUTQ7S DFHTCT TYPE=LINE,ACCMETH=TCAM,NPDELAY=16SSS, │ │

│ INAREAL=2S24, DSCNAME=R7SOUT,TCAMFET=SNA, │

│ TRMTYPE=3277 │

│ ? │

│ TRM1 DFHTCT TYPE=TERMINAL,TRMIDNT=L77A,TRMTYPE=LUTYPE2, │

│ TRMMODL=2,CLASS=(CONV,VIDEO),FEATURE=(SELCTPEN, │

│ AUDALARM,UCTRAN),TRMPRTY=1SS,NETNAME=L77A, │

│ TRMSTAT=(TRANSCEIVE),LASTTRM=POOL │

└──┘

Figure 57. Typical use of DFHTCT TYPE=REGION macro

In Figure 57, the same copy book of terminal definitions is used in both the
terminal-owning region and the application-owning region.

In the application-owning region, the fact that the sysidnt specified in the
TYPE=REGION macro differs from the sysidnt specified in the DFHTCT
TYPE=INITIAL macro causes remote terminal entries to be built. Note that,
although the TYPE=SDSCI and TYPE=LINE macros are not expanded in the
application-owning region, any defaults that they imply (for example,
ACCMETH=TCAM) are taken for the TYPE=TERMINAL expansions.

 Chapter 15. Defining remote resources 181

Local and remote names for terminals
CICS uses a unique identifier for every terminal that is involved in transaction

| routing. The identifier is formed from the applid (netname) of the CICS system that
| owns the terminal and the terminal identifier specified in the terminal definition on
| the terminal-owning region.

If, for example, the applid of the CICS system is PRODSYS and the terminal
identifier is L77A, the fully-qualified terminal identifier is PRODSYS.L77A.

| The following rules apply to all forms of hard-coded remote terminal definitions:

| � The definition must enable CICS to access the netname of the terminal-owning
| region. For example, if you are using VTAM terminals and there is no direct
| link to the TOR, you should use the REMOTESYSNET option to provide the
| netname of the TOR.

| If you are using non-VTAM terminals and there is no direct link to the TOR, the
| SYSIDNT operand of the DFHTCT TYPE=REMOTE or TYPE=REGION macro
| must specify the name of an indirect link (on which the NETNAME option
| names the applid of the TOR).

| � The “real” terminal identifier must always be specified, either directly or by
| means of an alias.

| Providing the netname of the TOR
| You must always ensure that the remote terminal definition allows CICS to access
| the netname of the TOR. In the following examples, it is assumed that the applid
| of the terminal-owning region is PRODSYS.

182 CICS for MVS/ESA Intercommunication Guide

| VTAM terminal definition
| DEFINE TERMINAL DEFINE CONNECTION(PD1) Direct link

| REMOTESYSTEM(PD1) NETNAME(PRODSYS) to TOR

| . .

| . .

| VTAM terminal definition
| DEFINE TERMINAL DEFINE CONNECTION(NEXT) No direct

| REMOTESYSTEM(NEXT) NETNAME(INTER1) link to TOR

| REMOTESYSNET(PRODSYS)

| . .

| . .

| Non-VTAM terminal definition
| (method 1)
| DFHTCT TYPE=REMOTE, DEFINE CONNECTION(PD1) Direct link

| SYSIDNT=PD1, NETNAME(PRODSYS) to TOR

| . .

| . .

| Non-VTAM terminal definition
| (method 2)
| DFHTCT TYPE=REGION, DEFINE CONNECTION(PD1) Direct link

| SYSIDNT=PD1 NETNAME(PRODSYS) to TOR

| . .

| . .

| Non-VTAM terminal definition
| (method 1)
| DFHTCT TYPE=REMOTE, DEFINE CONNECTION(REMT) No direct

| SYSIDNT=REMT, NETNAME(PRODSYS) link to TOR

| ACCESSMETHOD(INDIRECT)

| INDSYS(NEXT)

| DFHTCT TYPE=TERMINAL,

| .

| Figure 58. Identifying a terminal-owning region

 Chapter 15. Defining remote resources 183

 Terminal aliases
The name by which a terminal is known in the application-owning region is usually
the same as its name in the terminal-owning region. You can, however, choose to
call the remote terminal by a different name (an alias) in the application-owning
region.

You have to provide an alias if the terminal-owning region and the
application-owning region each own a terminal with the same name; you cannot
have a local terminal definition and a remote terminal definition with the same
name.

If you use an alias, you must also specify the “real” name of the terminal as its
remote name, as follows:

 Terminal-owning Application-owning
 region (TOR) region (AOR)

 ┌──────────────────┐ ┌──────────────────┐

 │ Local terminal │ │ Local terminal │

 │ │ │ │

 │ Trmidnt L77A │ │ Trmidnt L77A │

 └──────────────────┘ └──────────────────┘

 ┌──────────────────┐

│ Remote terminal │

 │ │

│ Trmidnt R77A │

 │ │

│ Remote Name L77A │

 └──────────────────┘

Figure 59. Local and remote names for remote terminals

You specify the remote name in the REMOTENAME option of DEFINE TERMINAL
or the RMTNAME operand of DFHTCT TYPE=REMOTE.

Defining transactions for transaction routing
This section discusses the definition of transactions that may be invoked by
transaction routing.

The general form of the CEDA DEFINE command for a transaction is shown in
Figure 60 on page 185.

184 CICS for MVS/ESA Intercommunication Guide

 DEFINE

 TRANSACTION(name)

 GROUP(groupname)

 PROGRAM(name)

 TWASIZE(S|value)

 PROFILE(DFHCICST|name)

 PARTITIONSET(name)

 STATUS(ENABLED|DISABLED)

| PRIMEDSIZE(SSSSS|value)

| TASKDATALOC(BELOW|ANY)

| TASKDATAKEY(USER|CICS)

| STORAGECLEAR(NO|YES)

| RUNAWAY(SYSTEM|value)

| SHUTDOWN(DISABLED|ENABLED)

| ISOLATE(YES|NO)

REMOTE ATTRIBUTES

 DYNAMIC(NO|YES)

 REMOTESYSTEM(name)

 REMOTENAME(local-name|remote-name)

 TRPROF(DFHCICSS|name)

 LOCALQ(NO|YES)

SCHEDULING

 PRIORITY(1|value)

 TCLASS(NO|value)

| TRANCLASS(DFHTLCSS|name)

ALIASES

 ALIAS(name)

 TASKREQ(value)

 XTRANID(value)

| TPNAME(name)

| XTPNAME(name)

RECOVERY

 DTIMOUT(NO|value)

 INDOUBT(BACKOUT|COMMIT|WAIT)

 RESTART(NO|YES)

 SPURGE(NO|YES)

 TPURGE(NO|YES)

 DUMP(YES|NO)

 TRACE(YES|NO)

| SECURITY

| RESSEC(NO|YES)

| CMDSEC(NO|YES)

| EXTSEC(NO|YES)

| TRANSEC(S1|value)

| RSL(SS|value|Public)

Figure 60. The CEDA DEFINE TRANSACTION options

The way in which a transaction is selected for local or remote execution is
determined by the remote attributes that are specified in the transaction definition.
There are three possible cases:

| 1. The remote attributes specify DYNAMIC(NO), and the REMOTESYSTEM name
| is either blank or the sysid of the local system.

In this case, the transaction is always executed locally, and transaction routing
is not involved.

| 2. The remote attributes specify DYNAMIC(NO), and the REMOTESYSTEM name
| differs from the sysid of the local system.

In this case, the transaction is always routed to the system named in the
REMOTESYSTEM option. This is known as static transaction routing.

 Chapter 15. Defining remote resources 185

3. The remote attributes specify DYNAMIC(YES).

In this case, the decision about where to execute the transaction is taken by
your dynamic transaction routing program. See “Dynamic transaction routing”
on page 68.

The name in the TRANSACTION option is the name by which the transaction is
invoked in the terminal-owning region. TASKREQ can be specified if special

| inputs, such as a program attention (PA) key, program function (PF) key, light pen,
| magnetic slot reader, or operator ID card reader, are used.

The attributes that you define always apply to the execution of the transaction in
the terminal-owning region, and never to the execution of the routed transaction in
the application-owning region.

If there is a possibility that the transaction will be executed locally, the definition
must follow the normal rules for the definition of a local transaction. In particular,
the PROGRAM option must name a user program that will be installed in the local

| system. When the transaction is routed to another system, the program associated
| with it is always the relay program DFHAPRT, irrespective of the name specified in
| the PROGRAM option.

The PROFILE option names the profile that is to be used for communication
between the terminal and the relay transaction (or the user transaction if the
transaction is executed locally). For remote execution, the TRPROF option names
the profile that is to be used for communication on the session between the relay
transaction and the remote transaction-owning system. Information about profiles is
given under “Defining communication profiles” on page 191.

When a transaction will always be routed to a remote system, so that the
transaction executed in the local system is always the relay transaction, you might
want to specify some options for control of the relay transaction:

� You can set or default TWASIZE to zero, because the relay transaction does
not require a TWA.

� You should specify transaction security for routed transactions that are operator
initiated. You do not need to specify resource security checking, because the
relay transaction does not access resources. See the CICS/ESA CICS-RACF
Security Guide for information on security.

� For transaction routing on mapped APPC connections, you should code the
| RTIMOUT option on the communication profile named on the TRPROF option
| of the transaction definition. This causes the relay transaction to be timed out if
| the system to which a transaction is routed does not respond within a
| reasonable time.

| Deadlock time-out (specified on the DTIMOUT option of the transaction
| definition) is not triggered for terminal I/O waits. Because the relay transaction
| does not access resources after obtaining a session, it has little need for
| DTIMOUT except to trap suspended ALLOCATE requests. (Methods for
| specifying whether, if there are no free sessions to a remote system,
| ALLOCATE requests should be queued or rejected, are described in
| Chapter 26, “Intersystem session queue management” on page 261.)

| The method you use to define transactions for routing may differ, depending on
| whether the transactions are to be statically or dynamically routed.

186 CICS for MVS/ESA Intercommunication Guide

| Static transaction routing
| There are two methods of defining transactions that are to be statically routed.

| Using separate local and remote definitions: You create a remote definition for
| the transaction, and install it on the TOR: the REMOTESYSTEM option must
| specify the name of the target AOR (or the name of an intermediate system, if the
| request is to be “daisy-chained”). You install separate remote definitions for the
| transaction on any intermediate systems: the REMOTESYSTEM option must
| specify the name of the next system in the routing chain. You create a local
| definition for the transaction, and install it on the target AOR: the
| REMOTESYSTEM option must be blank, or specify the name of the AOR.

| If two or more systems along the transaction-routing path share the same CSD, the
| transaction definitions should be in different groups.

| Using dual-purpose definitions: You create a single transaction definition, which
| is shared between the TOR and the AOR (and possibly between intermediate
| systems too, if “daisy chaining” is involved). The REMOTESYSTEM option
| specifies the name of the target AOR.

| When the definition is installed on each system, the local CICS compares its
| SYSIDNT with the REMOTESYSTEM name. If they are different (as in the TOR), a
| remote transaction definition is created. If they are the same (as in the target
| AOR), a local transaction definition is installed.

| It is recommended that, for static transaction routing, you use this method wherever
| possible. Because you have only one set of CSD records to maintain, it provides
| savings in disk storage and time. However, you can use it only if your systems
| share a CSD. For information about sharing a CSD, see the CICS/ESA System
| Definition Guide.

| Dynamic transaction routing
| There are likewise two methods of defining transactions that are to be dynamically
| routed.

| Note: Using dual-purpose definitions is a third possible method, but is not
| recommended for transactions that are to be dynamically routed. This is because
| the DYNAMIC(YES) attribute on the shared definition causes the dynamic
| transaction routing program to be invoked unnecessarily in the target AOR, after
| the transaction has been routed.

| Using separate local and remote definitions: This method is as described
| under “Static transaction routing.”

| Using a single transaction definition in the TOR: This is the recommended
| method. Using it, in the TOR (and in any intermediate systems) you install only
| one transaction definition that specifies DYNAMIC(YES). This single definition
| provides a set of default attributes for all transactions that are dynamically routed.
| The name of the common definition is that specified on the DTRTRAN system
| initialization parameter. The default name is CRTX, which is the name of a
| CICS-supplied transaction definition that is included in the CSD group DFHISC.

| If, at transaction attach, CICS cannot find an installed resource definition for a user
| transaction identifier (transid), it attaches a transaction built from the user
| transaction identifier and the set of attributes taken from the common transaction

 Chapter 15. Defining remote resources 187

| definition. (If the transaction definition specified on the DTRTRAN parameter is not
| installed, CICS attaches the CICS-supplied transaction CSAC. This sends
| message DFHAC2001—“Transaction ‘tranid’ is unrecognized”—to the user’s
| terminal.) Because the common transaction definition specifies DYNAMIC(YES),
| CICS invokes the dynamic transaction routing program to select a target
| application-owning region and, if necessary, name the remote transaction.

| In the target AOR, you install a local definition for each dynamically-routed
| transaction.

| If you use this method:

| � Dynamically-routed transactions should be installed in the terminal-owning
| region (if local to the TOR), or the application-owning region (if local to the
| AOR), but not both.

| � The only transaction you should define as dynamic is the dynamic transaction
| routing definition specified on the DTRTRAN parameter.

| � The only transactions you should define as remote are those that are to be
| started on remote systems by EXEC CICS START commands, and any that
| are to be statically routed.

| This greatly simplifies the task of managing resource definitions.

| It is recommended that you create your own common transaction definition for
| dynamic routing, using CRTX as a model. The attributes specified on the CRTX
| definition are shown in Figure 61.

| DEFINE

| TRANSACTION(CRTX)

| GROUP(DFHISC)

| PROGRAM(########)

| TWASIZE(SSSSS)

| PROFILE(DFHCICST)

| STATUS(ENABLED)

| TASKDATALOC(ANY)

| TASKDATAKEY(CICS)

| REMOTE ATTRIBUTES

| DYNAMIC(YES)

| REMOTESYSTEM()

| REMOTENAME()

| TRPROF(DFHCICSS)

| RECOVERY

| DTIMOUT(NO)

| INDOUBT(BACKOUT)

| RESTART(NO)

| SPURGE(YES)

| TPURGE(YES)

| Figure 61. Main attributes of the CICS-supplied CRTX transaction

| The key parameters of this transaction definition are described below:

| DYNAMIC(YES)
| This is required for a dynamic transaction routing definition that is specified on
| the DTRTRAN system initialization parameter. You can change the other
| parameters when creating your own definition, but must specify
| DYNAMIC(YES).

188 CICS for MVS/ESA Intercommunication Guide

| PROGRAM(########)
| The CICS-supplied default transaction specifies a dummy program name,
| ########. If your dynamic transaction routing program allows a transaction to
| run in the local region, and its definition specifies the dummy program name,
| CICS is unlikely to find such a program, causing a “program-not-found”
| condition.

| You are recommended to specify the name of a program that you want CICS to
| invoke whenever the transaction:

| � Is not routed to a remote system, and

| � Is not rejected by the dynamic transaction routing program by means of the
| DYRDTRRJ parameter, and

| � Is run in the local region.

| You can use the local program to issue a suitable response to a user’s terminal
| in the event that the dynamic routing program decides it cannot route the
| transaction to a remote system.

| TRANSACTION(CRTX)
| The name of the CICS-supplied dynamic transaction routing definition. Change
| this to specify your own transaction identifier.

| RESTART(NO)
| This attribute is forced for a routed transaction.

| REMOTESYSTEM
| You can code this to specify a default AOR for transactions that are to be
| dynamically routed.

Distributed transaction processing
| For MRO and LUTYPE6.1 links, there is no need to define any remote resources
| for DTP, provided that the front-end and back-end systems are directly connected.
| Both the remote system and the remote transaction are identified on the EXEC
| CICS commands issued by the front-end transaction. CICS therefore has all the
| necessary information to connect a session and attach the back-end transaction.
| (However, if the back-end transaction is to be routed to, it must be defined as a
| remote resource on the intermediate systems—see “A note on “daisy-chaining”” on
| page 165.)

| If you use the EXEC CICS API over APPC links, you can either identify the remote
| system and transaction explicitly, as for MRO and LUTYPE6.1 links, or by
| reference to a PARTNER definition. If you choose to do the latter, you need to
| create the appropriate PARTNER definitions. If you use the CPI Communications
| API over APPC links, the syntax of the commands requires you to create a
| PARTNER definition for every remote partner referenced.

Figure 62 on page 190 shows the general form of the CEDA DEFINE PARTNER
command.

 Chapter 15. Defining remote resources 189

 DEFINE

 PARTNER(sym_dest_name)

 [GROUP(groupname)]

 [NETWORK(name)]

 NETNAME(name)

 [PROFILE(name)]

 {TPNAME(name)|XTPNAME(value)}

Figure 62. Defining a remote partner

The PARTNER resource has been designed specifically to support Systems
Application Architecture (SAA) conventions. For more guidance about this, see
the CICS/ESA Resource Definition Guide and the SAA Common Programming
Interface Communications Reference manual.

For guidance about designing and developing distributed transaction processing
applications, see the CICS/ESA Distributed Transaction Programming Guide. :.

190 CICS for MVS/ESA Intercommunication Guide

Chapter 16. Defining local resources

This chapter discusses how to define resources, required for intersystem
communication, that reside in the local CICS system. The information is presented
under the following topics:

� “Defining communication profiles”

 � “Architected processes”

� “Selecting required resource definitions for installation”

� “Defining intrapartition transient data queues”

� “Defining local resources for DPL”

+ � “Defining CICS programs as DCE servers.”

Defining communication profiles
| When a transaction acquires an APPC, MRO or LUTYPE6.1 session to another
| system, either explicitly by means of an ALLOCATE command or implicitly because
| it uses, for example, function shipping, a communication profile is associated with
| the communication between the transaction and the session. The communication

profile specifies the following information:

� Whether function management headers (FMHs) received from the session are
to be passed on to the transaction.

� Whether input and output messages are to be journaled, and if so the location
of the journal.

� The node error program (NEP) class for errors on the session.

� For APPC sessions, the modename of the group of sessions from which the
session is to be allocated. (If the profile does not contain a modename, CICS
selects a session from any available group.)

CICS provides a set of default profiles, described later in this chapter, which it uses
for various forms of communication. Also, you can define your own profiles, and
name a profile explicitly on an ALLOCATE command.

| The options of the CEDA DEFINE PROFILE command that are relevant to
| intersystem sessions are shown in Figure 63 on page 192. For further information

about the CEDA DEFINE PROFILE command, see the CICS/ESA Resource
Definition Guide.

A profile is always required for a session acquired by an ALLOCATE command;
either a profile that you have defined and which is named explicitly on the
command, or the default profile DFHCICSA. If CICS cannot find the profile, the
CBIDERR condition is raised in the application program.

| The only option shown in Figure 63 on page 192 that applies to MRO sessions is
| INBFMH. And, for MRO sessions that are acquired by an ALLOCATE command,
| CICS always uses INBFMH(ALL), no matter what is specified in the profile.

For APPC conversations, INBFMH specifications are ignored; APPC FMHs are
never passed to CICS application programs.

 Copyright IBM Corp. 1977, 1997 191

 DEFINE PROFILE(name)

 [GROUP(groupname)]

 [MODENAME(name)]

 Protocols

 [INBFMH(NO|ALL)]

 Journaling

 [JOURNAL(NO|value)]

 [MSGJRNL(NO|INPUT|OUTPUT|INOUT)]

 Recovery

 [NEPCLASS(S|value)]

 [RTIMOUT(NO|value)]

Figure 63. Defining a communication profile

It is usually important to ensure that an intercommunicating transaction never waits
indefinitely for data from its partner transaction. The RTIMOUT option should be
given a value suitable for intersystem working: rather less than the time-out periods
typically specified for terminals used as operator interfaces. The RTIMOUT value
should also be greater than the DTIMOUT value specified on the partner
transaction definition.

Communication profiles for principal facilities
A profile is also associated with the communication between a transaction and its
principal facility. You can name the profile in the CEDA DEFINE TRANSACTION
command, or you can allow the default to be taken. The CEDA DEFINE PROFILE
command for a principal facility profile has more options than the form required for
alternate facilities.

The RTIMOUT value defined for a back-end transaction needs to be at least as
great as that specified for its front-end partner’s principal facility. This is to cover
the possibility of the back-end transaction waiting almost that period of time (plus
some execution and network time) to receive data from its front-end.

 Default profiles
CICS provides a set of communication profiles, which it uses when the user does
not or cannot specify a profile explicitly:

DFHCICST
The default profile for principal facilities. You can specify a different profile for
a particular transaction by means of the PROFILE option of the CEDA DEFINE
TRANSACTION command.

DFHCICSV
The profile for principal facilities of the CICS-supplied transactions CSNE,
CSLG, and CSRS. It is the same as DFHCICST, except that
DVSUPRT(VTAM) is specified in place of DVSUPRT(ALL).

You should not modify this profile.

| DFHCICSP
| The profile for principal facilities of the CICS-supplied page-retrieval transaction,
| CSPG. CICS uses this profile for CSPG even if you alter the CSPG transaction
| definition to specify a different one. For further information about
| communication profiles used by CICS-supplied transactions, see the CICS/ESA
| CICS-Supplied Transactions manual.

192 CICS for MVS/ESA Intercommunication Guide

DFHCICSE
The error profile for principal facilities. CICS uses this profile to pass an error
message to the principal facility when the required profile cannot be found.

DFHCICSA INBFMH(ALL)
The default profile for alternate facilities that are acquired by means of an
application program ALLOCATE command. A different profile can be named
explicitly on the ALLOCATE command.

This profile is also used as a principal facility profile for some CICS-supplied
transactions.

DFHCICSF INBFMH(ALL)
+ The profile that CICS uses for the session to the remote system or region when
+ a CICS application program issues a function shipping or DPL request.

+ Note that, if you use DPL, you may need to increase the value specified for
+ RTIMEOUT—see “Modifying the default profiles.”

DFHCICSS INBFMH(ALL)
The profile that CICS uses in transaction routing for communication between
the relay transaction (running in the terminal-owning region) and the interregion
link or APPC link.

DFHCICSR INBFMH(ALL)
The profile that CICS uses in transaction routing for communication between
the user transaction (running in the transaction-owning region) and the
interregion link or APPC link.

Note that the user-transaction’s principal facility is the surrogate TCTTE in the
transaction-owning region, for which the default profile is DFHCICST.

Modifying the default profiles
You can modify a default profile by means of the CEDA transaction.

A typical reason for modification is to include a modename to provide class of
service selection for, say, function shipping requests on APPC links. If you do this,
you must ensure that every APPC link in your installation has a group of sessions
with the specified modename.

You must not modify DFHCICSV, which is used exclusively by some CICS-supplied
transactions.

| You can modify DFHCICSP, used by the CSPG page-retrieval transaction. The
| supplied version of DFHCICSP specifies UCTRAN(YES). Be aware that, if you
| specify UCTRAN(NO), terminals defined with UCTRAN(NO) will be unable to make
| full use of page-retrieval facilities.

If you modify DFHCICSA, you must retain INBFMH(ALL), because it is required by
some CICS-supplied transactions. Modifying this profile does not affect the profile
options assumed for MRO sessions.

+ You can modify DFHCICSF, used for function shipping and DPL requests. One
+ reason for doing so might be to increase the value of the RTIMEOUT option. For
+ example, the default value may be adequate for single function shipping requests,
+ but inadequate for a DPL call to a back-end program that retrieves a succession of
+ records from a data base.

 Chapter 16. Defining local resources 193

 Architected processes
An architected process is an IBM-defined method of allowing dissimilar products to
exchange intercommunication requests in a way that is understood by both
products. For example, a typical requirement of intersystem communication is that
one system should be able to schedule a transaction for execution on another
system. Both CICS and IMS have transaction schedulers, but their implementation
differs considerably. The intercommunication architecture overcomes this problem
by defining a model of a “universal” transaction scheduling process. Both products
implement this architected process, by mapping it to their own internal process, and
are therefore able to exchange scheduling requests.

The architected processes implemented by CICS are:

� System message model – for handling messages containing various types of
information that needs to be passed between systems (typically, DFS
messages from IMS)

� Scheduler model – for handling scheduling requests

� Queue model – for handling queuing requests (in CICS terms,
temporary-storage or transient-data requests)

� DL/I model – for handling DL/I requests

� LU services model – for handling requests between APPC service managers.

Note: With the exception of the APPC LU services model, the architected
processes are defined in the LUTYPE6.1 architecture. CICS, however, also uses
them for function shipping on APPC links by using APPC migration mode.

The appropriate models are also used for CICS-to-CICS communication. The
exceptions are CICS file control requests, which are handled by a CICS-defined file
control model, and CICS transaction routing, which uses protocols that are private
to CICS.

During resource definition, your only involvement with architected processes is to
ensure that the relevant transactions and programs are included in your CICS
system, and possibly to change their priorities.

 Process names
Architected process names are one through four bytes long, and have a first byte
value that is less than X'40'.

In CICS, the names are specified as four-byte hexadecimal transaction identifiers.
If CICS receives an architected process name that is less than four bytes long, it
pads the name with null characters (X'00') before searching for the transaction
identifier.

CICS supplies the processes shown in Figure 64 on page 195.

194 CICS for MVS/ESA Intercommunication Guide

XTRANID TRANSID PROGRAM DESCRIPTION

For CICS file control

- CSMI DFHMIRS File control model

For LUTYPE6.1 architected processes

S1SSSSSS CSM1 DFHMIRS System message model

 S2SSSSSS CSM2 DFHMIRS Scheduler model

 S3SSSSSS CSM3 DFHMIRS Queue model

 S5SSSSSS CSM5 DFHMIRS DL/I model

For APPC architected processes

S6F1SSSS CLS1 DFHLUP LU services model

S6F2SSSS CLS2 DFHLUP LU services model

- CLS3 DFHLUP LU services model

Figure 64. CICS architected process names

Modifying the architected process definitions
The previous list shows that the CICS file control model and the architected
processes for function shipping all map to program DFHMIRS, the CICS mirror
program. The inclusion of different transaction names for the various models
enables you to modify some of the transaction attributes. You must not, however,
change the XTRANID, TRANSID, or PROGRAM values.

You can modify any of the definitions by means of the CEDA transaction. In
particular, you may want to change the DTIMOUT value on the mirror transactions.

The definitions for the mirror transactions are supplied with DTIMOUT(NO)
specified. If you are uncomfortable with this situation, you should change the
definitions to specify a value other than NO on the DTIMOUT option. However,
before changing these definitions, you first have to copy them to a new group.

Interregion function shipping
| Function shipping over MRO links can employ long-running mirror tasks and the
| short-path transformer program. (See “MRO function shipping” on page 31.)

If you modify one or more of the mirror transaction definitions, you must evaluate
the effect that this may have on interregion function shipping.

The short-path transformer always specifies transaction CSMI. It is not, however,
used for DL/I requests; they arrive as requests for process X'05000000',
corresponding to transaction CSM5.

Selecting required resource definitions for installation
The profiles and architected processes described in this chapter, and other
transactions and programs that are required for ISC and MRO, are contained in the
IBM protected groups DFHISC and DFHSTAND. For information about how to
include these pregenerated CEDA groups in your CICS system, see the CICS/ESA
Resource Definition Guide manual.

 Chapter 16. Defining local resources 195

| Some of the contents of groups DFHISC and DFHSTAND are summarized in
| Figure 65.

TRANSACTIONS
XTRANID TRANSID PROGRAM GROUP
 - CSMI DFHMIRS DFHISC CICS file control model

S1SSSSSS CSM1 DFHMIRS DFHISC System message model

S2SSSSSS CSM2 DFHMIRS DFHISC Scheduler model

S3SSSSSS CSM3 DFHMIRS DFHISC Queue model

S5SSSSSS CSM5 DFHMIRS DFHISC DL/I model

S6F1SSSS CLS1 DFHLUP DFHISC LU services model

S6F2SSSS CLS2 DFHLUP DFHISC LU services model

- CLS3 DFHLUP DFHISC LU services model

| - CEHP DFHCHS DFHISC CICS/VM request handler

| - CEHS DFHCHS DFHISC CICS/VM request handler

| - CMPX DFHMXP DFHISC Local queue shipper

| - CPMI DFHMIRS DFHISC Synclevel 1 mirror

| - CRSQ DFHCRQ DFHISC Remote schedule purge program

| - CRSR DFHCRS DFHISC Remote scheduler program

| - CRTE DFHRTE DFHISC Routing transaction

| - CSNC DFHCRNP DFHISC Interregion connection manager

| - CSSF DFHRTC DFHISC CRTE cancel command processor

| - CVMI DFHMIRS DFHISC APPC sync level-1 mirror

| - CXRT DFHCRT DFHISC Relay transaction for LU6.2

PROGRAMS
NAME GROUP
DFHCCNV DFHISC CICS OS/2 conversion program

| DFHCRNP DFHISC Interregion new connection manager

| DFHCRQ DFHISC ATI purge program

| DFHCRR DFHISC IRC session recovery program

| DFHCRS DFHISC Remote scheduler program

| DFHCRSP DFHISC Interregion control initialization program

| DFHCRT DFHISC Transaction routing relay program for APPC

| alternate facilities

| DFHDYP DFHISC Standard dynamic transaction routing program

| DFHLUP DFHISC LU services program

| DFHMIRS DFHISC Mirror program

| DFHMXP DFHISC Local queuing shipper program

| DFHRTC DFHISC CRTE cancel command processor

| DFHRTE DFHISC Transaction routing program

PROFILES
NAME GROUP
DFHCICSF DFHISC Function shipping profile

DFHCICSR DFHISC Transaction routing receive profile

DFHCICSS DFHISC Transaction routing send profile

DFHCICSA DFHSTAND Distributed transaction processing profile

DFHCICSE DFHSTAND Principal facility error profile

DFHCICST DFHSTAND Principal facility default profile

DFHCICSV DFHSTAND Principal facility special profile

Figure 65. Some definitions required for ISC and MRO

196 CICS for MVS/ESA Intercommunication Guide

Defining intrapartition transient data queues
The general form of the resource definition macro for an intrapartition transient data
queue is:

 DFHDCT TYPE=INTRA

 ,DESTID=name

 [,DESTFAC={(TERMINAL[,termid])|FILE|(SYSTEM,sysid)}

 ...

Figure 66. Defining an intrapartition transient data queue

For further information about the DFHDCT macro, see the CICS/ESA Resource
Definition Guide. This section is concerned with the CICS intercommunication
aspects of queues that:

� Cause automatic transaction initiation (TRANSID specified)

� Specify an associated principal facility (DESTFAC=TERMINAL or
DESTFAC=SYSTEM).

 Transactions
A transaction that is initiated by an intrapartition transient data queue must reside
on the same system as the queue. That is, the transaction that you specify in the
TRANSID option must not be defined as a remote transaction.

 Principal facilities
The principal facility that is to be associated with a transaction started by ATI is
specified in the DESTFAC operand. It can be:

� A local terminal
� A remote terminal
� A local session or APPC device
� A remote APPC session or device.

 Local terminals
A local terminal is a terminal that is owned by the same system that owns the
transient data queue and the transaction.

For any local terminal other than an APPC terminal, you need to specify
DESTFAC=(TERMINAL[,termid]). If you omit termid, the name of the terminal
defaults to the name of the queue (specified in DESTID).

 Remote terminals
A remote terminal is a terminal that is defined as remote on the system that owns
the transient data queue and the associated transaction. Automatic transaction
initiation with a remote terminal is a form of CICS transaction routing (see
Chapter 9, “CICS transaction routing” on page 67), and the normal transaction
routing rules apply.

For any remote terminal other than an APPC terminal, specify
DESTFAC=(TERMINAL[,termid]).

 Chapter 16. Defining local resources 197

The terminal itself must be defined as a remote terminal (or a shipped terminal
definition must be made available), and the terminal-owning region must be
connected to the local system either by an IRC link or by an APPC link.

Local sessions and APPC devices
You can name a local connection definition in the DESTFAC=(SYSTEM,sysid)
operand. The remote system can be connected by IRC, LUTYPE6.1, or APPC link.
In the APPC case, “system” can be a hard-coded terminal-like device.

CICS allocates a session on the specified system, which becomes the principal
facility to transid. The transaction program converses across the session using the
appropriate DTP protocol. Read Chapter 10, “Distributed transaction processing”
on page 85 for an introduction to DTP.

The transaction starts in ‘allocated’ state on its principal facility. Then it identifies
its partner transaction; that is, the process to be connected to the other end of the
session. In the APPC protocol, it does this by issuing the EXEC CICS CONNECT
PROCESS command, a command normally only used to start a conversation on an
alternate facility.

The partner transaction, having been started in the back end with the conversation
in RECEIVE state, also sees the session as its principal facility. This is unusual in
that CICS treats either end of the session as a principal facility. On both sides, the
conversation identifier is taken from EIBTRMID if needed, but it is also implied on
later commands, as is the case for principal facilities.

Remote APPC sessions and devices
A remote connection is a connection that is defined as remote on the system that
owns the transient data queue and the associated transaction. Automatic
transaction initiation with a remote APPC connection is a form of CICS transaction
routing (see Chapter 9, “CICS transaction routing” on page 67), and the normal
transaction routing rules apply.

You can name a remote connection definition in the DESTFAC=(SYSTEM,sysid)
operand.

The connection itself must be defined as a remote connection (or a shipped
connection definition must be made available), and the terminal-owning region must
be connected to the local system either by an IRC link or by an APPC link. The
remarks in “Local sessions and APPC devices” about handling the link after
transaction initiation apply also to routed transactions.

198 CICS for MVS/ESA Intercommunication Guide

Defining local resources for DPL
To support DPL, special resource definitions are sometimes necessary for server
programs and mirror transactions.

 Mirror transactions
You can specify whatever names you like for the mirror transactions to be initiated
by DPL requests. Each of these transaction names must be defined in the server
region on a transaction that invokes the mirror program DFHMIRS. Defining user
transactions to invoke the mirror program gives you the freedom to specify
appropriate values for all the other options on the transaction resource definition.

 Server programs
If a local program is to be requested by some other region as a DPL server, there

| must be a resource definition for that program. The definition can be statically
| defined, or installed automatically (autoinstalled) when the program is first called.
| (For details of the CICS autoinstall facility for programs, see the CICS/ESA
| Resource Definition Guide.)

+ Defining CICS programs as DCE servers
+ This section is an overview of how to define CICS programs as servers to DCE
+ remote procedure calls (RPCs). For definitive information, see the IBM
+ OpenEdition DCE Base Services MVS/ESA: Application Support Programming
+ Guide and the IBM OpenEdition DCE Base Services MVS/ESA: Application Support
+ Configuration and Administration Guide.

+ To define your CICS server programs to DCE you must:

+ � Use the GENUUID command of the DCE MVS/ESA Application Support server
+ to obtain a skeleton interface definition. (An interface defines one or more
+ related operations. Each operation relates to a server program.) The skeleton
+ includes a Universal Unique Identifier (UUID) that uniquely identifies the
+ interface.

+ � Use the DCE Interface Definition Language (IDL) to identify each operation in
+ the interface and define its input and output parameters.

+ � Use the IDL compiler to generate data structure definitions for the RPC
+ parameters and execution stubs for both client and server programs.

+ The server stubs contain function that converts host COBOL data types to C
+ data types and vice versa. They also package and unpackage RPC
+ parameters, and convert data between EBCDIC and ASCII representations.

+ � Link edit and load the server stubs into the server stub library.

+ � Use the Application Support server administration function to install the
+ interface. This exports details of the interface to the DCE distributed directory.
+ Client programs can then use DCE facilities to locate servers that support
+ required interfaces.

+ You must also define your server programs to CICS in the usual way. The
+ definitions can be statically defined, or autoinstalled when the programs are first
+ called.

 Chapter 16. Defining local resources 199

200 CICS for MVS/ESA Intercommunication Guide

 Part 4. Application programming

This part of the manual describes the application programming aspects of CICS
intercommunication. It contains the following chapters:

Chapter 17, “Application programming overview” on page 203

Chapter 18, “Application programming for CICS function shipping” on page 205

Chapter 19, “Application programming for CICS DPL” on page 209

| Chapter 20, “Application programming for the external CICS interface” on
| page 213

+ Chapter 21, “Application programming for DCE remote procedure calls” on
+ page 219

Chapter 22, “Application programming for asynchronous processing” on
page 221

Chapter 23, “Application programming for CICS transaction routing” on
page 223

| Chapter 24, “CICS-to-IMS applications” on page 227.

For guidance about application design and programming for distributed transaction
processing, see the CICS/ESA Distributed Transaction Programming Guide.

This part of the manual documents General-use Programming Interface and
Associated Guidance Information.

 Copyright IBM Corp. 1977, 1997 201

202 CICS for MVS/ESA Intercommunication Guide

Chapter 17. Application programming overview

Application programs that are designed to run in the CICS intercommunication
environment can use one or more of the following facilities:

 � Function shipping
� Distributed program link

| � The external CICS interface
+ � Support for DCE remote procedure calls

 � Asynchronous processing
 � Transaction routing
� Distributed transaction processing.

The application programming requirements for each of these facilities are described
separately in the remaining chapters of this part. If your application program uses
more than one facility, you can use the relevant chapter as an aid to designing the
corresponding part of the program. Similarly, if your program uses more than one
intersystem session for distributed transaction processing, it must control each
individual session according to the rules given for the appropriate session type.

For guidance about application design and programming for distributed transaction
processing, see the CICS/ESA Distributed Transaction Programming Guide.

 Terminology
The following terms are sometimes used without further explanation in the
remaining chapters of this part:

Principal facility
This term means the “terminal” that is associated with your transaction when
the transaction is initiated. The more general term is used because the facility
may be not a “real” terminal but an intersystem session. CICS commands,
such as SEND or RECEIVE, that do not explicitly name a facility, are taken to
refer to the principal facility. Only one principal facility can be owned by a
transaction.

Alternate facility
In distributed transaction processing, a transaction can acquire the use of a
session to a remote system. This session is called an alternate facility. It must
be named explicitly on CICS commands that refer to it. A transaction can own
more than one alternate facility.

Other intersystem sessions, such as those used for function shipping, are not
owned by the transaction, and are not regarded as alternate facilities of the
transaction.

Front-end and back-end transactions
In distributed transaction processing, one of the pair of conversing transactions
must be initiated first, acquire a session to the remote system, and cause the
other transaction to be initiated. This is the front-end transaction. The
transaction that the front-end transaction causes to be initiated is the back-end
transaction.

 Copyright IBM Corp. 1977, 1997 203

Note that a transaction can at the same time be the back-end transaction on
one conversation and the front-end transaction on one or more other
conversations.

204 CICS for MVS/ESA Intercommunication Guide

Chapter 18. Application programming for CICS function
shipping

If you are writing a program to access resources in a remote system, you code it in
much the same way as if the resources were on the local system. Your program
can be written in PL/I, C/370, COBOL, or assembler language. Function shipping

| is available by using EXEC CICS commands, DL/I calls or EXEC DLI commands.

The commands that you can use to access remote resources are:

� File control commands
� DL/I calls or EXEC DLI commands
� Temporary storage commands
� Transient data commands.

For information about interval control commands, see Chapter 22, “Application
programming for asynchronous processing” on page 221.

Your application can run in the CICS intercommunication environment and make
use of the intercommunication facilities without being aware of the location of the
resource being accessed. The location of the resource is specified in the resource
definition. Optionally, you can use the SYSID option on EXEC commands to select
the system on which the command is to be executed. In this case, the resource
definitions on the local system are not referenced, unless the SYSID option names
the local system.

When your application issues a command against a remote resource, CICS ships
the request to the remote system, where a mirror transaction is initiated. The
mirror transaction executes the request on your behalf, and returns any output to
your application program. The mirror transaction is like a remote extension of your
application program. For more information about this mechanism, read Chapter 4,
“CICS function shipping” on page 25.

Although the same commands are used to access both local and remote resources,
there are restrictions that apply when the resource is remote. Also, some errors
that do not occur in single systems can arise when function shipping is being used.
For these reasons, you should always know whether resources that your program
accesses can possibly be remote.

 File control
| Function shipping allows you to access files located on a remote system.

If you use the SYSID option to access a remote system directly, you must observe
the following two rules:

1. For a file referencing a keyed data set, KEYLENGTH must be specified if
RIDFLD is specified, unless you are using relative byte addresses (RBA) or
relative record numbers (RRN).

For a remote BDAM file, where the DEBKEY or DEBREC options have been
specified, KEYLENGTH must be the total length of the key.

 Copyright IBM Corp. 1977, 1997 205

2. If the file has fixed-length records, you must specify the record length
(LENGTH).

| These rules also apply if the definition of the file to this CICS does not specify the
appropriate values.

 DL/I
Function shipping allows you to access IMS/ESA DM or IMS/VS DB databases
associated with a remote CICS/ESA, CICS/MVS. or CICS/OS/VS system, or DL/I
DOS/VS databases associated with a remote CICS/VSE or CICS/DOS/VS system.
(See Chapter 1, “Introduction to CICS intercommunication” on page 3 for a list of
systems with which CICS/ESA 4.1 can communicate.)

Definitions of remote DL/I databases are provided by the system programmer.
There is no facility for selecting specific systems in CICS application programs.

| Only a subset of DL/I requests can be function shipped to a remote CICS system.
| For guidance about restrictions, see the CICS/ESA CICS-IMS Database Control
| Guide.

 Temporary storage
Function shipping allows you to send data to or receive data from
temporary-storage queues located on remote systems. Definitions of remote
temporary-storage queues can be made by the system programmer. You can,
however, use the SYSID option on the WRITEQ TS, READQ TS, and DELETEQ
TS commands to specify the system on which the request is to be executed.

For MRO sessions, the MAIN and AUXILIARY options of the WRITEQ TS
command can be used to select the required type of storage.

For APPC sessions, the MAIN and AUXILIARY options are ignored; auxiliary
storage is always used in the remote system.

 Transient data
Function shipping allows you to access intrapartition or extrapartition transient data
queues located on remote systems. Definitions of remote transient data queues
can be made by the system programmer. You can, however, use the SYSID option
on the WRITEQ TD, READQ TD, and DELETEQ TD commands to specify the
system on which the request is to be executed.

If the remote transient data queue has fixed-length records, you must supply the
record length in the LENGTH option if it is not specified in the DFHDCT
TYPE=REMOTE macro, or if you use the SYSID option.

206 CICS for MVS/ESA Intercommunication Guide

Function shipping exceptional conditions
Requests that are shipped to a remote system can raise any of the exceptional
conditions for the command that can occur if the resource is local. In addition,
there are some conditions that apply only when the resource is remote.

Remote system not available
The SYSIDERR condition is raised in the application program if:

� The link to the remote system is out of service.

� The named system is not defined. This error should not occur in a production
system unless the application is designed to obtain the name of the remote
system from a terminal operator.

| � The link to the remote system is busy, and the maximum number of queued
| requests specified on the QUEUELIMIT option of the CONNECTION definition
| has been reached.

| � The link to the remote system is busy, the maximum number of queued
| requests has not been reached, but your XZIQUE or XISCONA global user exit
| program specifies that the request should not be queued. (For programming
| information about the XZIQUE and XISCONA exits, see the CICS/ESA
| Customization Guide.)

The default action for the SYSIDERR condition is to terminate the task abnormally.

 Invalid request
The ISCINVREQ condition occurs when the remote system indicates a failure that
does not correspond to a known condition. The default action is to terminate the
task abnormally.

Mirror transaction abend
| An application request against a remote resource may cause an abend in the mirror
| transaction in the remote CICS (for example, a deadlock timeout causes the mirror
| to be abended with a code of ATSC).

In these situations, the application program is also abended, but with an abend
code of ATNI (for ISC connections) or AZI6 (for MRO connections). The actual
error condition is logged by CICS in an error message sent to the CSMT
destination. Any HANDLE ABEND command issued by the application cannot

| identify the original cause of the condition and take explicit corrective action (which
| might have been possible if the resource had been local). An exception occurs in
| MRO function shipping if the mirror transaction abends with a DL/I program
| isolation deadlock; in this case, the application abends with the normal deadlock
| abend code (ADCD).

Note that the ATNI abend caused by a mirror transaction abend is not related to a
terminal control command, and the TERMERR condition is therefore not raised.

 Chapter 18. Application programming for CICS function shipping 207

208 CICS for MVS/ESA Intercommunication Guide

Chapter 19. Application programming for CICS DPL

CICS distributed program link (DPL) allows you to link to server programs located
| on a remote system. A client program running in a CICS/ESA 4.1 region can link
| to one or more server programs running in remote CICS regions. The remote
| regions may or may not be CICS/ESA systems; (they could be, for example, CICS
| OS/2 or CICS 6000 systems). See Chapter 1, “Introduction to CICS
| intercommunication” on page 3 for a list of systems with which CICS/ESA 4.1 can
| communicate.

DPL programs can be written in PL/I, C/370, COBOL, or assembler language.

As Chapter 5, “CICS distributed program link” on page 37 indicates, there are two
sides (programs) involved in DPL: the client program and the server program. To
implement DPL, there are actions that each program must take. These actions are
described below.

The client program
If you are writing a client program to link to a server program in a remote system,
you code it in much the same way as if the server program were on the local
system.

Your client program can run in the CICS intercommunication environment and
make use of intercommunication facilities without being aware of the location of the
server program being linked to. The location of the server program is specified in
the program resource definition. Optionally, you can use the SYSID option on the
LINK command to select the system on which the command is to be executed. In
this case, the program resource definition in the local system is not referenced,
unless the SYSID option names the local system.

When your client program issues a LINK command against a server program, CICS
ships the request to the remote system, where a mirror transaction is initiated. The
mirror transaction executes the LINK request on your behalf, thereby causing the
server program to run. When the server program issues a RETURN command, the
mirror transaction returns any communication area data to your client program.
The mirror transaction is like a remote extension of your application program. For
more information about this mechanism, read Chapter 5, “CICS distributed program
link” on page 37.

Although the same command is used to access both local and remote server
programs, there are restrictions that apply when the server program is remote.
Also, some errors that do not occur in single systems can arise when DPL is being

| used. For these reasons, you should always find out whether the server program
| to which your client program links is remote. If there is any possibility of the server
| program being remote, the client program should include the additional checks for
| the exception conditions that can be returned by a remote server program.

 Copyright IBM Corp. 1977, 1997 209

The server program
If the server program fails, the ABEND condition and an abend code are returned
to the client program. The client transaction therefore also terminates abnormally,
unless it has issued the HANDLE ABEND command before issuing the LINK
command.

| If the server program was started by a LINK command that specified the
| SYNCONRETURN option, it is able to issue a syncpoint. If it does, this does not
| commit changes made by the client program. For changes to be committed across

the distributed unit of work, the client program must issue the syncpoint. The client
program can also backout changes across the distributed unit of work, provided
that the server program has not already committed its changes.

The server program can find out how it was started, and therefore whether it is
allowed to issue independent syncpoint requests, by issuing the ASSIGN
STARTCODE command. This command returns the following values relevant to a
DPL server program:

� ‘D’ if the program was started by a LINK request without the
SYNCONRETURN option, and cannot therefore issue SYNCPOINT requests.

� ‘DS’ if the program was started by a LINK request with the SYNCONRETURN
option, and can therefore issue SYNCPOINT requests. However, the server
program need not issue a syncpoint request explicitly, because CICS takes a
syncpoint as soon as the server program issues the RETURN command.

| � Values other than ‘D’ and ‘DS’ if the program was not started by a remote LINK
| request.

DPL exceptional conditions
LINK requests that are shipped to a remote system can raise any of the exceptional
conditions for the command that can occur if the server program is local. In
addition, there are some conditions that apply only when the server program is
remote.

Remote system not available
| When the remote system is unavailable, the SYSIDERR condition can be raised in
| the client program for exactly the same reasons as described for function shipping
| on page 207 (except that the XISCONA global user exit is not invoked for DPL
| requests).

| The default action for the SYSIDERR condition is to terminate the task abnormally.

| Server’s work backed out
| If the client program issues the LINK command with the SYNCONRETURN option,
| the mirror program issues a syncpoint as soon as the server program terminates
| successfully. It is possible for this syncpoint to fail. If this happens, the
| ROLLEDBACK condition is returned to the client program. The work done by the
| server program will also be backed out, unless the server program has already
| committed the work by issuing its own syncpoint request.

210 CICS for MVS/ESA Intercommunication Guide

| Multiple links to the same server region
| When a client program issues a LINK command with the SYNCONRETURN option,
| the mirror transaction terminates as soon as control is returned to the client
| program. It is therefore possible for the client program to issue a subsequent LINK
| command to the same server region.

| However, when a client program issues a LINK command without the
| SYNCONRETURN option, the mirror transaction is suspended pending a syncpoint
| request from the client region. The client program can issue subsequent LINK
| commands to the same server region as long as the SYNCONRETURN option is
| omitted and the TRANSID value is not changed. A subsequent LINK command
| with the SYNCONRETURN option or with a different TRANSID value will be
| unsuccessful unless it is preceded by a SYNCPOINT command.

+ Note: Similar considerations apply if the client program sends function shipping
+ requests to the server region, and the mirror for the function shipping
+ request is suspended. For example:

+ EXEC CICS LINK PROGRAM('PGA') SYSID(SERV)

+ EXEC CICS SYNCPOINT

+ EXEC CICS READQ TS QUEUE('RQUEUE') SYSID(SERV)

+ EXEC CICS LINK PROGRAM('PGB') SYSID(SERV) TRANSID(TRN1)

+ The last LINK command fails if, for example, MROLRM=YES is specified in
+ the CICS server region (SERV). This is because the mirror used for the
+ READQ TS command is still around. For the above sequence of
+ commands to work, the client program must issue a SYNCPOINT after the
+ READQ TS command; alternatively, you could set the MROLRM system
+ initialization parameter to 'NO' in the server region. For detailed
+ information about using DPL and function shipping requests in the same
+ program, see the CICS/ESA Application Programming Guide.

| These errors are indicated by the INVREQ condition. An accompanying RESP2
| value of 14 indicates that a syncpoint is necessary before the failed LINK command
| can be successfully attempted. A RESP2 value of 15 indicates that the TRANSID
| value is different from that of the linked mirror transaction. A RESP2 value of 16
| indicates that a TRANSID value of spaces (blanks) was specified on the LINK
| command.

| Mirror transaction abend
| If the mirror program (as opposed to the server program) abends or the session
| with the server region fails, the TERMERR condition is returned to the client
| program.

 Chapter 19. Application programming for CICS DPL 211

212 CICS for MVS/ESA Intercommunication Guide

| Chapter 20. Application programming for the external CICS
| interface

| The external CICS interface (EXCI) is a special form of DPL. It enables a
| non-CICS client program running in an MVS address space to link to a server
| program running in a CICS/ESA 4.1 system. For an overview of EXCI, see
| Chapter 6, “The external CICS interface” on page 43.

| The MVS client program
| The external CICS interface provides two forms of API, both for use by MVS client
| programs: the external CICS interface CALL API and an EXEC CICS API.

| The EXCI CALL API
| The external CICS interface CALL API consists of six commands that allow
| non-CICS programs running under MVS to allocate and open sessions to a CICS
| system, and to issue DPL requests on these sessions.

| You must use the CALL API if you want your client program to use an EXCI
| “specific connection”. A specific connection is an MRO link on which all the
| sessions are dedicated to a single user (the distinction between a client program
| and a “user” is explained shortly). The alternative is to use a generic connection,
| on which the sessions are shared by multiple users.

| The commands invoke the external CICS interface via an application stub module,
| DFHXCSTB, which you must linkedit with your non-CICS program.

| All possible return codes are contained in a copybook which you must include in
| the program source of your external, non-CICS program. The copybooks supplied
| are as follows:

| � DFHXCRCD (assembler)
| � DFHXCRCH (C)
| � DFHXCRCL (PL/I)
| � DFHXCRCO (COBOL)

| The six commands are:

| INITIALIZE_USER
| Initializes the user environment, including obtaining authority to use IRC
| facilities. The environment is created for the lifetime of the TCB, so needs to
| be issued only once per user per TCB. Further commands from this user must
| be issued under the same TCB.

| Note: A user is a program that has issued an Initialize_user request (or for
| which an Initialize_user request has been issued), with a unique name
| per TCB. For example:

| � A simple client program running under MVS could be a single user
| of the external CICS interface.

| � A client program running under MVS could open several pipes and
| issue external CICS interface calls over them sequentially, on behalf
| of different vendor packages. From the viewpoint of the client

 Copyright IBM Corp. 1977, 1997 213

| program, each of the packages is a user, identified by a unique
| user name. Thus a single client program can operate on behalf of
| multiple users.

| � A program running under MVS could attach several TCBs, under
| each of which a vendor package issues external CICS interface
| calls on its own behalf. Each package is a client program in its own
| right, and runs under its own TCB. Each is also a user, with a
| unique user name.

| ALLOCATE_PIPE
| Allocates a single session, or pipe, to a CICS system.

| OPEN_PIPE
| Causes IRC to connect an allocated pipe to a receive session of the
| appropriate connection defined on the CICS system named in the
| Allocate_Pipe command. The appropriate connection is either:

| � The EXCI connection defined with a NETNAME value equal to the user
| name on the Initialize_User command (that is, you are using a specific
| connection, dedicated to this user)

| or

| � The EXCI connection defined as generic.

| DPL call
| Issues a DPL request across an open pipe connected to the CICS system on
| which the server (or target) application resides. The command is synchronous
| and the TCB waits for a response from CICS. Once a pipe has been opened,
| any number of DPL requests may be issued before the pipe is closed. The
| server program sees the link request as a standard EXEC CICS LINK request
| from a remote system.

| CLOSE_PIPE
| Disconnects an open pipe from CICS. The pipe remains in an allocated state,
| and its tokens remain valid for use by the same user. To reuse a closed pipe,
| the client program must first reissue an Open_Pipe command against the pipe.

| DEALLOCATE_PIPE
| Deallocates a pipe from CICS.

| The EXCI EXEC API
| The external CICS interface EXEC CICS API provides a single command which
| performs all six functions of the external CICS interface API in one invocation.

214 CICS for MVS/ESA Intercommunication Guide

| Format
|

| >>──LINK─ ──PROGRAM(name) ──RETCODE(data-area) ─SYNCONRETURN────────────────────────────────>

| >─ ──┬ ┬─── ──────────────>
| └ ┘| ──COMMAREA(data-area) ──LENGTH(data-value) ──┬ ┬────────────────────────
| └ ┘──DATALENGTH(data-value)

| >─ ──┬ ┬────────────── ──┬ ┬─────────────── ─>@
| └ ┘──APPLID(name) └ ┘──TRANSID(name)

| Conditions:
| INVREQ, LENGERR, LINKERR, NOTAUTH, PGMIDERR, ROLLEDBACK, SYSIDERR,
| WARNING

| All the parameters are as on a CICS-to-CICS DPL request, except for APPLID
| which specifies the applid of the target CICS system, as opposed to the system
| name in a CICS-to-CICS DPL call. Also, RETCODE specifies a 20-byte area into
| which the external CICS interface places return code information. As for the CALL
| API, SYNCONRETURN is mandatory. All commands use a generic connection.

| Programs that use the EXEC CICS API must be translated using the CICS
| translator, with the ‘EXCI’ translator option specified.

| Choosing between the CALL API and the EXEC API
| As illustrated in the various versions of the CICS-supplied sample client program
| (described in “Sample applications” on page 217), you can use the CALL API and
| the EXEC CICS LINK command in the same program, to perform separate
| requests. However, it is unlikely that you would want to do this in a production
| program.

| Each form of the external CICS interface has its particular benefits and drawbacks:

| � For low-frequency or one-shot usage, you are recommended to use the EXEC
| CICS LINK command.

| It is easier to code, and therefore less prone to programming errors.

| However, each invocation of an EXEC CICS LINK command causes the
| external CICS interface to perform all the functions of the CALL interface, which
| may result in an unnecessary overhead. Also, your program is limited to using
| a generic connection.

| � For multiple or frequent DPL requests from the same batch client program, you
| are recommended to use the EXCI CALL API.

| This is more efficient, because you need only perform the Initialize_User and
| Allocate_Pipe commands once, at or near the beginning of your program, and
| the Deallocate_Pipe once on completion of all DPL activity. In between these
| functions, you can open and close the pipe as necessary, and while the pipe is
| opened, you can issue as many DPL calls as you want. Your program can use
| either a generic or specific connection.

| However, to use the CALL API, you need an understanding of pipe
| management, so that you can use CICS resources efficiently. It would be
| undesirable, for example, for one client program to open many pipes on a
| generic connection and then not use them, thus locking out other potential
| users. (In addition, this would prevent CICS from closing down its IRC facility
| and perhaps even prevent CICS itself from closing down normally.)

 Chapter 20. Application programming for the external CICS interface 215

| For programming information about the external CICS interface APIs, see the
| CICS/ESA External CICS Interface manual.

| The CICS server program
| CICS server programs invoked by MVS clients are permitted to use the same
| subset of EXEC CICS commands as those invoked by CICS clients via DPL
| requests. (The restricted commands are listed on page 40, and amongst the
| programming information in the CICS/ESA Application Programming Reference
| manual.) You may therefore be able to use server programs written for
| CICS-to-CICS DPL.

| Customization
| This section describes how you can vary the ways in which your EXCI programs
| operate.

| Setting EXCI parameters
| You can use the DFHXCOPT macro to specify a number of EXCI parameters. For
| example, you can specify:

| � Whether EXCI messages are issued in mixed or upper case.

| � The time interval for which EXCI waits for a DPL command to complete. (A
| typical value might be about 10 minutes.)

| � Whether EXCI internal tracing is required, and at what level.

| For full details of the DFHXCOPT macro, see the CICS/ESA External CICS
| Interface manual.

| Routing external interface requests
| The CICS user-replaceable program, DFHXCURM, is invoked in the non-CICS
| client environment during ALLOCATE_PIPE processing, and after retryable error
| conditions.

| You could use DFHXCURM to change the specified CICS APPLID during
| ALLOCATE_PIPE processing, in order to route the request to another CICS
| system.

| If DFHXCURM is invoked after a retryable error, it is able to store information
| regarding CICS availability. This information can be used on its next invocation for
| ALLOCATE_PIPE processing, to decide to which CICS system to route the request.

| For details of the default version of DFHXCURM, and of how to replace it with your
| own version, see the CICS/ESA External CICS Interface manual.

216 CICS for MVS/ESA Intercommunication Guide

| Sample applications
| To help you write programs that use the external CICS interface, a sample MVS
| client application program (one version in each of the assembler, VS COBOL II,
| C/370, and PL/I programming languages) and a sample CICS server application
| program (in assembler only) are provided.

| The sample programs are included on the CICS/ESA 4.1 distribution tape, in
| source and processable form for assembler language, and in source form only for
| COBOL, PL/I, and C/370. Each version of the client application has basically the
| same function, but programming methods vary somewhat according to the
| language used. Table 10 lists the available programs.

| The client samples show you how to code a simple MVS client program using both
| the CALL and EXEC CICS forms of the API. Each is divided into three separate
| sections. The first section performs a single EXEC CICS LINK request to the target
| CICS system to inquire on the state of the target sample file, FILEA. If the file
| exists, and is in a suitable state, processing continues to sections two and three,
| which together form a complete example of the use of the CALL API.

| The second section initiates a specific MRO connection to the target CICS system
| and, once the pipe is open, performs a series of calls that each retrieve a single
| sequential record from the sample file, until no more records are available.

| The third section is a simple routine to close the target sample file once processing
| of the data is complete, and to terminate the MRO connection now that the link is
| no longer required.

| Parameters in the samples that refer to systems and userids must be changed
| before running the programs. For further details of the EXCI sample applications,
| see the CICS/ESA External CICS Interface manual.

| Table 10. Sample programs for the external CICS interface

| Type| Language| Identifier| How supplied

| MVS client| Assembler| DFH$AXCC| Source and
| processable

| MVS client| COBOL| DFH0CXCC| Source

| MVS client| PL/I| DFH$PXCC| Source

| MVS client| C/370| DFH$DXCC| Source

| CICS server| Assembler| DFH$AXCS| Source and
| processable

 Chapter 20. Application programming for the external CICS interface 217

218 CICS for MVS/ESA Intercommunication Guide

+ Chapter 21. Application programming for DCE remote
+ procedure calls

+ CICS support for DCE remote procedure calls (RPCs) enables a non-CICS client
+ program running in an Open Systems Distributed Computing Environment (DCE) to
+ link to a server program running in a CICS/ESA 4.1 system. For an introduction to
+ DCE RPCs, see Chapter 7, “CICS support for DCE remote procedure calls” on
+ page 45.

+ The DCE client program
+ For information about coding DCE client programs, see the IBM OpenEdition DCE
+ Base Services MVS/ESA: Application Development Guide and the IBM OpenEdition
+ DCE Base Services MVS/ESA: Application Development Reference manual.

+ The CICS server program
+ Note: This is an overview only of how to write CICS programs to act as servers to
+ DCE remote procedure calls. For further related information, see “Using DCE RPC
+ with CICS” on page 52. For definitive information, see the IBM OpenEdition DCE
+ Base Services MVS/ESA: Application Support Programming Guide.

+ CICS server programs must:

+ � Use a communications area to pass input and output parameters.

+ � Pass input and output parameters by value (not by pointer).

+ � Contain only data-handling logic. Existing applications that have their
+ data-handling and terminal input/output logic in separate programs can be used
+ without modification.

+ � Ideally, be written in COBOL II or LE/COBOL. This is because the Application
+ Support server compiler produces only COBOL data structure definitions for
+ your CICS communications area, to match the RPC parameters. You can,
+ however, write your server application in another programming language, by
+ manually defining a communications area data structure that exactly overlays
+ that produced in COBOL by DCE.

+ CICS server programs can:

+ � Use the same subset of EXEC CICS commands as CICS DPL server
+ programs. (The restricted commands are listed on page 40, and amongst the
+ programming information in the CICS/ESA Application Programming Reference
+ manual.)

+ � Also be servers to distributed program link requests.

+ � Use CICS intercommunication facilities to access data and programs owned by
+ other APPC-connected systems. For example, they can use the Front End
+ Programming Interface (FEPI) to emulate a 3270 terminal, and thereby
+ front-end other unchanged CICS or IMS applications.

+ � Communicate with applications in remote CICS systems, using function
+ shipping, DPL, or distributed transaction processing.

 Copyright IBM Corp. 1977, 1997 219

+ The Application Support server does not support CICS application programs that:

+ � Contain terminal input/output logic to the principal facility. (Note that you can
+ use APPC terminal control commands to do distributed transaction processing
+ to a remote back-end system.)
+ � Use basic mapping support (BMS).

+ These restrictions are the same as those for CICS distributed program link servers.
+ Thus, you may be able to use server programs written for CICS-to-CICS DPL as
+ servers to DCE clients.

+ As described in “Interface definition” on page 52, you must use the DCE MVS/ESA
+ Application Support server compiler to generate a data structure definition for the
+ RPC parameters passed to your server program, and an execution stub for the
+ server. You must link edit and load the stub into the server stub library.

220 CICS for MVS/ESA Intercommunication Guide

Chapter 22. Application programming for asynchronous
processing

This chapter discusses the application programming requirements for CICS-to-CICS
asynchronous processing. The general information given for CICS transactions that
use the START or RETRIEVE commands is also applicable to CICS-to-IMS
communication.

A description of the concepts of asynchronous processing is given in Chapter 8,
“Asynchronous processing” on page 55. It is assumed that you are familiar with
the concepts of CICS interval control. For programming information about the use
of EXEC CICS commands for interval control, see the CICS/ESA Application
Programming Reference manual.

Starting a transaction on a remote system
You can start a transaction on a remote system by issuing an EXEC CICS START
command just as though the transaction were a local one.

Generally, the transaction has been defined as remote by the system programmer.
You can, however, name a remote system explicitly in the SYSID option. This use
of the START command is thus essentially a special case of CICS function
shipping.

If your application requires you to specify the time at which the remote transaction
is to be initiated, remember that the remote system may be in a different time zone.
The use of the INTERVAL form of control is preferable under these circumstances.

Exceptional conditions for the START command
The exceptional conditions that can occur as a result of issuing a START request
for a remote transaction depend on whether or not the NOCHECK performance
option is specified on the START command.

If NOCHECK is not specified, the raising of conditions follows the normal rules for
function shipping (see “Function shipping exceptional conditions” on page 207).

If NOCHECK is specified, no conditions are raised as a result of the remote
execution of the START command. SYSIDERR, however, still occurs if no link to
the remote system is available, unless the system programmer has arranged for
local queuing of start requests (see “Local queuing of START commands” on
page 60).

Retrieving data associated with a remotely-issued start request
The RETRIEVE command is used to retrieve data that has been stored for a task
as a result of a remotely-issued start request. This is the only available method for
accessing such data.

As far as your transaction is concerned, there is no distinction between data stored
by a remote start request and data stored by a local start request, and the normal
considerations for use of the RETRIEVE command apply.

 Copyright IBM Corp. 1977, 1997 221

222 CICS for MVS/ESA Intercommunication Guide

Chapter 23. Application programming for CICS transaction
routing

In general, if you are writing a transaction that may be used in a transaction routing
environment, you can design and code it just as you would for a single CICS
system. There are, however, a number of restrictions that you must be aware of,
and these are described in this chapter. The same considerations apply if you are
migrating an existing transaction to the transaction routing environment.

Things to watch out for
The program can use either command level or macro level, and can be written in

| PL/I, COBOL, C/370, or assembler language. This choice may, of course, be
| restricted by the terminal or session type: basic APPC conversations, for example,
| must use CICS command level and be written in C/370 or assembler language.

Note: Information on macro-level programs is intended primarily for:

� Migrating existing programs to a transaction routing environment
� Transaction routing to a CICS Version 1 or CICS Version 2 system.

It is strongly recommended that command level be used for new
| applications. You cannot run macro-level programs on a CICS/ESA 4.1
| system, nor can you use C/370 to write macro-level programs.

Basic mapping support
Any BMS maps or partition sets that your program uses must reside in the same
CICS system.

In a BMS routing application, a route request that specifies an operator or an
operator class directs output only to the operators signed on at terminals that are
owned by the system in which the transaction is executing.

+ APAR PN69050

+ Documentation for PN69050 added on 13 June 1995.

+ The mapset name specified in the most recent SEND MAP command is saved in
+ the TCTTE. For a routed transaction, this means that the mapset name is saved in
+ the surrogate TCTTE and, when the routed transaction terminates, the most
+ recently used mapset name is passed in a DETACH sequence from the AOR to the
+ TOR.

+ Similarly, when a routed transaction is initiated, the most recently used mapset
+ name is passed in an ATTACH sequence from the TOR to the AOR.

+ From CICS/ESA 4.1 onwards, the map name is supported in the same way as the
+ mapset name. However, pre-CICS/ESA 4.1 systems have no knowledge of map
+ names being passed in ATTACH and DETACH sequences. When sending an
+ ATTACH sequence, CICS/ESA 4.1 systems set the map name to null values in the
+ “real” TCTTE, in case the AOR is unable to return a map name in the DETACH
+ sequence. In other words, the TCTTE in the TOR contains a null value for the
+ saved map name, rather than a potentially incorrect name.

 Copyright IBM Corp. 1977, 1997 223

+ The names of mapsets and maps saved in the TCTTE can be both queried and
+ updated by the MAPNAME and MAPSETNAME options of the INQUIRE
+ TERMINAL and SET TERMINAL commands. For details of these options, see the
+ CICS/ESA System Programming Reference manual.

+ Here are some points to remember (they apply to non-routed as well as to routed
+ transactions):

+ � Map and mapset names are only remembered when used in SEND MAP
+ commands and the principal facility is a 3270 device.

+ � The last map sent may have been partially or completely removed from the
+ device buffer as the result of a SEND CONTROL, SEND TEXT or Terminal
+ Control SEND command, or by the operator hitting the CLEAR key. Thus the
+ map and mapset names returned by an INQUIRE command do not necessarily
+ match the current content of the device buffer.

+ � If the last SEND MAP command specified the ACCUM option, the map name
+ saved will either only represent a portion of a composite display or may not
+ have been sent to the device.

+ � If the last SEND MAP command specified the SET or PAGING option the map
+ name saved may not have been sent to the device.

+ � The mapset name returned by an INQUIRE command may contain a terminal,
+ or alternate, suffix which must be removed if the name is used in a subsequent
+ SEND MAP command.

 Pseudoconversational transactions
A routed transaction requires the use of an interregion or intersystem (APPC)
session for as long as it is running. For this reason, long-running conversational
transactions are best duplicated in the two systems, or alternatively designed as
pseudoconversational transactions.

Take care in the naming and definition of the individual transactions that make up a
pseudoconversational transaction, because a TRANSID specified in a CICS
RETURN command is returned to the terminal-owning region, where it may be a
local transaction.

There is, however, no reason why a pseudoconversational transaction cannot be
made up of both local and remote transactions.

 The terminal
The “terminal” with which your transaction runs is represented by a terminal control
table table entry (TCTTE). This TCTTE, called a surrogate TCTTE, is in many
respects a copy of the “real” terminal’s TCTTE in the terminal-owning region. CICS
releases the surrogate TCTTE when the transaction terminates. Subsequent tasks
run using new copies of the real terminal’s TCTTE.

| If your program needs to discover terminal-related information, you should bear in
| mind the following:

| � Your program should not test fields in the TCTTE directly: it should test instead
| the equivalent fields in the EXEC interface block (EIB).

| � If the new task is started by ATI, the contents of certain terminal-related fields
| in the EIB are unpredictable. Prior to CICS/ESA 3.2.1, these included EIBAID

224 CICS for MVS/ESA Intercommunication Guide

| and EIBSCON. However, in CICS/ESA 3.2.1 and later releases, EIBAID, which
| contains the attention identifier, is always set to zeros at the start of a session.
| In earlier releases it may contain either zeros or residual data from a previous
| session. The effect of this is that, if you are transaction routing from a
| CICS/ESA 4.1 TOR to a pre-CICS/ESA 3.2.1 AOR, the content of EIBAID at
| commencement of the task is unpredictable. This problem does not apply to
| routing in the reverse direction.

Using the EXEC CICS ASSIGN command in the AOR
You may find that two of the options of the EXEC CICS ASSIGN command cause
an unexpected reaction or return unexpected values.

PRINSYSID
This option returns the sysid of the principal facility to the transaction. It
requires that this facility be an MRO, an LUTYPE6.1, or an APPC session. For
transaction routing, this is further restricted to an APPC session, because
neither of the other session types can be made principal facility to a routed
transaction. Here, the value returned is the name of the remote connection or
terminal defined in this system. If the connection or terminal has been shipped,
the name is the original name defined in the TOR. If the principal facility is not
an APPC session, the INVREQ condition is raised.

With this option, an application can obtain the connection name of an APPC
device. By making this the sysid of an ALLOCATE command, further sessions
to the same device can be established.

Note: An EXEC CICS ASSIGN PRINSYSID command cannot be used to find
the name of the terminal-owning region.

 Chapter 23. Application programming for CICS transaction routing 225

USERID
For a routed transaction, CICS takes the userid from one of several sources,
depending on how you specified your security requirements. See the
CICS/ESA CICS-RACF Security Guide.

As Table 11 shows, CICS returns the following values:

� If the connection is defined with the ATTACHSEC(LOCAL) option, and
SEC=YES or MIGRATE is specified in the AOR’s system initialization
parameters, CICS returns:

| – For ISC connections, either:

| 1. The USERID from the session definition, if this is specified
| 2. The SECURITYNAME value from the connection definition.

| – For MRO connections, the RACF userid of the TOR.

� If the connection is defined with the ATTACHSEC(LOCAL) option, and
SEC=NO is specified in the AOR’s system initialization parameters, CICS
returns the DFLTUSER value from the AOR.

| � If the connection is defined with the ATTACHSEC(IDENTIFY) option (or, for
| APPC connections, the VERIFY, PERSISTENT, or MIXIDPE option), and
| SEC=YES or MIGRATE is specified in the TOR’s system initialization
| parameters, CICS returns the userid sent at attach.

| � If the connection is defined with the ATTACHSEC(IDENTIFY) option (or, for
| APPC connections, the VERIFY, PERSISTENT, or MIXIDPE option), and
| SEC=NO is specified in the TOR’s system initialization parameters, CICS
| returns the DFLTUSER value from the TOR.

Table 11. Values returned by the USERID option of EXEC CICS ASSIGN, for routed
transactions

TOR’s
DFHSIT
SEC=

ATTACHSEC value in CONNECTION definition

IDENTIFY
VERIFY

PERSISTENT
MIXIDPE

LOCAL

AOR’s DFHSIT
SEC=YES or

MIGRATE

AOR’s DFHSIT
SEC=NO

| YES
| or
| MIGRATE
| Userid sent at attach
| ISC

| 1. USERID of
| session
| 2. SECURITYNAME
| of connection

| MRO
| RACF userid of
| TOR

| DFLTUSER of AOR

| NO
| Userid sent at attach
| (DFLTUSER of TOR)

226 CICS for MVS/ESA Intercommunication Guide

 Chapter 24. CICS-to-IMS applications

This chapter tells you how to code CICS transactions that communicate with an
IMS system. For full details of IMS ISC, refer to the appropriate IMS publications.
This chapter is intended to provide sufficient information about IMS to enable you to
work with your IMS counterpart to implement a CICS-to-IMS ISC application.

Designing CICS-to-IMS ISC applications
There are many differences between CICS and IMS, both in their architecture and
in their application and system programming requirements.

The design of CICS-to-IMS ISC applications involves principally CICS application
programming and IMS system definition. This difference reflects where the control
lies in each of the two systems.

CICS is a direct control system. Data entered at a terminal causes CICS to
invoke the appropriate application program to process the incoming data. The data
is stored, rather than queued, and the application “owns” the terminal until it
completes its processing and terminates. In CICS ISC, the application program is
involved with data flow protocols, with syncpointing, and, in general, with most
system services.

In contrast, IMS is a queued system. All input and output messages are queued
by the IMS control region on behalf of the related application programs and
terminals. The queuing of messages and the processing of messages are
therefore performed asynchronously. This is illustrated in Figure 67 on page 228.

As a result of this type of system design, IMS application programs do not have
direct control over IMS system resources, nor do they become directly involved in
the control of intersystem communication. IMS message switching is handled
entirely in the IMS control region; the message processing region is not involved.

 Data formats
Messages transmitted between CICS and IMS can have either of the following data
formats:

� Variable-length variable-blocked (VLVB)
� Chain of RUs.

 Copyright IBM Corp. 1977, 1997 227

 ┌───────────────────────┬────────────────┐

 │ Control │ Message │

 │ Region │ Processing │

 │ │ Region │

 │ │ │

 │ │ │

 │ ┌──────────────┐ │ │

┌───┴──┐ │ │ │ ┌────────────┐ │

 │ ├─>─┤ TRAN CODE ├─>─┤ message │ │

SESSIONS │ │ │ ┌──────────┐ │ │ │ processing │ │

─────────┤ │ │ │ message │ │ │ │ program │ │

─────────┤ EDIT │ │ └──────────┘ │ │ │ │ │

─────────┤ │ │ │ │ │ │ │

─────────┤ │ │ │ │ │ │ │

 │ ├─<─┤ LTERM NAME ├─<─┤ │ │

│ │ │ ┌──────────┐ │ │ └────────────┘ │

└───┬──┘ │ │ message │ │ │ │

│ │ └──────────┘ │ │ │

 │ │ │ │ │

 │ │ MESSAGE │ │ │

 │ │ QUEUES │ │ │

 │ └──────────────┘ │ │

 │ │ │

 └───────────────────────┴────────────────┘

Figure 67. Basic IMS message queuing

In normal CICS communication with logical units, chain of RUs is the default data
format. In IMS, VLVB is the default. In CICS-to-IMS communication, the format
that is being used is specified in the LUTYPE6.1 attach headers that are sent with
the initial data.

 Variable-length variable-blocked
In VLVB format, a message can contain multiple records. Each record is prefixed
by a two-byte length field, as shown here.

┌──┬───────────────┬──┬───────────────┐

│LL│ data │LL│ data │

└──┴───────────────┴──┴───────────────┘

<─── record 1 ─────><──── record 2 ───>

In CICS, the I/O area contains a complete message, which can contain one or
more records. The blocking of records for output, and the deblocking on input,
must be done by your CICS application program.

Chain of RUs
In this format, which is the most common CICS format, a message is transmitted as
multiple SNA RUs, as shown here.

┌─────────────────────────────────────┐

│ data │

└─────────────────────────────────────┘

<───── multiple SNA RUs ──────────────>

In CICS, the I/O area contains a complete message.

228 CICS for MVS/ESA Intercommunication Guide

Forms of intersystem communication with IMS
There are three forms of CICS-to-IMS communication that must be considered:

1. Asynchronous processing using CICS START and RETRIEVE commands

2. Asynchronous processing using CICS SEND LAST and RECEIVE commands

3. Distributed transaction processing (that is, synchronous processing) using CICS
SEND and RECEIVE commands.

The basic differences between these forms of communication are described in
Chapter 8, “Asynchronous processing” on page 55 and Chapter 10, “Distributed
transaction processing” on page 85.

In any particular application that involves communication between CICS and IMS,
the intersystem communication must be initiated by one or other of the two
systems. For example, if a CICS terminal operator initiates a CICS transaction that
is designed to obtain data from a remote IMS system, the intersystem
communication for the purposes of this application is initiated by CICS.

The system that initiates intersystem communication for any particular application is
the front-end system as far as that application is concerned. The other system is
called the back-end system.

When CICS is the front end, it supports all three types of intersystem
communication listed above. The form of communication that can be used for any
particular application depends on the IMS transaction type or on the IMS facility
that is being initiated. For information about the forms of communication that IMS
supports when it is the back-end system, see the IMS Programming Guide for
Remote SNA Systems.

When IMS is the front-end system, it always uses asynchronous processing
(corresponding to the CICS START and RETRIEVE interface) to initiate
communication with CICS.

 Asynchronous processing
In asynchronous processing, the intersystem session is used only to pass an
initiation request, together with various items of data, from one system to the other.
All other processing is independent of the session that is used to pass the request.

The two application programming interfaces available in CICS for asynchronous
processing are:

1. The START and RETRIEVE interface

2. The SEND and RECEIVE interface.

The START and RETRIEVE interface
For programming information about the CICS START and RETRIEVE “interval
control” commands, see the CICS/ESA Application Programming Reference
manual. The applicable forms of these commands, together with the specific
meanings of the command options in a CICS-to-IMS intersystem communication
environment, are given later in this section.

 Chapter 24. CICS-to-IMS applications 229

CICS front end
When CICS is the front-end system, you can use CICS START and RETRIEVE
commands to process IMS nonresponse mode and nonconversational transactions,
message switches, and the IMS /DIS, /RDIS, and /FOR operator commands.

Note: When you issue the operator commands mentioned above, unless you send
| change direction (CD), IMS expects you to request definite response. You must do

this by coding the PROTECT option on the START command.

The general command sequence for your application program is shown in
Figure 68.

After transaction TRANA has obtained an input message from the terminal, it
issues a START NOCHECK command to initiate the remote IMS transaction. The
START command specifies the name of the IMS editor that is to be initiated to
process the message and the IMS transaction or logical terminal (LTERM) that is to
receive the message. It also specifies the name of the CICS transaction that is to
receive the reply and the name of the associated CICS terminal.

| The PROTECT option must be specified on the START command to ensure
delivery of the message to IMS.

The start request is not shipped until your application program either issues a
SYNCPOINT command or terminates. However, the request does not carry the
syncpoint-indicator unless PROTECT was specified on the START command.

 CICS IMS
 ┌─────────────────────────┐ ┌──────────────────┐

 │ │ │ │

 │ TRANA │ │ │

 │ ┌───────────────────┤ (start) │ │

│ │ (obtain terminal ├────>─────┤ │

 │ │ input) │ │ │

 │ │ START NOCHECK │ │ │

 │ │ [PROTECT] │ │ │

 │ │ . │ │ │

 │ │ (SYNCPOINT) │ │ │

 │ │ RETURN │ │ │

 │ └───────────────────┤ │ │

 │ │ │ │

 │ TRANB │ │ │

 │ ┌───────────────────┤ (start) │ │

 │ │ RETRIEVE ├────<─────┤ │

│ │ (send to terminal)│ │ │

 │ │ RETURN │ │ │

 │ └───────────────────┤ │ │

 │ │ │ │

 └─────────────────────────┘ └──────────────────┘

Figure 68. START and RETRIEVE asynchronous processing–CICS front end

Although CICS allows an application program to issue multiple START NOCHECK
commands without intervening syncpoints (see “Deferred sending of START
requests with NOCHECK option” on page 60), this technique is not recommended
for CICS-to-IMS communication.

IMS sends the reply by issuing a start request that is handled in the normal way by
the CICS mirror transaction. The request specifies the CICS transaction and

230 CICS for MVS/ESA Intercommunication Guide

terminal that you named in the original START command. The transaction that is
started (TRANB) can then retrieve the reply by issuing a RETRIEVE command.

In the above example, it has been assumed that there are two separate CICS
transactions; one to issue the START command and one to receive the reply and
return it to the terminal. These two transactions can be combined, and there are
two ways in which this can be done:

� The first method is to write a transaction that contains both the START and the
RETRIEVE processing, but which performs only one of these functions for a
particular execution. The CICS ASSIGN STARTCODE command can be used
to determine whether the transaction was initiated from the terminal, in which
case the START processing is required, or by a start request, in which case the
RETRIEVE processing is required.

� The second method is to write a transaction that, having issued the START
command, issues a SYNCPOINT command to clear the start request, and then
waits for the reply by issuing a RETRIEVE command with the WAIT option.
The terminal is held by the transaction during this time, and CICS returns
control to the transaction when input directed to the same transaction and
terminal is received.

In all cases, you should make no assumptions about the timing of the reply or its
relationship to a particular previous request. A RETRIEVE command retrieves any
outstanding data intended for the same transaction and terminal. The correlation of
requests and replies is the responsibility of your application program.

IMS front end
When IMS is the front-end system, the only supported flow is the asynchronous
start request. Your application program must use the RETRIEVE command to
obtain the request from IMS, followed by a START command to send the reply if
one is required.

The general command sequence for your application program is shown in
Figure 69.

If a reply to the retrieved data is required, your start command must specify the
IMS editor and transaction or LTERM name obtained by the RETRIEVE command.

 IMS CICS
 ┌──────────────────┐ ┌─────────────────────────┐

 │ │ │ TRANA │

 │ │ (start) ├───────────────────┐ │

 │ ├────>─────┤ RETRIEVE │ │

│ │ │ (communicate with │ │

 │ │ │ terminal) │ │

 │ │ │ START │ │

 │ │ │ (SYNCPOINT) │ │

 │ ├────<─────┤ RETURN │ │

 │ │ (start) ├───────────────────┘ │

 │ │ │ │

 └──────────────────┘ └─────────────────────────┘

Figure 69. RETRIEVE and START asynchronous processing – IMS front end

 Chapter 24. CICS-to-IMS applications 231

The START command
This section shows the format of the START command that is used to schedule
remote IMS transactions. Note that no interval control is possible (although it is not
an error to specify INTERVAL(0)) and that the NOCHECK and PROTECT options
must be specified.

EXEC CICS START TRANSID(name)

 [SYSID(name)]

 [FROM(data-area) LENGTH(value)]

 [TERMID(name)]

 [RTRANSID(name)]

 [RTERMID(name)]

 NOCHECK

| PROTECT

 [FMH]

TRANSID(name)
Specifies the name of the IMS editor that is to be initiated to process the
message. It must be an alias (not exceeding four characters) of ISCEDT, or an
MFS MID name.

Alternatively, it can name the installed definition of a “remote” transaction. In
this case, the SYSID option is not used. The definition of the remote
transaction must name the required IMS editor in the RMTNAME option, which
can be up to eight characters long.

SYSID(name)
Specifies the name of the remote IMS system. This is the name that is
specified by the system programmer in the CONNECTION option of the
DEFINE CONNECTION command that defines the link to the remote system.
You need this option only if you are required to name the remote system
explicitly.

FROM(data-area)
Specifies the data that is to be sent. The format of the data (VLVB or chain of
RUs) must match the format specified in the RECORDFORMAT option of the
DEFINE CONNECTION command that defines the remote IMS system (see
Chapter 14, “Defining links to remote systems” on page 119).

LENGTH(value)
Specifies, as a halfword binary value, the length of the data specified in the
FROM option.

TERMID(name)
Specifies the primary resource name that is to be assigned to the remote
process. For IMS, it is a transaction code or an LTERM name.

If this option is omitted, you must specify the transaction code or the LTERM
name in the first eight characters of the data named in the FROM option. You
must use this method if the name exceeds four characters (the CICS limit for
the TERMID option) or if IMS password processing is required.

RTRANSID(name)
Specifies the name of the transaction that is to be invoked when IMS returns a
reply to CICS. The name must not exceed four characters in length.

232 CICS for MVS/ESA Intercommunication Guide

RTERMID(name)
Specifies the name of the terminal that is to be attached to the transaction
specified in the RTRANSID option when it is invoked. The name must not
exceed four characters in length.

NOCHECK
This option is mandatory.

PROTECT
| Specifies that the remote IMS transaction must not be scheduled until the local
| CICS transaction has taken a syncpoint. PROTECT is mandatory.

FMH
Specifies that the user data to be passed to the started task contains function
management headers. This option is not normally used.

The RETRIEVE command
This section shows the format of the RETRIEVE command that is used to retrieve
data sent by IMS.

EXEC CICS RETRIEVE

 [{INTO(data-area)|SET(pointer-ref)}

 LENGTH(data-area)]

 [RTRANSID(data-area)]

 [RTERMID(data-area)]

 [WAIT]

INTO(data-area)
Specifies the user data area into which the data retrieved from IMS is to be
written.

SET(pointer-ref)
Specifies the pointer reference to be set to the address of the data retrieved
from IMS.

LENGTH(data-area)
Specifies the halfword binary length of the retrieved data.

For a RETRIEVE command with the INTO option, this must be a data area that
specifies the maximum length of data that the program is prepared to handle.
If the value specified is less than zero, zero is assumed. If the length of the
data exceeds the value specified, the data is truncated to that value and the
LENGERR condition occurs. On completion of the retrieval operation, the data
area is set to the original length of the data.

For a RETRIEVE command with the SET option, this must be a data area. On
completion of the retrieval operation, the data area is set to the length of the
data.

RTRANSID(data-area)
Specifies an area to receive the return destination process name sent by IMS.
It is either an MFS MID name chained from an output MOD, or is blank.

Your application can use this name in the TRANSID option of a subsequent
START command.

RTERMID(data-area)
Specifies an area to receive the return primary resource name sent by IMS. It
is either a transaction name or an LTERM name.

 Chapter 24. CICS-to-IMS applications 233

Your application can use this name in the TERMID option of the START
command used to send the reply.

WAIT
Specifies that control is not to be returned to your application program until
data is sent by IMS.

If WAIT is not specified, the ENDDATA condition is raised if no data is
available. If WAIT is specified, the ENDDATA condition is raised only if CICS
is shut down before any data becomes available.

The use of the WAIT option is not generally recommended, because it can
cause intervening messages (not the expected reply) to be retrieved.

The asynchronous SEND and RECEIVE interface
This form of asynchronous processing is, in CICS, a special case of distributed
transaction processing. A CICS transaction acquires the use of a session to a
remote system, and uses the session for a single transmission (using a SEND
command with the LAST option) to initiate a remote transaction and send data to it.
The reply from the remote system causes a CICS transaction to be initiated just as
if it were a back-end transaction in normal DTP. This transaction, however, can
issue only a single RECEIVE command, and must then free the session.

Except for these additional restrictions, you can design your application according
to the rules given for distributed transaction processing later in this chapter.

The general command sequence for asynchronous SEND and RECEIVE
application programs is shown in Figure 70.

 CICS IMS
 ┌─────────────────────────┐ ┌──────────────────┐

 │ │ │ │

 │ TRANA │ │ │

│ ┌───────────────────┤ (attach) │ │

 │ │ ALLOCATE ├────>─────┤ │

 │ │ BUILD ATTACH │ │ │

 │ │ SEND ATTACHID │ │ │

 │ │ LAST │ │ │

 │ │ FREE │ │ │

 │ └───────────────────┤ │ │

 │ │ │ │

 │ TRANB │ │ │

│ ┌───────────────────┤ (attach) │ │

 │ │ RECEIVE ├────<─────┤ │

 │ │ EXTRACT ATTACH │ │ │

 │ │ . │ │ │

 │ │ FREE │ │ │

 │ └───────────────────┤ │ │

 │ │ │ │

 └─────────────────────────┘ └──────────────────┘

Figure 70. SEND and RECEIVE asynchronous processing – CICS front end

234 CICS for MVS/ESA Intercommunication Guide

Distributed transaction processing
This section describes application programming for CICS-to-IMS distributed
transaction processing (DTP). For further information about DTP, see the
CICS/ESA Distributed Transaction Programming Guide.

CICS commands for CICS-to-IMS sessions
The commands that can be used to acquire and use CICS-to-IMS sessions are:

ALLOCATE – used to acquire a session to the remote IMS system.

BUILD ATTACH – used to build an LUTYPE6.1 attach header that is used to
initiate a transaction on a remote IMS system.

EXTRACT ATTACH – used by a CICS transaction to recover information from
the LUTYPE6.1 attach header that caused it to be initiated. This command is
required only for SEND and RECEIVE asynchronous processing.

SEND, RECEIVE, and CONVERSE – used by the CICS transaction to send or
receive data on the session. The first SEND or CONVERSE command issued
by a front-end CICS transaction must name the attach header that has been
defined by the BUILD ATTACH command.

WAIT TERMINAL SESSION(name) – used to ensure that CICS has
transmitted any accumulated data or data flow control indicators before it
continues with further processing.

ISSUE SIGNAL SESSION(name) – used by a transaction that is in receive
state to request an invitation to send (change-direction) from IMS.

FREE – used by a CICS transaction to relinquish its use of the session.

Considerations for the front-end transaction
Except in the special case of the receiving transaction in SEND and RECEIVE
asynchronous processing, the CICS transaction is always the front-end transaction
in CICS-to-IMS DTP.

The front-end transaction is responsible for acquiring a session to the remote IMS
system and initiating the remote transaction. Thereafter, the two transactions
become equals. However, the front-end transaction is usually designed as the
client, or driving, transaction.

 Session allocation
You acquire an LUTYPE6.1 session to a remote IMS system by means of the
ALLOCATE command, which has the following format:

 ALLOCATE {SYSID(name)|SESSION(name)}

 [PROFILE(name)]

 [NOQUEUE]

You can use the SESSION option to request the use of a specific session to the
remote IMS system, or you can use the SYSID option to name the remote system
and allow CICS to select an available session. The use of the SESSION option is
not normally recommended, because it can result in an application program
queuing on a specific session when others are available. In most cases, therefore,
you will use the SYSID option to name the system with which the session is
required.

 Chapter 24. CICS-to-IMS applications 235

If CICS cannot find the named system, or no sessions are available, it raises the
SYSIDERR condition. If CICS cannot find the named session or the session is out
of service, CICS raises the SESSIONERR condition.

The PROFILE option allows you to specify a communication profile for an
LUTYPE6.1 session. The profile, which is set up during resource definition,
contains a set of terminal control processing options that are to be used for the
session.

If you omit the PROFILE option, CICS uses the default profile DFHCICSA. This
profile specifies INBFMH(ALL), which means that incoming function management
headers are passed to your program and cause the INBFMH condition to be raised.

The NOQUEUE option allows you to specify explicitly that you do not want your
request for a session to be queued if a session is not available immediately. A
session is “not immediately available” in any of the following situations:

� All the sessions to the specified system are in use.

� The only available sessions are not bound (in which case, CICS would have to
bind a session).

� The only available sessions are contention losers (in which case, CICS would
have to bid to begin a bracket).

The action taken by CICS if a session is not immediately available depends on
whether you specify NOQUEUE and also on whether your application has executed
a HANDLE command for the SYSBUSY condition. The possible combinations are
shown below:

� HANDLE for SYSBUSY condition

– Control is returned immediately to the label specified in the HANDLE
command, whether or not you have specified NOQUEUE.

� No HANDLE for SYSBUSY condition

– If you have specified NOQUEUE, control is returned immediately to your
application program. The SYSBUSY code (X'D3') is set in the
EIBRCODE field of the EXEC interface block. You should test this field
immediately after issuing the ALLOCATE command.

– If you have omitted the NOQUEUE option, CICS queues the request until a
session is available.

Whether a delay in acquiring a session is acceptable or not is dependent on your
application.

Similar considerations apply to an ALLOCATE command that specifies SESSION
rather than SYSID. The associated condition is ‘SESSBUSY‘ (EIBRCODE=X'D2').

The session identifier
When a session has been allocated, the name by which it is known is available in
the EIBRSRCE field in the EIB. Because EIBRSRCE will probably be overwritten
by the next EXEC CICS command, you must acquire the session name
immediately. It is the name that you must use in the SESSION parameter of all
subsequent commands that relate to this session.

236 CICS for MVS/ESA Intercommunication Guide

Automatic transaction initiation
If the front-end transaction is designed to be started by automatic transaction
initiation (ATI) in the local system, and is required to hold a conversation with an
LUTYPE6.1 session as its principal facility, the session has already been allocated
when the transaction starts. You can omit the SESSION parameter from
commands that relate to the principal facility. If, however, you want to name the
session explicitly in these commands, you should obtain the name from EIBTRMID.

Attaching the remote transaction
When a session has been acquired, the next step is to cause the remote IMS
process to be initiated.

The LUTYPE6.1 architecture defines a special function management header, called
an attach header, which carries the name of the remote process (in CICS terms,
the transaction) that is to be initiated, and also contains further session-related
information.

CICS provides the BUILD ATTACH command to enable a CICS application
program to build an attach header to send to IMS, and the EXTRACT ATTACH
command to enable information to be obtained from attach headers received from
IMS.

Because these commands are available, you do not need to know the detailed
format of an LUTYPE6.1 attach header. In most cases, however, you need to
know the meaning of the information that it carries.

The format of the BUILD ATTACH command is:

 BUILD ATTACH

 ATTACHID(name)

 [PROCESS(ISCEDT|BASICEDT|name)]

 [RESOURCE(name)]

 [RPROCESS(name)]

 [RRESOURCE(name)]

 [QUEUE(name)]

 [IUTYPE(S|data-value)]

 [DATASTR(S|data-value)]

 [RECFM(data-value)]

The parameters of the BUILD ATTACH command have the following meanings:

ATTACHID(name)
The ATTACHID option enables you to assign a name to the attach header so
that you can refer to it in a subsequent SEND or CONVERSE command. (The
BUILD ATTACH command builds an attach header; it does not transmit it.)

PROCESS(name)
This corresponds to the process name, ATTDPN, in an attach FMH. It
specifies the remote process that is to be initiated.

In CICS-to-IMS communication, the remote process is always an editor. It can
be ISCEDT (or its alias), BASICEDT, or an MFS MID name. The process
name must not exceed eight characters.

If the PROCESS option is omitted, IMS assumes ISCEDT.

 Chapter 24. CICS-to-IMS applications 237

RESOURCE(name)
This corresponds to the resource name, ATTPRN, in an attach FMH.

The RESOURCE option specifies the primary resource name (up to eight
characters) that is to be assigned to the remote process that is being initiated.

In CICS-to-IMS communication, the primary resource name is either an IMS
transaction code or a logical terminal name. You can omit the RESOURCE
option if the IMS message destination is specified in the first eight bytes of the
message or if the destination is preset by the IMS operator.

If a primary resource name is supplied to IMS, the data stream is not edited for
destination and security information. You should therefore omit the
RESOURCE option if IMS password processing is required.

The name in the RESOURCE option is ignored during conversational
processing, or if the remote process is BASICEDT.

RPROCESS(name)
This corresponds to the return process name, ATTRDPN, in an attach FMH.

The RPROCESS option specifies a suggested return destination process name.
IMS returns this name as a destination process name (ATTDPN) when it sends
a reply to CICS, although the name may be overridden by MFS.

CICS uses the returned destination process name to determine the transaction
that is to be attached after a session restart. At any other time, it is ignored.
The RPROCESS option should therefore name a transaction that will handle
any queued messages when it is attached by CICS at session restart following
a session failure.

RRESOURCE(name)
This corresponds to the return resource name, ATTRPRN, in an attach FMH.

The RRESOURCE option specifies a suggested primary resource name that is
to be assigned to the return process. IMS returns this name as the resource
name (ATTPRN) when it sends a reply to CICS.

Although CICS normally ignores this field, one use for it in ISC is to specify a
CICS terminal to which output messages occurring after session restart should
be sent.

QUEUE(name)
This corresponds to the queue name, ATTDQN, in an attach FMH.

The QUEUE option specifies a queue that can be associated with the remote
process. In CICS-to-IMS communication, it is used only to send a paging
request to IMS during demand paging. The name used must be the one
obtained by a previous EXTRACT ATTACH QNAME command. The name
must not exceed eight characters.

IUTYPE(data-value)
This corresponds to the interchange unit field, ATTIU, in an attach FMH.

The IUTYPE option specifies SNA chaining information for the message. The
value is halfword binary. The bits in the binary value are used as follows:

 0–7 X'00' – must be set to zero
 8–15 X'00' – multiple RU chains
 X'01' – single RU chains.

238 CICS for MVS/ESA Intercommunication Guide

DATASTR(data-value)
This corresponds to the data stream profile field, ATTDSP, in an attach FMH.

The DATASTR option is used to select an IMS component. The value is
halfword binary. The bits in the binary value are used as follows:

If the DATASTR option is omitted, IMS Component 1 is assumed.

RECFM(data-value)
This corresponds to the deblocking algorithm field, ATTDBA, in an attach FMH.

The RECFM option specifies the format of the user data that is sent to the
remote process. The name must represent a halfword binary value. The bits
in the binary value are used as follows:

If VLVB is specified, your application program must add a two-byte binary
length field in front of each record. If chain of RUs is specified, you can send
your data in the usual way; no length fields are required.

A record is interpreted by IMS as either a segment of a message (without MFS)
or an MFS record (with MFS).

The RECFM option indicates only the type of the message format. Multiple
records can be sent by one SEND command. In this case, it is the
responsibility of your application program to perform the blocking.

Having built the attach header, you must ensure that it is transmitted with the first
data sent to the remote system by naming it in the ATTACHID option of the SEND
or CONVERSE command.

 0–7 X'00' – must be set to zero
 8–11 0000 – (user-defined data stream)
 12–15 0000 – IMS Component 1
 0001 – IMS Component 2
 0010 – IMS Component 3
 0011 – IMS Component 4.

 0–7 X'00' – reserved – must be set to zero
 8–15 X'01' – variable-length variable-blocked (VLVB)

 format
 X'04' – chain of RUs.

Building your own attach header
CICS allows you to build an attach header, or any function management header, as
part of your output data. You can therefore initiate the remote transaction by
including an LUTYPE6.1 attach header in the output area referenced by the first
SEND or CONVERSE command. You must specify the FMH option on the
command to tell CICS that the data contains an FMH.

Considerations for the back-end transaction
A CICS transaction can be the back-end transaction in CICS-to-IMS communication
only in the special case of SEND and RECEIVE asynchronous processing.

The transaction is initiated by an LUTYPE6.1 attach FMH received from the remote
IMS system, and is allowed to issue only a single RECEIVE command, possibly
followed by an EXTRACT ATTACH command.

 Chapter 24. CICS-to-IMS applications 239

Acquiring session-related information
You can use the EXTRACT ATTACH command to recover session-related
information from the attach FMH if required, but the use of this command is not
mandatory.

The presence of an attach header is indicated by EIBATT, which is set after the
first RECEIVE command has been issued.

The format of the EXTRACT ATTACH command is:

 EXTRACT ATTACH

 [SESSION(data-area)]

 [PROCESS(data-area)]

 [RESOURCE(data-area)]

 [RPROCESS(data-area)]

 [RRESOURCE(data-area)]

 [QUEUE(data-area)]

 [IUTYPE(data-area)]

 [DATASTR(data-area)]

 [RECFM(data-area)]

The parameters of the EXTRACT ATTACH command have the following meanings:

DATASTR(data-area)
Contains a value specifying the IMS output component.

The data area must be a halfword binary field. The values set by IMS are as
follows:

IUTYPE(data-area)
indicates SNA chaining information for the message and the type of MFS
paged output.

The data area must be a halfword binary field. The values set by IMS are as
follows:

PROCESS(data-area)
IMS returns either the return destination process name specified in the
RPROCESS option of the BUILD ATTACH command, or a value set by the
MFS MOD.

QUEUE(data-area)
IMS returns the LTERM name associated with the ISC session when MFS
demand-paged output is ready to be sent. The returned value should be used

 0–7 X'00'– (zero)
 8–11 0000 – (user-defined data stream)
 12–15 0000 – IMS Component 1
 0001 – IMS Component 2
 0010 – IMS Component 3
 0011 – IMS Component 4.

 0–7 X'00' – (zero)
 8–15 X'00' – multiple RU chains, MFS autopaged

 output
 X'01' – single RU chains, MFS nonpaged output
 X'05' – single RU chains, MFS demand-paged

 output.

240 CICS for MVS/ESA Intercommunication Guide

in the QMODEL FMH and the BUILD ATTACH QNAME when a paging request
is to be sent.

RECFM(data-area)
Contains the data format of the incoming user message.

The data area must be a halfword binary field. The values set by IMS are as
follows:

If VLVB is specified, your application program must deblock the message by
using the halfword-binary length field that precedes each record.

RESOURCE(data-area)
IMS returns either the return resource name specified in the RRESOURCE
option of the BUILD ATTACH command, or a value set by the MFS MOD.

RPROCESS(data-area)
IMS sends the chained MFS MID name if MFS is being used. Otherwise, no
value is sent.

RRESOURCE(data-area)
IMS sends the value set by the MFS MOD if MFS is being used. Otherwise, no
value is sent.

 0–7 X'00' – (zero)
 8–15 X'01' – variable-length variable-blocked (VLVB)

 format
 X'04' – chain of RUs (can also be X'00' or

X'05').

Initial state of back-end transaction
The back-end transaction is initiated in receive state, and should issue RECEIVE
as its first command or after EXTRACT ATTACH.

 The conversation
The conversation between the front-end and the back-end transactions is held
using the usual SEND, RECEIVE, and CONVERSE commands. For programming
information about these commands, see the CICS/ESA Application Programming
Reference manual.

In each of these commands, you must name the session in the SESSION option
unless the conversation is with the principal facility.

 Deferred transmission
On ISC sessions, when you issue a SEND command, CICS normally defers
sending the data until it becomes clear what your further intentions are. This
mechanism enables CICS to avoid unnecessary flows by adding control indicators
on the data that is awaiting transmission.

In general, IMS does not accept indicators such as change-direction,
syncpoint-request, or end-bracket as stand-alone transmissions on null RUs. You
should therefore always allow deferred transmission to operate, and avoid using the
WAIT option or the WAIT TERMINAL command to force transmissions to take
place.

 Chapter 24. CICS-to-IMS applications 241

Using the LAST option
The LAST option on the SEND command indicates the end of the conversation.
No further data flows can occur on the session, and the next action must be to free
the session. However, the session can still carry CICS syncpointing flows before it
is freed.

The LAST option and syncpoint flows
A syncpoint on an ISC session is initiated explicitly by a SYNCPOINT command, or
implicitly by a RETURN command.

If your conversation has been terminated by a SEND LAST command, without the
WAIT option, transmission has been deferred, and the syncpointing activity causes
the final transmission to occur with an added syncpoint request. The conversation
is thus automatically involved in the syncpoint.

Freeing the session
The command used to free the session has the following format:

 FREE SESSION(conversation-name)

You must free the session after issuing a SEND LAST command, or when the
EIBFREE field has been set.

CICS allows you to issue the FREE command at any time that your transaction is
in send state. CICS determines whether the end-bracket indicator has already
been transmitted, and transmits it if necessary before freeing the session. If there
is also deferred data to transmit, the end-bracket indicator is transmitted with the
data. Otherwise, the indicator is transmitted by itself.

Because only some IMS input components accept a stand-alone end-bracket
indicator, this use of FREE is not recommended for CICS-to-IMS communication.

The EXEC interface block (EIB)
For programming information about the EXEC interface block (EIB), see the
CICS/ESA Application Programming Reference manual. This section highlights the
fields that are of particular significance in ISC applications. For further details of
how and when these fields should be tested or saved, refer to “Command
sequences for CICS-to-IMS sessions” on page 243.

Conversation identifier fields
The following EIB fields enable you to obtain the name of the ISC session.

EIBTRMID
Contains the name of the principal facility. For a back-end transaction, or for a
front-end transaction started by ATI, it is the conversation identifier (SESSION).
You must acquire this name if you want to state the session name of the
principal facility explicitly.

EIBRSRCE
Contains the session identifier (SESSION) for the session obtained by means
of an ALLOCATE command. You must acquire this name immediately after
issuing the ALLOCATE command.

242 CICS for MVS/ESA Intercommunication Guide

 Procedural fields
These fields contain information on the state of the session. In most cases, the
settings relate to the session named in the last-executed RECEIVE or CONVERSE
command, and should be tested, or saved for later testing, after the command has
been issued. Further information about the use of these fields is given in
“Command sequences for CICS-to-IMS sessions.”

EIBRECV
Indicates that the conversation is in receive state and that the normal
continuation is to issue a RECEIVE command.

EIBCOMPL
This field is used in conjunction with the RECEIVE NOTRUNCATE command; it
is set when there is no more data available.

EIBSYNC
| Indicates that the application must take a syncpoint or terminate.

EIBSIG
Indicates that the conversation partner has issued an ISSUE SIGNAL
command.

EIBFREE
Indicates that the receiver must issue a FREE command for the session.

 Information fields
The following fields contain information about FMHs received from the remote
transaction:

EIBATT
Indicates that the data received contained an attach header. The attach
header is not passed to your application program; however, EIBATT indicates
that an EXTRACT ATTACH command is appropriate.

EIBFMH
Indicates that the data passed to your application program contains a
concatenated FMH.

If you want to use these facilities, you must ensure that you use communication
profiles that specify INBFMH(ALL). The default profile (DFHCICSA) for a session
allocated by a CICS front-end transaction has this specification. However, the
default principal facility profile (DFHCICST) for a CICS back-end transaction does
not. Further information about this subject is given under “Defining communication
profiles” on page 191.

Command sequences for CICS-to-IMS sessions
The command sequences that you use to communicate between the front-end and
the back-end transactions are governed both by the requirements of your
application and by a set of high-level protocols designed to ensure that commands
are not issued in inappropriate circumstances.

The protocols presented in this section do not cover all possible command
sequences. However, by following them, you ensure that each transaction takes
account of the requirements of the other. This helps to avoid errors during program
development.

 Chapter 24. CICS-to-IMS applications 243

 Conversation states
The protocols are based on the concept of several separate states. These states
apply only to the particular conversation, not to your entire application program. In
each state, there is a choice of commands that might most reasonably be issued.
After the command has been issued, fields in the EIB can be tested to learn the
current requirements of the conversation. The results of these tests, together with
the command that has been issued, may cause a transition to another state, when
another set of commands becomes appropriate.

The states that are defined for this section are:

� State 1 – Session not allocated

� State 2 – Send state

� State 3 – Receive pending after SEND INVITE

� State 4 – Receive state

� State 5 – Receiver take syncpoint

� State 6 – Free pending after SEND LAST

� State 7 – Free session.

 Initial states
Normally, the front-end transaction in a conversation starts in state 1 (session not
allocated) and must issue an ALLOCATE command to acquire a session.

An exception to this occurs when the front-end transaction is started by automatic
transaction initiation (ATI), in the local system, with an LUTYPE6.1 session as its
principal facility. Here, the session is already allocated, and the transaction is in
state 2. For transactions of this type, you must immediately obtain the session
name from EIBTRMID so that you can name the session explicitly on later
commands.

You must always assume that the back-end transaction is initially in state 4 (receive
state). Even if it is designed only to send data to the front-end transaction, you
must issue a RECEIVE to receive the SEND INVITE issued by the front-end
transaction and get into send state.

 State diagrams
The following figures help you to construct valid command sequences. Each
diagram relates to one particular state, as previously defined, and shows the
commands that you might reasonably issue and the tests that you should make
after issuing the command. Where more than one test is shown, make them in the
order indicated.

The combination of the command issued and a particular positive test result lead to
a new, resultant state, shown in the final column.

244 CICS for MVS/ESA Intercommunication Guide

 Other tests
The tests that are shown in the figures are those that are significant to the state of
the conversation. Tests for other conditions that may arise, for example, INVREQ
or NOTALLOC, should be made in the normal way.

┌──┐

│ STATE 1 CICS-to-IMS CONVERSATIONS SESSION NOT ALLOCATED │

├───────────────────────────┬───────────────────────────────────┬────────┤

│ Commands you can issue │ What to test │ New │

│ │ │ State │

├───────────────────────────┼───────────────────────────────────┼────────┤

│ ALLOCATE [NOQUEUE] ? │ SYSIDERR │ 1 │

│ ├───────────────────────────────────┼────────┤

│ │ SYSBUSY ? │ 1 │

│ ├───────────────────────────────────┼────────┤

│ │ Otherwise │ 2 │

│ │ (obtain session name │ │

│ │ from EIBRSRCE) │ │

└───────────────────────────┴───────────────────────────────────┴────────┘

Figure 71. State 1 – session not allocated

If you want your program to wait until a session is available, omit the NOQUEUE
option of the ALLOCATE command and do not code a HANDLE command for the
SYSBUSY condition.

If you want control to be returned to your program if a session is not immediately
available, either specify NOQUEUE on the ALLOCATE command and test
EIBRCODE for SYSBUSY (X'D3'), or code a HANDLE CONDITION SYSBUSY
command.

┌──┐

│ STATE 2 CICS-to-IMS CONVERSATIONS SEND STATE │

├───────────────────────────┬───────────────────────────────────┬────────┤

│ Commands you can issue ? │ What to test │ New │

│ │ │ State │

├───────────────────────────┼───────────────────────────────────┼────────┤

│ SEND │ │ 2 │

├───────────────────────────┼───────────────────────────────────┼────────┤

│ SEND INVITE │ ─ │ 3 or 4 │

├───────────────────────────┼───────────────────────────────────┼────────┤

│ SEND LAST │ ─ │ 6 │

├───────────────────────────┼───────────────────────────────────┼────────┤

│ CONVERSE │ Go to the STATE 4 table and make │ ─ │

│ Equivalent to: │ the tests shown for the RECEIVE │ │

│ SEND INVITE WAIT │ command │ │

│ RECEIVE │ │ │

├───────────────────────────┼───────────────────────────────────┼────────┤

│ RECEIVE │ Go to the STATE 4 table and make │ ─ │

│ │ the tests shown for the RECEIVE │ │

│ │ command │ │

├───────────────────────────┼───────────────────────────────────┼────────┤

│ SYNCPOINT │ (transaction abends if │ 2 │

│ │ SYNCPOINT fails) │ │

├───────────────────────────┼───────────────────────────────────┼────────┤

│ FREE │ ─ │ 1 │

│ Equivalent to: │ │ │

│ SEND LAST WAIT │ │ │

│ FREE │ │ │

└───────────────────────────┴───────────────────────────────────┴────────┘

Figure 72. State 2 – send state

 Chapter 24. CICS-to-IMS applications 245

For the front-end transaction, the first command used after the session has been
allocated must be a SEND command or CONVERSE command that initiates the
back-end transaction in one of the ways described under “Attaching the remote
transaction” on page 237.

┌──┐

│ STATE 3 CICS-to-IMS CONVERSATIONS RECEIVE PENDING after SEND INVITE │

├───────────────────────────┬───────────────────────────────────┬────────┤

│ Commands you can issue │ What to test │ New │

│ │ │ State │

├───────────────────────────┼───────────────────────────────────┼────────┤

│ SYNCPOINT │ (transaction abends if │ 4 │

│ │ SYNCPOINT fails) │ │

└───────────────────────────┴───────────────────────────────────┴────────┘

Figure 73. State 3 – receive pending after SEND INVITE

┌──┐

│ STATE 4 CICS-to-IMS CONVERSATIONS RECEIVE STATE │

├───────────────────────────┬───────────────────────────────────┬────────┤

│ Commands you can issue │ What to test │ New │

│ │ │ State │

├───────────────────────────┼───────────────────────────────────┼────────┤

│ RECEIVE [NOTRUNCATE] ? │ EIBCOMPL ? │ ─ │

│ ├───────────────────────────────────┼────────┤

│ │ EIBSYNC │ 5 │

│ ├───────────────────────────────────┼────────┤

│ │ EIBFREE │ 7 │

│ ├───────────────────────────────────┼────────┤

│ │ EIBRECV │ 4 │

│ ├───────────────────────────────────┼────────┤

│ │ Otherwise │ 2 │

└───────────────────────────┴───────────────────────────────────┴────────┘

Figure 74. State 4 – receive state

If NOTRUNCATE is specified, a zero value in EIBCOMPL indicates that the data
passed to the application by CICS is incomplete (because, for example, the data
area specified in the RECEIVE command is too small). CICS saves the remaining
data for retrieval by later RECEIVE NOTRUNCATE commands. EIBCOMPL is set
when the last part of the data is passed back. If the NOTRUNCATE option is not
specified, over-length data is indicated by the LENGERR condition, and the
remaining data is discarded by CICS.

┌──┐

│ STATE 5 CICS-to-IMS CONVERSATIONS RECEIVER TAKE SYNCPOINT │

├───────────────────────────┬───────────────────────────────────┬────────┤

│ Commands you can issue │ What to test │ New │

│ │ │ State │

├───────────────────────────┼───────────────────────────────────┼────────┤

│ SYNCPOINT │ EIBFREE (saved value) │ 7 │

│ ├───────────────────────────────────┼────────┤

│ │ EIBRECV (saved value) │ 4 │

│ ├───────────────────────────────────┼────────┤

│ │ Otherwise │ 2 │

└───────────────────────────┴───────────────────────────────────┴────────┘

Figure 75. State 5 – receiver take syncpoint

246 CICS for MVS/ESA Intercommunication Guide

┌──┐

│ STATE 6 CICS-to-IMS CONVERSATIONS FREE PENDING AFTER SEND LAST │

├───────────────────────────┬───────────────────────────────────┬────────┤

│ Commands you can issue │ What to test │ New │

│ │ │ State │

├───────────────────────────┼───────────────────────────────────┼────────┤

│ SYNCPOINT │ ─ │ 7 │

├───────────────────────────┼───────────────────────────────────┼────────┤

│ FREE │ ─ │ 1 │

└───────────────────────────┴───────────────────────────────────┴────────┘

Figure 76. State 6 – free pending after SEND LAST

 Chapter 24. CICS-to-IMS applications 247

┌──┐

│ STATE 7 CICS-to-IMS CONVERSATIONS FREE SESSION │

├───────────────────────────┬───────────────────────────────────┬────────┤

│ Commands you can issue │ What to test │ New │

│ │ │ State │

├───────────────────────────┼───────────────────────────────────┼────────┤

│ FREE │ ─ │ 1 │

└───────────────────────────┴───────────────────────────────────┴────────┘

Figure 77. State 7 – free session

248 CICS for MVS/ESA Intercommunication Guide

| Part 5. Performance

| This part gives advice on improving aspects of CICS performance in a multi-system
| environment. For information about CICS performance, you should refer to the
| CICS/ESA Performance Guide.

| Chapter 25, “Using the MVS workload manager” on page 251 describes CICS
| support for the workload management feature of MVS/ESA 5.1.

| Chapter 26, “Intersystem session queue management” on page 261 describes
| methods for controlling the length of intersystem queues.

| Chapter 27, “Efficient deletion of shipped terminal definitions” on page 265
| describes how to delete redundant shipped terminal definitions from AORs and
| intermediate systems.

 Copyright IBM Corp. 1977, 1997 249

250 CICS for MVS/ESA Intercommunication Guide

| Chapter 25. Using the MVS workload manager

| This chapter provides general guidance information about using the workload
| management feature of MVS/ESA 5.1 in a CICS intercommunication environment.
| For detailed information about the MVS workload manager, you should refer to the
| MVS manuals that are referenced in the text.

| Overview
| MVS/ESA 5.1 provides an improved means of managing sysplex resources across
| MVS subsystems. This facility, the MVS workload manager, provides automatic,
| dynamic, balancing of system resources (central processors and storage) across a
| sysplex by:

| � Adopting a goal-oriented approach

| � Gathering real-time data from the subsystems that reflect performance at an
| individual task level

| � Monitoring MVS- and subsystem-level delays and waits that are contributing to
| overall task execution times

| � Dynamically managing the sysplex’s resources, using the performance goals,
| and the real-time performance and delay data, as inputs to system resource
| management algorithms.

| This is particularly significant in a sysplex environment, but is also of value to
| subsystems running in a single MVS image.

| To help you migrate to goal-oriented workload management, you can run any MVS
| image in a sysplex in compatibility mode, using the performance management
| tuning methods of releases of MVS before MVS/ESA 5.1.

| Note: If you use CICSPlex SM to control dynamic transaction routing in a sysplex,
| you can base its actions on the CICS response time goals of the CICS transactions
| as defined to the MVS workload manager.

| Span of workload manager operation
| The MVS workload manager operates across a sysplex (that is, multiple MVS
| images linked by MVS Coupling Services). You can use the workload manager in
| goal mode on every MVS image in the sysplex, or run some MVS images using
| pre-MVS/ESA 5.1 tuning methods (using what is called compatibility mode).
| Within the sysplex, there can be only one active set of performance goals (defined
| in a service policy) for all MVS images that use the workload manager in goal
| mode.

| All CICS regions (and other MVS subsystems) running on an MVS image that uses
| the MVS workload manager in goal mode are subject to its effects.

| If the CICS workload involves non-CICS resource managers, such as DB2 and
| DBCTL, CICS passes information through the task-related user exit interface to
| enable the MVS workload manager to relate the part of the workload within the
| resource manager to the part within CICS.

 Copyright IBM Corp. 1977, 1997 251

| If you use tasks which communicate across sysplexes, you must define separate
| performance goals in the active service policy for each sysplex, for the segment of
| the overall work request which runs within each sysplex.

| Similar considerations apply to tasks which use ISC within a sysplex, either within
| one MVS image, so called “intrahost ISC”, or across MVS images within the
| sysplex. If you use ISC within a sysplex (perhaps for compatibility reasons), you
| should consider the segmentation in workload manager terms. For tasks using ISC
| within a sysplex, you must define separate performance goals for the segments of
| the task, even if the task operates within a single MVS image.

| Benefits of MVS workload management
| From the point of view of the CICS system programmer, the main benefit of using
| workload management is that you no longer have to monitor and tune CICS
| continually to achieve optimum performance.

| The MVS workload manager produces performance reports that you can use to
| establish reasonable performance goals and for capacity planning.

| Implementing MVS workload management
| This section provides guidance information about installing and using the MVS
| workload manager. For detailed information, refer to the MVS and CICS manuals
| that are referenced in the text.

| Identifying CICS workload objectives
| Before defining CICS performance goals to the MVS workload manager, you need
| to identify performance objectives for the CICS workload; for example, workload
| response time and business importance. You need to relate the CICS objectives to
| those of other MVS subsystems, such as DB2 and IMS, to ensure that optimum
| objectives are defined to MVS for the complete business workload.

| Defining performance goals
| You can define performance goals, such as internal response times, for CICS (and
| other MVS subsystems that comprise your workload). As an alternative to defining
| your own goals, you can use “discretionary goals”—the workload manager decides
| how best to run work for which this type of goal is specified. You can define goals
| for:

| � Individual CICS regions
| � Groups of transactions running under CICS
| � Individual transactions running under CICS
| � Transactions associated with individual userids
| � Transactions associated with individual LU names
| � Transactions associated with individual network identifiers.

| The service level administrator defines your installation’s performance goals based
| on business needs and current performance. The complete definition of workloads
| and performance goals is called a service definition. You may already have this
| kind of information in a service level agreement (SLA).

| You should record the details of your planned service definition on worksheets, as
| described in the MVS/ESA Planning: Workload Management manual.

252 CICS for MVS/ESA Intercommunication Guide

| MVS/ESA 5.1 provides an ISPF panel-based application for setting up and
| adjusting the service definition.

| Workload management also collects performance and delay data for work defined
| by the service definition; this data can be used by reporting and monitoring
| products, such as the Resource Measurement Facility (RMF), the Service Level
| Reporter (SLR), Enterprise Performance Data Manager/MVS (EPDM), or vendor
| products. The reporting data produced by RMF reports:

| � Is organized by service class

| � Contains reasons for any delays that affect the response time for the service
| class (for example, because of the actions of a resource manager or an I/O
| subsystem).

| From the reported information, you may be able to determine configuration changes
| to improve performance.

| Before you set goals for CICS work, you can determine CICS current response
| times by running CICS in compatibility mode with a discretionary goal. The
| performance data that you obtain helps you to set realistic goals.

| Service definitions
| You define one service definition for each sysplex. A service definition consists of:

| Service policies
| You can have one or more service policies, which are a named set of
| performance goals meant to cover a certain operating period.

| If you have varying performance goals, you can define several service policies.

| You can activate only one service policy at a time for the whole sysplex, and,
| when appropriate, switch to another policy.

| Workloads
| A workload comprises units of work that share some common characteristics
| that makes it meaningful for an installation to manage or monitor as a group.
| For example, all CICS work, or all CICS order entry work, or all CICS
| development work.

| A workload is made up of one or more service classes.

| Service classes
| These are categories of work, within a workload, to which you can assign
| performance goals.

| You can create service classes for groups of work with similar:

| � Performance goals

| You can assign the following performance goals to the service classes:

| Response time
| You can define an average response time (the amount of
| time required to complete the work) or a response time with
| percentile (a percentage of work to be completed in the
| specified amount of time).

 Chapter 25. Using the MVS workload manager 253

| Discretionary
| You can specify that the goal is discretionary for any work
| for which you do not have specific goals.

| Velocity
| For work not related to transactions, such as batch jobs and
| started tasks. For CICS regions started as started tasks, a
| velocity goal applies only during start-up.

| Notes:

| 1. For service classes for CICS transactions, you cannot define velocity
| performance goals, discretionary goals, or multiple performance
| periods.

| 2. For service classes for CICS regions, you cannot define multiple
| performance periods.

| � Business importance to the installation

| You can assign an importance to a service class, so that one service class
| goal is recognized as more important than other service class goals. There
| are five levels of importance, numbered, from highest to lowest, 1 to 5.

| You can also create service classes for started tasks and JES, and can assign
| resource groups to those service classes. You can use such service classes to
| manage the workload associated with CICS as it starts up, but before CICS
| transaction-related work begins. (Note that when you define CICS in this way,
| the address space name is specified as TN, for the task or JES “transaction”
| name.)

| There is a default service class, called SYSOTHER. It is used for CICS
| transactions for which MVS workload management cannot find a matching
| service class in the classification rules—for example, if the couple data set
| becomes unavailable.

| Classification rules
| These rules determine how to associate incoming work with a service class.
| Optionally, the classification rules can assign incoming work to a report class,
| for grouping report data.

| There is one set of classification rules for each service definition. The
| classification rules apply to every service policy in the service definition; so
| there is one set of rules for the sysplex.

| You should use classification rules for every service class defined in your
| service definition.

| Classification rules categorize work into service classes and, optionally, report
| classes, based on work qualifiers. You set up classification rules for each MVS
| subsystem type that uses workload management. The work qualifiers that
| CICS can use (and which identify CICS work requests to workload manager)
| are:

| LU LU name
| LUG LU name group
| NET Network identifier
| NETG Network identifier group
| SI Subsystem instance (VTAM applid)
| SIG Subsystem instance group

254 CICS for MVS/ESA Intercommunication Guide

| TN Transaction identifier
| TNG Transaction identifier group
| UI Userid
| UIG Userid group

| Notes:

| 1. You should consider defining workloads for terminal-owning regions only.
| Work requests do not normally originate in an application-owning region.
| They (transactions) are normally routed to an application-owning region
| from a terminal-owning region, and the work request is classified in the
| terminal-owning region. In this case, the work is not reclassified in the
| application-owning region.

| If work orginates in the application-owning region it is classified in the
| application-owning region; normally there would be no terminal.

| 2. You can use identifier group qualifiers to specify the name of a group of
| qualifiers; for example, GRPACICS could specify a group of CICS tranids,
| which you could specify on classification rules by TNG GRPACICS. This is
| a useful alternative to specifying classification rules for each transaction
| separately.

| You can use classification groups to group disparate work under the same work
| qualifier—if, for example, you want to assign it to the same service class.

| You can set up a hierarchy of classification rules. When CICS receives a
| transaction, workload manager searches the classification rules for a matching
| qualifier and its service class or report class. Because a piece of work can
| have more than one work qualifier associated with it, it may match more than
| one classification rule. Therefore, the order in which you specify the
| classification rules determines which service classes are assigned.

| Note: You are recommended to keep classification rules simple.

| Example of using classification rules: As an example, you might want all CICS
| work to go into service class CICSB except for the following:

| � All work from LU name (terminal identifier) S218, except the PAYR transaction,
| is to run in service class CICSA

| � Work for the PAYR transaction (payroll application) entered at LU name S218
| is to run in service class CICSC.

| � All work from terminals other than S218, and whose termids begin with S2, is to
| run in service class CICSD.

| You could specify this by the following classification rules:

| e| f
| Subsystem Type CICS

| -------Qualifier----------- -------Class--------

| Type Name Start Service Report

| DEFAULTS: CICSB ________

| 1 LU S218 CICSA ________

| 2 TN PAYR CICSC ________

| 1 LU S2? CICSD ________

 Chapter 25. Using the MVS workload manager 255

| Note: In this classification, the PAYR transaction is nested as a sub-rule under the
| classification rule for terminal S218, indicated by the number 2, and the
| indentation of the type and name columns.

| Consider the effect of these rules on the following work requests:

| Request 1 Request 2 Request 3 Request 4

| LU name S218 ASS1 S218 S214

| Transaction .. PAYR PAYR DEBT ANOT

| � For request 1, the work request for the payroll application runs in service class
| CICSC. This is because the request is associated with the terminal with LU
| name S218, and the TN—PAYR classification rule specifying service class
| CICSC is nested under the LU—S218 classification rule qualifier.

| � For request 2, the work request for the payroll application runs in service class
| CICSB, because it is not associated with LU name S218, nor S2*, and there
| are no other classification rules for the PAYR transaction. Likewise, any work
| requests associated with LU names that do not start with S2 run in service
| class CICSB, as there are classification rules for LU names S218 and S2* only.

| � For request 3, the work request for the DEBT transaction runs in service class
| CICSA, because it is associated with LU name S218, and there is no DEBT
| classification rule nested under the LU—S218 classification rule qualifiers.

| � For request 4, the work request for the ANOT transaction runs in service class
| CICSD, because it is associated with an LU name starting S2, but not S218.

| However, if the classification rules were specified as:

| 1 TN PAYR CICSA ________

| 1 LU S218 CICSA ________

| 2 TN PAYR CICSC ________

| 1 LU S2? CICSD ________

| the PAYR transaction would always run in service class CICSA, even if it were
| associated with LU name S218.

| Using a service definition base: To minimize the amount of data you need to
| enter into the ISPF workload application, you use a service definition base.
| When you set up your service definition, you identify the workloads, the service
| classes, and their goals, based on your performance objectives. Then you define
| classification rules. This information makes up the service definition base. The
| base contains workloads, service classes, resource groups, report classes, and
| classification rules.

| All workloads, service classes, and classification rules defined in a service definition
| base apply to every policy that you define. If you do not have any other business
| requirements to modify a service goal or a resource group from the service
| definition base, you can run an installation with one policy.

| Classification rules categorize work into service classes and, optionally, report
| classes, based on work qualifiers. You set up classification rules for each MVS

256 CICS for MVS/ESA Intercommunication Guide

| subsystem type that uses workload management. The work qualifiers that CICS
| can use (and which identify CICS work requests to workload manager) are:

| LU LU name
| LUG LU name group
| NET Network identifier
| NETG Network identifier group
| SI Subsystem instance (VTAM applid)
| SIG Subsystem instance group
| TN Transaction identifier
| TNG Transaction identifier group
| UI Userid
| UIG Userid group.

| Notes:

| 1. For AORs that are not defined to VTAM (that is, communicate with a TOR via
| MRO), you must define workloads by userid or transaction name, not
| subsystem instance, netid, or LU name.

| 2. You can use identifier group qualifiers to specify the name of a group of
| qualifiers; for example, GRPACICS may specify a group of CICS tranids that
| can be used by Group A, and which you could specify on classification rules by
| TNG GRPACICS. This is a useful alternative to specifying classification rules
| for each transaction separately.

| You can use classification groups to group disparate work under the same work
| qualifier—if, for example, you want to assign it to the same service class.

| You can set up a hierarchy of classification rules. When CICS receives a work
| request, workload manager searches the classification rules for a matching qualifier
| and its service class or report class. Because a piece of work can have more than
| one work qualifier associated with it, it may match more than one classification rule.
| Therefore, the order in which you specify the classification rules determines which
| service classes are assigned.

| Note: You are recommended to keep classification rules simple.

| Example of using classification rules: As an example, you might want all CICS
| work to go into service class CICSB except for the following:

| � Work starting with LU name (terminal identifier) S218 is to run in service class
| CICSA

| � Work from the PAYR transaction (payroll application) is to run in service class
| CICSC.

| You could specify this by the following classification rules:

| e| f
| Subsystem Type CICS

| -------Qualifier----------- -------Class--------

| Type Name Start Service Report

| DEFAULTS: CICSB ________

| 1 LU S218 CICSA ________

| 2 TN PAYR CICSC ________

| 1 LU S2? CICSD ________

 Chapter 25. Using the MVS workload manager 257

| Consider the effect of these rules on the following work requests:

| Request 1 Request 2 Request 3 Request 4

| LU name S218 Ano1 S218 S214

| Transaction .. PAYR PAYR DEBT ANOT

| � For request 1, the work request for the payroll application runs in service class
| CICSC, because the request is associated with the terminal with LU name
| S218, and the PAYR–CICSC classification rule is nested under the
| S218–CICSA classification rule.

| � For request 2, the work request for the payroll application runs in service class
| CICSB, because it is not associated with LU name S218, and there are no
| other classification rules for the PAYR transaction. Likewise, any work requests
| associated with LU names that do not start with S2 run in service class CICSB,
| as there are only classification rules for LU names S2*.

| � For request 3, the work request for the DEBT transaction runs in service class
| CICSA, because it is associated with LU name S218, and there is no DEBT
| classification rule nested under the S218–CICSA classification rule.

| � For request 4, the work request for the ANOT transaction runs in service class
| CICSD, because it is associated with an LU name starting S2, but not S218.

| � However, if the classification rules were specified as:

| 1 TN PAYR CICSA ________

| 2 LU S218 CICSC ________

| then the PAYR transaction would always run in service class CICSA, even if it
| were associated with LU name S218.

| Using a service definition base: To minimize the amount of data you need to
| enter into the administrative application, you use a service definition base. When
| you set up your service definition, you identify the workloads, the service classes,
| and their goals, based on your performance objectives. Then you define
| classification rules. This information makes up the service definition base. The
| base contains workloads, service classes, resource groups, report classes, and
| classification rules.

| All workloads, service classes, and classification rules defined in a service definition
| base apply to every policy that you define.

| Requirements for MVS workload management
| To use MVS workload management you need the following software:

| � MVS/ESA System Product (MVS/ESA SP) - JES2 Version 5 Release 1 or a
| later, upward-compatible, release

| � MVS/ESA System Product (MVS/ESA SP) - JES3 Version 5 Release 1 or a
| later, upward-compatible, release

| For MVS workload manager operation across the CICS task-related user exit
| interface to other subsystems, such as DB2 and DBCTL, you need the appropriate
| releases of these products.

258 CICS for MVS/ESA Intercommunication Guide

| For MVS workload management across a sysplex, the MVS systems must be
| coupled together by hardware elements and software services, as described in
| “Requirements for XCF/MRO” on page 98.

| Installing MVS workload manager
| The task of installing MVS workload management is part of the overall task of
| planning for, and installing, MVS/ESA 5.1. For information, see the MVS/ESA
| Planning: Workload Management manual.

| Activating CICS support for the MVS workload manager
| CICS support for the MVS workload manager is initialized automatically during
| CICS startup.

| If you have written your own resource manager, you must modify your task-related
| user exit program to provide workload manager support. That is, you must make
| your exit program relate the part of the task done by the resource manager to that
| done by CICS. Otherwise, the workload manager will not work correctly for
| CICS-based tasks which cross the task-related user exit interface. For
| programming information about task-related user exits, see the CICS/ESA
| Customization Guide.

| Matching CICS performance parameters to MVS policies
| You must ensure that the CICS performance parameters are compatible with the
| workload manager service policies used for the CICS workload.

| In general, you should define CICS performance objectives to the MVS workload
| manager first, and observe the effect on CICS performance. Once the MVS
| workload manager definitions are working correctly, you can then consider tuning
| the CICS parameters to further enhance CICS performance. However, you should
| use CICS performance parameters as little as possible.

| Performance attributes that you might consider using are:

| � Transaction priority, passed on dynamic transaction routing. (Use prioritization
| carefully, if at all.) The priority assigned by the CICS dispatcher must be
| compatible with the task priority defined to MVS workload manager.

| � Maximum number of concurrent user tasks for the CICS region.

| � Maximum number of concurrent tasks in each transaction class.

 Chapter 25. Using the MVS workload manager 259

260 CICS for MVS/ESA Intercommunication Guide

| Chapter 26. Intersystem session queue management

| This chapter describes how to control the number of queued requests for sessions
| on intersystem links (allocate queues).

| Note: This chapter describes how to control queues for sessions on established
| connections. The specialized subject of using local queuing for function-shipped
| EXEC CICS START NOCHECK requests is described in “Local queuing of START
| commands” on page 60.

| Overview
| In a perfect intercommunication environment, queues would never occur because
| work flow would be evenly distributed over time, and there would be enough
| intersystem sessions available to handle the maximum number of requests arriving
| at any one time. However, in the real world this is not the case, and, with peaks
| and troughs in the workload, queues do occur: queues come and go in response to
| the workload. The situation to avoid is an unacceptably high level of queuing that
| causes a bottleneck17 in the work flow between interconnected CICS regions, and
| which leads to performance problems for the terminal end-user as throughput slows
| down or stops. This abnormal and unexpected queuing should be prevented, or
| dealt with when it occurs: a “normal” or optimized level of queuing can be tolerated.

| For example, function shipping requests between CICS application-owning regions
| and connected file-owning regions can be queued in the issuing region while
| waiting for free sessions. Provided a file-owning region deals with requests in a
| responsive manner, and outstanding requests are removed from the queue at an
| acceptable rate, then all is well. But if a file-owning region is unresponsive, the
| queue can become so long and occupy so much storage that the performance of
| connected application-owning regions is severely impaired. Further, the impaired
| performance of the application-owning region can spread to other regions. This
| condition is sometimes referred to as “sympathy sickness”, although it should more
| properly be described simply as intersystem queuing, which, if not controlled, can
| lead to performance degradation across more than one region.

| Methods of managing allocate queues
| The following sections describe three methods for managing allocate queues, the
| first two simple, the third more sophisticated.

| Using only connection definitions
| For those intersystem links for which simple control requirements are adequate
| (perhaps those that carry non-critical traffic), you can specify the QUEUELIMIT and
| MAXQTIME options on the CONNECTION resource definitions.

| 17 Bottleneck. A condition or state of the connection that slows down the rate of flow of traffic across the intercommunication link.

 Copyright IBM Corp. 1977, 1997 261

| QUEUELIMIT defines the maximum number of allocate requests that CICS is to
| queue while waiting for free sessions on the connection. You can specify a number
| in the range 0 (that is, do not queue any requests) through 9999; or that all
| requests should be queued, if necessary, no matter what the length of the queue.

| MAXQTIME defines the approximate time for which allocate requests should queue
| for free sessions on a connection that appears to be unresponsive. Its value is
| used only if a queue limit is specified on QUEUELIMIT, and if that limit is reached.
| You can specify a time in the range 0 (that is, the queue should be purged
| immediately after receipt of an allocate request that would exceed the queue limit)
| through 9999 seconds; or that requests should be queued for as long as
| necessary.

| When an allocate request is received that would cause the QUEUELIMIT value to
| be exceeded, CICS calculates whether the queue’s rate of processing means that a
| new request would take longer to satisfy than the maximum queuing time. If it
| would, CICS purges the queue. No further queuing takes place until the connection
| has freed a session. At this point, queuing begins again.

| For information about the QUEUELIMIT and MAXQTIME options of the CEDA
| DEFINE CONNECTION command, see the CICS/ESA Resource Definition Guide.

| Using the NOQUEUE option
| A further method of controlling explicit allocate requests is to specify the
| NOQUEUE|NOSUSPEND option of the EXEC CICS ALLOCATE command.
| However, while this enables you to control specific requests, it takes no account of
| the state of the queue at the time the requests are issued. And it is of no use in
| controlling implicit allocate requests (where the session request is instigated by, for
| example, a function shipping request). For programming information about API
| options, see the CICS/ESA Application Programming Reference manual.

| Using the XZIQUE global user exit
| You can also control the queuing of allocate requests through an XZIQUE global
| user exit program. This allows you much more flexibility than simply setting a
| queue limit on the connection.

| The XZIQUE exit enables you detect queuing problems (bottlenecks) early. It
| extends the function provided by the XISCONA global user exit (introduced in
| CICS/ESA 3.3) which is invoked only for function shipping requests (including
| function shipped EXEC CICS START requests used for asynchronous processing).
| XZIQUE is invoked for transaction routing, DPL, asynchronous processing, and
| distributed transaction processing requests, as well as for function shipping.
| Compared with XISCONA, it receives more detailed information on which to base
| its decisions.

| XZIQUE enables allocate requests to be queued or rejected, depending on the
| length of the queue. It also allows a connection on which there is a bottleneck to
| be terminated and then re-established.

262 CICS for MVS/ESA Intercommunication Guide

| Interaction with the XISCONA exit
| There is no interaction between the XZIQUE and XISCONA global user exits. If
| you enable both exits, XISCONA and XZIQUE could both be invoked for function
| shipping requests, which is not recommended. You should ensure that only one of
| these exits is enabled. Because of its increased functionality and greater flexibility,
| it is recommended that you use XZIQUE rather than XISCONA.

| If you already have an XISCONA global user exit program, you could possibly
| modify it for use at the XZIQUE exit point.

| When the XZIQUE exit is invoked
| The XZIQUE global user exit is invoked, if it is enabled, at the following times:

| � Whenever CICS tries to acquire a session with a remote system and there is
| no free session available. It is invoked whether or not you have specified the
| QUEUELIMIT option on the CONNECTION definition, and whether or not the
| limit has been exceeded. It is not invoked if the allocate request specifies
| NOQUEUE or NOSUSPEND.

| Requests for sessions can arise in a number of ways, such as explicit EXEC
| CICS ALLOCATE commands issued by DTP programs, or by transaction
| routing or function shipping requests.

| � Whenever an allocate request succeeds in finding a free session, after the
| queue on the connection has been purged by a previous invocation of the exit
| program. In this case, your exit program can indicate that CICS is to continue
| processing normally, resuming queuing when necessary.

| Uses of an XZIQUE global user exit program
| When the exit is enabled, your XZIQUE global user exit program is able to check
| on the state of the allocate queue for a particular connection in the local system.
| Information is passed to the exit program in a parameter list, that is structured to
| provide data about non-specific allocate requests, or requests for specific
| modegroups, depending on the session request. Non-specific allocate requests are
| for MRO, LU6.1, and APPC sessions that do not specify a modegroup.

| Using the information passed in the parameter list, your global user exit program
| can decide whether CICS is to:

| � Queue the allocate request (only possible if the queue limit has not been
| reached).

| � Reject the allocate request.

| � Reject this allocate request and purge all queued requests for the connection.

| � Reject this allocate request and purge all queued requests for the modegroup.

| Your exit program could base its decision on, for example:

| � The length of the allocate queue.

| � Whether the number of queued requests has reached the limit set by the
| QUEUELIMIT option. If the queue limit has not been reached, you may decide
| to queue the request.

 Chapter 26. Intersystem session queue management 263

| � The rate at which sessions are being allocated on the connection. If the queue
| limit has been reached but session allocation is acceptably quick, you may
| decide to reject only the current request. If the queue limit has been reached
| and session allocation is unacceptably slow, you may decide to purge the
| whole queue.

| For details of the information passed in the XZIQUE parameter list, and advice
| about designing and coding an XZIQUE exit program, see the programming
| information in the CICS/ESA Customization Guide.

264 CICS for MVS/ESA Intercommunication Guide

| Chapter 27. Efficient deletion of shipped terminal definitions

| This chapter describes the CICS/ESA 4.1 method of deleting redundant shipped
| terminal definitions.

| Overview
| In a transaction routing environment, terminal definitions can be “shipped” from a
| terminal-owning region (TOR) to an application-owning region (AOR) when they are
| first needed, rather than being statically defined in the AOR.

| Note: The “terminal” could be an APPC device or system. In this case, the
| shipped definition would be of an APPC connection.

| Shipped definitions can become redundant if:

| � A terminal user logs off
| � A terminal user stops using remote transactions
| � The TOR is shut down
| � The TOR is restarted, autoinstalled terminal definitions are not recovered, and
| the autoinstall user program, DFHZATDX, assigns a new set of termids to the
| same set of terminals.

| At some stage redundant definitions must be deleted from the AOR (and from any
| intermediate systems between the TOR and AOR18). This is particularly necessary
| in the last case above, to prevent a possible mismatch between termids in the TOR
| and the back-end systems.

| The CICS/ESA 4.1 method of deleting redundant shipped definitions consists of
| two parts:

| � Selective deletion
| � A timeout delete mechanism.

| Selective deletion
| Each time a terminal definition is installed, CICS/ESA 4.1 creates a unique
| “instance token” and stores it within the definition. Thus, if the definition is shipped
| to another region, the value of the token is shipped too. All transaction routing
| attach requests pass the token within the function management header (FMH). If,
| during attach processing, an existing shipped definition is found in the remote
| region, it is used only if the token in the shipped definition matches that passed by
| the TOR. Otherwise, it is deleted and an up-to-date definition shipped.

| The timeout delete mechanism
| You can use the timeout delete mechanism in your back-end systems, to delete
| shipped definitions that have not been used for transaction routing for a defined
| period19. Its purpose is to ensure that shipped definitions remain installed only
| while they are in use.

| 18 For brevity, we shall refer to AORs and intermediate systems collectively as “back-end systems”.

| 19 Shipped definitions are not deleted if there is an automatic initiate descriptor (AID) associated with the terminal.

 Copyright IBM Corp. 1977, 1997 265

| Timeout delete gives you flexible control over shipped definitions. CICS allows you
| to:

| � Stipulate the minimum time a shipped definition must remain installed before
| being eligible for deletion

| � Stipulate the time interval between invocations of the mechanism

| � Reset these times online

| � Cause the timeout delete mechanism to be invoked immediately.

| The parameters that control the mechanism allow you to arrange for a “tidy-up”
| operation to take place when the system is least busy. Your operators can use the
| CEMT transaction to modify the parameters online, or to invoke the mechanism
| immediately, should fine-tuning become necessary.

| Implementing timeout delete
| To use timeout delete in a CICS/ESA 4.1 system to which terminals are shipped,
| you need only specify two system initialization parameters:

| DSHIPIDL={020000|hhmmss}
| Specifies the minimum time, in hours, minutes, and seconds, that an inactive
| shipped terminal definition must remain installed in this region. When the CICS
| timeout delete mechanism is invoked, only those shipped definitions that have
| been inactive for longer than the specified time are deleted.

| You can use this parameter in a transaction routing environment, on the
| application-owning and intermediate regions, to prevent terminal definitions
| having to be reshipped because they have been deleted prematurely.

| hhmmss Specify a 1 to 6 digit number in the range 0–995959. Numbers that
| have fewer than six digits are padded with leading zeros.

| DSHIPINT={120000|0|hhmmss}
| Specifies the interval between invocations of the CICS timeout delete
| mechanism. The timeout delete mechanism removes any shipped terminal
| definitions that have not been used for longer than the time specified by the
| DSHIPIDL parameter.

| You can use this parameter in a transaction routing environment, on the
| application-owning and intermediate regions, to control:

| � How often the timeout delete mechanism is invoked.

| � The approximate time of day at which a mass delete operation is to take
| place, relative to CICS startup.

| 0 The timeout delete mechanism is not invoked. You might set this
| value in a terminal-owning region, or if you are not using shipped
| definitions.
| hhmmss Specify a 1 to 6 digit number in the range 1–995959. Numbers that
| have fewer than six digits are padded with leading zeros.

| For details of how to specify system initialization parameters, see the CICS/ESA
| System Definition Guide.

266 CICS for MVS/ESA Intercommunication Guide

| After CICS startup you can use a CEMT or EXEC CICS INQUIRE DELETSHIPPED
| command to discover the current settings of DSHIPIDL and DSHIPINT. For flexible
| control over when mass delete operations take place, you can use a SET
| DELETSHIPPED command to reset the interval until the next invocation of the
| timeout delete mechanism. (The revised interval starts from the time the command
| is issued, not from the time the remote delete mechanism was last invoked, nor
| from CICS startup.) Alternatively, you can use a PERFORM DELETSHIPPED
| command to cause the timeout delete mechanism to be invoked immediately.

| For information about the CEMT INQUIRE, PERFORM, and SET DELETSHIPPED
| commands, see the CICS/ESA CICS-Supplied Transactions manual. For
| programming information about their EXEC CICS equivalents, see the CICS/ESA
| System Programming Reference manual.

| Performance
| Compared with pre-4.1 releases of CICS, the CICS/ESA 4.1 selective deletion and
| timeout delete mechanisms result in:

| � A considerable reduction in the pathlength of some transactions.

| � A reduction in the number of network flows, leading to better system
| performance, particularly across a complex of CICS/ESA 4.1 systems.

| � Depending on your choice of DSHIPINT and DSHIPIDL settings, a possible
| reduction in the number of mass deletions of shipped definitions, and a
| scheduling of those that do take place for times when your system is lightly
| loaded.

| Note that a poor choice of values for DSHIPINT and DSHIPIDL could result in
| unnecessary mass delete operations. Here are some suggestions for coding these
| parameters:

| DSHIPIDL: In setting this value, you must consider the length of the work periods
| during which remote users access resources on this system. Do they access the
| system intermittently, all day? Or is their work concentrated into intensive, shorter
| periods?

| By setting too low a value, you could cause definitions to be deleted and reshipped
| unnecessarily. It is also possible that you could cause automatic transaction
| initiation (ATI) requests to fail with the “terminal not known” condition. This
| condition occurs when an ATI request names a terminal that is not defined to this
| system. Usually, the terminal is not defined because it is owned by a remote
| system, you are using shippable terminals, and no prior transaction routing has
| taken place from it. By allowing temporarily inactive shipped definitions too short a
| life, you could increase the number of calls to the XALTENF and XICTENF global
| user exits that deal with the “terminal not known” condition.

| DSHIPINT: You can use this value to control the time of day at which your mass
| delete operations take place. For example, if you usually warm-start CICS at 7
| a.m., you could set DSHIPINT to 150000, so that the timeout delete mechanism is
| invoked at 10 p.m., when few users are accessing the system.

 Chapter 27. Efficient deletion of shipped terminal definitions 267

| Warning: If CICS is recycled, perhaps because of a failure, the timeout delete
| interval is reset. Continuing the previous example, if CICS is recycled at 8:00 p.m.,
| the timeout delete mechanism will be invoked at 11:00 a.m. the following day (15
| hours from the time of CICS initialization). In these circumstances, you could use
| the SET DELETSHIPPED and PERFORM DELETSHIPPED commands to
| accurately control when a timeout delete takes place.

| CICS provides statistics to help you tune the DFHIPIDL and DFHIPINT parameters.
| The statistics are available online, and are mapped by the DFHA04DS DSECT.
| For details of the statistics provided, see the CICS/ESA Performance Guide.

| Migration considerations
| For compatibility reasons, CICS/ESA 4.1 continues to support the old remote
| delete and remote reset mechanisms that were used in pre-4.1 CICS releases.
| You can always use the new timeout delete mechanism on any CICS/ESA 4.1
| back-end system. Whether the new selective deletion mechanism or the old-style
| remote delete and reset operates depends on the level of the front-end system.
| For example, consider the following combinations of front- and back-end systems.

| Note: A “front-end” could be a TOR or an intermediate system. Likewise, a
| “back-end” could be an AOR or an intermediate system.

| CICS/ESA 4.1 front-end to CICS/ESA 4.1 back-end
| You can use timeout delete on the back-end system. Based on the instance
| tokens passed by the front-end system, the back-end uses selective deletion to
| remove redundant definitions singly, as they are referenced by routed transactions.

| CICS/ESA 4.1 front-end to pre-CICS/ESA 4.1 back-end
| You cannot use timeout delete on the back-end system. The front-end system
| uses the old-style remote delete and remote reset mechanisms. This means that
| all shipped definitions in the back-end system—whether redundant or not—are
| deleted after a restart of the TOR or of an intermediate system.

| Pre-CICS/ESA 4.1 front-end to CICS/ESA 4.1 back-end
| You can use timeout delete on the back-end system. The front-end system uses
| the old-style remote delete and remote reset mechanisms, which are honored by
| the back-end system.

| Note: If you migrate a pre-CICS/ESA 4.1 system to CICS/ESA 4.1, any other
| CICS/ESA 4.1 systems to which it is connected will not recognize the upgrade (and
| therefore continue to issue old-style remote delete and remote reset requests) until
| their connections to the upgraded system are reinstalled.

| Figure 78 on page 269 shows various combinations of front- and back-end
| systems. In the figure, old-style remote delete and remote reset requests are
| shown collectively as “REMDEL”s.

268 CICS for MVS/ESA Intercommunication Guide

T1

T2

APC1

T1

T2

CICS/ESA 3
AOR

T1

T2

CICS/ESA 4

CICS/ESA 4
AOR

CICS/ESA 4
TOR

CICS/ESA 3
TOR

APPC
device

T1

T2

REMDEL processed

REMDEL processed

No REMDEL
Selective deletion

No REMDEL
Selective deletion

REMDEL
flows

REMDEL
flows

REMDEL

T1

T2

APC1

KEY:

Pre-4.1 remote reset and remote delete requests

Remote terminal definit ions

Remote APPC connection definition

APC1

SIT
DSHIPINT=120000
DSHIPIDL=020000
Timeout delete
mechanism operates

SIT
DSHIPINT=120000
DSHIPIDL=020000
Timeout delete
mechanism operates

SIT
DSHIPINT=0

| Figure 78. Deletion of shipped terminal definitions in a mixed-release network

 Chapter 27. Efficient deletion of shipped terminal definitions 269

270 CICS for MVS/ESA Intercommunication Guide

Part 6. Recovery and restart

This part tells you what CICS can do if things go wrong in an intercommunication
environment, and what you can do to help.

Chapter 28, “Recovery and restart in interconnected systems” on page 273 deals
with individual session failure, and with system failure and restart.

Chapter 29, “Intercommunication and XRF” on page 291 discusses those aspects
of CICS extended recovery facility (XRF) that affect intercommunication.

| Chapter 30, “Intercommunication and VTAM persistent sessions” on page 293
| discusses those aspects of CICS support for VTAM persistent sessions that affect
| intercommunication.

 Copyright IBM Corp. 1977, 1997 271

272 CICS for MVS/ESA Intercommunication Guide

Chapter 28. Recovery and restart in interconnected systems

This chapter describes those aspects of CICS recovery and restart that apply
particularly in the intercommunication environment. It is assumed that you are
familiar with the concepts of logical units of work (LUWs), synchronization points
(syncpoints), dynamic transaction backout, and other topics related to recovery and
restart in a single CICS system. These topics are presented in detail in the
CICS/ESA Recovery and Restart Guide.

In the intercommunication environment, most of the single-system concepts remain
unchanged. Each system has its own system and dynamic logs (or the equivalent
for non-CICS systems), and is normally capable of either committing or backing out
changes that it makes to its own recoverable resources.

In the intercommunication environment, however, a logical unit of work can include
actions that are to be taken by two or more connected systems. This means that
the participating systems must reach mutual agreement to commit the changes they
have made, which, in turn, means that they must exchange syncpoint requests and
responses over the intersystem sessions. This requirement represents the single
major difference between recovery in single and multiple systems.

 Terminology
The task that initiates the syncpoint activity is called the initiator. All other tasks in
the syncpoint sequence receive syncpoint requests from the initiator and are called
agents.

 Copyright IBM Corp. 1977, 1997 273

 Syncpoint exchanges
Consider the following example:

 Syncpoint example

An order-entry transaction is designed so that, when an order for a
particular item is entered from a terminal, (1) an inventory file is queried
and decremented by the order quantity, (2) an order for dispatch of the
goods is written to an intrapartition transient data queue, and (3) a
synchronization point is taken to indicate the end of the current LUW.

In a single CICS system, the syncpoint causes both (1) and (2) to be
committed.

The same result is required if the inventory file is owned by a remote system
and is accessed by means of, for example, CICS function shipping. This is
achieved in the following way:

1. When the local transaction issues the syncpoint request, CICS sends a
syncpoint request to the remote transaction (in this case, the CICS mirror
transaction).

2. The remote transaction commits the change to the inventory file and sends
a positive response to the local CICS system.

3. CICS commits the change to the transient data queue.

During the period between the sending of the syncpoint request to the remote
system and the receipt of the reply, the local system does not know whether the
remote system has committed the change. This period is known as the
in-doubt period, as illustrated in Figure 79 on page 277.

If the intersystem session fails before the in-doubt period is reached, both sides
back out in the normal way. After this period, both sides have committed their
changes. If, however, the intersystem session fails during the in-doubt period,
the local CICS system cannot tell whether the remote system committed or
backed out its changes. The local system performs backout according to the
INDOUBT option of the local transaction (see page 275); this action may be
inconsistent with the action taken by the partner system.

For APPC sessions, CICS reduces the risk explained in the example by attempting
resynchronization on a separate session (see “Action following failure during the
in-doubt period” on page 279). For LUTYPE6.1 sessions, and also for APPC
sessions if the resynchronization attempt fails, there are three possible courses of

| action that an application can take. (For MRO sessions, only the first two courses
| are available.)

1. Commit the changes unilaterally.

2. Back out the changes unilaterally.

3. Neither commit nor back out the changes, but wait until the session is
reestablished and attempt resynchronization.

274 CICS for MVS/ESA Intercommunication Guide

The INDOUBT option of the transaction definition
You can control, in some part, the action that CICS takes after failure during the
in-doubt period by specifying transaction backout attributes when you define the
transaction. This is done by means of the INDOUBT option of the CEDA DEFINE
and ALTER TRANSACTION commands. The INDOUBT option of a transaction is
honored when communication is lost with a partner and the task is in the in-doubt
period. This may occur at the time of a session failure (for example, agent’s
system failure), or during initiator’s system emergency restart (for example,
initiator’s system failure).

MRO and LUTYPE6.1 restrict support of the INDOUBT option to the initiator,
because they rely on all agents except the last committing if they are in doubt.

| APPC supports the INDOUBT option for the initiator and not-last agents. (For an
| explanation of the terms “last” and “not-last” as applied to agents, see page 277.)

A CICS internal algorithm determines the order in which syncpoint requests are
issued. An optimized syncpoint protocol is used for the last session in which a
syncpoint request is sent.

The INDOUBT option has the following format:

INDOUBT({BACKOUT|COMMIT|WAIT})

and the choices have the following meanings:

BACKOUT
Specifies that the transaction is to be backed out if a failure occurs during the
in-doubt period. This is the default value.

Transaction backout is always performed for failures that occur outside the
in-doubt period, irrespective of what is specified in the INDOUBT option.
Because a dynamic transaction backout buffer is not acquired until a protected
resource is modified, the transaction backout overhead for a transaction that
never modifies a protected resource is negligible.

COMMIT
Specifies that the changes made by the transaction are to be committed when
failure occurs during the in-doubt period. A typical situation in which COMMIT
is appropriate is when transaction backout can cause data to be lost, but a
unilateral commit can result only in duplicated data.

WAIT
(LUTYPE6.1 and APPC only) specifies that, if the session fails during the
in-doubt period:

� Changes to recoverable temporary storage are to be neither committed nor
backed out. The changes to recoverable temporary storage are locked
until the session is recovered. A comparison is then made with the remote
system, and the locked resources are either committed or backed out to
coordinate with it.

| For this to happen, every change to recoverable temporary storage made
| by the transaction since the last syncpoint must be one of the following:

| – A new addition to a queue
| – A modification to a new addition to a queue
| – The creation of a new queue.

 Chapter 28. Recovery and restart in interconnected systems 275

| WRITEQ TS (without REWRITE) and START PROTECT requests always
| qualify, as do WRITE TS REWRITE requests to new items on a queue.
| This is because CICS can back out these commands by erasing the added
| items, or commit them by unlocking the queue. WRITE TS REWRITE
| requests to items that existed before the start of the transaction (or before
| the last syncpoint) do not qualify.

| If some changes to recoverable temporary storage do not qualify, all
| changes are committed at session failure.

| � Interval-control START PROTECT requests are neither committed nor
| backed out.

| � Changes to other recoverable resources are backed out.

| This option is honored only if the local transaction has only one connection with
| a partner at the time of the syncpoint. In other circumstances, the BACKOUT
| option applies.

| If session recovery is unsuccessful, the START commands are canceled but
| temporary-storage queue changes are committed.

 Syncpoint flows
The ways in which syncpoint requests and responses are exchanged on
intersystem conversations are defined in the LUTYPE6.1 and APPC architectures.
CICS multiregion operation uses the LUTYPE6.1 protocols. Although the formats
of syncpoint flows for LUTYPE6.1 and APPC differ, the concepts of syncpoint
exchanges are similar.

The flows involved in syncpoint exchanges are illustrated in Figure 79 on
page 277. In CICS, all of these flows are generated automatically in response to
explicit or implicit SYNCPOINT commands issued by a transaction. However, a
basic understanding of the flows that are involved can assist you in the design of
your application and give you an appreciation of the consequences of session or
system failure during the syncpoint activity. For more information about these
flows, see the CICS/ESA Distributed Transaction Programming Guide.

276 CICS for MVS/ESA Intercommunication Guide

Unique session
┌───────────┐ commit(1) ┌───────────┐

│ Initiator │───────────>│ Agent │

│ g │ │ │

│ in-doubt │ │ │

│ X │committed(2)│ │

│ │@───────────│ │

└───────────┘ └───────────┘

Chained sessions – agent task is also an initiator
with its own agent
┌───────────┐ commit(1) ┌───────────┐ ┌─────────┐

│ Initiator │───────────>│ Agent1 │ commit(2) │ Agent2 │

│ g │ │(initiator)│───────────>│ │

│ │ │ │ g │ │ │

│ in-doubt │ │ in-doubt │ │ │

│ │ │ │ X │committed(3)│ │

│ X │committed(4)│ │<───────────│ │

│ │@───────────│ │ │ │

└───────────┘ └───────────┘ └─────────┘

Multiple sessions – initiator has multiple agents
 ┌───────────┐ prepare(1)┌─────────┐

│ Initiator │───────────>│ Agent1 │

 │ │ │ │

 │ │ commit(2) │ │

┌───────────┐ commit(3) │ │<────────── │ g │

│ Agent2 │@───────────│ │ │ │ │

│ │ │ g │ │ │ │

│ │ │ in-doubt │ │ in-doubt│

│ │committed(4)│ X │ │ │ │

│ │───────────>│ │ │ │ │

│ │ │ │committed(5)│ X │

└───────────┘ │ │───────────>│ │

 │ │ forget(6) │ │

│ │@─ ─ ─ ─ ─ ─│ │

└───────────┘ (APPC only)└─────────┘

Figure 79. Syncpointing flows

In Figure 79, the numbers in brackets, for example, (1), show the sequence of the
actions in each flow.

1. The initiator must be in send state on all its sessions.

2. When they issue their syncpoint, agents must be in send state on all sessions
except the session on which they receive, prepare, or commit.

In the simplest case, the initiator has a single conversation with an agent that has
no conversations other than with the initiator. At the start of the syncpoint activity,
the initiator sends a commit request to the agent. The agent commits its changes
and responds with committed. The initiator then commits its changes, and the
logical unit of work is complete.

If the agent transaction also has a conversation with a third transaction, it must
itself initiate syncpoint activity on this latter conversation before it responds to its
initiator. The third transaction commits first, then the agent transaction, and finally
the initiator transaction.

In the more general case, the initiator transaction can have more than one agent,
and must inform each of them that a syncpoint is being taken. It does this by
sending a “prepare” request to all of its agents except the last. (The order in which
this is done and the identity of the “last” agent are not defined.) An agent that

 Chapter 28. Recovery and restart in interconnected systems 277

receives a “prepare” request responds by sending a “commit” request back to the
initiator.

When all these “prepare” requests have been sent and all the “commit” responses
received, the initiator sends a “commit” request to its “last” agent. When this
responds with a “committed” indication, the initiator then sends “committed”
requests to all the other agents. For APPC conversations only, these agents
respond “forget” to show that they do not require resynchronization.

Relationship between initiator and agent
Figure 80 shows the relationship between the initiator and agent regions. Region
A contains the initiator task for a syncpoint sequence; regions B, C, and D contain
the agent tasks for the same sequence.

Note that this relationship exists only for the duration of syncpoint processing for a
single LUW. In distributed transaction processing, the same tasks might process a
subsequent unit of work in which a different task is the syncpoint initiator.

 ┌──────┐

 │Region│

 │ A │

 └──────┘

 Initiator
 ┌──────────────────┼────────────────────────┐

 X X X

 Agent Agent Agent
┌──────┐ ┌──────┐ ┌──────┐

│Region│ │Region│ │Region│

│ B │ │ C │ │ D │

└──────┘ └──────┘ └──────┘

 Initiator
 ┌───────────┴────────────┐

 X X

 Agent Agent
 ┌──────┐ ┌──────┐

 │Region│ │Region│

 │ E │ │ F │

 └──────┘ └──────┘

Figure 80. Relationship between initiator and agent regions

The lower part of the diagram shows a more complicated situation that can exist.
As well as communicating with tasks in regions A, B, and D, the task in region C
may also be communicating with tasks in regions E and F.

Before responding to a syncpoint request from the task in A, the task in C must first
initiate synchronization of its processing with the tasks in E and F. The task in C
thus becomes the initiator in its relationship with the tasks in E and F. How C
responds to A depends on the outcome of the syncpoint processing for C, E, and
F. If C loses contact with E or F during the in-doubt period, then C honors its
INDOUBT attribute.

The flows between C, E, and F, correspond to those between A, B, C, and D, the
only difference being that there is one fewer agent.

278 CICS for MVS/ESA Intercommunication Guide

Failures in connected systems
The failures that can occur in connected systems are:

Session failures
These occur either between the CICS systems or between CICS and

| the terminal associated with a transaction. Unless they are capable of
| handling session failures, the transactions connected to the sessions are
| abended when they next try to use them. Resource recovery is

performed as for unconnected transaction abends.

Total CICS system failures
The failing system is recovered using emergency restart as for an
unconnected system though there are extra features, described below,
for intersystem communication. Any remote system connected at the
time of the system failure sees the failure as a session failure and treats

| it as such. Thus, unless the transaction can handle session failures, a
| remote system failure causes a local transaction abend.

Transaction abends
These are recovered using dynamic transaction backout as for
unconnected systems. The mirror and relay transactions are not special
in this respect, they are recoverable like all other transactions.

The transaction restart facility can also be used. You cannot specify this
for the mirror or relay transaction, but, if you specify it for the associated
user-written transaction, the mirror or relay transaction will be restarted.

Action following failure during the in-doubt period
This section discusses CICS actions following failure during the in-doubt period
under the following headings:

 � “APPC connections”
 � “LUTYPE6.1 connections”
 � “MRO connections”
� “Messages that can help recovery”
� “Restoring data integrity.”

 APPC connections
When an APPC session fails during the in-doubt period, CICS tries immediately to
contact the partner system using a different session. If this is successful, CICS
completes the syncpoint by comparing unit-of-work states to decide whether to
commit or back out the resources that are in doubt. The failed session can no
longer be used by this task, having been freed by the system. If either transaction
issues a command for the failed conversation, the result is a TERMERR condition,
which, if not handled, leads to an abend and (if necessary) backout, but with no
loss of synchronization.

Immediate recovery is not always possible, for example when all sessions are out
of service because of a serious failure of one of the systems or of the connecting

| hardware. What happens after a total system failure depends on whether the failed
| CICS is using VTAM persistent session support:

| � If the failed CICS uses persistent session support, its sessions are kept in
| “recovery pending” state until the system is restarted. Provided that restart
| takes place before the expiry of the persistent session delay interval, APPC

 Chapter 28. Recovery and restart in interconnected systems 279

| open sessions are rebuilt. APPC busy sessions, however, are unbound. Thus,
| a partner CICS that is connected by an APPC link sees the failure simply as a
| session failure, and processes an in-doubt transaction accordingly. That is, it
| tries to contact the previously-failed system using a different session, as
| described above.

| � If the failed CICS is not using persistent session support, or if it is not restarted
| within the delay interval, all its sessions are unbound. The partner CICS,
| having no alternative sessions to use, must abend the transaction and obey the
| INDOUBT option. It must then wait until the connection has been
| reestablished, after emergency restart, before it can determine and report the
| state of the distributed logical unit of work.

| When the intersystem session is recovered, unit-of-work states are compared
| by the two systems to find out and report (to the CSMT log) whether the
| unilateral actions taken by the systems matched or not, and commit or back out
| any temporary-storage changes locked due to the INDOUBT(WAIT) option.

| For further information about persistent session support, see Chapter 30,
| “Intercommunication and VTAM persistent sessions” on page 293.

 LUTYPE6.1 connections
The absence of an LU services manager for LUTYPE6.1 connections makes
immediate recovery impossible. Recovery is possible only after sessions have
been reestablished. When the sessions are reestablished, the two sides exchange
message sequence numbers to determine (and report to the CSMT log) whether
the actions taken by the systems matched, and to decide whether to commit or
back out temporary-storage changes locked due to the INDOUBT(WAIT) option.

 MRO connections
The INDOUBT(WAIT) option is not available for MRO conversations.
Consequently, at the time of failure, the transactions are either committed or
backed out, according to whether INDOUBT(COMMIT) or INDOUBT(BACKOUT) is
specified in the transaction definition.

Messages that can help recovery
The messages associated with intersystem session failure and recovery are shown
in two figures. Figure 81 on page 281 shows the messages associated with the
INDOUBT(BACKOUT or COMMIT) attributes. Figure 82 on page 281 shows the
messages associated with the INDOUBT(WAIT) attribute. Full details are in the
CICS/ESA Messages and Codes manual.

280 CICS for MVS/ESA Intercommunication Guide

(session failure, and

immediate recovery failed or

is not possible)

 │

 DFHZN21.1
 Intersystem session

 failure. Database

changes may be out

 of sync.

 │

 ┌──────────────────┴───────────────────┐

 │ │

 (session (session

 recovery recovery

 successful) failed)

 │ │

 │ │

 ┌───────┴──────────────┐ │

 │ │ │

 DFHZN21.2 DFHZN21.3 DFHZN21.4
 Intersystem session Intersystem session Intersystem session

 recovery. Database recovery. Database recovery error when

 changes found to be changes found to be database changes

 synchronized. out of sync. may be out of sync.

Figure 81. Session failure messages for INDOUBT(BACKOUT or COMMIT)

(session failure, and

immediate recovery failed or

is not possible)

 │

 DFHZN21.5
 Intersystem session

 failure. Database

changes will not be

committed or backed

out until session

 recovery.

 │

 ┌───────────────────┴─────────────────┐

 │ │

 (session (session

 recovery recovery

 successful) failed)

 │ │

 │ │

 ┌───────┴──────────────┐ │

│ │ │

DFHZN21.6 DFHZN21.7 DFHZN21.8
 Intersystem session Intersystem session Intersystem session

 recovery. Suspended recovery. Suspended recovery error while

 changes now being changes now being local recoverable

 committed. backed out. changes are suspended.

Figure 82. Session failure messages for INDOUBT(WAIT)

All these messages contain the following information, which enables the messages
to be correlated:

 � The time

 Chapter 28. Recovery and restart in interconnected systems 281

� The transaction identifier and task number
� The remote system identifier
� The intersystem terminal identifier (the session name)
� The operator identifier
� The operator terminal identifier
� The unit-of-work identifier.

Because the partner region may have resolved the logical unit of work (LUW)
differently, a region issues message DFHZN2101 when it loses communication with
a partner. The message may appear at the time of a session failure or partner
region failure, or during emergency restart.

When the connection has been reestablished, the state of the LUW is determined,
and a DFHZN2102, DFHZN2103, or DFHZN2104 message is issued for each
session. For MRO and LUTYPE6.1 conversations, these messages appear only on
the initiator side.

If an agent region successfully commits but a session failure occurs before the
initiator receives confirmation of this, the region does not issue a DFHZN2101
message. After session recovery, a DFHZN2102, DFHZN2103, or DFHZN2104
message may be issued by the agent region.

As the following example shows, the system or application design can mean that
there is no threat to data integrity even though DFHZN2103 or DFHZN2104 has
been issued.

 Example

An order-entry transaction is designed to update a recoverable file which
is defined on a remote CICS region. The update is achieved using a
function shipped file control request and there are no other recoverable
resources involved in the transaction.

If the intersystem session fails during the in-doubt period, the local CICS region
reports the possible threat to integrity with DFHZN2101 and takes unilateral
action to commit or back out the LUW. Because there are no recoverable
changes in this region, there can be no loss of synchronization with the remote
file.

After session recovery, CICS may issue DFHZN2102 or DFHZN2103. You
would ignore this if data integrity were your only concern. However, if the
message shows that the units of work are out of step, this could still be
significant. For instance, it would tell a terminal operator whether the order
entered last was registered or not.

Restoring data integrity
If CICS messages indicate that database changes are or may be out of
synchronization, restoration of data integrity is made possible by the inclusion of the
UOWID in all in-doubt messages and in a logged correlation record for each agent
that has updated a recoverable resource. A user-written log-scanning utility can
read all log records for the unit of work in the affected CICS regions, and determine
what action is needed to synchronize the databases. For programming information
about how to do this, see the CICS/ESA Customization Guide.

282 CICS for MVS/ESA Intercommunication Guide

Recovery for APPC connections
This section describes recovery for APPC connections under the following
headings:

 � “Exchange-lognames process”
� “Pending units of work” on page 284
� “Connected system recovery – an example” on page 285.

 Exchange-lognames process
When a CICS system is restarted, operational constraints can cause a new or
different system log to be used. If the restarted system has been communicating
with a partner that is waiting to perform session recovery, the recovery process is
corrupted. The exchange-lognames process detects this situation and is performed
whenever a connection is established.

The exchange-lognames process is a defined piece of the APPC architecture. For
a full description of the concepts and physical flows, see the SNA Transaction
Programmer’s Reference Manual for LU Type 6.2.

Exchange-lognames – an example

A networking failure occurs during the in-doubt period of a transaction, causing
| a failure of the connection between two CICS systems. INDOUBT(WAIT) is
| coded on both transaction definitions. One CICS system is shut down and

cold-started. The partner system remains active and, when the connection is
reestablished, the exchange-lognames process detects the cold start. CICS
treats this as an operational error, and does not attempt session recovery. The
master operator is made aware of the exchange-lognames failure by console
messages issued by CICS. Alternatively, the CEMT INQUIRE CONNECTION
command can be used to determine whether a failure has occurred.

| The exchange-lognames process alerts the master operator if the logs (used to
| restore unit-of-work status information) are not the same ones that were in use at
| the preceding failure.

The exchange-lognames process affects only level-2 synchronization conversations.
If it fails, level-2 synchronization conversations are not allowed on the link until the
failure is resolved. This resolution can be achieved only by operator action.
However, level-0 and level-1 synchronization traffic on the link is unaffected by the
failure, and continues as normal. For information about synchronization levels, see
“Synchronization levels” on page 22.

The CEMT INQ CONNECTION command can be used to determine whether the
| exchange-lognames process has completed successfully. The exchange-lognames
| status is shown only for APPC links that, before the failure, were carrying sync level
| 2 conversations (otherwise it is blank). It is ‘XOK’ if the process was successful. If
| it is shown as ‘XNOtdone’ (exchange lognames not done) and ‘ACQuired’, CICS
| does not allow any level-2 synchronization conversations. This may (depending on

the design of your system) mean that the connection is not available to
applications.

 Chapter 28. Recovery and restart in interconnected systems 283

One or more of the following messages appear on the CSMT log:

DFHZN2110 ABNORMAL REPLY TO EXCHANGE LOG NAME COMMAND SENT TO
SYSTEM: sysid

DFHZN2111 COLD/WARM RESTART MISMATCH WITH SYSTEM sysid
DFHZN2112 LOG NAME MISMATCH WITH SYSTEM sysid. EXPECTED

LUNAME.LOGNAME logname RECEIVED LUNAME.LOGNAME logname

In these messages the term “warm” means that a connection has previously been
established with the partner system, and the lognames have been exchanged and
saved. A system is “cold” if the logname has not been exchanged with the partner,
or if the memory of it has been erased. The memory can be erased by:

� Cold start of the CICS system
� The CEMT SET CONNECTION NOTPENDING command.

If ‘XOK’ and resynchronization is not complete, you cannot set the connection to
NOTPENDING.

Warning: The CEMT SET CONNECTION NOTPENDING command deletes any
outstanding resynchronization data for the connection. Depending on what
information is present, this could lead to integrity problems. Issue this command
with care.

The CICS/ESA Messages and Codes manual gives possible actions to correct the
various conditions without damaging data integrity; these involve restarting one or
both CICS systems with the correct logs. Note, however, that the ‘XNOtdone’
status also means that at least one end of the connection has pending
units-of-work. The next section, “Pending units of work,” explains a way to resolve
the situation without restarting, and describes the factors that determine the best
action to take.

For more detailed diagnostic information about the exchange-logname process, see
the CICS/ESA Diagnosis Reference manual.

Pending units of work
When an APPC session failure leaves a unit-of-work requiring session recovery,
CICS sets the connection status to ‘pending’. After successful session recovery,
this status is removed. The CEMT INQ CONNECTION command can be used to
discover whether there are any pending units-of-work for the named system.

You should determine whether data integrity in your system is dependent on
successful session recovery. You may find that intersystem communication does
not involve recoverable resources, or that recoverable resources reside on only one
of the communicating systems. In these cases, communication failure does not
affect resource integrity. Alternatively, application design may provide a method
other than session recovery to restore data integrity following a connection failure.

If your conversation is dependent on session recovery and resynchronization and
this has failed, you should investigate thoroughly to find out why. This situation
indicates an abnormal operation such as an unscheduled cold start of a connected
CICS system.

You can allow normal operation to continue by using the CEMT SET
CONNECTION NOTPENDING command to override the normal resynchronization

284 CICS for MVS/ESA Intercommunication Guide

process and put the CICS system into a state in which it is prepared to accept any
log name chosen by the remote system.

Warning: This action prevents CICS from detecting whether or not a loss of
integrity actually occurred.

CEMT SET CONNECTION NOTPENDING has the following effects:

� A connection can immediately be acquired with the remote system.

� If the connection is already acquired, the exchange-lognames process is
successfully executed and level-2 synchronization conversations are permitted.

� The connection is set to ‘notpending’ status.

� The normal resynchronization process is overridden by the deletion of all
information describing the unresolved units of work.

� The unit-of-work status information containing the log name of the partner
system is erased; the connection is as if the CICS system had been
cold-started.

� If INDOUBT(WAIT) has been specified and temporary-storage changes are
suspended (DFHZN2105 has been issued), the changes are unilaterally
committed. You can determine the status of data integrity and restore it as
described in “Restoring data integrity” on page 282.

In summary, you can resolve the ‘pending’ and ‘XNOtdone’ status by:

� Restarting both CICS systems using the correct logs

� Issuing the CEMT SET CONNECTION NOTPENDING command on whichever
system displays the ‘pending’ status.

Which of these actions is best for your installation depends on your requirements
for availability and data integrity, and on your own procedures for restoring data
integrity.

Connected system recovery – an example
As an illustration of connected system recovery design, consider the following
simple example:

 Example

A transaction is given a part number; it checks the entry in a local file to see
whether the part is in stock, decrements the quantity in stock and updates the
stock file, and sends a record to a remote transient data queue to initiate the
dispatch of the part.

It is assumed that a function request shipping is used, which means that a mirror
transaction runs in the remote system. However, the same principles would apply if
DTP is used and the remote transaction is user-written.

Ideally, the update to the local file should take place only if the addition is made to
the remote transient data (TD) queue, and the TD queue should only be updated if
an addition is made to the local file. The first step towards achieving this is to
specify both the file and the TD queue as recoverable resources and to specify

 Chapter 28. Recovery and restart in interconnected systems 285

INDOUBT(BACKOUT), or allow it to default, on the definitions of the local
| transaction and the mirror transaction in the remote system. This ensures
| synchronization of the changes to the resources (that is, both changes will either be
| backed out or committed) in all cases except for a session or system failure during
| the in-doubt period of syncpoint processing.

For failure during the in-doubt period (and, for APPC sessions, following a failure of
the resynchronization attempt), the change made to the stock file is backed out,
and message DFHZN2101, warning that the resources might be out of
synchronization, is sent to the master terminal destination.

Under these conditions, the mirror transaction may, or may not, have been backed
out, and it is possible that the entry dispatching the part was added to the remote
TD queue, but the stock file was not updated. Consequently there is a danger that
the part might be dispatched elsewhere before the mismatch between the two
resources can be corrected.

A more acceptable solution is to update the stock file even though there is a
danger that the dispatch record has not been added to the TD queue, especially if
the delayed dispatch can readily be reinitiated on session recovery. This can be
achieved by specifying INDOUBT(COMMIT) for the local transaction.

When the session is eventually recovered, CICS checks whether the resources are
in fact out of synchronization. If they are not, message DFHZN2102 is issued.
Otherwise, DFHZN2103 is issued and a transaction to reconcile the mismatch
should be run. In this case, the reconciliation process is simply to retransmit the
dispatch record to the remote transient data queue. This could be implemented by
the same application with special logic to inhibit local changes.

In general, the reconciliation process is a rerun of the original transaction with local
changes inhibited if INDOUBT(COMMIT) is specified, or with remote changes
inhibited if INDOUBT(BACKOUT) is specified.

Intersystem communication and emergency restart
If a partner system totally fails, it appears to the conversation as if only the
connection has failed. The failed system is usually emergency-restarted, and so its
local resources are recovered in the normal way. Because there were connected
systems, emergency restart restores these to the state they were in when the
partner system failed.

APPC unit-of-work states and LUTYPE6.1 message sequence numbers are both
recovered from the system log, as well as sufficient information to take actions as
for session failures. Consequently, recoverable resources are backed out,
committed, or held, and the appropriate messages are issued. When the session is
restored, normal resynchronization occurs.

| Note: If the failed system uses VTAM persistent session support, and is restarted
| within the persistent session delay interval, its APPC sessions are held in “recovery
| pending” state, and subsequently rebound without the need for network flows. The
| effect of this is described in “APPC connections” on page 279 and in Chapter 30,
| “Intercommunication and VTAM persistent sessions” on page 293.

286 CICS for MVS/ESA Intercommunication Guide

In a busy system with a large number of parallel APPC sessions, it is possible that
some sessions may fail to rebind after emergency restart. This reduces the
number of parallel sessions available to communicating transactions and may
therefore affect system performance. The situation can be detected by comparing
the active and available counts returned on a CEMT INQUIRE MODENAME
transaction. All the unbound sessions for that modename can be rebound by using
a CEMT SET MODENAME ACQUIRED transaction from either end of the
connection. Operation of the bound sessions is not interrupted.

Error handling programs for intercommunication
CICS intercommunication uses CICS terminal control facilities to exchange
messages with connected systems. When an unrecoverable situation is detected in
either CICS system, the exchange of messages is terminated by means of a
special negative response. This special response is sent to the CSMT destination
by the receiving system. It is followed by a detailed error recovery message. The
sense code in the error message leads to abnormal termination of the transactions,
so that CICS dynamic transaction backout processing can be invoked to guard
against inconsistent resource updates.

For LUTYPE6.1 and APPC conversations, the negative response received by CICS
is handled by the node abnormal condition program (DFHZNAC) and passed to the
user-supplied node error program (DFHZNEP) if present. The default actions set
by CICS ensure that CICS reads in the succeeding error message. The sense
code in this message is made available to DFHZNAC and DFHZNEP in the same
way as system sense codes carried by the LUSTATUS commands or negative
responses. CICS default actions based on this system sense code are set by
DFHZNAC, before making the code available to DFHZNEP. Error conditions
occurring on intersystem communication sessions are therefore handled exactly like
errors on other SNA sessions through VTAM.

It is not necessary to write a node error program to handle intersystem
communication sessions, because the default actions set by DFHZNAC have been
selected to enforce correct recovery based on the error condition detected. When
the system sense code indicates that the original request to VTAM can be retried,
CICS does so transparently to the application program attempting to send a
message.

For programming information about user-supplied DFHZNEP programs, see the
CICS/ESA Customization Guide.

 Database interlock
As a part of database and application design in a single CICS system, you must be
careful not to design programs in such a way that two programs running
concurrently can request the same records in such a way as to interlock on each
others requests.

This problem continues to exist in interconnected systems where application
programs in two different systems can cause transactions in a third system to
interlock in a similar manner. Such an interlock is detected by means of a time-out
value specified on the transaction definition, which expires when a program has
waited the specified period without a reply from the deadlocked transaction. CICS

 Chapter 28. Recovery and restart in interconnected systems 287

abends the task that has been waiting the longest, so breaking the interlock and
allowing the contending task (or tasks) to continue.

Use of transaction chaining can lead to such a situation. Chaining also opens the
possibility for a designer employing function request shipping or transaction routing
(though not DTP) to define a specific resource (including a transaction or terminal)
as being in a remote CICS system, and further define that resource in the remote
system to be in yet another system. If the definition in the third system
inadvertently specifies the resource to be in the first, any request for that resource
is routed to all three systems and then deadlocks until the specified timeout value
expires, abending all the transactions. For these reasons great care should be
taken during system definition to guard against unintended use or misuse of
chained transactions.

 Problem determination
Application programs that make use of CICS intercommunication facilities are liable
to be subject to error conditions not experienced in single-CICS systems. The new
conditions result from the intercommunication component not being able to
establish a session with the requested system (for example, it is not defined to
CICS, or it is not available).

In addition, some types of request may cause a transaction abend because
incorrect data is being passed to the CICS function manager (for instance, the file
control program). Where the resource is remote, the function manager is also
remote, so the transaction abend is suffered by the remote transaction. This in turn
causes the local transaction to be abended with a transaction abend code of ATNI
(for communication through VTAM) or AZI6 (for communication through MRO)
rather than the particular code used in abending the remote transaction. However,
the remote system sends the local CICS system an error message identifying the
reason for the remote failure. This message is sent to the local CSMT destination.
Therefore, if an application program uses SETXIT and user-task abend exits to
continue processing when abends occur while accessing resources, it is unable to
do so in the same way when those resources are remote.

Trace and dump facilities are defined in both local and remote CICS systems.
When the remote transaction is abended, its CICS transaction dump is available at
the remote site to assist in locating the reason for an abend condition.

Applications to be used in conjunction with remote systems should be well tested to
minimize the probability of failing when accessing remote resources. It should be
remembered that a “remote test system” can actually reside in the same processor
as the local system and so be tested in a single location where the transaction
dumps from both systems, and the corresponding trace data, are readily available.
The two transactions can be connected through MRO or through the VTAM
application-to-application facility.

Detailed sequences and request formats for diagnosis of problems with CICS
intercommunication can be found in the CICS/ESA Diagnosis Reference and the
CICS/ESA Problem Determination Guide.

288 CICS for MVS/ESA Intercommunication Guide

Recovery and restart with non-CICS systems
The cross-link exchanges used by CICS to establish the state of the other system
during recovery are defined by SNA. They are therefore independent of the nature
of the remote system. CICS follows the same recovery procedures whether the
other system is CICS or not.

 Chapter 28. Recovery and restart in interconnected systems 289

290 CICS for MVS/ESA Intercommunication Guide

Chapter 29. Intercommunication and XRF

For further information about the extended recovery facility (XRF) of CICS/ESA, see
the CICS/ESA 3.3 XRF Guide. This chapter looks at those aspects of XRF that
apply to ISC and MRO sessions. For more details of the link definitions mentioned
in this chapter, refer to Chapter 14, “Defining links to remote systems” on
page 119.

MRO and ISC sessions are not XRF-capable because they cannot have backup
sessions to the alternate CICS system.

You can use the AUTOCONNECT option in your link definitions to cause CICS to
try to reestablish the sessions following a takeover by the alternate CICS system.

Also, the bound or unbound status of some ISC session types can be tracked. In
these cases, CICS can try to reacquire bound sessions irrespective of the
AUTOCONNECT specification.

In all cases, the timing of the attempt to reestablish sessions is controlled by the
AUTCONN system initialization parameter. For information about system
initialization parameters, see the CICS/ESA System Definition Guide.

MRO sessions: The status of MRO sessions cannot be tracked. Following a
takeover by the alternate CICS system, CICS tries to reestablish MRO sessions
according to the value specified for the INSERVICE option of the CONNECTION
definition.

LUTYPE6.1 sessions: Following a takeover, CICS tries to reestablish LUTYPE6.1
sessions in either of the following cases:

1. The AUTOCONNECT option of the SESSIONS definition specifies YES.

2. The sessions are being tracked, and are bound when the takeover occurs. The
status of LUTYPE6.1 sessions is tracked unless RECOVOPTION(NONE) is
specified in the SESSIONS definition.

Single-session APPC devices: Following a takeover, CICS tries to reestablish
single APPC sessions in either of the following cases:

1. The AUTOCONNECT option of the SESSIONS or TYPETERM definition
specifies YES.

2. The session is being tracked, and is bound when the active CICS fails. Single
APPC sessions are tracked unless RECOVOPTION(NONE) is specified in the
SESSIONS or the TYPETERM definition (depending upon which form of
definition is being used). Although RECOVOPTION has five possible values,
for ISC there is a choice between NONE (no tracking) and any one of the other
options (tracking).

Parallel APPC sessions: Following a takeover, CICS tries to reestablish the LU
services manager sessions in either of the following cases:

� The AUTOCONNECT option of the CONNECTION definition specifies YES or
ALL.

 Copyright IBM Corp. 1977, 1997 291

� The sessions are being tracked, and are bound when the active CICS fails.
Only the LU services manager sessions (SNASVCMG) can be tracked in this
case; tracking is not available for user sessions.

As soon as the LU services manager sessions are reestablished, CICS tries to
establish the sessions for any mode group that specifies autoconnection.

Effect on application programs: To application programs that are using the
intercommunication facilities, a takeover in the remote CICS system is
indistinguishable from a session failure.

292 CICS for MVS/ESA Intercommunication Guide

| Chapter 30. Intercommunication and VTAM persistent
| sessions

| For definitive information about CICS support for VTAM persistent sessions, see
| the CICS/ESA Recovery and Restart Guide. This chapter looks at those aspects of
| persistent sessions that apply particularly to intersystem communication. For
| details of the link definitions required for persistent session support, refer to
| Chapter 14, “Defining links to remote systems” on page 119 and the CICS/ESA
| Resource Definition Guide. For details of the PSDINT system initialization
| parameter used to specify persistent session support, see the CICS/ESA System
| Definition Guide.

| Comparison of persistent session support and XRF
| XRF was introduced in CICS/MVS Version 2 to allow an alternate, partially
| initialized CICS system to take over control from an active CICS system which had
| failed. The use of VTAM persistent sessions provides an alternative to XRF.
| Persistent sessions allow you to restart a failed CICS in place, without the need for
| network flows to rebind CICS sessions. (Note that you cannot specify both XRF
| and CICS persistent session support for the same system.)

| XRF provides availability of the system (through active and alternate systems) and
| availability for the user (through availability of the system and exploitation of backup
| sessions). Active and alternate pairs of systems require their own versions of some
| data sets (for example, auxiliary trace and dump data sets).

| Persistent session support provides availability of the system (through restart in
| place of one system) and availability for the end user (through availability of the
| system and persistent sessions). Only one set of data sets is required. Only one
| system is required. Persistent session support has the following advantages over
| XRF:

| � It supports all session types except MRO, LU6.1, and LU0 pipeline sessions.
| XRF does not support local terminals, MRO, or ISC (LU6.1 or LU6.2) sessions.

| � It is easier to install and manage than XRF. It requires only a single system.

| However, persistent session support does not retain sessions after a VTAM, MVS,
| or CEC failure. If you need to ensure rapid restarts after such a failure, you could
| use XRF rather than persistent sessions.

| Interconnected CICS environment, recovery and restart
| CICS systems can be interconnected via MRO, LU6.1, or LU6.2 connections and
| sessions.

| MRO sessions
| MRO connections do not have the ability to persist across CICS failures and
| subsequent emergency restarts.

 Copyright IBM Corp. 1977, 1997 293

| LU6.1 sessions
| If a CICS fails in a multisystem environment, all the LU6.1 sessions that are
| connected to it are held in recovery pending state until it is restarted with an
| emergency restart or until the expiry of the persistent session delay interval. In
| either case, the LU6.1 sessions are then unbound. They need to be reacquired
| before they can be used again.

| Slightly different symptoms of the CICS failure may be presented to the systems
| programmer, or operator, depending on whether persistent session support is used.
| In systems without persistent session support, all the LU6.1 sessions unbind
| immediately after the failure.

| In a system with persistent session support, the LU6.1 sessions are not unbound
| until the emergency restart (if this occurs within the persistent session delay
| interval) or the expiry of the persistent session delay interval. Consequently, these
| sessions may take a longer time to be unbound.

| LU6.2 sessions
| LU6.2 sessions that connect different CICS systems are capable of persistence
| across the failure of one or more of the systems and a subsequent emergency
| restart within the persistent session delay interval.

| However, these sessions are unbound in certain circumstances, even if persistent
| sessions are supported in your system. The following sessions are unbound after a
| CICS failure and emergency restart, even if you have defined them to be persistent:

| � Sessions for which no catalog entry is found. This applies to:

| – Autoinstalled LU6.2 parallel sessions.

| – Autoinstalled LU6.2 single sessions initiated by BIND requests.

| – Autoinstalled LU6.2 single sessions initiated by VTAM CINIT requests, if
| the AIRDELAY system initialization parameter is set to zero. (AIRDELAY
| specifies the interval that elapses after an emergency restart before
| autoinstalled terminal entries that are not in session are deleted.)

| In other words, the only autoinstalled LU6.2 sessions that are not unbound
| are single sessions initiated by CINIT requests, and then only if AIRDELAY
| is greater than zero.

| � All sessions on an LU6.2 connection to a failing TOR, where, on one or more
| of the sessions, an AOR has function-shipped an ATI request to the TOR,
| because the request is associated with a terminal owned by the TOR.
| (ATI-initiated transaction routing is described on page 71.)

| � All sessions on an LU6.2 connection, where, on one or more of the sessions,
| transaction routing via CRTE is taking place but there is no conversation in
| progress at the point of the failure. (Where a conversation is in progress, a
| DEALLOCATE(ABEND) is sent to the partner of the failing CICS.)

| Effects on LU6.2 session control: After the failure of CICS in an LU6.2
| interconnected environment, and a subsequent emergency restart within the
| persistent session delay interval, transaction CLS1 (CNOS) is not run unless one
| side of the connection had issued a CNOS request to zero or the connection was in
| the process of CNOS negotiation at the time of the failure.

294 CICS for MVS/ESA Intercommunication Guide

| The failing system runs transaction CLS2 (XLN, exchange log names) as soon as it
| can after emergency restart within the persistent session delay interval. CLS2 has
| to run before any further synclevel 2 conversations can be processed by either of
| the connected systems.

| Effect on application programs
| The use of VTAM persistent sessions has implications for DTP applications that
| use the APPC protocol. This is described in the CICS/ESA Distributed Transaction
| Programming Guide.

 Chapter 30. Intercommunication and VTAM persistent sessions 295

296 CICS for MVS/ESA Intercommunication Guide

 Part 7. Appendixes

 Copyright IBM Corp. 1977, 1997 297

298 CICS for MVS/ESA Intercommunication Guide

Appendix A. Rules and restrictions checklist

This appendix provides a checklist of the rules and restrictions that apply to
intersystem communication and multiregion operation. Most of these rules and
restrictions also appear in the body of the book.

 Transaction routing
� A transaction routing path between a terminal and a transaction must not turn

back on itself. For example, if system A specifies that a transaction is on
system B, system B specifies that it is on system C, and system C specifies
that it is on system A, the attempt to use the transaction from system A is
abended when system C tries to route back to system A.

This restriction also applies if the routing transaction (CRTE) is used to
establish all or part of a path that turns back on itself.

� Transaction routing using the following “terminals” is not supported:

 – LUTYPE6.1 sessions.

 – MRO sessions.

– IBM 7770 and 2260 terminals.

– Pipeline logical units with pooling.

– Pooled TCAM terminals.

– MVS system consoles. (Messages entered through a console can be
directed to any CICS system via the MODIFY command.)

� The transaction CEOT is not supported by the transaction routing facility.

� The execution diagnostic facility (EDF) can be used in single-terminal mode to
test a remote transaction.

EDF running in two-terminal mode is supported only when both of the terminals
and the user transaction reside on the same system; that is, when no
transaction routing is involved.

� The user area of the TCTTE is updated at task-attach and task-detach times.
Therefore, a user exit program running on the terminal-owning region and
examining the user area while the terminal is executing a remote transaction
does not necessarily see the same values as a user exit running at the same
time in the application-owning region. Note also that the user areas must be
defined as having the same length in both systems.

� All programs, tables, and maps that are used by a transaction must reside on
the system that owns the transaction. (The programs, tables, and maps can be
duplicated in as many systems as necessary.)

� When transaction routing to or from APPC devices, CICS does not support CPI
Communications conversations with sync level characteristics of
CM_SYNC_POINT.

+ �
+ APAR PN75878

+ Documentation for PN75878 added on 20 December 1995.

 Copyright IBM Corp. 1977, 1997 299

+ TCTUAs are not shipped when the principal facility is an APPC parallel session.

Basic mapping support
� BMS support must reside on each system that owns a terminal through which

paging commands can be entered.

� A BMS ROUTE request cannot be used to send a message to a selected
remote operator or operator class unless the terminal at which the message is
to be delivered is specified in the route list.

Automatic transaction initiation
� A terminal-associated transaction that is initiated by the transient data trigger

level facility must reside on the same system as the transient data queue that
causes its initiation. This restriction applies to both macro-level and
command-level application programs.

� If a transaction is started by ATI on a remotely-owned terminal, the transaction
must be defined on the terminal-owning region as a remote resource owned by
the system that issued the ATI request. (See “Shipping terminals for automatic
transaction initiation” on page 72.)

Acquiring LUTYPE6.1 sessions
� If an application tries to acquire an LUTYPE6.1 connection, and the remote

system is unavailable, the connection is placed out of service.

� If the remote system is a CICS system that uses AUTOCONNECT, the
connection is placed back in service when the initialization of the remote
system is complete.

� If the remote system does not specify AUTOCONNECT(YES|ALL), or if it is a
non-CICS system that does not have autoconnect facilities, you must place the
connection back in service by using a CEMT SET CONNECTION command or
by issuing an EXEC CICS SET CONNECTION command from an application
program.

 Syncpointing
� SYNCPOINT ROLLBACK commands are supported only by APPC and MRO

sessions.

Local and remote names
� Transaction identifiers are translated from local names to remote names when

a request to execute a transaction is transmitted from one CICS system to
another.

However, a transaction identifier specified in an EXEC CICS RETURN
command is not translated when it is transmitted from the application-owning
region to the terminal-owning region.

� Terminal identifiers are translated from local names to remote names when a
transaction routing request to execute a transaction on a specified terminal is
shipped from one CICS system to another.

However if an EXEC CICS START command specifying a terminal identification
is function shipped from one CICS system to another, the terminal identification
is not translated from local name to remote name.

300 CICS for MVS/ESA Intercommunication Guide

Master terminal transaction
� Only locally-owned terminals can be queried and modified by the master

terminal transaction CEMT. The only terminals visible to this transaction are
those owned by the system on which the master terminal transaction is actually
running.

Installation and operations
� Module DFHIRP must be made LPA-resident; otherwise jobs and console

commands may abend on completion.

� Interregion communication requires subsystem interface (SSI) support.

| � Do not install more than one APPC connection between an LU-LU pair.

| � Do not install an APPC and an LUTYPE6.1 connection at the same time
| between an LU-LU pair.

| � Do not install more than one MRO connection between the same two CICS
| regions.

| � Do not install more than one generic EXCI connection on a CICS region.

 Resource definition
� The PRINTER and ALTPRINTER options for a VTAM terminal must (if

specified) name a printer owned by the same system as the one that owns the
terminal being defined.

� The terminals listed in the terminal list table (DFHTLT) must reside on the same
system as the terminal list table.

 Customization
� Communication between node error programs, user exits, and user programs is

the responsibility of the user.

� Transactions that recover input messages for protected tasks after a system
crash must run on the same system as the terminal that invoked the protected
task.

MRO abend codes
� An IRC transaction in send state is unable to receive an error reason code if its

partner has to abend. It abends itself with code AZI2, which should be
interpreted as a general indication that the other side is no longer there. The
real reason for the failure can be read from the CSMT destination of the CICS
region that first detected the error. For example, a security violation in
attaching a back-end transaction is reported as such by the front end only if the
initiating command is CONVERSE and not SEND.

 Appendix A. Rules and restrictions checklist 301

302 CICS for MVS/ESA Intercommunication Guide

Appendix B. CICS mapping to the APPC architecture

This appendix shows how the APPC programming language (described in the SNA
publication, Transaction Programmer’s Reference Manual for LU Type 6.2) is
implemented by CICS.

The appendix contains two main sections:

1. Supported option sets

This is a table showing which APPC option sets are supported by CICS and
which are not.

2. CICS implementation of control operator verbs

This section describes how CICS implements the APPC control operator verbs.
It includes tables showing how these verbs map to CICS commands.

For information on how the CICS application programming interface for basic and
unmapped conversations maps to the APPC verbs, see the CICS/ESA Distributed
Transaction Programming Guide.

Supported option sets

Table 12 (Page 1 of 3). CICS support of APPC options sets

Set
#

Set name Supported

101 Clear the LU’s send buffer Yes

102 Get attributes Yes

103 Post on receipt with test for posting No

104 Post on receipt with wait No

105 Prepare to receive Yes

10620 Receive immediate Yes

108 Sync point services Yes

109 Get TP name and instance identifier No

110 Get conversation type Yes

111 Recovery from program errors detected during syncpoint Yes

201 Queued allocation of a contention-winner session No

203 Immediate allocation of a session Yes

204 Conversations between programs located at the same LU No

211 Session-level LU-LU verification Yes

212 User ID verification Yes

| 20 CICS programs support receive_immediate requests provided these requests are coded using the common programming Interface
| for communications.

 Copyright IBM Corp. 1977, 1997 303

Table 12 (Page 2 of 3). CICS support of APPC options sets

Set
#

Set name Supported

213 Program-supplied user ID and password No

214 User ID authorization Yes

| 215| Profile verification and authorization| Yes

217 Profile pass-through No

218 Program-supplied profile No

241 Send PIP data Yes

242 Receive PIP data Yes

243 Accounting Yes

244 Long locks No

245 Test for request-to-send received Yes

246 Data mapping No

247 FMH data No

249 Vote read-only response to a syncpoint operation No

251 Extract transaction and conversation identity information No

290 Logging of data in a system log No

291 Mapped conversation LU services component Yes

401 Reliable one-way brackets No

501 CHANGE_SESSION_LIMIT verb Yes

502 ACTIVATE_SESSION verb Yes

504 DEACTIVATE_SESSION verb No

505 LU-definition verbs Yes

601 MIN_CONWINNERS_TARGET parameter No

602 RESPONSIBLE(TARGET) parameter No

603 DRAIN_TARGET(NO) parameter No

604 FORCE parameter No

605 LU-LU session limit No

606 Locally known LU names Yes

607 Uninterpreted LU names No

608 Single-session reinitiation No

610 Maximum RU size bounds Yes

611 Session-level mandatory cryptography No

612 Contention-winner automatic activation limit No

613 Local maximum (LU, mode) session limit Yes

304 CICS for MVS/ESA Intercommunication Guide

Table 12 (Page 3 of 3). CICS support of APPC options sets

Set
#

Set name Supported

616 CPSVCMG modename support No

617 Session-level selective cryptography No

CICS implementation of control operator verbs
CICS supports control operator verbs in a variety of ways.

Some verbs are supported by the CICS master terminal transaction CEMT. The
relevant CEMT commands are:

CEMT INQUIRE CONNECTION
CEMT SET CONNECTION
CEMT INQUIRE MODENAME
CEMT SET MODENAME

CEMT is normally entered by an operator at a display device. It is described in the
CICS/ESA CICS-Supplied Transactions manual.

The inquire and set operations for connections and modenames are also available
at the CICS API, using the following commands:

EXEC CICS INQUIRE CONNECTION
EXEC CICS SET CONNECTION
EXEC CICS INQUIRE MODENAME
EXEC CICS SET MODENAME

Programming information about these commands is given in the CICS/ESA System
Programming Reference manual.

Some control operator verbs are supported by CICS resource definition. The
definition of APPC links is described in “Defining APPC links” on page 128. Details
of the resource-definition syntax are given in the CICS/ESA Resource Definition
Guide.

With resource definition online, the CEDA transaction can be used to change some
CONNECTION and SESSION options while CICS is running. With macro-level
definition, the corresponding options are fixed for the duration of the CICS run.

Control operator verbs
The following tables show how APPC control operator verbs are implemented by
CICS. See “Return codes for control operator verbs” on page 312 for details of the
corresponding return-code mapping.

Note: Wherever CEMT is shown, the equivalent form of EXEC CICS command
can be used.

 Appendix B. CICS mapping to the APPC architecture 305

┌───┐

│ CHANGE_SESSION_LIMIT CEMT SET MODENAME │

├───────────────────────────────────┬───────────────────────────────────┤

│ LU_NAME(vble) │ CONNECTION() │

│ MODE_NAME(vble) │ MODENAME() │

│ LU_MODE_SESSION_LIMIT(vble) │ AVAILABLE() │

│ MIN_CONWINNERS_SOURCE(vble) │ CICS negotiates a revised value, │

│ │ based on the AVAILABLE request │

│ │ and the MAXIMUM value on the │

│ │ DEFINE SESSIONS for the group. │

│ MIN_CONWINNERS_TARGET(vble) │ Not supported │

│ RESPONSIBLE(SOURCE) │ Yes │

│ RESPONSIBLE(TARGET) │ Not supported. CICS does not │

│ │ support receipt of RESP(TARGET). │

│ RETURN_CODE │ Supported │

└───────────────────────────────────┴───────────────────────────────────┘

┌───┐

│ INITIALIZE_SESSION_LIMIT DEFINE SESSIONS │

│ (CICS resource definition) │

├───────────────────────────────────┬───────────────────────────────────┤

│ LU_NAME(vble) │ CONNECTION() │

│ MODE_NAME(vble) │ MODENAME() │

│ LU_MODE_SESSION_LIMIT(vble) │ MAXIMUM(value1,) │

│ MIN_CONWINNERS_SOURCE(vble) │ MAXIMUM(,value2) │

│ MIN_CONWINNERS_TARGET(vble) │ Not supported │

│ RETURN_CODE │ Supported │

└───────────────────────────────────┴───────────────────────────────────┘

┌───┐

│ PROCESS_SESSION_LIMIT Automatic action by CICS─supplied │

│ transaction CLS1 when CNOS is │

│ received by a target CICS system. │

├───────────────────────────────────┬───────────────────────────────────┤

│ RESOURCE(vble) │ Connection RDO │

│ LU_NAME(vble) │ Passed internally │

│ MODE_NAME(vble1,vble2) │ Passed internally │

│ RETURN_CODE │ Supported │

└───────────────────────────────────┴───────────────────────────────────┘

┌───┐

│ RESET_SESSION_LIMIT CEMT SET MODENAME │

│ (for individual modegroups) │

│ or CEMT SET CONNECTION RELEASED │

│ (to reset all modegroups) │

├───────────────────────────────────┬───────────────────────────────────┤

│ LU_NAME(vble) │ CONNECTION() │

│ MODE_NAME(ALL) │ SET CONNECTION() RELEASED │

│ MODE_NAME(ONE(vble)) │ MODENAME() AVAILABLE(S) │

│ MODE_NAME(ONE('SNASVCMG')) │ SET CONNECTION() RELEASED │

│ RESPONSIBLE(SOURCE) │ Yes │

│ RESPONSIBLE(TARGET) │ Not supported │

│ DRAIN_SOURCE(NO|YES) │ CICS supports YES │

│ DRAIN_TARGET(NO|YES) │ CICS supports YES │

│ FORCE(NO|YES) │ Not supported │

│ RETURN_CODE │ Supported │

└───────────────────────────────────┴───────────────────────────────────┘

306 CICS for MVS/ESA Intercommunication Guide

┌───┐

│ ACTIVATE_SESSION CEMT SET MODENAME ACQUIRED │

│ (for individual modegroups) │

│ or CEMT SET CONNECTION ACQUIRED │

│ (for SNASVCMG sessions) │

├───────────────────────────────────┬───────────────────────────────────┤

│ LU_NAME(vble) │ CONNECTION() │

│ MODE_NAME(vble) │ MODENAME() ACQUIRED │

│ MODE_NAME('SNASVCMG') │ Activated when │

│ │ CEMT SET CONNECTION ACQUIRED │

│ │ is issued │

│ RETURN_CODE │ Supported │

└───────────────────────────────────┴───────────────────────────────────┘

┌───┐

│ DEACTIVATE_CONVERSATION_GROUP Not supported │

└───┘

┌───┐

│ DEACTIVATE_SESSION Not supported │

└───┘

┌───┐

│ DEFINE_LOCAL_LU DEFINE SESSIONS │

│ + DFHSIT macro │

│ (CICS resource definition) │

├───────────────────────────────────┬───────────────────────────────────┤

│ FULLY_QUALIFIED_LU_NAME(vble) │ Cannot be specified; CICS uses the│

│ │ network LU name (APPLID on DFHSIT)│

│ LU_SESSION_LIMIT(NONE) │ Not supported │

│ LU_SESSION_LIMIT(VALUE(vble)) │ Total of MAX(nn) on all sessions │

| │ SECURITY(ADD USER_ID(vble)) │ In an external security manager │

│ SECURITY(ADD PASSWORD(vble)) │ Not supported; defined in an ESM │

│ SECURITY(ADD PROFILE(vble)) │ Not supported; defined in an ESM │

│ SECURITY(DELETE USER_ID(vble)) │ Supported by redefining DFHSNT |

│ │ or in an ESM │

│ SECURITY(DELETE PASSWORD(vble)) │ Not supported; defined in an ESM │

│ MAP_NAME(ADD(vble)) │ Not supported │

│ MAP_NAME(DELETE(vble)) │ Not supported │

│ BIND_RSP_QUEUE_CAPACITY(YES|NO) │ Not supported │

└───────────────────────────────────┴───────────────────────────────────┘

 Appendix B. CICS mapping to the APPC architecture 307

┌───┐

│ DEFINE_MODE EXEC CICS CONNECT PROCESS │

│ + MODEENT macro │

│ (ACF/VTAM systems definition) │

│ + DEFINE SESSIONS │

│ (CICS resource definition) │

├───────────────────────────────────┬───────────────────────────────────┤

│ FULLY_QUALIFIED_LU_NAME (vble) │ Cannot be specified. LU identified│

│ │ via CONNECTION on SESSIONS │

│ MODE_NAME (vble) │ MODENAME on SESSIONS is mapped │

│ │ to LOGMODE on MODEENT │

│ SEND_MAX_RU_SIZE │ │

│ _LOWER_BOUND (vble) │ Fixed at 8 │

│ SEND_MAX_RU_SIZE │ │

│ _UPPER_BOUND (vble) │ SENDSIZE on SESSIONS │

│ PREFERRED_RECEIVE_RU_SIZE (vble) │ Not supported │

│ PREFERRED_SEND_RU_SIZE (vble) │ Not supported │

│ RECEIVE_MAX_RU │ │

│ _SIZE_LOWER_BOUND (vble) │ Fixed at 256 │

│ RECEIVE_MAX_RU │ │

│ _SIZE_UPPER_BOUND (vble) │ RECEIVESIZE on SESSIONS │

│ SINGLE_SESSION_REINITIATION │ │

│ OPERATOR │ Not supported │

│ SINGLE_SESSION_REINITIATION PLU │ Not supported │

│ SINGLE_SESSION_REINITIATION SLU │ Not supported │

│ SINGLE_SESSION_REINITIATION │ │

│ PLU_OR_SLU │ Not supported │

│ SESSION_LEVEL_CRYPTOGRAPHY │ │

│ (NOT_SUPPORTED)│ Default │

│ SESSION_LEVEL_CRYPTOGRAPHY │ │

│ (MANDATORY) │ Not supported │

│ SESSION_LEVEL_CRYPTOGRAPHY │ │

│ (SELECTIVE) │ Not supported │

│ CONWINNER_AUTO_ACTIVATE_LIMIT │ │

│ (vble) │ MAXIMUM(,value2) on SESSIONS │

│ SESSION_DEACTIVATED_TP_NAME(vble) │ Not supported │

│ LOCAL_MAX_SESSION_LIMIT(vble) │ MAXIMUM(nn,) on SESSIONS │

└───────────────────────────────────┴───────────────────────────────────┘

┌───┐

│ DEFINE_REMOTE_LU DEFINE CONNECTION │

│ (CICS resource definition) │

├───────────────────────────────────┬───────────────────────────────────┤

│ FULLY_QUALIFIED_LU_NAME(vble) │ Cannot be specified │

│ LOCALLY_KNOWN_LU_NAME(NONE) │ Not supported │

│ LOCALLY_KNOWN_LU_NAME(NAME(vble)) │ CONNECTION(name) │

│ UNINTERPRETED_LU_NAME(NONE) │ Defaults to CONNECTION(name) │

│ UNINTERPRETED_LU_NAME(NAME(vble)) │ NETNAME on CONNECTION │

│ INITIATE_TYPE(INITIATE_ONLY) │ Not supported │

│ INITIATE_TYPE(INITIATE_OR_QUEUE) │ Not supported │

│ PARALLEL_SESSION_SUPPORT (YES|NO) │ SINGLESESS(NO|YES) on CONNECTION │

│ CNOS_SUPPORT (YES|NO) │ Always YES │

│ LU_LU_PASSWORD(NONE) │ Default on CONNECTION │

│ LU_LU_PASSWORD(VALUE(vble)) │ BINDPASSWORD on CONNECTION or │

│ │ SESSKEY in RACF APPCLU profile │

│ SECURITY_ACCEPTANCE(NONE) │ ATTACHSEC(LOCAL) │

│ SECURITY_ACCEPTANCE(CONVERSATION) │ ATTACHSEC(VERIFY) │

│ SECURITY_ACCEPTANCE │ │

│ (ALREADY_VERIFIED) │ ATTACHSEC(IDENTIFY) or │

| │ │ ATTACHSEC(PERSISTENT) │

└───────────────────────────────────┴───────────────────────────────────┘

308 CICS for MVS/ESA Intercommunication Guide

┌───┐

│ DEFINE_TP DEFINE TRANSACTION │

│ (CICS resource definition) │

├───────────────────────────────────┬───────────────────────────────────┤

│ TP_NAME (vble) │ TRANSACTION(name) │

│ STATUS(ENABLED) │ STATUS(ENABLED) │

│ STATUS(TEMP_DISABLED) │ Not supported │

│ STATUS(PERM_DISABLED) │ STATUS(DISABLED) │

│ CONVERSATION_TYPE (MAPPED|BASIC) │ Supported for all TPs (determined │

│ │ by choice of command) │

│ SYNC_LEVEL (NONE|CONFIRM|SYNCPT) │ SYNCPT for all TPs (actual level │

│ │ specified on CONNECT PROCESS) │

│ SECURITY_REQUIRED(NONE) │ Not supported; defined in an ESM │

│ SECURITY_REQUIRED(CONVERSATION) │ Not supported; defined in an ESM │

│ SECURITY_REQUIRED(ACCESS(PROFILE))│ Not supported │

│ SECURITY_REQUIRED(ACCESS(USER_ID))│ Not supported; defined in an ESM │

│ SECURITY_REQUIRED │ │

│ (ACCESS(USER_ID_PROFILE))│ Not supported │

│ SECURITY_ACCESS │ │

│ (ADD(USER_ID(vble))) │ Transaction can be redefined │

│ SECURITY_ACCESS │ │

│ (ADD(PROFILE(vble))) │ Transaction can be redefined │

│ SECURITY_ACCESS │ │

│ (DELETE(USER_ID(vble))) │ Transaction can be redefined │

│ SECURITY_ACCESS │ │

│ (DELETE(PROFILE(vble))) │ Transaction can be redefined │

│ PIP(NO) │ Specified for all TPs │

│ PIP(YES(vble)) │ Specified on CONNECT PROCESS │

│ PIP(NO_LU_VERIFICATION) │ Default for all PIP data │

│ DATA_MAPPING (NO|YES) │ DATA_MAPPING (NO) for all TPs │

│ FMH_DATA (NO|YES) │ FMH_DATA (YES) for all TPs │

│ PRIVILEGE(NONE) │ Not supported │

│ PRIVILEGE(CNOS) │ Not supported │

│ PRIVILEGE(SESSION_CONTROL) │ Not supported │

│ PRIVILEGE(DEFINE) │ Not supported │

│ PRIVILEGE(DISPLAY) │ Not supported │

│ PRIVILEGE(ALLOCATE_SERVICE_TP) │ Not supported │

│ INSTANCE_LIMIT(vble) │ Not supported │

│ RETURN_CODE │ Supported │

└───────────────────────────────────┴───────────────────────────────────┘

┌───────────────────────────────────┬───────────────────────────────────┐

│ DELETE │ EXEC CICS DISCARD │

├───────────────────────────────────┼───────────────────────────────────┤

│ LOCAL_LU_NAME │ Not supported │

│ REMOTE_LU_NAME │ Not supported │

│ MODE_NAME │ Not supported │

│ TP_NAME │ DISCARD TRANSACTION() │

│ RETURN_CODE │ Supported │

└───────────────────────────────────┴───────────────────────────────────┘

 Appendix B. CICS mapping to the APPC architecture 309

┌───┐

│ DISPLAY_LOCAL_LU CEMT INQUIRE CONNECTION │

│ + CEMT INQUIRE MODENAME │

│ + CEMT INQUIRE TRANSACTION │

├───────────────────────────────────┬───────────────────────────────────┤

│ │ │

│ FULLY_QUALIFIED_LU_NAME (vble) │ Cannot be specified in CICS. │

│ │ The APPLID on DFHSIT serves as │

│ │ identifier for the local LU. │

│ │ Specific information can be had │

│ │ by identifying the remote LU. │

│ │ Otherwise, the universal id ? │

│ │ can be used. │

├───────────────────────────────────┼───────────────────────────────────┤

│ LU_SESSION_LIMIT (vble) │ MAXIMUM on INQ MODENAME │

│ LU_SESSION_COUNT (vble) │ ACTIVE on INQ MODENAME │

│ SECURITY (vble) │ Not available │

│ MAP_NAMES (vble) │ Not supported │

│ REMOTE_LU_NAMES (vble) │ INQ CONNECTION(?) │

│ TP_NAMES (vble) │ INQ TRANSACTION(?) │

│ BIND_RSP_QUEUE_CAPABILITY (vble) │ Not supported │

│ RETURN_CODE │ Supported │

└───────────────────────────────────┴───────────────────────────────────┘

┌───┐

│ DISPLAY_REMOTE_LU CEMT INQUIRE CONNECTION │

│ + CEMT INQUIRE MODENAME │

├───────────────────────────────────┬───────────────────────────────────┤

│ FULLY_QUALIFIED_LU_NAME (vble) │ Cannot be specified; CONNECTION │

│ │ or MODENAME may be used. │

├───────────────────────────────────┼───────────────────────────────────┤

│ LOCALLY_KNOWN_LU_NAME (vble) │ This is CONNECTION name │

│ UNINTERPRETED_LU_NAME (vble) │ NETNAME on INQ CONNECTION │

│ INITIATE_TYPE (vble) │ Not supported │

│ PARALLEL_SESSION_SUPPORT (vble) │ SINGLESESS(Y|N) on CEDA VIEW │

│ CNOS_SUPPORT (vble) │ Always YES │

│ SECURITY_ACCEPTANCE_LOCAL_LU │ │

│ (vble) │ Not available │

│ SECURITY_ACCEPTANCE_REMOTE_LU │ │

│ (vble) │ Not available │

│ MODE_NAMES (vble) │ CEDA VIEW SESSIONS with locally │

│ │ known LU name │

│ RETURN_CODE │ Supported │

└───────────────────────────────────┴───────────────────────────────────┘

310 CICS for MVS/ESA Intercommunication Guide

┌───┐

│ DISPLAY_MODE CEMT INQUIRE MODENAME │

│ + CEMT INQUIRE TERMINAL │

├───────────────────────────────────┬───────────────────────────────────┤

│ FULLY_QUALIFIED_LU_NAME (vble) │ Cannot be specified. │

│ MODE_NAME (vble) │ MODENAME │

├───────────────────────────────────┼───────────────────────────────────┤

│ LOCAL_MAX_SESSION_LIMIT (vble) │ AVA on CEMT INQ MODENAME │

│ CONVERSATION_GROUP_IDS (vble) │ Not supported │

│ SEND_MAX_RU_SIZE_LOWER_BOUND │ │

│ (vble) │ Fixed at 8 │

│ SEND_MAX_RU_SIZE_UPPER_BOUND │ │

│ (vble) │ Not available │

│ RECEIVE_MAX_RU_SIZE_LOWER_BOUND │ │

│ (vble) │ Fixed at 256 │

│ RECEIVE_MAX_RU_SIZE_UPPER_BOUND │ │

│ (vble) │ Not available │

│ PREFERRED_SEND_RU_SIZE (vble) │ Not supported │

│ PREFERRED_RECEIVE_RU_SIZE (vble) │ Not supported │

│ SINGLE_SESSION_REINITIATION (vble)│ Not supported │

│ SESSION_LEVEL_CRYPTOGRAPHY (vble) │ Not available │

│ SESSION_DEACTIVATED_TP_NAME │ Not supported │

│ CONWINNER_AUTO_ACTIVATE_LIMIT │ │

│ (vble) │ Not available │

│ LU_MODE_SESSION_LIMIT (vble) │ MAXIMUM on INQ MODENAME │

│ MIN_CONWINNERS (vble) │ Not supported │

│ MIN_CONLOSERS (vble) │ Not supported │

│ TERMINATION_COUNT (vble) │ Not supported │

│ DRAIN_LOCAL_LU (vble) │ Not supported │

│ DRAIN_REMOTE_LU (vble) │ Not supported │

│ LU_MODE_SESSION_COUNT (vble) │ ACTIVE on INQ MODENAME │

│ CONWINNERS_SESSION_COUNT (vble) │ Not available │

│ CONLOSERS_SESSION_COUNT (vble) │ Not available │

│ SESSION_IDS (vble) │ INQ TERMINAL(?) │

│ RETURN_CODE │ Supported │

└───────────────────────────────────┴───────────────────────────────────┘

┌───┐

│ DISPLAY_TP CEMT INQUIRE TRANSACTION │

├───────────────────────────────────┬───────────────────────────────────┤

│ TP_NAME (vble) │ TRANSACTION(tranid) │

├───────────────────────────────────┼───────────────────────────────────┤

│ STATUS (vble) │ ENABLED/DISABLED │

│ CONVERSATION_TYPE (vble) │ CICS TPs allow both types │

│ SYNC_LEVEL (vble) │ CICS TPs allow all sync levels │

│ SECURITY_REQUIRED (vble) │ Not available │

│ SECURITY_ACCESS (vble) │ Not available │

│ PIP (vble) │ CICS TPs allow PIP YES and NO │

│ DATA_MAPPING (vble) │ Always NO │

│ FMH_DATA (vble) │ Always YES │

│ PRIVILEGE (vble) │ Not supported │

│ INSTANCE_LIMIT (vble) │ Not supported │

│ INSTANCE_COUNT (vble) │ CEMT INQ TRAN() │

│ RETURN_CODE │ Supported │

└───────────────────────────────────┴───────────────────────────────────┘

 Appendix B. CICS mapping to the APPC architecture 311

Return codes for control operator verbs
The CEMT INQUIRE and SET CONNECTION or MODENAME, and the equivalent
EXEC CICS commands, cause CICS to start up the LU services manager
asynchronously.

Some of the errors that may occur are detected by CEMT, or the CICS API, and
are passed back immediately. Other errors are not detected until a later time,
when the LU services manager transaction (CLS1) actually runs.

If CLS1 detects errors, it causes messages to be written to the CSMT log, as
shown in Figure 83 on page 313. In normal operation, the CICS master terminal
operator may not wish to inspect the CSMT log when a command has been issued.
So in general, the operator, after issuing a command to change parameters (for
example, SET MODENAME() ...) should wait for a few seconds for the request to
be carried out and then reissue the INQUIRE version of the command to check that
the requested change has been made. In the few cases when an error actually
occurs, the master terminal control operator can refer to the CSMT log.

If CEMT is driven from the menu panel, it is very simple to perform the above
sequence of operations.

The message used to report the results of CLS1 execution is DFHZC4900. The
explanatory text that accompanies the message varies and is summarized in
Figure 83 on page 313. Refer to the CICS/ESA Messages and Codes manual for
a full description of the message. In certain cases, DFHZC4901 is also issued to
give further information.

312 CICS for MVS/ESA Intercommunication Guide

┌─────────────────────────┬───┐

│ APPC RETURN_CODE │ CICS message |

├─────────────────────────┼───┤

│ OK │ DFHZC49SS result = SUCCESSFUL │

├─────────────────────────┼───┤

│ ACTIVATION_FAILURE_RETRY│ DFHZC49SS result = VALUES AMENDED │

│ │ + DFHZC49S1 MAX = S │

├─────────────────────────┼───┤

│ ACTIVATION_FAILURE │ DFHZC49SS result = VALUES AMENDED │

│ _NO_RETRY│ + DFHZC49S1 MAX = S │

├─────────────────────────┼───┤

│ ALLOCATION_ERROR │ Checked by CEMT. If allocation fails, │

│ │ SYSTEM NOT ACQUIRED is returned to │

│ │ the operator. │

├─────────────────────────┼───┤

│ COMMAND_RACE_REJECT │ DFHZC49SS result = RACE DETECTED │

├─────────────────────────┼───┤

│ LU_MODE_SESSION_LIMIT │ DFHZC49SS result = VALUES AMENDED │

│ _CLOSED│ + DFHZC49S1 MAX = S │

├─────────────────────────┼───┤

│ LU_MODE_SESSION_LIMIT │ DFHZC49SS result = VALUES AMENDED │

│ _EXCEEDED│ + DFHZC49S1 MAX = (negotiated value) │

├─────────────────────────┼───┤

│ LU_MODE_SESSION_LIMIT │ DFHZC49SS result = VALUES AMENDED │

│ _NOT_ZERO│ + DFHZC49S1 MAX = (negotiated value) │

├─────────────────────────┼───┤

│ LU_MODE_SESSION_LIMIT │ DFHZC49SS result = VALUES AMENDED │

│ _ZERO│ + DFHZC49S1 MAX = S │

├─────────────────────────┼───┤

│ LU_SESSION_LIMIT │ DFHZC49SS result = VALUES AMENDED │

│ _EXCEEDED│ + DFHZC49S1 MAX = (negotiated value) │

├─────────────────────────┼───┤

│ PARAMETER_ERROR │ Checked by CEMT │

├─────────────────────────┼───┤

│ REQUEST_EXCEEDS_MAX │ │

│ _MAX_ALLOWED│ Checked by CEMT │

├─────────────────────────┼───┤

│ RESOURCE_FAILURE_NO │ The LU services manager transaction │

│ _RETRY│ (CLS1) abends with abend code ATNI. │

├─────────────────────────┼───┤

│ UNRECOGNIZED_MODE_NAME │ DFHZC49SS result=MODENAME NOT RECOGNIZED │

└─────────────────────────┴───┘

Figure 83. Messages triggered by CLS1

 Appendix B. CICS mapping to the APPC architecture 313

CICS deviations from APPC architecture
This section describes the way in which the CICS implementation of APPC differs
from the architecture described in the Format and Protocol Reference Manual:
Architecture Logic for LU Type 6.2.

There is one deviation:

CICS implementation: CICS checks incoming BIND requests for valid
combinations of the CNOS indicator (BIND RQ byte 24 bit 6) and the
PARALLEL-SESSIONS indicator (BIND RQ byte 24 bit 7). If an incorrect
combination is found (that is, PARALLEL-SESSIONS specified but CNOS not
specified), CICS sends a negative response to the BIND request.

APPC architecture: The secondary logical unit (SLU), or BIND request
receiver, should negotiate the CNOS and PARALLEL-SESSIONS indicators to
the supported level and return them in the BIND response. The SLU should
not check for an incorrect combination of these indicators.

APPC transaction routing deviations from APPC architecture
This single deviation applies only to APPC transaction routing:

� A transaction program cannot use ISSUE SIGNAL while in syncfree, syncsend,
or syncreceive state. Attempting to do so may result in a state check.

314 CICS for MVS/ESA Intercommunication Guide

 Glossary

This glossary contains definitions of those terms and
abbreviations that relate specifically to the contents of
this book. It also contains terms and definitions from
the IBM Dictionary of Computing, published by
McGraw-Hill.

If you do not find the term you are looking for, refer to
the Index or to the IBM Dictionary of Computing.

A
ACB. Access method control block (VTAM).

ACF/NCP/VS. Advanced Communication
Facilities/Network Control Program/Virtual Storage.

ACF/VTAM. Advanced Communication
Facilities/Virtual Telecommunications Access Method
(ACF/VTAM). A set of programs that control
communication between terminals and application
programs running under VSE, OS/VS1, and MVS.

Advanced Program-to-Program Communication
(APPC). The general term chosen for the LUTYPE6.2
protocol under Systems Network Architecture (SNA).

alternate facility. An IRC or SNA session that is
obtained by a transaction by means of an ALLOCATE
command. Contrast with principal facility.

AOR. Application-owning region.

APPC. Advanced Program-to-Program
Communication.

+ asynchronous processing. (1) A series of operations
+ done separately from the task that requested them. For
+ example, a print job requested by a transaction. (2) In
+ CICS, an intercommunication function that allows a
+ transaction executing on one CICS system to start a
+ transaction on another system. The two transactions
+ execute independently of each other. Compare with
+ distributed transaction processing.

+ ATI. Automatic transaction initiation.

attach header. In SNA, a function management
header that causes a remote process or transaction to
be attached.

+ Automatic transaction initiation. The process
+ whereby a transaction request made internally within a
+ CICS system leads to the scheduling of the transaction.

B
back-end transaction. In synchronous
transaction-to-transaction communication, a transaction
that is started by a front-end transaction.

backout. See dynamic transaction backout.

bind. In SNA products, a request to activate a session
between two logical units.

C
central processing complex (CPC). A single physical
processing system, such as the whole of an ES/9000
9021 Model 820, or one physical partition of such a
machine. A physical processing system consists of
main storage, and one or more central processing units
(CPUs), time-of-day (TOD) clocks, and channels, which
are in a single configuration. A CPC also includes
channel subsystems, service processors, and expanded
storage, where installed.

CICSplex. (1) A CICS complex. A CICSplex consists
of two or more regions that are linked using CICS
intercommunication facilities. The links can be either
intersystem communication (ISC) or multiregion
operation (MRO) links, but within a CICSplex are more
usually MRO. Typically, a CICSplex has at least one
terminal-owning region (TOR), more than one
application-owning region (AOR), and may have one or
more regions that own the resources that are accessed
by the AORs. (2) The largest set of CICS regions or
systems to be manipulated by a single CICSPlex SM
entity.

CICSPlex System Manager (CICSPlex SM). An IBM
CICS system-management product that provides a
single-system image and a single point of control for
one or more CICSplexes.

compute-bound. The property of a transaction
whereby the elapsed time for its execution is governed
by its computational content rather than by its need to
perform input/output.

conversation. A sequence of exchanges between
transactions over a session, delimited by SNA brackets.

cross-system coupling facility (XCF). The MVS/ESA
cross-system coupling facility provides the services that
are needed to join multiple MVS images into a sysplex.
XCF services allow authorized programs in a
multisystem environment to communicate (send and
receive data) with programs in the same, or another,

 Copyright IBM Corp. 1977, 1997 315

MVS image. Multisystem applications can use the
services of XCF, including MVS components and
application subsystems (such as CICS), to
communicate across a sysplex. See the MVS/ESA
Setting Up a Sysplex manual, GC28-1449, for more
information about the use of XCF in a sysplex.

D
daisy-chain. In CICS intercommunication, the chain of
sessions that results when a system requests a
resource in a remote system, but the remote system
discovers that the resource is in a third system and has
itself to make a remote request.

data integrity. The quality of data that exists as long
as accidental or malicious destruction, alteration. or loss
of data are prevented.

Data Language/I (DL1). An IBM database
management facility.

data link protocol. A set of rules for data
communication over a data link in terms of a
transmission code, a transmission mode, and control
and recovery procedures.

data security. Prevention of access to or use of
stored information without authorization.

DB/DC. Database/data communication.

destination control table. A table describing each of
the transient data destinations used in the system, or in
connected CICS systems.

distributed program link (DPL). A facility that allows
a CICS client program to call a server program running
in a remote CICS region, and to pass and receive data
using a communications area.

distributed transaction processing (DTP). The
distribution of processing between transactions that
communicate synchronously with one another over
intersystem or interregion links. Compare with
asynchronous processing.

domain-remote. A term used in previous releases of
CICS to refer to a system in another ACF/VTAM
domain. If this term is encountered in the CICS library,
it can be taken to refer to any system that is accessed
via SNA LU6.1 or LU6.2 links, as opposed to CICS
interregion communication.

DPL. Distributed program link.

DTP. Distributed transaction processing.

dynamic transaction backout. The process of
canceling changes made to stored data by a transaction
following the failure of that transaction for whatever
reason.

E
EDF. Execution (command-level) diagnostic facility for
testing command-level programs interactively at a
terminal.

EIB. EXEC interface block.

EXCI. External CICS interface.

Extended Recovery Facility (XRF). XRF is a related
set of programs that allow an installation to achieve a
higher level of availability to end users. Availability is
improved by having a pair of CICS systems: an active
system and a partially initialized alternate system. The
alternate system stands by to continue processing if
failures occur on the active system.

External CICS interface (EXCI). An application
programming interface (API) that enables an MVS client
program (running outside the CICS address space) to
call a program running in a CICS/ESA 4.1 system, and
to pass and receive data using a communications area.
The CICS program is invoked as if linked-to by another
CICS program via a DPL request.

F
file control table (FCT). A table containing the
characteristics of the files accessed by file control.

FMH. Function management header.

front-end transaction. In synchronous
transaction-to-transaction communication, the
transaction that acquires the session to a remote
system and initiates a transaction on that system.
Contrast with back-end transaction.

function management header (FMH). In SNA, one or
more headers optionally present in the leading request
unit (RU) of an RU chain. It allows one session partner
in a LU-LU session to send function management
information to the other.

function shipping. The process, transparent to the
application program, by which CICS accesses
resources when those resources are actually held on
another CICS system.

316 CICS for MVS/ESA Intercommunication Guide

G
generalized data stream (GDS). The SNA-defined
data stream format used for conversations on APPC
sessions.

H
host computer. The primary or controlling computer in
a data communication system.

I
IMS/VS. Information Management System/Virtual
Storage.

inquiry. A request for information from storage.

installation. A particular computing system, in terms
of the work it does and the people who manage it,
operate it, apply it to problems, service it, and use the
work it produces.

intercommunication facilities. A generic term
covering intersystem communication (ISC) and
multiregion operation (MRO).

interregion communication (IRC). The method by
which CICS implements multiregion operation (MRO).

intersystem communication (ISC). Communication
between separate systems by means of SNA
networking facilities or by means of the
application-to-application facilities of VTAM.

interval control. The CICS element that provides
time-dependent facilities.

intrapartition destination. A queue of transient data
used subsequently as input data to another task within
the CICS partition or region.

IRC. Interregion communication.

ISC. Intersystem communication.

L
local resource. In CICS intercommunication, a
resource that is owned by the local system.

local system. In CICS intercommunication, the CICS
system from whose point of view intercommunication is
being discussed.

logical unit (LU). A port through which a user gains
access to the services of a network.

logical unit of work (LUW). A unit of work that can be
regarded as a logically-related sequence of actions for
the purposes of CICS error recovery mechanisms.

LU. Logical unit.

LUW. Logical unit of work.

LU-LU session. A session between two logical units in
an SNA network.

M
macro. In CICS, an instruction similar in format to an
assembler language instruction.

message performance option. The improvement of
ISC performance by eliminating syncpoint coordination
between the connected systems.

message switching. A telecommunication application
in which a message received by a central system from
one terminal is sent to one or more other terminals.

mirror transaction. A transaction initiated in a CICS
system in response to a function shipping request from
another CICS system. The mirror transaction recreates
the original request and the request is issued. The
mirror transaction returns the acquired data to the
originating CICS system.

MRO. Multiregion operation.

multiprogramming. Concurrent execution of
application programs across partitions.

multiregion operation (MRO). Communication
between CICS systems without the use of SNA
networking facilities. The systems must be in the same
operating system; or, if the XCF access method is used,
in the same MVS sysplex.

multitasking. Concurrent execution of application
programs within a CICS partition or region.

multithreading. Use, by several transactions, of a
single copy of an application program.

MVS. Multiple Virtual Storage. An alternative name for
OS/VS2 Release 3, or MVS/ESA.

MVS image. A single occurrence of the MVS/ESA
operating system that has the ability to process a
workload. One MVS image can occupy the whole of a
CPC, or one physical partition of a CPC, or one logical
partition of a CPC that is operating in PR/SM mode.

MVS sysplex. See sysplex.

 Glossary 317

N
national language support (NLS). A CICS feature
that enables the user to communicate with the system
in the national language chosen by the user.

network. A configuration connecting two or more
terminal installations.

network configuration. In SNA, the group of links,
nodes, machine features, devices, and programs that
make up a data processing system, a network, or a
communication system.

NLS. National language support.

nonswitched connection. A connection that does not
have to be established by dialing.

O
Operating System/Virtual Storage (OS/VS). A
compatible extension of the IBM System/360 Operating
System that supports relocation hardware and the
extended control facilities of System/360.

P
partition. A fixed-size subdivision of main storage,
allocated to a system task.

pipe. A one-way communication path between a
sending process and a receiving process. In the
external CICS interface (EXCI), each pipe maps on to
one MRO session, where the client program represents
the sending process and the CICS server region
represents the receiving process.

principal facility. The terminal or logical unit that is
connected to a transaction at its initiation. Contrast with
alternate facility.

processor. Host processing unit.

program isolation. Ensuring that only one task at a
time can update a particular physical segment of a DL/I
database.

pseudoconversational. CICS transactions designed
to appear to the operator as a continuous conversation
occurring as part of a single transaction.

queue. A line or list formed by items in a system
waiting for service; for example, tasks to be performed
or messages to be transmitted in a message-switching
system.

R
RACF. The Resource Access Control Facility program
product. An external security management facility.

region. A section of the dynamic area that is allocated
to a job step or system task. In this manual, the term is
used to cover partitions and address spaces in addition
to regions.

region-remote. A term used in previous releases of
CICS to refer to a CICS system in another region of the
same processor. If this term is encountered in the
CICS library, it can be taken to refer to a system that is
accessed via an IRC (MRO) link, as opposed to an
SNA LU6.1 or LU6.2 link.

remote resource. In CICS intercommunication, a
resource that is owned by a remote system.

remote system. In CICS intercommunication, a
system that the local CICS system accesses via
intersystem communication or multiregion operation.

resource. Any facility of the computing system or
operating system required by a job or task, and
including main storage, input/output devices, the
processing unit, data sets, and control or processing
programs.

rollback. A programmed return to a prior checkpoint.
In CICS, the cancelation by an application program of
the changes it has made to all recoverable resources
during the current logical unit of work.

routing transaction. A CICS-supplied transaction
(CRTE) that enables an operator at a terminal owned
by one CICS system to sign onto another CICS system
connected by means of an IRC or APPC link.

RU. Request unit.

S
SAA. Systems Application Architecture.

SCS. SNA character stream.

SDLC. Synchronous data link control.

security. Prevention of access to or use of data or
programs without authorization.

session. In CICS intersystem communication, an SNA
LU-LU session.

shippable terminal. A terminal whose definition can
be shipped to another CICS system as and when the

318 CICS for MVS/ESA Intercommunication Guide

other system requires a remote definition of that
terminal.

SIT. System initialization table.

SNA. Systems Network Architecture.

startup job stream. A set of job control statements
used to initialize CICS.

subsystem. A secondary or subordinate system.

surrogate TCTTE. In transaction routing, a TCTTE in
the transaction-owning region that is used to represent
the terminal that invoked or was acquired by the
transaction.

switched connection. A connection that is
established by dialing.

synchronization level. The level of synchronization
(0, 1, or 2) established for an APPC session.

syncpoint. Synchronization point. An intermediate
point in an application program at which updates or
modifications are logically complete.

sysplex. A systems complex, consisting of multiple
MVS images coupled together by hardware elements
and software services. When multiple MVS images are
coupled using XCF, which provides the services to form
a sysplex, they can be viewed as a single entity.

system. In CICS, an assembly of hardware and
software capable of providing the facilities of CICS for a
particular installation.

system generation. The process of creating a
particular system tailored to the requirements of a data
processing installation.

system initialization table (SIT). A table containing
user-specified data that will control a system
initialization process.

Systems Application Architecture (SAA). A set of
common standards and procedures for working with
IBM systems and data. SAA enables different software,
hardware, and network environments to coexist. It
provides bases for designing and developing application
programs that are consistent across different systems.

Systems Network Architecture (SNA). The
description of the logical structure, formats, protocols,
and operational sequences for transmitting information
units through, and controlling the configuration and
operation of, networks. The structure of SNA allows the
end users to be independent of, and unaffected by, the
specific facilities used for information exchange.

T
task. (1) A unit of work for the processor; therefore the
basic multiprogramming unit under the control program.
(CICS runs as a task under VSE, OS/VS, MVS, or
MVS/ESA.) (2) Under CICS, the execution of a
transaction for a particular user. Contrast with
transaction.

task control. The CICS element that controls all CICS
tasks.

TCAM. Telecommunications Access Method.

TCT. Terminal control table.

TCTTE. Terminal control table: terminal entry.

temporary-storage control. The CICS element that
provides temporary data storage facilities.

temporary-storage table (TST). A table describing
temporary-storage queues and queue prefixes for which
CICS is to provide recovery.

terminal. In CICS, a device equipped with a keyboard
and some kind of display, capable of sending and
receiving information over a communication channel.

terminal control. The CICS element that controls all
CICS terminal activity.

terminal control table (TCT). A table describing a
configuration of terminals, logical units, or other CICS
systems in a CICS network with which the CICS system
can communicate.

terminal operator. The user of a terminal.

terminal paging. A set of commands for retrieving
“pages” of an oversize output message in any order.

TIOA. Terminal input/output area.

TOR. Terminal-owning region.

transaction. A transaction can be regarded as a unit
of processing (consisting of one or more application
programs) initiated by a single request, often from a
terminal. A transaction may require the initiation of one
or more tasks for its execution. Contrast with task.

transaction backout. The cancelation, as a result of a
transaction failure, of all updates performed by a task.

transaction identifier. Synonym for transaction name.
For example, a group of up to four characters entered
by an operator when selecting a transaction.

transaction restart. The restart of a task after a
transaction backout.

 Glossary 319

+ transaction routing. A CICS intercommunication
+ facility that allows terminals or logical units connected to
+ one CICS system to initiate and to communicate with
+ transactions in another CICS system. Transaction
+ routing is not possible over LU6.1 links.

transient data control. The CICS element that
controls sequential data files and intrapartition data.

TST. Temporary-storage table.

unit-of-recovery descriptor (URD). A CICS control
block that describes the progress of a unit of work
through the sequence of syncpoint messages. It is
recovered at CICS restart.

V
VSE. Virtual Storage Extended.

VTAM. See ACF/VTAM.

X
XCF. Cross-system coupling facility.

XRF. Extended Recovery Facility.

320 CICS for MVS/ESA Intercommunication Guide

 Index

A
ACF/VTAM

See VTAM
acquired, connection status 154, 155
advanced peer-to-peer networking (APPN) 109
advanced program-to-program communication (APPC)

See APPC
AID (automatic initiate descriptor) 71
ALLOCATE command

LUTYPE6.1 sessions (CICS-to-IMS) 235
making APPC sessions available for 156
setting LUTYPE6.1 connection in-service after

SYSIDERR 300
ALLOCATE_PIPE command

external CICS interface 214
alternate facility

default profile 192
defined 203

AOR (application-owning region) 67
APPC

autoinstall
of parallel-session links 132
of single-session terminals 133

basic conversations 21
class of service 22
definition of 315
link definition 128
link definition for terminals 133
LU services manager 22, 128
mapped conversations 21
mapping to APPC architecture 303
master terminal operations 153
modeset definition 130
overview 21
parallel-sessions

autoinstall 132
defining persistent sessions 136

persistent sessions 136, 279, 286, 293
single-sessions

autoinstall 132, 133
defining persistent sessions 137
definition 133
limitations 22

synchronization levels 22
APPC terminals

API for 78
as alternate facility 79
autoinstall 132
effect of AUTOCONNECT option on

TYPETERM 136
link definition for 133

APPC terminals (continued)
persistent sessions 137
remote definition of 174
shipping terminal definition of 175
transaction routing

with ALLOCATE 68, 78, 79
use of CEMT commands with 134

application programming
CICS mapping to APPC verbs 303
CICS-to-IMS 227
DCE remote procedure calls 219
for asynchronous processing 221
for DPL 209
for function shipping 205
for the external CICS interface 213
for transaction routing 223
LUTYPE6.1 conversations (CICS-to-IMS) 227
overview 203

application-owning region (AOR) 67
APPLID

and IMS LOGMODE entry 102
generic

confusion with generic resource name 163
generic, for XRF 163
of local CICS 120
passing with START command 58
relation to sysidnt 120
specific, for XRF 163

APPN (advanced peer-to-peer networking) 109
architected processes

modifying the default definitions 195
process names 194
resource definition 194

architected processes (models) 194
ASSIGN command in AOR 225
asynchronous processing

application programming 221
canceling remote transactions 57
CICS-to-IMS 229
compared with synchronous processing (DTP) 55
defining remote transactions 171
examples 63
information passed with START command 57
information retrieval 61
initiated by DTP 56
local queuing 60
NOCHECK option 58
performance improvement 58
PROTECT option 59
queuing due to 60
RETRIEVE command 61
SEND and RECEIVE interface 56

CICS-to-IMS applications 234

 Copyright IBM Corp. 1977, 1997 321

asynchronous processing (continued)
START and RETRIEVE interface 56, 57

CICS-to-IMS applications 229
starting remote transactions 57
system programming considerations 62
terminal acquisition 62
typical application 55

ATI
See automatic transaction initiation

attach header
definition of 315

attaching remote transactions
LUTYPE6.1 sessions (CICS-to-IMS) 237

AUTOCONNECT option
APPC resource definitions 134
effect on CEMT commands for APPC 155
on DEFINE CONNECTION

for APPC 134
for LUTYPE6.1 139

on DEFINE SESSIONS
for APPC 135
for LUTYPE6.1 139

on DEFINE TYPETERM for APPC terminals 136
autoinstall

deletion of shipped terminal definitions 265
of APPC parallel sessions 132
of APPC single sessions 132, 133

initiated by BIND request 132
initiated by CINIT request 133

of APPC single-session terminals 133
user program, DFHZATDY 132

automatic initiate descriptor (AID) 71
automatic transaction initiation (ATI)

and transaction routing 71
by transient data trigger level 197
definition of 71
restriction with routing transaction 82
restriction with shipped terminal definitions 176
rules and restrictions summary 300
with asynchronous processing 58
with terminal-not-known condition 72

B
back-end transaction

defined 203, 315
LUTYPE6.1 sessions (CICS-to-IMS) 239

basic conversations 21
basic mapping support (BMS)

rules and restrictions summary 300
with transaction routing 81, 223

BIND
sender and receiver 23

BMS
See basic mapping support

BUILD ATTACH command
LUTYPE6.1 sessions (CICS-to-IMS) 235, 237

C
CANCEL command 57

See also asynchronous processing
CEMT master terminal transaction

DELETSHIPPED option 267
restriction with remote terminals 301
with APPC terminals 134
with routing transaction 83

central processing complex (CPC)
definition of 315

chain of RUs format 228
chained-mirror situation 31
channel-to-channel communication 20
CICS mapping to APPC architecture 303

deviations 314
deviations from APPC architecture 314

CICS OS/2 102
CICS-to-CICS communication

defining compatible nodes
APPC sessions 131
LUTYPE6.1 sessions 141
MRO sessions 125

CICS-to-IMS communication
application design 227
application programming 227
asynchronous processing 229

CICS front end 230
IMS front end 231

chain of RUs format 228
comparison of CICS and IMS 227
data formats 227
defining compatible nodes 142
forms of communication 229
RETRIEVE command 233
SEND and RECEIVE interface 234
START and RETRIEVE interface 229
START command 232
VLVB format 228

CICSplex
controlling with CICSPlex SM 17, 71
definition of 315
performance of

using VTAM generic resources 109
transaction routing in 16

CICSPlex SM
definition of 315
used to control transaction routing 17, 71

CICSplex System Manager
See CICSPlex SM

class of service (COS) 22
ACF/VTAM LOGMODE entry 102
modeset 23, 128

322 CICS for MVS/ESA Intercommunication Guide

class of service (COS) (continued)
modifying default profiles to provide modename 193

classification rules 254
CLOSE_PIPE command

external CICS interface 214
CNOS negotiation 156
command sequences

LUTYPE6.1 sessions (CICS-to-IMS) 243
common programming interface communications (CPI

Communications)
defining a partner 189
PIP data 22
synchronization levels 22

communication profiles 191
CONNECTION definition

PSRECOVERY option 136
connections to remote systems 119

acquired, status of 155
acquiring a connection 154
defining 119
freeing, status of 159
released, status of 159
releasing the connection 159
restrictions on number 20, 128
XNOtdone, status of 283
XOK, status of 283

contention loser 23
contention winner 23
conversation

definition of 315
LUTYPE6.1 sessions (CICS-to-IMS) 241

CONVERSE command
LUTYPE6.1 sessions (CICS-to-IMS) 235

COS
See class of service

CPI Communications
See common programming interface communications

cross-system coupling facility (XCF)
definition of 315
for cross-system MRO 98
overview 12
used for interregion communication 11

cross-system MRO (XCF/MRO)
generating support for 99
hardware requirements 98
overview 12

CRTE transaction 82
CRTX, CICS-supplied transaction definition 187
CSD (CICS system definition file)

shared between regions
dual-purpose RDO definitions 187

D
data streams

user data stream for IMS communication 144

data tables 27, 167
DBDCCICS 120
DCE (distributed computing environment)

and CICS 48
benefits of 48
overview 45
remote procedure call (RPC)

application programming 219
benefits of 51
calling CICS programs 52
CICS server programs 51, 219
overview 6, 50
requirements for use with CICS 51
resource definition 199

DEALLOCATE_PIPE command
external CICS interface 214

deferred transmission
LUTYPE6.1 sessions (CICS-to-IMS) 241
START NOCHECK requests 60

DEFINE CONNECTION
APPC terminals 133
indirect links 153
LUTYPE6.1 links 128, 137
MRO links 121
NETNAME option 121

DEFINE PROFILE 191
DEFINE SESSIONS

APPC terminals 133
indirect links 153
LUTYPE6.1 links 130, 137
MAXIMUM option

effect on CEMT commands for APPC 156
MRO links 121

DEFINE TERMINAL
APPC terminals 133
remote VTAM terminals 174
shippable terminal definitions 176

DEFINE TRANSACTION
asynchronous processing 172
INDOUBT option 275
transaction routing 184

DYNAMIC option 185
PROFILE option 186
PROGRAM option 186
REMOTESYSTEM option 185
TASKREQ option 186
TRPROF option 186
TWASIZE option 186

DEFINE TYPETERM
APPC terminals 133

defining resources
See resource definition

deletion of shipped terminal definitions 265
deviations from APPC architecture 314
DFHCICSA

default profile for alternate facilities acquired by
ALLOCATE 193

 Index 323

DFHCICSE
default error profile for principal facilities 193

DFHCICSF
default profile for function shipping 193

DFHCICSP
profile for principal facilities of CSPG 192

DFHCICSR
default profile for transaction routing 193

used between user program and interregion
link 193

DFHCICSS
default profile for transaction routing 193

used between relay program and interregion
link 193

DFHCICST
default profile for principal facilities 192

DFHCICSV
profile for principal facilities of CSNE, CSLG,

CSRS 192
DFHDCT TYPE=REMOTE macro 169
DFHDLPSB TYPE=ENTRY macro 168
DFHDYP, dynamic transaction routing program 68
DFHFCT TYPE=REMOTE macro 167
DFHTCT TYPE=REGION macro 179
DFHTCT TYPE=REMOTE macro 178
DFHTST TYPE=REMOTE macro 170
DFHXCOPT macro, for EXCI environment 216
DFHXCURM, EXCI routing program 216
DFHZATDY, autoinstall user program 132
distributed computing environment (DCE)

and CICS 48
benefits of 48
overview 45
remote procedure call (RPC)

application programming 219
benefits of 51
calling CICS programs 52
CICS server programs 51, 219
overview 6, 50
requirements for use with CICS 51
resource definition 199

distributed program link (DPL)
application programming 209
defining remote server programs 170
definition of 316
design considerations 38
exception conditions 210
global user exits 40
local resource definitions 199
main discussion 37
mirror transaction abend 211
queuing due to 40
server programs 199, 209

resource definition 199
distributed transaction processing (DTP)

application programming 227

distributed transaction processing (DTP) (continued)
as API for APPC terminals 78
CICS-to-IMS 235
compared with asynchronous processing 55
definition of 316
definition of remote resources 189
overview 85
PARTNER definition 189

DL/I
defining remote PSBs (CICS/ESA) 168
function shipping 27, 206
installation considerations 97, 101

DL/I model 194
DPL

See distributed program link (DPL)
DSHIPIDL, system initialization parameter 266
DSHIPINT, system initialization parameter 266
DTP

See distributed transaction processing (DTP)
DTRTRAN, system initialization parameter 187
dual-purpose RDO definitions 187
DYNAMIC option

on remote transaction definition 185
dynamic transaction routing

controlling with CICSPlex SM 17, 71
in CICSplex 16
in sysplex 17
information passed to routing program 69
introduction 68
invocation of routing program 69
transaction affinity utility program 70
transaction definitions

using CRTX transaction 187
using separate local and remote definitions 187
using single definition in the TOR 187

uses of a routing program 70
dynamic transaction routing program, DFHDYP 68

E
EIB fields

LUTYPE6.1 sessions (CICS-to-IMS) 242
emergency restart 286
exception conditions

DPL 210
function shipping 207

exchange-lognames process (APPC connections) 283
EXCI

See external CICS interface
EXEC CICS API

of external CICS interface 214
external CICS interface

benefits 43
CALL API

ALLOCATE_PIPE command 214
CLOSE_PIPE command 214
DEALLOCATE_PIPE command 214

324 CICS for MVS/ESA Intercommunication Guide

external CICS interface (continued)
CALL API (continued)

DPL call 214
INITIALISE_USER command 213
OPEN_PIPE command 214

definition of 316
DFHXCOPT macro 216
DFHXCURM user-replaceable program 216
EXEC CICS API 214
implementing 44
overview 43
routing requests 216
sample programs 217

EXTRACT ATTACH command
LUTYPE6.1 sessions (CICS-to-IMS) 235, 240

F
file control

function shipping 26, 205
FREE command

LUTYPE6.1 sessions (CICS-to-IMS) 235, 242
freeing, connection status 159
front-end transaction

defined 203
LUTYPE6.1 sessions (CICS-to-IMS) 235

FSSTAFF, system initialization parameter 76
function shipping

application programming 205
defining remote resources 167

DL/I PSBs (CICS/ESA) 168
files 167
temporary storage queues 169
transient data destinations 169

definition of 316
design considerations 26
DL/I requests 27, 206
exception conditions 207
file control 26, 205
interval control 25
main discussion 25
mirror transaction 29
mirror transaction abend 207
queuing due to 28
short-path transformer 32
temporary storage 27, 206
transient data 27, 206

G
generic applid

confusion with generic resource name 163
relation to specific applid 163

generic resources, VTAM
installing 109
migration to 112

generic resources, VTAM (continued)
outbound LU6 connections 113
overview 17
requirements 109
restrictions 111
use with non-autoinstalled connections 113
use with non-autoinstalled terminals 113

global user exits
XALTENF 58, 73, 83
XICTENF 58, 73, 83
XISCONA 262
XPCREQ 40
XPCREQC 40
XZIQUE 262

GRNAME, system initialization parameter 109

I
IMS

comparison with CICS 227
installation considerations 102
messages switches 230
nonconversational transactions 230
nonresponse mode transactions 230
system definition 104

IMS-to-CICS communication
See CICS-to-IMS communication

in-doubt period 274
session failure during 274

indirect links
resource definition 151

indirect links for transaction routing
example 151
overview 149
when required 151
with hard-coded terminals 150
with shippable terminals 150

INDOUBT option 275
INITIALISE_USER command

external CICS interface 213
INSERVICE option

on DEFINE CONNECTION
for LUTYPE6.1 139

on DEFINE CONNECTIONS
for LUTYPE6.1 139

installation 95
ACF/VTAM definition for CICS 101

LOGMODE entries 102
ACF/VTAM definition for IMS 103

LOGMODE entries 103
DL/I facilities 97, 101
generic resources, VTAM 109
IMS considerations 102
IMS system definition 104
intersystem communication 101
MRO modules in the link pack area 97

 Index 325

installation (continued)
multiregion operation 97
subsystem support for CICS/ESA MRO 97
type 3 SVC routine 97
VTAM generic resources 109

interregion communication (IRC) 11
definition of 317
short-path transformer 32

intersystem communication (ISC)
channel-to-channel communication 20
concepts 19
connections between systems 19
controlling queued session requests 261
defined 3
defining APPC links 128
defining APPC modesets 130
defining APPC terminals 133
defining compatible APPC nodes 131
defining compatible CICS and IMS nodes 142
defining compatible CICS-to-CICS LUTYPE6.1

nodes 141
defining LUTYPE6.1 links 137
definition of 317
facilities 5
installation considerations 101
intrahost communication 19
multiple-channel adapter 20
sessions 20
transaction routing 67
use of VTAM persistent sessions 136, 279, 286,

293
intersystem queues

controlling queued session requests 28, 261
intersystem sessions 20
interval control

definition of 317
function shipping 25

intrahost ISC 19
ISC

See intersystem communication
ISSUE SIGNAL command

LUTYPE6.1 sessions (CICS-to-IMS) 235

L
LAST option 242
levels of synchronization 22
limited resources 23, 111

effects of 159
link pack area modules for MRO 97
links to remote systems 119
local CICS system

applid 120, 163
generic and specific 163

generic resource name 163
naming 119

local CICS system (continued)
sysidnt 120

local names for remote resources 166
local queuing of START requests 60
local resources, defining

architected processes 194
CICS programs as DCE servers 199
communication profiles 191
for DPL 199
intrapartition transient data queues 197

logical unit (LU) 317
logical unit type 6.1

See LUTYPE6.1
logical unit type 6.2

See APPC
LOGMODE entry

CICS 102
IMS 103

long-running mirror tasks 31
LU services manager

description 22
SNASVCMG sessions 128

LU services model 194
LU-LU sessions 20

contention 23
primary and secondary LUs 23

LUTYPE6.1
CICS-to-IMS application programming 227
link definition 137

LUTYPE6.2
link definition 128

LUW
See units of work

M
macro-level resource definition

remote DL/I PSBs 168
remote files 167
remote resources 165
remote server programs 170
remote temporary storage queues 169
remote transactions 172
remote transient data destinations 169

mapped conversations 21
mapping to APPC architecture 303

control operator verbs 305
deviations 314

MAXIMUM option, DEFINE SESSIONS command
effect on CEMT commands for APPC 156

MAXQTIME option, CONNECTION definition 28, 261
methods of asynchronous processing 56
migration

deletion of shipped terminals 268
from single region operation to MRO 18
transactions to transaction routing environment 223

326 CICS for MVS/ESA Intercommunication Guide

mirror transaction 29
definition of 317
long-running mirror tasks 31
resource definition for DPL 199

mirror transaction abend 207, 211
modegroup

definition of 23
SNASVCMG 154
VTAM LOGMODE entries 102

models 194
modename 128, 156
modeset 130

definition of 23, 128
LU services manager 102

MRO (multiregion operation)
See multiregion operation (MRO)

multiple-channel adapter 20
multiple-mirror situation 31
multiregion operation (MRO)

abend codes 301
applications 15

departmental separation 16
multiprocessing 16
program development 15
reliable database access 16
time sharing 16
workload balancing 17

concepts 11
controlling queued session requests 261
conversion from single region 18
cross-system MRO (XCF/MRO) 12, 98
defined 3
defining CICS/ESA as a subsystem 97
defining compatible nodes 125
defining MRO links 121
definition of 317
facilities 5, 11
in a CICSplex 16
in a sysplex 17
indirect links 149
installation considerations 97
interregion communication 11
links, definition of 121
long-running mirror tasks 31
modules in the link pack area 97
short-path transformer 32
supplied starter system 98
transaction routing 67
use of VTAM persistent sessions 293

MVS cross-memory services
specifying for interregion links 123

MVS image
definition of 317
MRO links between images, in a sysplex 11, 12

MVS sysplex
See sysplex, MVS

MVS workload manager
benefits of 252
defining performance goals 252
identifying workload objectives 252
installation 259
matching CICS performance parameters to 259
overview 251
software requirements 258
span of operation 251

N
names

local CICS system 119
remote systems 120

NETNAME attribute of CONNECTION resource
default 121
mapping to sysidnt 121

NOCHECK option
of START command 58

mandatory for local queuing 61
NOQUEUE option

of ALLOCATE command
LUTYPE6.1 sessions (CICS-to-IMS) 236

O
online resource definition

See resource definition online
OPEN_PIPE command

external CICS interface 214
OS/2

VTAM definition 102

P
PARTNER definition, for DTP 189
pending units of work 284
performance

controlling queued session requests 28, 40, 60, 83,
261

deleting shipped terminal definitions 265, 267
redundant shipped terminal definitions 265
using CICSPlex SM 17
using dynamic transaction routing 17
using static transaction routing 16
using the MVS workload manager 17, 251—259
using VTAM generic resources 17

performance goals 253
persistent sessions, VTAM 129, 131, 136, 279, 286,

293, 295
PIP data

introduction 22
with CPI Communications 22

primary logical unit (PLU) 23

 Index 327

principal facility
default profiles 192
defined 203

PRINSYSID option of ASSIGN command 225
PROFILE option of ALLOCATE command

LUTYPE6.1 sessions (CICS-to-IMS) 236
on remote transaction definition 186

profiles
CICS-supplied defaults 192
for alternate facilities 191
for principal facilities 192
modifying the default definitions 193
read time-out 192
resource definition 191

program initialization parameters (PIP)
See PIP data

PROGRAM option
on remote transaction definition 186

PROTECT option of START command 59
PSDINT, system initialization parameter 136
pseudoconversational transactions

with transaction routing 224
PSRECOVERY option

CONNECTION definition 136

Q
queue model 194
QUEUELIMIT option, CONNECTION definition 28, 261
queues, intersystem

See intersystem queues

R
RDO

See resource definition online
RECEIVE command

LUTYPE6.1 sessions (CICS-to-IMS) 235
record lengths for remote files 168
recovery and restart 273

APPC pending units of work 284
database interlock 287
dynamic transaction backout 275
emergency restart 286
in-doubt period 274
syncpoint exchanges 274
syncpoint flows 276

RECOVOPTION option
SESSIONS definition 137
TYPETERM definition 137

redundant shipped terminal definitions 265
relay transaction 80

for transaction routing 67
released, connection status 155, 159
remote DL/I PSBs 168

remote files
defining 167
file names 168
record lengths 168

remote procedure call (RPC)
benefits of 51
calling CICS programs 52
CICS server programs 51, 219

resource definition 199
overview 6, 50
requirements for use with CICS 51

remote resources
defining 165
naming 166

remote server programs
defining 170
program names 171

remote temporary storage queues
defining 169

remote terminals
definition using DFHTCT TYPE=REGION 179
definition using DFHTCT TYPE=REMOTE 178
terminal identifiers 182

remote transactions
defining for asynchronous processing 171
defining for transaction routing 184

dynamic routing 187
static routing 187

security of routed transactions 186
remote transient data destinations

defining 169
REMOTENAME option in remote resource

definitions 166
REMOTESYSNET option

CONNECTION definition 150, 174
TERMINAL definition 150, 173

REMOTESYSTEM option
CONNECTION definition 150, 174
TERMINAL definition 150, 173
TRANSACTION definition 185

resource definition
APPC links 128
APPC modesets 130
APPC terminals 133
architected processes 194
asynchronous processing 171
CICS-to-CICS LUTYPE6.1 links 138
CICS-to-IMS LUTYPE6.1 links 142

defining multiple links 146
DCE remote procedure call

server programs 199
default profiles 192
defining compatible APPC nodes 131
defining compatible CICS and IMS nodes 142
defining compatible CICS-to-CICS LUTYPE6.1

nodes 141

328 CICS for MVS/ESA Intercommunication Guide

resource definition (continued)
defining compatible MRO nodes 125
distributed transaction processing 189
DPL 170, 199

server programs 199
function shipping 167
indirect links 149
links for multiregion operation 121
links to remote systems 119
local resources 191
LUTYPE6.1 links 137
LUTYPE6.2 links 128
mirror transaction 199
modifying architected process definitions 195
modifying the default profiles 193
overview 117
profiles 191
remote DL/I PSBs (CICS/ESA) 168
remote files 167
remote partner 189
remote resources 165
remote server programs 170
remote temporary storage queues 169
remote terminals 173, 177
remote transactions 171, 184
remote transient data destinations 169
transaction routing 172

resource definition online (RDO)
APPC links 128
APPC terminals 133
indirect links 153
links for multiregion operation 121
links to remote systems 119
LUTYPE6.1 links 137, 138, 142
LUTYPE6.2 links 128
remote resources 165
remote transactions 172
remote VTAM terminals 173
shippable terminal definitions 175

RETRIEVE command
See also asynchronous processing
CICS-to-IMS communication 233
terminal acquisition

when “terminal” is a system 62
WAIT option 61

retrieving information shipped with START
command 61

routing transaction, CRTE 82
automatic transaction initiation 82
invoking CEMT 83

RTIMOUT option
on communication profile 186
PROFILE definition 192

S
sample programs

for external CICS interface 217
scheduler model 194
secondary logical unit (SLU) 23
security

of routed transactions 186
RTIMOUT option 186

selective deletion of shipped terminals 265
SEND and RECEIVE, asynchronous processing 56

CICS-to-IMS communication 234
SEND command

LUTYPE6.1 sessions (CICS-to-IMS) 235
service classes 253
service definitions 253
service policies 253
session allocation

LUTYPE6.1 sessions (CICS-to-IMS) 235
session balancing

using VTAM generic resources 109
session failure

during in-doubt period 274
SESSION option of ALLOCATE command

LUTYPE6.1 sessions (CICS-to-IMS) 235
session queue management

overview 261
using QUEUELIMIT option 261
using XZIQUE global user exit 262, 263

SESSIONS definition
RECOVOPTION option 137

shippable terminals
‘terminal not known’ condition 73
definition of 318
resource definition 176
selective deletion of 265
what is shipped 175
with ATI 72

shipped terminal definitions
deletion of

INQUIRE DELETSHIPPED command 267
migration considerations 268
performance considerations 267
SET DELETSHIPPED command 267
system initialization parameters 266

selective deletion mechanism 265
timeout delete mechanism 265

short-path transformer 32
SNASVCMG sessions

generation by CICS 128
purpose of 22

specific applid
for XRF 163
relation to generic applid 163

SSI
See subsystem interface

 Index 329

START and RETRIEVE asynchronous processing 56,
57

CICS-to-IMS communication 229
START command

See also asynchronous processing
CICS-to-IMS communication 232
NOCHECK option 58

for local queuing 61
START NOCHECK command

deferred sending 60
for local queuing 61

START PROTECT command 59
static transaction routing

transaction definitions
using dual-purpose definitions 187
using separate local and remote definitions 187

subsystem interface (SSI)
required for MRO with CICS/ESA 97

surrogate TCTTE 224
SVC routine

See type 3 SVC routine
switched lines

cost efficiency 23
sympathy sickness

reducing 261
synchronization levels 22, 90

CPI Communications 22
syncpoint 90, 274, 300

definition of 319
SYSID keyword of ALLOCATE command

LUTYPE6.1 sessions (CICS-to-IMS) 235
sysidnt

of local CICS system 120
of remote systems 120
relation to applid 120

SYSIDNT value
default 120
local CICS system 120
mapping to NETNAME 121
of local CICS system 120
of remote systems 120

sysplex, MVS
cross-system coupling facility (XCF)

for MRO links across MVS images 11, 12
definition of 319
dynamic transaction routing 17
performance of

using CICSPlex SM 17
using MVS workload manager 17, 251
using VTAM generic resources 17, 109

requirements for cross-system MRO 98
system identifier

See sysidnt
system initialization parameters

APPLID 120, 163
DSHIPIDL 266

system initialization parameters (continued)
DSHIPINT 266
DTRTRAN 187
for deletion of shipped terminals 266
for intersystem communication 101
for multiregion operation 97
for VTAM generic resources 109
FSSTAFF 76
GRNAME 109
PSDINT 136
SYSIDNT 120
XRF 136

system message model 194

T
table definition

See resource definition
TASKREQ option

on remote transaction definition 186
TCTTE, surrogate 224
temporary storage

function shipping 27, 206
terminal aliases 184
TERMINAL definition

REMOTENAME option 184
REMOTESYSNET option 173
REMOTESYSTEM option 173

terminal-not-known condition during ATI 73
terminal-owning region (TOR) 67

definition of 319
several, in a CICSplex

as members of a generic resource group 109
balancing sessions between 109

timeout delete mechanism, for shipped terminals 265
TOR (terminal-owning region) 67

several, in a CICSplex
as members of a generic resource group 109
balancing sessions between 109

transaction affinity utility program 70
transaction routing

APPC terminals 78
application programming 223
automatic initiate descriptor (AID) 71
automatic transaction initiation 72
basic mapping support 81, 223
defining remote resources 172

dynamically-routed transactions 187
statically-routed transactions 187
terminals 173, 177
transactions 184

definition of 319
deletion of shipped terminal definitions 265
indirect links for

example 151
how defined 153
overview 149

330 CICS for MVS/ESA Intercommunication Guide

transaction routing (continued)
indirect links for (continued)

when required 151
with hard-coded terminals 150
with shippable terminals 150

initiated by ATI request 71
overview 67
pseudoconversational transactions 224
queuing due to 83
relay program 80
relay transaction 67
routing transaction, CRTE 82
security considerations 186
system programming considerations 83
terminal shipping 72
terminal-initiated

dynamic 68
information passed to dynamic routing

program 69
invocation of dynamic routing program 69
static 68
uses of a dynamic routing program 70

transaction affinity utility program 70
use of ASSIGN command in AOR 225

transient data
function shipping 27, 206

TRPROF option
on remote transaction definition 186
on routing transaction (CRTE) 82

TWASIZE option
on remote transaction definition 186

type 3 SVC routine
and CICS applid 120
in LPA 97
specifying for interregion links 123
used for interregion communication 11

TYPETERM definition
RECOVOPTION option 137

U
units of work 284
user exits

See global user exits
user-replaceable programs

DFHDYP, dynamic transaction routing program 68
DFHXCURM 216
for external CICS interface 216

USERID option of ASSIGN command 226

V
VLVB format 228
VTAM

APPN network node 109
definition of 315

VTAM (continued)
generic resources

installing 109
migration to 112
outbound LU6 connections 113
overview 17
requirements 109
restrictions 111
use with non-autoinstalled connections 113
use with non-autoinstalled terminals 113

limited resources 23, 111
LOGMODE entries 23, 102, 128
modegroups 23, 102
persistent sessions

comparison with XRF 293
effects on application programs 295
effects on recovery and restart 293
link definitions 136
on APPC links 279, 286
on MRO and ISC links 293

W
WAIT command

LUTYPE6.1 sessions (CICS-to-IMS) 235
WAIT option

of RETRIEVE command 61
workload balancing

using CICSPlex SM 17
using dynamic transaction routing 17
using MVS workload manager 17, 251—259
using VTAM generic resources 17, 109

workload manager, MVS
benefits of 252
defining performance goals 252
identifying workload objectives 252
installation 259
matching CICS performance parameters to 259
overview 251
software requirements 258
span of operation 251

X
XALTENF, global user exit 58, 73, 83, 176
XCF (cross-system coupling facility)

for cross-system MRO 98
overview 12

XCF/MRO (cross-system MRO)
generating support for 99
hardware requirements 98
overview 12

XICTENF, global user exit 58, 73, 83, 176
XISCONA, global user exit

for controlling intersystem queuing 28
using with XZIQUE 263

 Index 331

XNOtdone, connection status 283
XOK, connection status 283
XPCREQ, global user exit 40
XPCREQC, global user exit 40
XRF (extended recovery facility) 291

applid, generic and specific 163
comparison with persistent sessions 293

XRF, system initialization parameter 136
XZIQUE, global user exit

for controlling intersystem queuing 28, 263
using with XISCONA 263
when invoked 263

332 CICS for MVS/ESA Intercommunication Guide

Sending your comments to IBM
CICS for MVS/ESA

Intercommunication Guide

SC33-1181-01

If you especially like or dislike anything about this book, please use one of the methods listed below to
send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy,
organization, subject matter, or completeness of this book. Please limit your comments to the information
in this book and the way in which the information is presented.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

� By mail, use the Readers’ Comment Form

 � By fax:

– From outside the U.K., after your international access code use 44 1962 870229
– From within the U.K., use 01962 870229

� Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
 – IBMLink: HURSLEY(IDRCF)
 – Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

� The publication number and title
� The page number or topic to which your comment applies
� Your name and address/telephone number/fax number/network ID.

Readers’ Comments
CICS for MVS/ESA

Intercommunication Guide

SC33-1181-01
Use this form to tell us what you think about this manual. If you have found errors in it, or if you want
to express your opinion about it (such as organization, subject matter, appearance) or make
suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.
This form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Telephone Email

CICS for MVS/ESA

CICS for MVS/ESA Intercommunication Guide SC33-1181-01

IBM

REPONSE PAYEE
GRANDE-BRETAGNE

NE PAS AFFRANCHIR

NO STAMP REQUIRED

IBM United Kingdom Laboratories Limited
Information Development Department (MP 095)
Hursley Park
WINCHESTER, Hants
SO21 2ZZ United Kingdom

IBRS/CCRI NUMBER: PHQ - D/1348/SO

Fold along this line

Fold along this line

C
u

t
a

lo
n

g
th

is
lin

e
C

u
t

a
lo

n
g

th
is

lin
e

You can send your comments POST FREE on this form from any one of these countries:

Australia

Belgium

Bermuda

Cyprus

Denmark

Finland

France

Germany

Greece

Hong Kong

Iceland

Israel

Italy

Luxembourg

Monaco

Netherlands

New Zealand

Norway

Portugal

Republic of Ireland

Singapore

Spain

Sweden

Switzerland

United Arab Emirates

United States

of America

If your country is not listed here, your local IBM representative will be pleased to forward your comments
to us. Or you can pay the postage and send the form direct to IBM (this includes mailing in the U.K.).

By air mail
Par avion

Name

Company or Organization

Address

EMAIL

Telephone

Fasten here with adhesive tape

From:

IBM

Program Number: 5655-018

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC33-1181-S1

Spine information:

IBM CICS for MVS/ESA Intercommunication Guide Version 4 Release 1

	Notices
	Programming Interface Information
	Trademarks and service marks

	Preface
	What this book is about
	What is not covered by this book
	Who this book is for
	What you need to know to understand this book
	How to use this book
	How this book is organized
	Determining if a publication is current
	Bibliography
	CICS/ESA 4.1 library
	Other CICS books
	Books from related libraries

	Summary of changes
	Changes for the CICS/ESA 4.1 second edition
	Changes for the CICS/ESA 4.1 first edition
	Changes for the CICS/ESA 3.3 edition

	Part 1. Concepts and facilities
	Chapter 1. Introduction to CICS intercommunication
	Intercommunication methods
	Intercommunication facilities
	Using CICS intercommunication

	Chapter 2. Multiregion operation
	Facilities available through MRO
	Cross-system multiregion operation (XCF/MRO)
	Applications of multiregion operation
	Conversion from single-region system

	Chapter 3. Intersystem communication
	Connections between subsystems
	Intersystem sessions
	Establishing intersystem sessions

	Chapter 4. CICS function shipping
	Design considerations
	The mirror transaction and transformer program
	Function shipping–examples

	Chapter 5. CICS distributed program link
	Design considerations
	Examples of DPL

	Chapter 6. The external CICS interface
	Chapter 7. CICS support for DCE remote procedure calls
	What is the Distributed Computing Environment?
	DCE remote procedure calls
	Where to find more information

	Chapter 8. Asynchronous processing
	Asynchronous processing methods
	Asynchronous processing using START and RETRIEVE commands
	System programming considerations
	Asynchronous processing—examples

	Chapter 9. CICS transaction routing
	Terminal-initiated transaction routing
	Automatic transaction initiation (ATI)
	Allocation of remote APPC connections
	The relay program
	Basic mapping support (BMS)
	The routing transaction (CRTE)
	System programming considerations

	Chapter 10. Distributed transaction processing
	Advantages over function shipping and transaction routing
	Why distributed transaction processing?
	What is a conversation and what makes it necessary?
	MRO or APPC for DTP?
	APPC mapped or basic?
	EXEC CICS or CPI Communications?

	Part 2. Installation and system definition
	Chapter 11. Installation considerations for multiregion operation
	Installation steps
	Requirements for XCF/MRO
	Further steps

	Chapter 12. Installation considerations for intersystem communication
	Modules required for ISC
	ACF/VTAM definition for CICS
	Considerations for IMS

	Chapter 13. Installation considerations for VTAM generic resources
	Rules and restrictions
	Migrating your TORs to membership of a VTAM generic resource

	Part 3. Resource definition
	Chapter 14. Defining links to remote systems
	Introduction to link definition
	Identifying remote systems
	Defining links for multiregion operation
	Defining links for use by the external CICS interface
	Defining APPC links
	Defining logical unit type 6.1 links
	Defining CICS-to-CICS LUTYPE6.1 links
	Defining CICS-to-IMS LUTYPE6.1 links
	Indirect links for transaction routing
	Managing APPC links
	Acquiring a connection
	Controlling sessions with the SET MODENAME commands
	Releasing the connection
	Summary
	Generic and specific applids for XRF

	Chapter 15. Defining remote resources
	Local and remote names for resources
	CICS function shipping
	CICS distributed program link (DPL)
	Asynchronous processing
	CICS transaction routing
	Distributed transaction processing

	Chapter 16. Defining local resources
	Defining communication profiles
	Architected processes
	Selecting required resource definitions for installation
	Defining intrapartition transient data queues
	Defining local resources for DPL
	Defining CICS programs as DCE servers

	Part 4. Application programming
	Chapter 17. Application programming overview
	Terminology

	Chapter 18. Application programming for CICS function shipping
	File control
	DL/I
	Temporary storage
	Transient data
	Function shipping exceptional conditions

	Chapter 19. Application programming for CICS DPL
	The client program
	The server program
	DPL exceptional conditions

	Chapter 20. Application programming for the external CICS interface
	The MVS client program
	The CICS server program
	Customization
	Sample applications

	Chapter 21. Application programming for DCE remote procedure calls
	The DCE client program
	The CICS server program

	Chapter 22. Application programming for asynchronous processing
	Starting a transaction on a remote system
	Retrieving data associated with a remotely-issued start request

	Chapter 23. Application programming for CICS transaction routing
	Things to watch out for
	Using the EXEC CICS ASSIGN command in the AOR

	Chapter 24. CICS-to-IMS applications
	Designing CICS-to-IMS ISC applications
	Asynchronous processing
	Distributed transaction processing

	Part 5. Performance
	Chapter 25. Using the MVS workload manager
	Overview
	Implementing MVS workload management

	Chapter 26. Intersystem session queue management
	Overview
	Methods of managing allocate queues

	Chapter 27. Efficient deletion of shipped terminal definitions
	Overview
	Implementing timeout delete
	Performance
	Migration considerations

	Part 6. Recovery and restart
	Chapter 28. Recovery and restart in interconnected systems
	Syncpoint exchanges
	Action following failure during the in-doubt period
	Recovery for APPC connections
	Intersystem communication and emergency restart
	Error handling programs for intercommunication
	Database interlock
	Problem determination
	Recovery and restart with non-CICS systems

	Chapter 29. Intercommunication and XRF
	Chapter 30. Intercommunication and VTAM persistent sessions

	Part 7. Appendixes
	Appendix A. Rules and restrictions checklist
	Appendix B. CICS mapping to the APPC architecture
	Supported option sets
	CICS implementation of control operator verbs
	CICS deviations from APPC architecture

	Glossary
	Index

