

CICS/ESA

CS/ESAS/ESA

CIC
S/ESA

CIC
S/ESA

CIC
S/ESA

CIC
S/ESA

CIC
S/ESA

CIC
S/ESA

CIC
S/ESA

CIC
S/ESA

CIC
S/ESA

CIC
S/ESA

CIC
S/ESA

CIC
S/ESA

CIC
S/ESA

CIC
S/ESA

CIC
S/ESA

CIC
S/ESA

CIC
S/ESA

CIC
S/ESA

CIC
S/ESA

CIC
S/ESA

CIC
S/ESA

CIC
S/ESA

CIC
S/ESA

CIC
S/ESA

CS/ESAS/ESA/ES

CIC
S/ECIC

/ESASA
A

IC
S/ESA

/ESA
A

IBM

Shared Data Tables Guide
Version 4 Release 1

 SC33-1186-01

CICS/ESA IBM

Shared Data Tables Guide
Version 4 Release 1

 SC33-1186-01

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page ix.

First edition (October 1994)

This edition applies to Version 4 Release 1 of the IBM licensed program Customer Information Control System/Enterprise Systems
Architecture (CICS/ESA), program number 5655-018, and to all subsequent versions, releases, and modifications until otherwise
indicated in new editions. Consult the latest edition of the applicable IBM system bibliography for current information on this product.

This book is based on the Shared Data Tables Guide for CICS/ESA 3.3, SC33-0887-02. Changes from that edition are marked by
vertical lines to the left of the changes.

The CICS/ESA 3.3 edition remains applicable and current for users of CICS/ESA 3.3.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
addresses given below.

At the back of this publication is a page entitled “Sending your comments to IBM”. If you want to make comments, but the methods
described are not available to you, please address them to:

IBM United Kingdom Laboratories Limited, Information Development,
Mail Point 095, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1992, 1994. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . ix
Programming interface information . ix
Trademarks and service marks . x

Preface . xi
Determining if a publication is current . xi

Bibliography . xiii
CICS/ESA 4.1 library . xiii
Other CICS books . xiv

Summary of changes . xv

Chapter 1. Introduction . 1
Data tables . 1
Data table sharing environment . 2
Source data set . 3
Data space . 3
Global user exits . 3
Benefits of shared data tables . 4
Remote file access . 4
How a data table is shared . 5

Chapter 2. CICS-maintained data table . 9
CMT application programming . 9
CMT resource definition . 9
CMT operations . 10

Chapter 3. User-maintained data table . 11
UMT application programming . 11
UMT resource definition . 11
UMT operations . 12

Chapter 4. Planning . 13
Performance benefits . 13
Selecting files for use as data tables . 16
Security checking . 23
SDT support on different releases of CICS . 23
Planning for SDT support . 23

Chapter 5. Application programming . 27
CICS-maintained data table . 27
User-maintained data table . 28
Use of cross-memory services . 29
Differences between function-shipping and cross-memory services 31
Differences between SDT services and VSAM 32

Chapter 6. Resource definition . 35
CEDA DEFINE FILE command . 35
EXEC CICS commands . 39
CEMT commands . 40

 Copyright IBM Corp. 1992, 1994 iii

Chapter 7. Customization . 43
Communicating between CICS and exit programs 43
XDTRD user exit . 46
XDTAD user exit . 46
XDTLC user exit . 47

Chapter 8. Operations . 49
Opening a data table . 49
Closing a data table . 50
MVS job control . 51
Interpreting data table statistics . 51
Activating user exits . 60

Chapter 9. Problem determination . 63
Trace information . 63
Analyzing errors from the SVC . 67
Analyzing errors from cross-memory services 70
Dump information . 70

Chapter 10. Using Shared Data Tables support in a sysplex 73
How to refresh replicated UMTs . 74
Example program for refreshing a UMT . 76

Appendix A. Sample user exit programs . 93
Sample XDTRD exit program . 93
Sample XDTAD exit program . 102
Sample XDTLC exit program . 108

Index . 113

iv CICS/ESA Shared Data Tables Guide

 Figures

1. Data access using function shipping . 4
2. Data access using shared data table services 5
3. CICFOR requested file statistics . 19
4. CICAOR1 requested file statistics . 20
5. CICAOR2 requested file statistics . 21
6. CEDA DEFINE FILE panel . 36
7. Data table user exit parameter list . 44
8. CICFOR requested file statistics . 53
9. CICAOR1 requested file statistics . 54

10. CICAOR2 requested file statistics . 55
11. Example program to refresh a replicated UMT 79

12. Sample XDTRD user exit program . 93
13. Sample XDTAD user exit program . 102
14. Sample XDTLC user exit program . 108

 Copyright IBM Corp. 1992, 1994 v

vi CICS/ESA Shared Data Tables Guide

 Tables

1. CICS-maintained data table performance for single-region use 14
2. CICS-maintained data table performance for cross-region sharing 14
3. User-maintained data table performance for single-region use 15
4. User-maintained data table performance for cross-region sharing 15
5. Key distribution and format . 16
6. Load modules in SDT . 25
7. Return codes for XDTRD user exit . 46
8. Return codes for XDTAD user exit . 47
9. Return codes for XDTLC user exit . 47

| 10. Data tables statistics . 51

 Copyright IBM Corp. 1992, 1994 vii

viii CICS/ESA Shared Data Tables Guide

 Notices

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain
transactions, therefore this statement may not apply to you.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.

Any reference to an IBM licensed program or other IBM product in this publication
is not intended to state or imply that only IBM’s program or other product may be
used. Any functionally equivalent program that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product. Evaluation and
verification of operation in conjunction with other products, except those expressly
designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, New York 10594,
U.S.A.

This publication contains sample programs. Permission is hereby granted to copy
and store the sample programs into a data processing machine and to use the
stored copies for internal study and instruction only. No permission is granted to
use the sample programs for any other purpose.

Programming interface information
This book is intended to help you set up and use CICS shared data tables. This
book also documents General-use Programming Interface and Associated
Guidance Information, Product-sensitive Programming Interface and Associated
Guidance Information, and Diagnosis, Modification, or Tuning Information that is
provided by CICS.

General-use programming interfaces allow the customer to write programs that
obtain the services of CICS.

Programming Interface and Associated Guidance Information is identified where it
occurs by an introductory statement to a chapter or section.

Product-sensitive programming interfaces allow the customer installation to perform
tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or tuning of
CICS. Use of such interfaces creates dependencies on the detailed design or
implementation of the IBM software product. Product-sensitive programming
interfaces should be used only for these specialized purposes. Because of their
dependencies on detailed design and implementation, it is to be expected that
programs written to such interfaces may need to be changed in order to run with
new product releases or versions, or as a result of service.

 Copyright IBM Corp. 1992, 1994 ix

Product-Sensitive Programming Interface and Associated Guidance Information is
identified where it occurs by an introductory statement to a chapter or section.

Diagnosis, Modification, or Tuning Information is provided to help you diagnose
problems and tailor your CICS system.

Warning: Do not use this Diagnosis, Modification, or Tuning Information as a
programming interface.

Diagnosis, Modification, or Tuning Information is identified where it occurs by an
introductory statement to a chapter or section.

Trademarks and service marks
The following terms, used in this publication, are trademarks or service marks of
IBM Corporation in the United States or other countries:

ACF/VTAM, CICS, CICS/ESA, CICS/MVS, C/370, DB2, IBM, MVS/DFP,
MVS/ESA, RACF, RMF

x CICS/ESA Shared Data Tables Guide

 Preface

What this book is about
This book gives information about CICS shared data table services.

Who should read this book
This book is for anyone who is involved with CICS shared data tables in one or
more of the following areas:

 � Planning
 � Application programming
 � Resource definition
 � Customization
 � Operations
 � Problem determination

What you need to know to understand this book
You need to have a good understanding of the area of CICS that you are
responsible for. This can be obtained from the other books in the CICS library.

You should also understand how the following terms are used in this book:

Browse request
A STARTBR, RESETBR, ENDBR, READNEXT, or READPREV application
programming command.

Imprecise key
A record key that is specified with the GENERIC or GTEQ option in an
application programming command.

Precise key
A record key that is specified without the GENERIC or GTEQ option in an
application programming command.

Update request
A WRITE, DELETE, READ UPDATE, or REWRITE application programming
command.

Gap
When records are omitted from a CICS-maintained data table but are present
in the source data set, the range of omitted keys is referred to as a “gap” in the
key sequence.

Determining if a publication is current
IBM regularly updates its publications with new and changed information. When
first published, both hardcopy and BookManager softcopy versions of a publication
are in step, but subsequent updates will probably be available in softcopy before
they are available in hardcopy.

For CICS books, these softcopy updates appear regularly on the Transaction
Processing and Data Collection Kit CD-ROM, SK2T-0730-xx. Each reissue of the
collection kit is indicated by an updated order number suffix (the -xx part). For

 Copyright IBM Corp. 1992, 1994 xi

example, collection kit SK2T-0730-06 is more up-to-date than SK2T-0730-05. The
collection kit is also clearly dated on the cover.

Here’s how to determine if you are looking at the most current copy of a
publication:

� A publication with a higher suffix number is more recent than one with a lower
suffix number. For example, the publication with order number SC33-0667-02
is more recent than the publication with order number SC33-0667-01. (Note
that suffix numbers are updated as a product moves from release to release,
as well as for hardcopy updates within a given release.)

� When the softcopy version of a publication is updated for a new collection kit
the order number it shares with the hardcopy version does not change. Also,
the date in the edition notice remains that of the original publication. To
compare softcopy with hardcopy, and softcopy with softcopy (on two editions of
the collection kit, for example), check the last two characters of the
publication’s filename. The higher the number, the more recent the publication.
For example, DFHPF104 is more recent than DFHPF103. Next to the
publication titles in the CD-ROM booklet and the readme files, asterisks indicate
publications that are new or changed.

� Updates to the softcopy are clearly marked by revision codes (usually a “#”
character) to the left of the changes.

xii CICS/ESA Shared Data Tables Guide

 Bibliography

 CICS/ESA 4.1 library

The book that you are reading was published in hardcopy format on the date
shown in the right-hand column in the above table. Some of the CICS/ESA 4.1
books were republished in new hardcopy editions in April 1997 to incorporate
updated information previously available only in softcopy. Note that it is possible
that other books in the library will be updated after April 1997.

Evaluation and planning

Release Guide GC33-1161 April 1997
Migration Guide GC33-1162 April 1997

General

CICS Family: Library Guide GC33-1226 April 1995
Master Index SC33-1187 October 1994
User’s Handbook SX33-1188 April 1997
Glossary (softcopy only) GC33-1189 n/a

Administration

Installation Guide GC33-1163 April 1997
System Definition Guide SC33-1164 April 1997
Customization Guide SC33-1165 April 1997
Resource Definition Guide SC33-1166 April 1997
Operations and Utilities Guide SC33-1167 April 1997
CICS-Supplied Transactions SC33-1168 April 1997

Programming

Application Programming Guide SC33-1169 October 1994
Application Programming Reference SC33-1170 April 1997
System Programming Reference SC33-1171 April 1997
Sample Applications Guide SC33-1173 October 1994
Distributed Transaction Programming Guide SC33-1174 October 1994
Front End Programming Interface User’s Guide SC33-1175 October 1994

Diagnosis

Problem Determination Guide SC33-1176 October 1994
Messages and Codes GC33-1177 April 1997
Diagnosis Handbook LX33-6093 October 1994
Diagnosis Reference LY33-6082 April 1997
Data Areas LY33-6083 April 1997
Supplementary Data Areas LY33-6081 October 1994
Closely-Connected Program Interface LY33-6084 November 1996

Communication

Intercommunication Guide SC33-1181 April 1997
Server Support for CICS Clients SC33-1591 February 1996
CICS Family: Inter-product Communication SC33-0824 October 1996
CICS Family: Communicating from CICS on
System/390

SC33-1697 October 1996

Special topics

Recovery and Restart Guide SC33-1182 October 1994
Performance Guide SC33-1183 October 1994
CICS-IMS Database Control Guide SC33-1184 October 1994
CICS-RACF Security Guide SC33-1185 October 1994
Shared Data Tables Guide SC33-1186 October 1994
External CICS Interface SC33-1390 April 1997
CICS ONC RPC Feature for MVS/ESA Guide SC33-1119 February 1996
CICS Web Interface Guide SC33-1892 November 1996

 Preface xiii

When a new order is placed for the CICS/ESA 4.1 product, the books shipped with
that order will be the latest hardcopy editions.

The style of IBM covers changes periodically. Books in this library have more than
one style of cover.

For information about the softcopy books, see “Determining if a publication is
current” on page xi. The softcopy books are regularly updated to include the latest
information.

Other CICS books
� CICS Application Migration Aid Guide, SC33-0768

� CICS Application Programming Primer (VS COBOL II), SC33-0674

� CICS/ESA Facilities and Planning Guide for CICS/ESA Version 3 Release 3,
SC33-0654

� CICS/ESA XRF Guide for CICS/ESA Version 3 Release 3, SC33-0661

� CICS Family: API Structure, SC33-1007

� CICS Family: General Information, GC33-0155

� IBM CICS Transaction Affinities Utility MVS/ESA, SC33-1159

 CICS Clients
� CICS Clients: Administration, SC33-1436

� CICS Family: Client/Server Programming, SC33-1435

xiv CICS/ESA Shared Data Tables Guide

Summary of changes

Changes for this (CICS/ESA 4.1) edition
| In CICS/ESA 4.1, the Shared Data Tables (SDT) facility has been incorporated into
| the base product. This manual has been rewritten to reflect this, and includes
| updated statistics. The messages and abend codes that were formerly in the
| Problem Determination chapter have now been moved to the CICS/ESA Messages
| and Codes manual. Details of SDT security have been moved to the CICS/ESA
| CICS-RACF Security Guide.

A new chapter has been added, telling you how to obtain some of the benefits of
shared data tables support in a sysplex environment. See Chapter 10, “Using
Shared Data Tables support in a sysplex” on page 73.

Changes for the CICS/ESA Version 3 edition
This edition is a major revision of the CICS/MVS Data Tables Guide,
SC33-0632-01. It is now applicable to CICS/MVS Version 2 and CICS/ESA
Version 3.

Note: Because this book applies to several CICS releases, it is possible that some
of the information is not applicable to your installation, even if this is not specifically
indicated.

The information in the book has been extensively reorganized and rewritten. The
organization is based on the user tasks that are used as the basis of the
organization of the whole CICS library.

More information is included in the areas of planning and application programming.

The information on resource definition includes a description of how to use:

� Resource definition online (RDO) for files, which was introduced in CICS/ESA
release 3.1.

� EXEC CICS SET FILE and EXEC CICS INQUIRE FILE commands, which have
been extended to support data tables in CICS/ESA release 3.3.

Information has been added for the new trace points introduced in CICS/ESA
release 3.1.

 Copyright IBM Corp. 1992, 1994 xv

xvi CICS/ESA Shared Data Tables Guide

 Chapter 1. Introduction

The CICS Shared Data Table (SDT) facility is an extension of the CICS file
management services.

The concept of shared data tables is simple; it exploits the facts that it is more
efficient:

� To use MVS/ESA cross-memory services instead of CICS function shipping to
share a file of data between two or more CICS regions in the same MVS/ESA
image.

� To access data from memory instead of from DASD.

� To access a file of data from memory by using services integrated within CICS
file management instead of by using VSAM services and a local shared
resource (LSR) pool.

SDT wholly replaces and extends the original data table services that were
provided as part of the base product in all CICS/ESA Version 3 releases. Under
SDT, all files that are defined as data tables can potentially be shared via
cross-memory services; no changes are required to the file definitions for existing
data tables.

The use of cross-memory services is one of the major enhancements to data table
services that is included in the SDT facility. This enhancement improves the
performance of applications that currently use function shipping and makes file
sharing feasible for applications that cannot accept the performance overhead of
function shipping.

The other major enhancement is that nearly all read requests are supported for use
with data tables. This enhancement extends the use of data tables to applications
that include:

 � Browse requests
� Read requests that use an imprecise key

See “What you need to know to understand this book” on page xi for the definition
of application programming terms used in this book.

 Data tables
A CICS file is a representation of a data set on DASD. If you specify that the file is
to use data table services, CICS copies the contents of the data set into an
MVS/ESA data space when the file is opened and uses that copy whenever
possible.

Because of the way that the data table services access the records, they can be
used only with a VSAM key-sequenced data set (KSDS). The KSDS is called the
source data set. The copy in memory is called the data table. The process of
copying the records is called loading the data table.

When the file is read by a CICS application, the record is normally retrieved from
the data table. When the file is updated by a CICS application, the effect depends
on the type of data table that you have defined for the file.

 Copyright IBM Corp. 1992, 1994 1

CICS data table services support two types of data table:

� CICS-maintained data table (CMT)
� User-maintained data table (UMT)

CICS-maintained data table
A CICS-maintained data table is a data table whose records are automatically
reflected in the source data set; when you update the file, CICS changes both the
source data set and the data table.

A CICS-maintained data table is easy to implement—you need to know little about
the data table services, you do not need to change your existing application
programs, and full recovery support of the file is retained. CICS-maintained data
tables are discussed in more detail in Chapter 2, “CICS-maintained data table” on
page 9.

User-maintained data table
A user-maintained data table is a data table whose records are not automatically
reflected in the source data set; when you update the file, CICS changes only the
data table.

A user-maintained data table lets you optimize the benefits of using a data table by
allowing you to eliminate activity on the source data set, for update requests as well
as read requests.

A small number of file operations are not supported for user-maintained data tables.
Thus, you might need to make minor changes to existing application programs.
Also, recovery of the file is supported after a transaction failure, but not a system
failure. User-maintained data tables are discussed in more detail in Chapter 3,
“User-maintained data table” on page 11.

Data table sharing environment
The environment for sharing a data table is the same as for any CICS file: one
CICS region owns the data table—this region is known as a file-owning region
(FOR). Any other region that uses the data table is known as an
application-owning region (AOR). In the FOR, the file is known as a local file and,
in the AOR, the file is known as a remote file.

In the context of shared data tables, the FOR is also known as a server and the
AOR is also known as a requester.

The same region can be both an FOR for some data tables and an AOR for others.

For information about these intercommunication concepts, see the CICS/ESA
Intercommunication Guide.

Shared data tables support uses cross-region sharing wherever possible to provide
access to data tables that are in the same MVS image as the requesting CICS
region. This means that most read accesses within the same MVS image are
satisfied by cross-region sharing using shared data tables services. If cross-region
sharing is not possible for the request, function shipping is used. This means that
update requests from CICS regions within the same MVS image and all requests

2 CICS/ESA Shared Data Tables Guide

from CICS regions in different MVS images use function shipping. Chapter 5,
“Application programming” on page 27 tells you when commands are satisfied by
either cross-region sharing or function shipping.

Note: Similarly, XCF/MRO does not provide shared data table access between
CICS regions in different MVS images.

Although shared data tables support is primarily intended for sharing data within an
MVS image, the support may be extended to a sysplex environment for applications
that require only read access to a shared user-maintained data table or can operate
with data that might not be up-to-date. The data table must be replicated across
each MVS region in the sysplex, and updated periodically. See Chapter 10, “Using
Shared Data Tables support in a sysplex” on page 73.

Source data set
The source data set must be a base VSAM KSDS, not an alternate index.
However, updates made to the KSDS via an alternate index are reflected in a
CICS-maintained data table.

The VSAM definition of the KSDS supplies the values for maximum record length
and key length.

 Data space
The data table records are stored in an MVS/ESA data space, whether the data
table is to be shared by more than one region or not. A separate data space is
used for each CICS region; it is obtained when the first file that is defined as a data
table is opened in the region; it is used by all CICS data tables that are owned by
that region; and it is retained until the shutdown of CICS in the region.

The data space storage that is used by the data table is freed when the file is
closed in the FOR. This storage is made available for reuse in such a way that the
integrity of any AOR that was using the data table is protected.

Global user exits
Three global user exits are provided to extend the normal processing done by data
table services:

� XDTRD, to select the records that are copied to the data table during loading
when the file is opened. For a user-maintained data table, it can also be used
to modify the records.

� XDTAD, to select the records that are copied to the data table when new
records are added to the file.

� XDTLC, to perform processing at the end of the loading operation.

These user exits are fully described in Chapter 7, “Customization” on page 43.

 Chapter 1. Introduction 3

Benefits of shared data tables
SDT offers many additional benefits over the data table services that were included
as part of CICS/ESA. For example:

� Very large reductions in path length can be achieved for remote accesses
because function shipping is avoided for most read and browse requests.

� When cross-memory services are used, the requests are processed by the
AOR, thus freeing the FOR to process other requests. This increases
multiprocessor exploitation.

� Increased security of data is provided because the record information in shared
data tables is stored outside the CICS region and is not included in CICS
system dumps (either formatted or unformatted).

� For CICS-maintained data tables, all forms of non-update, keyed access
(including browse requests and imprecise-key read requests) are processed by
reference to the data table.

� For user-maintained data tables, all forms of non-update, keyed access
(including browse requests and imprecise-key read requests) are supported.

� Any number of files referring to the same source data set that are open at the
same time can retrieve data from the one CICS-maintained data table.

� An enhancement to the XDTRD user exit allows you to skip over a range of
records while loading the data table.

Remote file access
This section illustrates the differences between using function shipping and using
shared data table services to access a CICS file in another region.

Using function shipping
Figure 1 shows the use of function shipping to access a data set owned by another
CICS region.

 ┌───────────┐ ┌───────────┐ ┌───────┐

 │ CICS │ │ CICS │ ┌────────┐ │ │

 │APPLICATION│ function │ FILE │ │ VSAM │ │ VSAM │

 │ OWNING ├──────────>│ OWNING ├────>│SERVICES├───>│ KSDS │

│ REGION │ shipping │ REGION │ │ │ │ │

│ (AOR) │ │ (FOR) │ │ │ │ │

│ │ │ │ └────────┘ │ │

│ │ │ │ │ │

 └───────────┘ └───────────┘ └───────┘

Figure 1. Data access using function shipping

Using shared data table services
Figure 2 on page 5 shows an AOR using cross-memory services to execute reads
or browses, using shared data table services in an FOR in order to access the data
table. (Function shipping is used for update requests and for any request that
needs to access the source data set, in the same way as shown in Figure 1.)

4 CICS/ESA Shared Data Tables Guide

 ┌──────────────────────┐

 │DATA ┌───────────┐ │

 │SPACE │data │ │

 │ │table │ │

 │ └/──────────┘ │

 └────────0─────────────┘

 0

 ┌───────────┐ cross 0

 ┌┴──────────┐│ memory 0

 ┌┴──────────┐││ services ┌──0────────┐ shared data

 │ 0 0 0 0 0 0 0 0 0 6────┼──table services

 │ CICS │││ ├───────────┤

 │APPLICATION│││ │ CICS │

 │ OWNING │││ │ FILE │

│ REGIONS │││ │ OWNING │

│ │├┘ │ REGION │

 │ ├┘ │ │

 └───────────┘ └───────────┘

Figure 2. Data access using shared data table services. This diagram shows read-only
access only.

How a data table is shared
SDT performs two operations—LOGON and CONNECT—in order to establish a
data table for sharing. These operations are described below.

 LOGON
When the first file that is defined as a data table is opened in an FOR, the FOR
attempts to register itself as an SDT server. This operation is performed
automatically and is known as an SDT LOGON. The opening of the file can be
caused by the FOR or by the AOR that first accesses the file.

Regardless of whether the LOGON is successful or not, the file is opened and the
data table is loaded. If the LOGON is successful, all other CICS regions in the
MVS/ESA operating system are notified that the data table is available.

If the LOGON fails because of a permanent condition (such as CICS not being
defined as an MVS subsystem), no further LOGON attempts are made during the
CICS run.

If the LOGON fails because of a potentially transient condition, another LOGON
attempt is made the next time that a file that is defined as a data table is opened.
This type of condition includes:

� Failing a security check
� Failing to obtain storage
� Failing to load a program

When a region’s LOGON requests are rejected due to failing a security check,
security violation messages might be issued each time a file that is defined as a
data table is opened.

After an FOR logs on successfully, it remains in that state for the rest of the CICS
run; no more LOGON requests are issued.

 Chapter 1. Introduction 5

 CONNECT
When an AOR with SDT issues a read request (or starts a browse sequence) for a

| remote file, SDT attempts to establish a connection to a data table for that file. If
| the FOR is registered as an SDT server, SDT establishes a cross-memory link from
| the AOR to the FOR (subject to security checks) and calls the SDT server to ask
| whether there is an available data table for the file. If there is, a connection is
| made between the AOR and the data table. This operation is performed

automatically, and is known as an SDT CONNECT.

If the CONNECT is successful, cross-memory services are then used, whenever
possible, to access the file while the connection exists.

6 CICS/ESA Shared Data Tables Guide

If the CONNECT fails, the file request is function shipped exactly as it would have
been in the absence of SDT. The action taken for subsequent remote file requests
depends on the type of failure, as described in the following paragraphs.

If the CONNECT fails because of a permanent condition (such as CICS not being
defined as an MVS subsystem), no further CONNECT attempts are made during
the CICS run.

If the CONNECT fails because of a potentially transient condition that is not under
the control of the file owner, another CONNECT attempt is made for the next
suitable request after approximately ten minutes have elapsed. This type of
condition includes:

� Failing a security check
� Failing to obtain storage
� Failing to load a program.

When a region’s CONNECT requests are rejected due to failing a security check,
the related security violation messages might be issued at ten minute intervals.

If the CONNECT fails because of a potentially transient condition that is under the
control of the file owner, another CONNECT attempt is made for the next suitable
request following notification that at least one new file is available for shared
access on the MVS system. This type of condition includes:

� File owner is not logged on as a server
� File is not associated with a data table
� File is disabled, although associated with a data table
� File is closed, although defined as a data table.

After an AOR connects to a remote file successfully, it remains connected unless
one of the following events occurs:

� The AOR deletes its remote file definition.
In this event, the connection is broken immediately.

� The FOR closes or disables the file.
In this event, the disconnection is scheduled at the next non-update request
and is effected after all current browse sequences have terminated (see
“Disconnection” on page 30).

If these events are later reversed, a valid connection is established in the same
way as before.

Notification that a new file is available for shared access: When a data table
is opened by an FOR, it becomes available for CONNECT attempts at the start of
loading for a CICS-maintained data table, or at the completion of loading of a
user-maintained data table. Other CICS regions are notified that a data table has
become available. Notification is also made when a data table (or a file that uses a
CICS-maintained data table) is enabled, having been previously disabled.

 Security
To provide security for a data table when cross-memory services are used, SDT
must ensure that:

� The FOR cannot be impersonated. This is prevented by checking at LOGON
time that the FOR is allowed to log on with the specified generic applid of the
CICS system.

 Chapter 1. Introduction 7

� An AOR cannot gain access to data that it is not supposed to see. This is
prevented by checking at CONNECT time that the AOR is allowed access to
the FOR and, if file security is in force, that the AOR is allowed access to the
requested file.

These security checks are performed by using the system authorization facility
(SAF) to invoke the Resource Access Control Facility (RACF) or an equivalent
security manager.

Note: A region is still able to use data tables locally even if it does not have
authority to act as a shared data table server.

SDT reproduces the main characteristics of function-shipping security that operate
at the region level, but the following differences should be noted:

� SDT does not provide any mechanism for the FOR to perform security checks
at the transaction level (the equivalent of ATTACHSEC(IDENTIFY) or
ATTACHSEC(VERIFY)). Therefore, if you consider that the transaction-level
checks performed by the AOR are inadequate, for some files, you must ensure
that those files are not associated with data tables in the FOR.

� SDT does not support preset security.

� SDT does not pass any installation parameter list (INSTLN) information to the
security user exits.

For a description of the steps required to implement SDT security, see the
CICS/ESA CICS-RACF Security Guide.

8 CICS/ESA Shared Data Tables Guide

Chapter 2. CICS-maintained data table

If a file is defined as a CICS-maintained data table (CMT), the source data set and
the data table are treated by CICS as a single entity. This means that:

� Changes to the file are made to both the source data set and the data table.

� If another file is defined to use the same source data set, changes that are
made by that file to the source data set are also made to the data table.

� If another file is defined to use the same source data set, records can be
retrieved by that file from the data table.

CMT application programming
All CICS file control commands can be used in applications that access a
CICS-maintained data table. This means that the benefits of data tables can be
obtained immediately without any changes to existing applications.

CICS uses the data table to perform most read requests. Other requests might
need to access the source data set. See Chapter 5, “Application programming” on
page 27 for more information.

CMT resource definition
You define a file as a CICS-maintained data table by one of the following methods:

� CEDA DEFINE FILE command
 � DFHFCT macro

Also, you can change the definition of an existing file by:

� EXEC CICS SET FILE command
� CEMT SET FILE command

Only the base VSAM cluster can have a CICS-maintained data table based on it.
Read requests via alternate index paths do not use the data table, but changes to
the source data set via alternate index paths are reflected in the data table.

After a file that is defined as a CICS-maintained data table has been opened, any
other non-UMT file (whether defined as a CMT or not) that names the same source

| data set in its definition automatically uses the same data table. If any of these
| other files are defined as CMTs, message DFHFC0934 is issued to the console
| when they are opened. This is not an error situation; the files are opened and use
| the existing data table whenever possible.

Either fixed-or variable-length record format can be specified for a CICS-maintained
data table. The maximum record length that is supported by SDT is 32KB. This
length exceeds that supported by CICS file management, which thus imposes the

| actual limit (see the topic dealing with lengths of areas passed to CICS commands
| in the CICS/ESA Application Programming Guide for information). The maximum

number of records that is supported is 16 777 215.

For more information, see Chapter 6, “Resource definition” on page 35.

 Copyright IBM Corp. 1992, 1994 9

 VSAM shareoption
If the source data set is allocated with DISP=SHR, there is a risk that it could be
updated by a region other than the FOR. If this happened, the data table would no
longer match the source data set. To minimize this risk, the VSAM cross-region
SHAREOPTION should be set to 1 or 2.

� 1 means that either one region can have update access to the data set or
many regions can have read-only access.

� 2 means that one region can have update access to the data set and, at the
same time, many regions can have read-only access.

Regardless of the setting of DISP, a warning message is issued if the cross-region
SHAREOPTION is 3 or 4, or if it is 2 but the CICS-maintained data table has
read-only access (which means another region might be able to update the data
set).

 Data integrity
A file that uses a CICS-maintained data table can be defined as a recoverable
resource. The source data set is recovered in the normal way after a system or
transaction failure:

� After a system failure, the data table is reloaded from the recovered source
data set when the file is reopened.

� After a transaction failure, changes that are made to the source data set by
dynamic transaction backout are also made to the data table.

Automatic journaling is supported (in the same way as for any other file) for file
operations that access the source data set. File operations that do not access the
source data set are not journaled.

 CMT operations
CICS loads a data table by copying each record from the source data set when the
file is opened. A global user exit, XDTRD, can be invoked for each record before it
is copied. The user-written exit program can reject records that are not to be
copied. If you are using this user exit, you should ensure that the user exit is
activated before the file is opened.

For information about writing user exits, see Chapter 7, “Customization” on
page 43. For information about activating user exits, see “Activating user exits” on
page 60.

10 CICS/ESA Shared Data Tables Guide

Chapter 3. User-maintained data table

If a file is defined as a user-maintained data table (UMT), the source data set and
the data table are treated by CICS as separate entities. After a user-maintained
data table has been loaded, it is independent of its source data set; the source data
set is not updated when the data table is updated. Thus, a user-maintained data
table is particularly suited to applications that make frequent updates to data that is
of a transitory nature.

If the data table and source data set are updated separately, by defining them as
different files, changes to one are not automatically reflected in the other.

UMT application programming
If a request cannot be satisfied from a user-maintained data table, CICS does not
access the source data set (as it would for a CICS-maintained data table); instead
it returns an exceptional-condition response.

Records that were in the source data set when the data table was opened might be
absent from the data table because they were not copied during loading. This
could be due to suppression by the user exit XDTRD or some abnormal event such
as the data table becoming full.

Some application programming requests are not supported for a user-maintained
data table. They include, for example, read requests that use the UPDATE option
with an imprecise key. You might need to change existing applications to avoid
these requests or to handle the exceptional conditions returned by CICS. For more
information, see “User-maintained data table” on page 28.

You can use the user exits in data table services to put only the records that you
need to access in the data table; there is no possibility of the source data set being
accessed for those that you do not load.

You can also use the user exit XDTRD to modify each record (by selecting only a
subset of its fields, for example) when it is loaded.

UMT resource definition
You define a file as a user-maintained data table by one of the following methods:

� CEDA DEFINE FILE command
 � DFHFCT macro

You can also change the definition of an existing file by:

� EXEC CICS SET FILE command
� CEMT SET FILE command

You can load multiple user-maintained data tables from the same source data set
by using a separate command or macro to define each data table and making all
the definitions refer to that data set.

 Copyright IBM Corp. 1992, 1994 11

Though a data table must be loaded from a VSAM KSDS, an application can then
copy records to a user-maintained data table from any data source that is
accessible from the CICS address space. This could be an IMS or DB2 file. The
KSDS that is used as the source data set for the data table can be empty; it is
needed only to define the maximum record length and the key length and position.

Variable-length record format must be specified for a user-maintained data
table. The maximum record length that is supported by SDT is 32KB. This length
exceeds that supported by CICS file management, which thus imposes the actual

| limit. (See the topic dealing with lengths of areas passed to CICS commands in
| the CICS/ESA Application Programming Guide for further information.) The

maximum number of records supported is 16 777 215.

For more information, see Chapter 6, “Resource definition” on page 35.

 Data integrity
A user-maintained data table can be defined as a recoverable resource. However,
changes to the data table are not recorded in the system log. Thus the data table
can be recovered after a transaction failure (by dynamic backout) but not after a
system failure.

After a system failure, the data table is reloaded from the source data set when the
file is reopened. Remember that, at the time of failure, the contents of the source
data set and data table would not have been the same unless you had ensured
that either:

� No change is made to either, or
� Any change is made to both.

Automatic journaling is supported only for requests that access the source data set
during loading. The records that are accessed by the loading process are
journaled before user exit XDTRD, and the records that are accessed due to
application requests are journaled after user exit XDTRD.

 UMT operations
Like a CICS-maintained data table, a user-maintained data table is loaded when
the file is opened. However, unlike a CICS-maintained data table, the global user
exit XDTRD can be used to both select and modify the records from the source
data set that are included in the data table.

The user exit XDTAD can be used to select the records that are added to the table
after initial loading. This user exit cannot modify the records because, as the
records are written by the application, it is assumed that they are already in the
format used in the data table.

If you are using these user exits, you should ensure that the user exits are
activated before the file is opened.

For information about writing user exits, see Chapter 7, “Customization” on
page 43. For information about activating user exits, see “Activating user exits” on
page 60.

12 CICS/ESA Shared Data Tables Guide

 Chapter 4. Planning

The sole reason for using data tables is to take advantage of the performance
benefits that they offer. This chapter discusses:

� Performance benefits of data tables
� Selecting files for use as data tables

 � Security checking
� SDT support on different releases of CICS
� Planning for SDT support

 Performance benefits
This section contains Diagnosis, Modification, or Tuning Information.

Performance of a CICS-maintained data table
If all the data and index records of a file are completely contained in an LSR pool,
defining the file as a CICS-maintained data table does not reduce DASD I/O
activity. There is, however, considerable potential for reduction in CPU
consumption. Also, you might be able to reduce the number of buffers in the LSR
pool.

If the file is not completely contained in an LSR pool, using a CICS-maintained data
table could result in reductions in both DASD I/O activity and CPU consumption.

The saving of CPU consumption for a CICS-maintained data table, compared with
a VSAM KSDS resident in a local shared resource (LSR) pool, depends on the
application usage. Table 1 on page 14, and Table 2 on page 14 show
comparative performance measurements that can be achieved with CICS/ESA
release 3.3, MVS/DFP release 3.3, and MVS/ESA release 4.2.2 running on a
uni-processor capable of executing one million instructions per second.

The data table was loaded before taking the measurements. The file was not
defined as recoverable, thus no time was spent on logging for either the VSAM file
or the data table.

 Copyright IBM Corp. 1992, 1994 13

Table 1. CICS-maintained data table performance for single-region use

Application request CPU time for
VSAM file

CPU time for
CMT

CMT as % of
VSAM file

Read 3.69 1.08 29

Read (not found) 5.07 1.01 20

Read for update 3.81 3.82 100

Rewrite 9.83 11.16 114

Delete 13.44 14.81 110

Write 13.10 14.86 113

Start browse 3.54 1.08 31

Read next 1.37 0.99 72

Read previous 1.41 0.99 70

End browse 1.26 0.69 55

Table 2. CICS-maintained data table performance for cross-region sharing. The AOR
and FOR figures apply to the dispatchable unit that is being used, not the address
space. Function shipping, when required, was done with MRO.

Application request CPU time for VSAM
file

CPU time for CMT

AOR FOR Total AOR FOR Total % of
VSAM

Read 4.76 8.02 12.78 1.28 0 1.28 10

Read (not found) 4.96 9.30 14.26 1.23 0 1.23 9

Read for update 4.75 8.15 12.90 4.77 8.14 12.91 100

Rewrite 4.76 14.08 18.84 4.73 15.18 19.91 106

Delete 4.70 17.68 22.38 4.72 18.76 23.48 105

Write 4.72 17.27 21.99 4.74 18.81 23.55 107

Start browse 4.98 7.71 12.69 1.30 0 1.30 10

Read next 4.75 5.74 10.49 1.18 0 1.18 11

Read previous 4.75 5.70 10.45 1.19 0 1.19 11

End browse 4.67 5.40 10.07 0.72 0 0.72 7

Performance of a user-maintained data table
After the loading of a user-maintained data table, DASD I/O activity is eliminated
from all data table operations, so the saving of CPU consumption compared with a
VSAM KSDS resident in an LSR pool is considerable.

Table 3 on page 15, and Table 4 on page 15 show comparative performance
measurements that can be achieved with CICS/ESA release 3.3, MVS/DFP release
3.3, and MVS/ESA release 4.2.2 running on a uni-processor capable of executing
one million instructions per second. The data table was loaded before taking the
measurements.

14 CICS/ESA Shared Data Tables Guide

Table 3. User-maintained data table performance for single-region use

Application request CPU time for
VSAM file

CPU time for
UMT

UMT as % of
VSAM file

Read 3.69 1.08 29

Read (not found) 5.07 1.01 20

Read for update 3.81 1.19 31

Rewrite 9.83 1.33 14

Delete 13.44 1.54 11

Write 13.10 1.91 15

Start browse 3.54 1.08 31

Read next 1.37 0.99 72

Read previous 1.41 0.99 70

End browse 1.26 0.69 55

Table 4. User-maintained data table performance for cross-region sharing. The AOR
and FOR figures apply to the dispatchable unit that is being used, not the address
space. Function shipping, when required, was done with MRO.

Application request CPU time for VSAM
file

CPU time for UMT

AOR FOR Total AOR FOR Total % of
VSAM

Read 4.76 8.02 12.78 1.28 0 1.28 10

Read (not found) 4.96 9.30 14.26 1.23 0 1.23 9

Read for update 4.75 8.15 12.90 4.76 5.50 10.26 80

Rewrite 4.76 14.08 18.84 4.76 5.49 10.25 54

Delete 4.70 17.68 22.38 4.71 5.71 10.42 47

Write 4.72 17.27 21.99 4.73 6.09 10.82 49

Start browse 4.98 7.71 12.69 1.30 0 1.30 10

Read next 4.75 5.74 10.49 1.18 0 1.18 11

Read previous 4.75 5.70 10.45 1.19 0 1.19 11

End browse 4.67 5.40 10.07 0.72 0 0.72 7

 Storage use
Shared data tables provide efficient use of data in memory. This means that
considerable performance benefits are achieved at the cost of some additional use
of storage.

This overview of the use of storage assumes that you understand the distinction
between various types of storage, such as real and virtual storage, and address
space and data space storage.

SDT uses virtual storage as follows:

� Record data is stored in a data space, which is virtual storage separate from
address space virtual storage. The total record data storage at loading time is
basically the total size of all records (without keys, which are stored in

 Chapter 4. Planning 15

table-entry storage) plus a small amount of control information. Data space
storage is acquired in units of 16MB, and then allocated to individual tables in
increments of 128KB.

If many records are increased in length after loading, or new records are added
randomly throughout a large part of the file, the amount of storage will be
increased, possibly up to twice the original size.

� Table-entry storage is allocated from MVS storage above the 16MB line in the
address space of the CICS file-owning region. It is allocated in increments of
32KB.

There is one entry for each record in the table, plus one entry for each gap in
the key sequence. The size of each entry is the keylength + 9 bytes, rounded
up to the next multiple of 8 bytes.

� Index storage is also allocated from MVS storage above the 16MB line in the
address space of the CICS file-owning region. It is allocated in increments of
32KB.

The size of this area depends on the distribution and format of the key values
as well as the actual number of records, as indicated in Table 5.

� ECSA storage is used for some small control blocks that need to be accessed
by all regions that share data tables.

Converting a file into a shared data table could lead to an increased use of real
storage, but the use of real storage for VSAM LSR buffers might be reduced if few
updates are made. Also, an application that currently achieves high performance
by replicating read-only tables in each CICS region might be able to make large
storage savings by sharing a single copy of each table.

Table 5. Key distribution and format

Key distribution Key format Bytes per record

Dense (all keys are
consecutive)

binary
decimal
alphabetic

5.1
8.5
19

Sparse (no keys are
consecutive)

decimal
alphabetic

44
51

Worst possible case - 76

Selecting files for use as data tables
It is not possible to lay down any exact rules about whether a file will benefit from
conversion to a shared data table. Many factors need to be taken into
consideration, and an analysis of the potential uses of shared data tables support
should ideally be undertaken by someone with a knowledge of how the files are
used by the various applications, and of the configuration of the CICS regions.

The following checklist gives some general guidance. Additional sources of
information that could help you to select the files include:

� File statistics. “Using statistics to select data tables” on page 18 describes how
you can use statistics information as one of the inputs to the selection task.

� The LSR pool statistics.

16 CICS/ESA Shared Data Tables Guide

 � Trace entries.

 � Monitoring data.

However, the most beneficial input to the selection process is a thorough
understanding of the applications and the way in which they use the files.

 Checklist
If your installation is using data tables for the first time, the following checklist gives
some general principles to help you select files for defining as data tables.

� You should consider using CICS-maintained data tables first, as these are
easier to implement. If you use a CICS-maintained data table, no changes are
required to the applications. If you use a user-maintained data table, some
changes might be required.

� Use a CICS-maintained data table if you need to ensure the integrity of the
data table across a CICS restart.

� Use a CICS-maintained data table if you require journaling of updates. If you
require journaling of all access requests, the file is not suitable as a data table.

� The exec interface user exits XEIIN and XEIOUT, and the file control user exits
XFCREQ and XFCREQC are not invoked in the file-owning region if a request
to access a data table is satisfied by cross-memory services. When selecting a
file, you should ensure that successful operation of your application does not
depend on any activity performed at these user exits.

� You should be aware of the security implications of sharing a data table, as
described in “Security checking” on page 23.

� If a file is frequently accessed from another region, or if it is accessed by many
other regions, or if the accesses are predominantly read requests, then the
benefits of making it a data table can be very large. Remember that the
performance gain for a remote file is greater than for a local file (see
“Performance benefits” on page 13).

� For a CICS-maintained data table, select files that have a reasonably high
proportion of requests that will access only the data table (see Chapter 5,
“Application programming” on page 27). From among those, select the files
with the highest usage of these requests, in order to maximize the performance
gains.

Information on file usage can be found in the CICS statistics for file control,
which are described in the CICS/ESA Performance Guide. Not all read
requests can take advantage of the data table, so you should check the data
table information in the CICS statistics report afterward to verify that the data
table is being used effectively. See “Interpreting data table statistics” on
page 51 for more information.

� For a user-maintained data table, select files that have a large proportion of
update activity but do not require the updates to be recovered across a CICS
restart (see “Data integrity” on page 12).

� Use the performance measurements given earlier in this chapter to estimate
the approximate CPU savings, bearing in mind any forecasts for future usage.

� Select one or two files with the best estimates. Give preference to a small file
over a large file when the estimated savings are similar, because a small file
will probably use less real storage.

 Chapter 4. Planning 17

� Monitor your real storage consumption. If your system is already real-storage
constrained, using a large data table could increase your page-in rates. This in
turn could adversely affect CICS system performance. Use your normal
performance tools, such as RMF II, to look at real-storage usage and paging
rates.

� Consider reducing the number of buffers in the LSR pool because the use of
data tables could reduce the number of times that the LSR pool is used.

� You can use the user exit XDTRD to select the records included in the data
table. In addition, for a user-maintained data table, you can use user exit
XDTRD to modify the records. Thus you can optimize the use of virtual and
real storage by storing in the data table only the data that you need.

� A very large data table might require more virtual storage than your usual
region limit. In this case, you can either increase the region size (using the
JCL REGION parameter) or use the user exit XDTRD to suppress some
records.

Note: The effect of the REGION parameter on requests for storage above the
16MB line in your installation can be modified or overridden by the IEFUSI exit.
The IEFUSI exit is described in the MVS/ESA SPL: System Modifications
manual (GC28-1831).

Existing data table users: If your installation already used the basic data tables
support available in CICS/ESA Version 3 before you migrated to CICS/ESA 4.1 and
SDT support, you might notice a very small performance degradation (up to 3%)
with applications that perform a large proportion of READ commands with precise
keys and that do not share the data table between regions. On the other hand,
with SDT, you can probably extend the use of data tables to other applications that
were previously not able to take advantage of the performance benefits of data
tables.

Using statistics to select data tables
This section covers just one of the possible inputs to the selection task—the
information available from the file statistics.

Figure 3 on page 19, Figure 4 on page 20, and Figure 5 on page 21 show some
extracts from a hypothetical set of file statistics, which are used in the following
discussion to demonstrate how CICS statistics can aid the selection process. The

| statistics are displayed as they would be reported by the CICS/ESA release 4.1
offline formatting utility. Requested file statistics are shown, but Interval or End of

| Day statistics would be equally suitable. The section of File “Performance
| Information” statistics, which reports use of VSAM strings and buffers, is not shown
| here.

The numbers shown in the figures are purely for the purposes of illustration, and
you should not expect the statistics at your installation to resemble them at all
closely. Similarly, the configuration of CICS regions and files has been chosen to
highlight certain points; it is not suggested that this is either a typical or a desirable
configuration.

“Interpreting data table statistics” on page 51 discusses the statistics that are
reported for files that have been defined as data tables, which you can use to
assess the benefits being obtained.

18 CICS/ESA Shared Data Tables Guide

| Requested Statistics Report Collection Date-Time 12/25/99-11:51:51 Last Reset A9:AA:AA Applid CICFOR Jobname SDTGSTF1

| ___

| FILES - Resource Information

| ____________________________

| File Dataset Name Dataset DT Time Time Remote Remote Lsrpool

| Name Base Dataset Name (If Applicable) Type Indicator Opened Closed Name Sysid ID

| __

| APPLE CICA1.CICOWN.APPLES K A7:44:12 OPEN 1

| BANANA CICA1.CICOWN.BANANAS K A9:45:A8 OPEN 1

| ORANGE CICA1.CICOWN.CITRUS K 1A:51:1A OPEN 2

| PEAR CICA1.CICOWN.PEARS K A7:3A:14 OPEN 3

| __

| Requested Statistics Report Collection Date-Time 12/25/99-11:51:51 Last Reset A9:AA:AA Applid CICFOR Jobname SDTGSTF1

| ___

| FILES - Requests Information

| ____________________________

| File Get Get Upd Browse Update Add Delete VSAM EXCP Requests

| Name Requests Requests Requests Requests Requests Requests Data Index

| ___

| APPLE 2317265 1A2A A 1A19 21 1 115A3 31A

| BANANA 536452 1674 2A344 1674 9A8 A 2651 7A

| ORANGE 2A69454 9856A 17831 98327 4543 2563 8511 481

| PEAR 45871 65493 6512 65493 3A1A9 362 3773 231

| ___

| OTOTALSO 4969A42 166747 44687 166513 35581 2926

| Requested Statistics Report Collection Date-Time 12/25/99-11:51:51 Last Reset A9:AA:AA Applid CICFOR Jobname SDTGSTF1

| ___

| FILES - Data Table Requests Information

| _______________________________________

| File Close Read Recs ¬ Adds from Add Adds rejected Adds rejected Rewrite Delete Highest Storage

| Name Type Requests in Table Reads Requests - Exit - Table Full Requests Requests Table Size Alloc(K)

| ___

| DFHSTA223 I There are no data table statistics to report.

Figure 3. CICFOR requested file statistics

 Chapter 4. Planning 19

| Requested Statistics Report Collection Date-Time 12/25/99-11:51:38 Last Reset A9:AA:AA Applid CICAOR1 Jobname SDTGSTA1

| ___

| FILES - Resource Information

| ____________________________

| File Dataset Name Dataset DT Time Time Remote Remote Lsrpool

| Name Base Dataset Name (If Applicable) Type Indicator Opened Closed Name Sysid ID

| __

| APPLE REMOTE CLOSED CLOSED APPLE CIF1 N

| BANANA REMOTE CLOSED CLOSED BANANA CIF1 N

| ORANGE REMOTE CLOSED CLOSED ORANGE CIF1 N

| ZUCCHINI REMOTE CLOSED CLOSED COURGETT CIA2 N

| __

| Requested Statistics Report Collection Date-Time 12/25/99-11:51:38 Last Reset A9:AA:AA Applid CICAOR1 Jobname SDTGSTA1

| ___

| FILES - Requests Information

| ____________________________

| File Get Get Upd Browse Update Add Delete VSAM EXCP Requests

| Name Requests Requests Requests Requests Requests Requests Data Index

| ___

| APPLE 11587A1 532 A 531 11 1 A A

| BANANA 3A5641 A 19A67 A A A A A

| ORANGE 587A9 32854 4265 32621 1A18 1AA1 A A

| ZUCCHINI 78914 A 14765 A A A A A

| ___

| OTOTALSO 16A1965 33386 38A97 33152 1A29 1AA2

| Requested Statistics Report Collection Date-Time 12/25/99-11:51:38 Last Reset A9:AA:AA Applid CICAOR1 Jobname SDTGSTA1

| ___

| FILES - Data Table Requests Information

| _______________________________________

| File Close Read Recs ¬ Adds from Add Adds rejected Adds rejected Rewrite Delete Highest Storage

| Name Type Requests in Table Reads Requests - Exit - Table Full Requests Requests Table Size Alloc(K)

| ___

| DFHSTA223 I There are no data table statistics to report.

Figure 4. CICAOR1 requested file statistics

20 CICS/ESA Shared Data Tables Guide

| Requested Statistics Report Collection Date-Time 12/25/99-11:49:31 Last Reset A9:AA:AA Applid CICAOR2 Jobname SDTGSTA2

| ___

| FILES - Resource Information

| ____________________________

| File Dataset Name Dataset DT Time Time Remote Remote Lsrpool

| Name Base Dataset Name (If Applicable) Type Indicator Opened Closed Name Sysid ID

| __

| COURGETT CICA2.CICOWN.COURGETT K A8:22:15 OPEN 1

| LEMON REMOTE CLOSED CLOSED ORANGE CIF1 N

| __

| Requested Statistics Report Collection Date-Time 12/25/99-11:49:31 Last Reset A9:AA:AA Applid CICAOR2 Jobname SDTGSTA2

| ___

| FILES - Requests Information

| ____________________________

| File Get Get Upd Browse Update Add Delete VSAM EXCP Requests

| Name Requests Requests Requests Requests Requests Requests Data Index

| ___

| COURGETT 78914 27469 14765 27469 336472 A 8212 481

| LEMON 2A1A745 657A6 13566 657A6 3525 1562 A A

| ___

| OTOTALSO 2A89659 93175 28331 93175 339997 1562

| Requested Statistics Report Collection Date-Time 12/25/99-11:49:31 Last Reset A9:AA:AA Applid CICAOR2 Jobname SDTGSTA2

| ___

| FILES - Data Table Requests Information

| _______________________________________

| File Close Read Recs ¬ Adds from Add Adds rejected Adds rejected Rewrite Delete Highest Storage

| Name Type Requests in Table Reads Requests - Exit - Table Full Requests Requests Table Size Alloc(K)

| ___

| DFHSTA223 I There are no data table statistics to report.

Figure 5. CICAOR2 requested file statistics

The examples use a hypothetical configuration of three CICS regions. Most of the
files used by CICS applications are owned by the file-owning region CICFOR, and
the applications mostly run in the application-owning regions CICAOR1 and
CICAOR2. This discussion assumes that each of the data sets shown in the

| statistics reports is a VSAM base KSDS (as indicated by the Dataset Type of K), so
any of them can be defined as data tables.

| The 4.1 statistics also show you which file names in one region are defined to
| access which file names in another region. The Remote Sysid is the name given
| on the connection between the two regions. In the examples, the SYSID of
| CICFOR is CIF2 and that of CICAOR2 is CIA2.

A file with a high read-to-update ratio
The file APPLE is used by applications that run on the application-owning region
CICAOR1. It is defined in CICAOR1 as a remote file, and the file definition points
to the file APPLE owned by CICFOR. This file would benefit from being redefined
in CICFOR as a CICS-maintained data table because it has a high ratio of remote
reads (1158701 Get Requests in the time period covered by the reports) to remote
updates (11 adds, 1 delete and 531 updates) as seen in Figure 4 on page 20.

| See the CICS/ESA Performance Guide for guidance on the meanings of the “FILES
| - Requests Information” section of a statistics report.

 Chapter 4. Planning 21

A file with a high proportion of remote reads
The file BANANA is updated and read on CICFOR, but is also accessed by
CICAOR1. Because all the remote accesses are reads and browses, with no
updates, the applications running in CICAOR1 would probably see large benefits if
BANANA was defined as a data table, and the applications on CICFOR would also
benefit by reading from the local data table.

A file shared by several regions
From a study of the statistics in Figure 4 on page 20 it might appear that
ORANGE is not an especially suitable data table candidate, as the numbers of
remote retrievals from CICAOR1 (58709 Get Requests and 4265 Browse Requests)

| are relatively low. However, the remote file LEMON in CICAOR2 also points to
| ORANGE in CICFOR, so defining ORANGE in CICFOR as a shared

CICS-maintained data table would probably benefit the performance of the
applications in both AORs.

A good UMT candidate
The file COURGETT owned by CICAOR2 is accessed via the filename ZUCCHINI
in CICAOR1. CICAOR1 only reads or browses the file; any updating is issued by
the owning region. Also, it is known that these updates are relevant only to the
day’s CICS run and do not need to be retained permanently (in fact, they are
deleted at shutdown). The file is therefore an excellent candidate for defining as a
user-maintained data table. Then, all the updates can be made to the data table
without any VSAM I/O activity, and all the remote retrievals can be made without
function shipping.

Note that COURGETT could not be defined as a user-maintained data table if
| CICAOR2 were not a CICS system with SDT support (that is, a CICS/ESA 4.1

system or a CICS/ESA 3.3 system with the SDT feature installed), because browse
requests are issued to that file and browsing of a user-maintained data table is
supported only by SDT. Also, the statistics do not show whether any of the Get
requests specify the GENERIC or GTEQ options; these also are supported for a
user-maintained data table only by SDT.

A rather poor candidate
The file PEAR would probably not benefit much from shared data tables support
because it is not accessed remotely and has many update and browse requests.
Local browsing does not offer as much benefit as either local reading or any form
of remote retrieval, because VSAM browsing (apart from processing of the
STARTBR command) is very efficient. This analysis, of course, does not consider
the relative importance of the various file accesses: the reading might be done by
critical applications, but the time taken for updates might not be important.

Other possible candidates
The preceding examples illustrate only a small sample of the possible
configurations and uses of files that could benefit from shared data tables support.

You could also use shared data tables support to avoid the need to duplicate files
or data tables in each region. And, in addition to looking at existing files, you could
consider moving files from an AOR to an FOR where this was not practical before
because of the cost of file accesses using function shipping.

22 CICS/ESA Shared Data Tables Guide

 Security checking
The security checking that is performed by the SDT LOGON and CONNECT
operations is introduced in “How a data table is shared” on page 5. You should
consider the implications of the security checks before sharing a file that is
associated with a data table.

For information about RACF, function-shipping security, and implementing security
checking for shared data tables, see the CICS/ESA CICS-RACF Security Guide.

LOGON security check
To minimize the risk that an application-owning region (AOR) might accept
counterfeit data records from a file-owning region (FOR) which is in fact an
impostor, LOGON processing includes a security check to verify that the FOR is
authorized to act as a server with the specified application name. This check is
never bypassed, even when SEC=NO is specified at system initialization.

CONNECT security checks
The security checks performed at CONNECT time provide two levels of security:

� Bind security allows an FOR that runs without CICS file security to be able to
restrict shared access to selected AORs. (Running without file security
minimizes run-time overheads and the number of security definitions.)

� File security can be activated in the FOR if you need a finer granularity of
security checking. Then, SDT implements those checks that apply to the AOR
as a whole.

SDT provides no way of implementing those security checks that an FOR makes at
the transaction level when ATTACHSEC(IDENTIFY) or ATTACHSEC(VERIFY) is
used with function shipping.

SDT support on different releases of CICS
To benefit from the cross-memory support provided by SDT, you must be running
with SDT support in both the requesting and serving CICS systems. This means
that each system must either be running CICS/ESA 4.1, or be a CICS/ESA 3.3
system with the SDT feature installed.

If only the requesting CICS system has SDT support, there is no effect apart from
the very small overhead of occasional attempts to determine whether the server
system supports sharing. All requests continue to be function shipped.

If only the serving CICS system has SDT support, all requests continue to be
function shipped by the requester. The requester does, however, obtain the
benefits of local data table accesses made by the server.

Planning for SDT support
To use SDT support, you must perform the following tasks. Some of them will
already have been done for an installation that currently uses function shipping
and/or data tables.

 Chapter 4. Planning 23

� Either ensure that the following modules are in an authorized system library in
the LNKLST of the MVS system, or move them into a library in the LPALST
concatenation.

– DFHDTSVC and DFHDTCV, because all regions using shared data tables
must use the same level of SVC code

– DFHMVRMS, the RESMGR exit stub, because CICS JOBLIB/STEPLIB
data sets are unavailable at end-of-memory.

These modules are placed by the installation of CICS/ESA 4.1 into the target
library SDFHLINK, which is normally included in the LNKLST concatenation.

– If SDFHLINK is in the LNKLST concatenation, you should issue the
operator command MODIFY LLA,REFRESH and wait for the confirmatory
message CSV21AI LIBRARY LOOKASIDE REFRESHED in order to make the
modules available.

– If SDFHLINK is not in the LNKLST concatenation, you should either copy
the modules into a suitable library that is included and issue an LLA
refresh, or copy the modules into a library in the LPALST concatenation
and re-IPL the MVS system specifying CLPA.

� If any files in any AOR are to exploit sharing, then make sure that CICS is
defined as an MVS subsystem.

| � Define security authorization so that FORs can act as SDT servers and AORs
| can access files owned by servers, depending on the level of security required.
| In a single MVS image:

| – Any number of FORs can act as SDT servers

| – A single AOR can use any number of these FORs

| – A single FOR can serve any number of AORs

| – A region can act as an AOR for one data table and as an FOR for a
| different data table.

| � If, for some reason, two FORs have the same APPLID, at any given time SDT
| ensures that only one of these FORs is used as an SDT server. However,
| there is nothing to prevent one FOR acting as an SDT server and another
| FOR, with the same APPLID, being used for function shipped requests. You
| should check that your operational procedures do not allow this because,
| otherwise, there is a risk that data table requests that use SDT services will not
| be directed to the same region as requests that use function shipping.

� Define those files in the FOR which are to be data tables as either
CICS-maintained data tables or user-maintained data tables.

� Create additional remote file definitions in the AOR if required. No changes are
needed to existing remote file definitions.

� For any AOR that is to share data tables, specify ISC=YES as a system
initialization parameter and define MRO or ISC links to the relevant FORs.

� Before using shared data tables, you might need to change some of your JCL
statements, modify your operational procedures, or increase the value of the
MAXUSER MVS initialization parameter. For more information, see “MVS job
control” on page 51.

24 CICS/ESA Shared Data Tables Guide

 Load modules
Table 6 shows the load modules that need to be installed in your CICS system in
order to use SDT.

Storage occupancy: The total size of the modules that occupy storage above the
16MB line is about 41KB. For modules that are in ECSA storage, about 1.5KB are
required for each logged-on FOR, and about 0.5KB for each AOR.

The modules are all eligible for inclusion in the link pack area (LPA), but only
DFHDTFOR, DFHDTAM, DFHDTAOR, and possibly DFHDTCV are used
sufficiently frequently to be worth considering.

Warning: If you place the module DFHDTINS in the LPA of an MVS system in
which you use CICS/ESA release 3.2.1 in any region, or if you mistakenly place
DFHDTINS in the SDFHLOAD library of a CICS/ESA 3.2.1 region, the CICS/ESA
3.2.1 regions will not be able to use any data tables that they have defined.
Messages DFHFC0403 or DFHFC0412 are issued to warn you that this situation
has occurred. If you wish to avoid any such problems, you should install in all of
your CICS/ESA 3.2.1 regions the PTF that is associated with APAR PN18841.

Table 6. Load modules in SDT

Load
module

Load
library

How loaded Description

DFHDTINS SDFHLOAD CICS load above the
16MB line

Initialization

DFHDTSVC SDFHLINK MVS LOAD above the
16MB line from link-list

Performs all functions that
need MVS authorization

DFHDTFOR SDFHAUTH MVS LOAD above the
16MB line

Data table FOR module

DFHDTAM SDFHAUTH MVS LOAD into subpool
252 storage above the
16MB line

Data table access
manager. It includes code
that is executed in
cross-memory mode from
an AOR

DFHDTAOR SDFHAUTH MVS LOAD above the
16MB line

Data table AOR module

DFHDTCV SDFHLINK MVS LOAD into ECSA
from link-list

Connection validation
(AOR)

DFHDTXS SDFHAUTH MVS LOAD into ECSA Connection security
checking (FOR)

DFHMVRMS SDFHLINK MVS LOAD above the
16MB line from link-list

Resource manager
EOT/EOM interface code

 Chapter 4. Planning 25

26 CICS/ESA Shared Data Tables Guide

 Chapter 5. Application programming

This chapter contains General-use Programming Interface and Associated
Guidance Information.

You access a data table with the same EXEC CICS file control commands that you
use with any normal CICS file. These commands can be used fully with a
CICS-maintained data table and with some restrictions with a user-maintained data
table. General information about using these commands is in the CICS/ESA
Application Programming Guide; for programming information, see the CICS/ESA
Application Programming Reference.

CICS-maintained data table
CICS handles a CICS-maintained data table and its source data set as a single
entity. After the data table has been loaded, CICS automatically keeps the
contents of the data table and the source data set consistent; any changes that an
application makes to the file are reflected in both.

All file control commands and options can be used and the use of a data table is
transparent to the application programmer. The following information is provided to
allow you to get the maximum benefits from your data tables.

Some commands are performed by access only to the data table (via
cross-memory services for shared files), some by access only to the source data
set (via function shipping for shared files), and some by access to both.

The following commands usually access only the data table:

� READ commands without the UPDATE or RBA options

� STARTBR, RESETBR, READNEXT, and READPREV commands without the
RBA option

The following commands access only the source data set:

� READ commands with the UPDATE or RBA options

� STARTBR, RESETBR, READNEXT, and READPREV commands with the RBA
option

� ENDBR command for a browse sequence that has accessed the source data
set

The following commands might access both the data table and the source data set:

� READ and browse commands (which would usually access only the data table)
that find a gap in the sequence of records in the data table. This gap might
indicate that one or more records are missing from the data table because:

– Records have been suppressed by a user exit
– The maximum number of records has been reached
– Insufficient virtual storage is available for the data table
– Some abnormal event has occurred

� READ, READNEXT, and READPREV commands for records that are currently
being processed by a WRITE, REWRITE, or DELETE command. These

 Copyright IBM Corp. 1992, 1994 27

commands need to first access the data table to determine that this situation
exists.

� WRITE, REWRITE, and DELETE commands. These commands are always
executed in the FOR, where they first update the source data set. If this is
successful, a corresponding change to the data table is attempted, using local
SDT services in the FOR. In the case of a WRITE command, the addition of
the record to the data table might be rejected by the XDTAD user exit or might
fail because the data table is full or insufficient virtual storage is available.

Using a CICS-maintained data table during loading
It is possible to use a CICS-maintained data table while it is being loaded. If the
required record has already been loaded, processing of the request is handled in
the normal way. If the record has not yet been loaded, the following is done:

� For a READ command, the record is read from the source data set and
returned to the application program. It is added to the data table when the
normal loading sequence reaches it.

� For a WRITE command, the record is added to the source data set and the
data table (if not suppressed by the user exit XDTAD).

� For a REWRITE or DELETE command, the change is applied to the source
data set. This change will then be reflected in the data table by the normal
loading process.

User-maintained data table
CICS handles a user-maintained data table and its source data set as separate
entities. When loading is complete, all file control commands that access the
filename are performed only on the data table.

There are some restrictions on which commands and options can be used. There
are also some exceptional conditions that are unique to user-maintained data
tables. These restrictions and conditions are described below.

The following commands are not supported; they return the INVREQ condition and
a value of 44 in the EIBRESP2 field:

� Commands with the RBA option

� WRITE commands with the MASSINSERT option

� DELETE commands with the GENERIC option

� READ commands with the UPDATE option plus either the GENERIC or GTEQ
options

The following commands are supported (via cross-memory services for remote
accesses):

� READ commands with neither the RBA option nor the UPDATE option. If the
record does not exist in the data table, the NOTFND condition is returned.

� STARTBR, RESETBR, READNEXT, and READPREV commands without the
RBA option.

 � ENDBR commands.

The following commands are supported (via function shipping for remote requests):

28 CICS/ESA Shared Data Tables Guide

� WRITE commands without the RBA or MASSINSERT options. The record is
added to the data table (if not suppressed by the XDTAD user exit).

The NOSPACE condition is returned if:

– There is not enough virtual storage to add the record to the data table.

– The data table already contains the maximum number of records that is
specified in the file definition.

The SUPPRESSED condition is returned if the user exit XDTAD suppresses
the addition of the record to the data table.

� REWRITE commands without the RBA option. The record is updated in the
data table. The NOSPACE condition is returned if there is insufficient virtual
storage for the updated record.

� DELETE commands without the GENERIC or RBA options. The record is
deleted from the data table. The NOTFND condition is returned if the record
does not exist in the data table. The NOSPACE condition is returned if the
data table is recoverable and there is insufficient virtual storage for the
information that CICS writes about the deleted record.

Using a user-maintained data table during loading
A user-maintained data table can be accessed only by the FOR during loading. All
remote requests are function shipped to the FOR, which processes them in the
same way as for a local request, as described below.

While a user-maintained data table is being loaded, you can use only non-update
read requests with precise keys. If the record has already been loaded, processing
of the request is handled in the normal way. If the record has not yet been loaded,
the record is read from the source data set and submitted to the user exit XDTRD
(if activated):

� If it is not suppressed by XDTRD, the record is added to the data table and
also returned to the application program.

� If it is suppressed by XDTRD, the NOTFND condition is returned.

The LOADING condition is returned for other requests that would have been valid
had loading been complete.

Use of cross-memory services
Cross-memory services are used to satisfy an application programming command
when all of the following conditions have been met:

� CICS must retrieve the SYSID of the target system from the file’s resource
definition in the AOR. This condition is met when the application programming
command either specifies no explicit SYSID or specifies a SYSID which is that
of the AOR itself, and the SYSID given in the file resource definition is that of
the FOR.

Within a single browse sequence, an application should not change between
specifying an explicit SYSID and not specifying one, as this is likely to lead to
unpredictable results.

� The serving system has logged on. That is, it has registered itself as a shared
data table owner.

 Chapter 5. Application programming 29

� The requesting system has connected to the server for the files specified on
the application programming command.

� The file supports the requested function.

Note: Function shipping of a request might result in “daisy chaining”; that is, the
request passes through one or more intermediate CICS nodes between the region
issuing the request (an AOR) and the region owning the resource (the FOR). In
such cases, use of shared data tables cross-memory services is limited to the final
link (from the last intermediate system to the FOR).

 Connection
Commands cannot use cross-memory services until the SDT connection is made
between the AOR and the remote data table. Also, if a browse sequence starts
before the connection is made, all subsequent requests in the sequence use
function shipping services. This is likely to occur if the connection cannot be
established at the STARTBR command because the data table is not open, and the
command causes the data table to be implictly opened. The connection will then
be made on the next new request to the data table, but the original browse
sequence continues to use function shipping services.

 Disconnection
When a connection has been made, it remains in force until either the AOR deletes
its remote file definition or the FOR closes or disables the file. The effects of close
or disable are described below.

� If the FOR closes the file (with or without the FORCE option), disconnection is
scheduled at the next non-update request that is issued for the file (that is, the
next request to attempt to use cross-memory services to access the data
table).

The disconnection takes place as soon as all outstanding browse sequences (if
any) against the file have terminated. Each browse sequence terminates either
at the next browse request (and the transaction is abended with code AFCH
unless the request is an ENDBR command) or when the transaction terminates.

After the disconnection is scheduled, all requests (except any outstanding
browse requests, as described above) are function shipped until a connection is
re-established.

� If the FOR disables the file without the FORCE option, disconnection is
scheduled at the next non-update READ or STARTBR command issued for the
file, unless the FOR re-enables the file before then.

If scheduled, disconnection takes place as soon as all outstanding browse
sequences (if any) against the file have ended. Such browse sequences
continue normally; they are unaffected by the disabling unless a browse of the
source data set is started in the FOR in order to satisfy a request in the browse
sequence (see “Disabling a data table” on page 31).

� If the FOR disables the file with the FORCE option, the effect is the same as
when a file is closed except that, if the FOR re-enables the file before the AOR
issues the next non-update request for the file, the disabling is not observed by
the AOR and so disconnection is not scheduled.

30 CICS/ESA Shared Data Tables Guide

Differences between function-shipping and cross-memory services
You should be aware of the following differences between the way requests are
handled, depending on whether function-shipping or cross-memory services are
used to access the data table.

Closing a data table
When function shipping is used for a browse sequence of a remote file, the file
cannot be closed (except by using the FORCE option) until after the browse
sequence ends.

When cross-memory services are used, it is possible for the file to be closed during
the browse sequence. In this case, the transaction is ended with abend code
AFCH at the next request for that file. If your applications or operational
procedures rely on the quiescing of browse activity either when closing a file or at
the normal shutdown of an FOR, you should review them before using a shared
data table for the file.

Disabling a data table
When function shipping is used for a browse sequence of a remote file, the browse
sequence, once started, can continue normally even if the file is then disabled
(unless the FORCE option is used).

When cross-memory services are used, the effect is the same unless, during the
browse sequence, it is necessary to function ship a STARTBR command to the
FOR. This can happen if, for example, a gap in a CICS-maintained data table
makes it necessary to browse the VSAM source data set to retrieve records. The
function-shipped STARTBR command fails if the file is then disabled by a request
that was issued by the FOR after the browse sequence started in the AOR. In this
case, the browse sequence is unable to continue normally, so the transaction in the
AOR is abended with code AFCH.

If the FORCE option is used with the disable request, all function-shipped browse
requests are always terminated. If the file is re-enabled, it is possible for browse
requests that use cross-memory services to continue unaffected (see
“Disconnection” on page 30).

 User exits
For function-shipped requests, the exec interface user exits XEIIN and XEIOUT,
and the file control user exits XFCREQ and XFCREQC are invoked in both the
AOR and FOR.

For cross-memory requests, these user exits are invoked only in the AOR.

 Security checking
For function-shipped requests, security checking in the FOR is invoked for the first
request that refers to a given file in each unit of work. Thus transaction-level
security checks can be performed in the FOR.

For cross-memory requests, security checking is invoked only at CONNECT time.
Thus transaction-level security checks cannot be performed in the FOR.

 Chapter 5. Application programming 31

Read request failure
If a read request via function shipping fails, the input area is unchanged.

| If a read request via cross-memory services fails, there is a chance that the input
| area will be altered although no record was retrieved. You should not therefore rely
| on the input area being unchanged, although you can be sure that the key will not
| have been changed.

EXEC interface block
You might notice that read requests via cross-memory services return a value in
the EIBRESP2 field. However, function-shipped requests do not, so your
applications should not be dependent on this field being set by read requests.

 Key length
For function-shipped requests, you must specify the correct key length either in the
remote-file definition in the AOR or explicitly on the file request (to match the key
length in the VSAM definition in the FOR). If you do not, the INVREQ condition is
returned for any request that accesses the file. This applies to any file, not just one
that is defined as a data table.

For cross-memory requests, the key length in the AOR is not used; requests can
complete successfully even if the key length is not specified in the AOR, or if the
key length specified in the AOR does not match that in the FOR. However, your
applications should not depend on this because some of the requests might be
function shipped.

Differences between SDT services and VSAM
Because SDT services replace VSAM for many data table requests, you should be
aware of the following differences in the way that certain requests are implemented.

Read while updating (different transactions)
In the case of a READ command for a data table record following a READ
UPDATE issued for that record by another transaction and preceding the
associated update request, when SDT services are used, the READ command is
processed immediately.

When VSAM is used, the READ command waits until the update request is
complete.

Read while updating (same transaction)
In the case of a READ command for a data table record following a READ
UPDATE issued for that record by the same transaction and preceding the
associated update request, when SDT services are used, the READ command is
processed immediately.

When VSAM is used, the transaction incurs a deadlock abend AFCG.

32 CICS/ESA Shared Data Tables Guide

Delete during browse
When SDT services are used for a STARTBR or RESETBR command for a data
table record, it is possible for the record to be deleted before the associated
READNEXT or READPREV command is issued. When VSAM is used, the record
cannot be deleted before the associated READNEXT or READPREV command is
issued.

Thus, when SDT services are used, if a STARTBR or RESETBR command is
issued with a key other than the special ‘last record’ key, X'FF....', and the record
selected is deleted before the READNEXT command, the READNEXT command
reads the succeeding record.

If there is no succeeding record, the ENDFILE condition is returned. If the EQUAL
option was used on the STARTBR or RESETBR, the key of the record that is read
might not match the key specified.

If a STARTBR or RESETBR command is issued with the special ‘last record’ key,
and the selected record is deleted before the READPREV command, the
READPREV command reads the preceding record, or returns the ENDFILE
condition if there is none.

Write during browse
When SDT services are used, if a browse reads to the end of a file, raising the
ENDFILE condition, and a new record is then inserted beyond the end of the file, a
subsequent READNEXT will be able to read the new record.

When VSAM is used, the subsequent READNEXT may not be able to find the new
record, but will instead report the ENDFILE condition again.

Delete while updating (same transaction)
When SDT services are used for a DELETE command which specifies a RIDFLD
for a data table record after a READ UPDATE has been issued for that record by
the same transaction and before the associated update request, the DELETE
command is processed successfully, and the associated update request receives a
NOTFND condition.

 Chapter 5. Application programming 33

34 CICS/ESA Shared Data Tables Guide

 Chapter 6. Resource definition

You define a data table in the same way as a CICS file except that you need to
specify in addition:

� Which type of data table is to be used
� The maximum number of records that can be held in the data table

Note: The VSAM KSDS definition supplies the maximum record length and
the key length.

You can define a file as a data table by one of the following methods:

� CEDA DEFINE FILE command
 � DFHFCT macro

Also, you can use:

� The EXEC CICS SET FILE or CEMT SET FILE command to change the data
table attributes of an existing file

� The EXEC CICS INQUIRE FILE or CEMT INQUIRE FILE command to check
the data table attributes of an existing file

The recommended method of defining a file is the CEDA DEFINE FILE command.
This is described below, together with the SET FILE and INQUIRE FILE
commands. For information about the DFHFCT macro, see the CICS/ESA
Resource Definition Guide.

CEDA DEFINE FILE command
Figure 6 on page 36 shows the CEDA panel for defining a file, including the data
table parameters.

 Copyright IBM Corp. 1992, 1994 35

X Y
 File ==>
 Group ==>
 DEscription ==> ...

 VSAM PARAMETERS

 DSNAme ==> ..

Password ==> PASSWORD NOT SPECIFIED

 Lsrpoolid ==> 1 1-8 | None

DSNSharing ==> Allreqs Allreqs | Modifyreqs

STRings ==> AA1 1 - 255

 Nsrgroup ==>

 REMOTE ATTRIBUTES

REMOTESystem ==>

 REMOTEName ==>

RECORDSize ==> 1 - 32767

 Keylength ==> ... 1 - 255

 INITIAL STATUS

STAtus ==> Enabled Enabled | Disabled | Unenabled

Opentime ==> Firstref Firstref | Startup

DIsposition ==> Share Share | Old

 BUFFERS

DAtabuffers ==> 2 - 32767

Indexbuffers ==> 1 - 32767

 DATATABLE PARAMETERS

Table ==> No No | Cics | User

Maxnumrecs ==> 16 - 16777215

 DATA FORMAT

RECORDFormat ==> V V | F

 OPERATIONS

Add ==> No No | Yes

BRowse ==> No No | Yes

DELete ==> No No | Yes

REAd ==> Yes Yes | No

Update ==> No No | Yes

 AUTO JOURNALING

JOurnal ==> No No | 1 - 99

JNLRead ==> None None | Updateonly | Readonly | All

JNLSYNCRead ==> No No | Yes

 JNLUpdate ==> No No | Yes

JNLAdd ==> None None | Before | AFter |ALl

JNLSYNCWrite ==> Yes Yes | No

 RECOVERY PARAMETERS

RECOVery ==> None None | Backoutonly | All

Fwdrecovlog ==> No No | 1-99

BAckuptype ==> STAtic STAtic | DYNamic

 SECURITY

 RESsecnum ==> AA A-24 | Public

] ^

Figure 6. CEDA DEFINE FILE panel

Full details of how to use the CEDA DEFINE FILE command to define files are
given in the CICS/ESA Resource Definition Guide. Only the parameters that relate
to data tables are described in this chapter.

TABLE({NO|CICS|USER})
Specify TABLE(CICS) to define the file as a CICS-maintained data table.

Specify TABLE(USER) to define the file as a user-maintained data table.

If you do not specify the TABLE parameter, or specify TABLE(NO), the file is
not defined as a data table.

MAXNUMRECS(value)
Specify the maximum number of records that can be contained in the data
table, in the range 16 through 16 777 215.

36 CICS/ESA Shared Data Tables Guide

FILE(name)
Specify the name of the file.
For a CICS-maintained data table, this name is used to refer to both the data
table and the source data set, which are treated as a single entity by CICS.

For a user-maintained data table, this name is used to refer to only the data
table.

DSNAME(name)
Specify the name of the VSAM KSDS that is to be used as the source data set.

LSRPOOLID(number|1)
Specify the number of the VSAM local shared resource (LSR) pool that is to be
used by the data table. CICS uses the LSR integrity function to prevent
concurrent reading and updating of the same record by multiple users, so you
must specify an LSRPOOL number, in the range 1 through 8. The default is
LSRPOOLID(1).

OPENTIME({FIRSTREF|STARTUP})
Specify when the file is to be opened, either on first reference or immediately
after startup by the automatically-initiated transaction CSFU.
OPENTIME(FIRSTREF) is assumed by default.

Remember that the data table is loaded when the file is opened, so, if you are
using the user exit XDTRD, make sure that the user exit is activated before the
file is opened (see “Activating user exits” on page 60).

RECORDFORMAT({V|F})
Specify the format of the records in the file—either RECORDFORMAT(V) for
variable-length records or RECORDFORMAT(F) for fixed-length records.

RECORDFORMAT(V) is assumed by default. A user-maintained data table
must have variable-length records.

ADD(NO|YES), BROWSE(NO|YES), DELETE(NO|YES), READ(YES|NO), and
UPDATE(NO|YES)
Specify which of these file operations can be requested for the data table.

RECOVERY({NONE|BACKOUTONLY|ALL})
Specify the type of recovery support that is required for the data table. The
default is RECOVERY(NONE).

For a user-maintained data table, only dynamic transaction backout is
supported by CICS, so RECOVERY(BACKOUTONLY) and RECOVERY(ALL)
have the same meaning.

For a CICS-maintained data table, the RECOVERY parameter applies to the
source data set; it must be consistent with any other file definition for the same
data set.

 Chapter 6. Resource definition 37

Example of a CICS-maintained data table definition
The following example shows the definition of a CICS-maintained data table. Only
the relevant parameters are shown.

X Y
 File ==> APPLE
 Group ==> FRUIT
 DEscription ==> ...

 VSAM PARAMETERS

 DSNAme ==> CICA1.CICOWN.APPLES

Password ==> PASSWORD NOT SPECIFIED

 Lsrpoolid ==> 2 1-8 | None

DSNSharing ==> Allreqs Allreqs | Modifyreqs

STRings ==> AA5 1 - 255

 Nsrgroup ==>

 INITIAL STATUS

STAtus ==> Enabled Enabled | Disabled | Unenabled

Opentime ==> STARTUP Firstref | Startup

DIsposition ==> Share Share | Old

 DATATABLE PARAMETERS

Table ==> CICS No | Cics | User

Maxnumrecs ==> 1AAAAAA 16 - 16777215

 DATA FORMAT

RECORDFormat ==> F V | F

 OPERATIONS

Add ==> YES No | Yes

BRowse ==> No No | Yes

DELete ==> YES No | Yes

REAd ==> YES Yes | No

Update ==> YES No | Yes

 RECOVERY PARAMETERS

RECOVery ==> ALL None | Backoutonly | All

Fwdrecovlog ==> 1A No | 1-99

BAckuptype ==> STAtic STAtic | DYNamic

] ^

38 CICS/ESA Shared Data Tables Guide

Example of a user-maintained data table definition
The following example shows the definition of a user-maintained data table. Only
the relevant parameters are shown.

X Y
 File ==> COURGETT
 Group ==> VEGS
 DEscription ==> ...

 VSAM PARAMETERS

 DSNAme ==> CICA2.CICOWN.COURGETT

Password ==> PASSWORD NOT SPECIFIED

 Lsrpoolid ==> 5 1-8 | None

DSNSharing ==> Allreqs Allreqs | Modifyreqs

STRings ==> AA5 1 - 255

 Nsrgroup ==>

 INITIAL STATUS

STAtus ==> Enabled Enabled | Disabled | Unenabled

Opentime ==> FIRSTREF Firstref | Startup

DIsposition ==> Share Share | Old

 DATATABLE PARAMETERS

Table ==> USER No | Cics | User

Maxnumrecs ==> 2AAAAA 16 - 16777215

 DATA FORMAT

RECORDFormat ==> V V | F

 OPERATIONS

Add ==> YES No | Yes

BRowse ==> YES No | Yes

DELete ==> No No | Yes

REAd ==> YES Yes | No

Update ==> YES No | Yes

 RECOVERY PARAMETERS

RECOVery ==> BACKOUTONLY None | Backoutonly | All

Fwdrecovlog ==> No No | 1-99

BAckuptype ==> STAtic STAtic | DYNamic

] ^

EXEC CICS commands
This section contains General-use Programming Interface and Associated Guidance
Information.

You can use the EXEC CICS SET FILE command to change the definition of an
existing file, and the EXEC CICS INQUIRE FILE command to check the definition
of an existing file. For programming information, including details of how to use
these commands and the parameters described here, see the CICS/ESA System
Programming Reference manual. The parameters that are relevant to data tables
are described below.

 SET FILE
The following parameters are relevant to data tables; you can use them only when
the file is closed and disabled. You can specify a data table attribute of a file in a
CICS-value data area (cvda):

TABLE(cvda)
Specify a cvda value of CICSTABLE to define the file as a CICS-maintained
data table.

 Chapter 6. Resource definition 39

Specify a cvda value of USERTABLE to define the file as a user-maintained
data table.

Specify a cvda value of NOTTABLE to indicate that the file is not a data table.

MAXNUMRECS(value)
Specify the maximum number of records that can be contained in the data
table, in the range 16 through 16 777 215.

 INQUIRE FILE
The following parameters are relevant to data tables. You can request that each
data table attribute of a file is returned in a CICS-value data area (cvda) by
specifying:

TABLE(cvda)
If the value CICSTABLE is returned, the file has been defined as a
CICS-maintained data table.

If the value USERTABLE is returned, the file has been defined as a
user-maintained data table.

If the value NOTTABLE is returned, the file is not currently defined as a data
table.

If the value NOTAPPLIC is returned, the option is not applicable because the
file is a remote file.

MAXNUMRECS(cvda)
The value returned indicates the maximum number of records that can be
contained in the data table.

 CEMT commands
You can use the CEMT SET FILE command to change the definition of an existing
file, and the CEMT INQUIRE FILE command to check the definition of an existing
file. Full details of how to use these commands, including the parameters
described here, are given in CICS/ESA CICS-Supplied Transactions. The
parameters that are relevant to data tables are described below.

 SET FILE
The following parameters are relevant to data tables; you can use them only when
the file is closed and disabled.

{CICSTABLE|USERTABLE|NOTTABLE}
Specify CICSTABLE to define the file as a CICS-maintained data table.

Specify USERTABLE to define the file as a user-maintained data table.

Specify NOTTABLE to indicate that the file is not a data table.

MAXNUMRECS(value)
Specify the maximum number of records that can be contained in the data
table, in the range 16 through 16 777 215.

40 CICS/ESA Shared Data Tables Guide

 INQUIRE FILE
The following parameters are relevant to data tables.

Data table
If the value CICSTABLE is returned, the file has been defined as a
CICS-maintained data table.

If the value USERTABLE is returned, the file has been defined as a
user-maintained data table.

If the value NOTTABLE is returned, the file is not currently defined as a data
table.

MAXNUMRECS(value)
The value returned indicates the maximum number of records that can be
contained in the data table. The value is zero if no value has been set
previously.

 Chapter 6. Resource definition 41

42 CICS/ESA Shared Data Tables Guide

 Chapter 7. Customization

This chapter contains Product-sensitive Programming Interface and Associated
Guidance Information.

This chapter describes the three global user exit points that are included in data
table services. You can supply one or more assembler-language programs to be
executed at each of these points in order to extend or modify the function provided
by CICS.

The three global user exits are:

� XDTRD, which is invoked for each record that is read from the source data set
(normally when the file is being loaded). You can then select whether to load
the record into the data table or not. For a user-maintained data table, you can
also modify the record.

� XDTAD, which is invoked for each record that is added to the source data set.
You can then select whether to add the record to the data table or not.

� XDTLC, which is invoked when loading of the data table is complete, whether
successful or not.

This chapter describes how to write exit programs for these user exits. Samples of
exit programs are shown in Appendix A, “Sample user exit programs” on page 93.

The method of defining and activating the user exits is described in “Activating user
exits” on page 60. Programming information about global user exits and how to
use them is given in the CICS/ESA Customization Guide.

Exec interface and file control user exits: The exec interface user exits XEIIN
and XEIOUT and the file control user exits XFCREQ and XFCREQC are not
invoked in the file-owning region if a request to access a data table is satisfied by
cross-memory services.

Communicating between CICS and exit programs
A parameter list is used to pass information between CICS and the data table exit
programs. In the CICS410.SDFHMAC library, CICS/ESA 4.1 supplies a copybook,
named DFHXDTDS, which contains a DSECT to define this parameter list. You
should include a COPY DFHXDTDS statement in each of your exit programs. The
DSECT is shown in Figure 7 on page 44.

The field names used in this DSECT are referenced in the user exit descriptions
that follow the figure.

 Copyright IBM Corp. 1992, 1994 43

OOO

O O

O Data Table Parameter List for User Exits XDTRD, XDTAD and XDTLC. O

O O

O Some of the parameters are only used by one or two of the exits. O

O This is indicated in the comments for those parameters. O

O The comments also indicate whether the field is used for input O

O (In), output (Out), or both (In/Out). O

O O

O NOTE that this definition could be used by exit programs running O

O both on CICS regions which have shared data tables support O

O (SDT) installed and on ones which do not, providing the UEPDTSDT O

O flag is used to test whether SDT is installed, and that the O

O parameters which are unique to SDT are only used when it is set. O

O O

OOO

DT_UE_PLIST_DSECT DSECT ,

DT_UE_PLIST DS AXL84 Data Table User Exits X

 Parameter List

UEPDTNAM DS CL8 Data table name (In)

UEPDTFLG DS ACL1 Flags (In):

 DS BL1

UEPDTSDT EQU X'8A' Exit invoked by SDT support

O---O

O The remaining flags are only available to exits which O

O have been invoked by shared data tables support O

O---O

UEPDTCMT EQU X'4A' Table is CICS-maintained

UEPDTOPT EQU X'2A' Exit invoked by table loader, X

so optimization by skipping X

may be requested - XDTRD only

O EQU X'1F' Reserved

UEPDTORC DS AL1 Data table load return code - X

XDTLC only, values below (In)

 DS BL2 Reserved

Figure 7 (Part 1 of 2). Data table user exit parameter list

44 CICS/ESA Shared Data Tables Guide

UEPDTRA DS A Data record address - XDTRD X

and XDTAD only (In)

UEPDTRBL DS F Data buffer length - XDTRD and X

XDTAD only (In)

UEPDTRL DS F Data table record length - X

XDTRD and XDTAD only, XDTRD X

can return new length in here X

if it amends record (only X

allowed for UMT) (In/Out)

UEPDTKA DS A Key address - XDTRD and XDTAD X

 only (In)

UEPDTKL DS F Key length - XDTRD and XDTAD X

 only (In)

O---O

O The following fields are only available to exits which O

O have been invoked by shared data tables support O

O---O

UEPDTDSL DS F Length of data set name (In)

UEPDTDSN DS CL44 Source data set name (In)

UEPDTSKA DS A Address of skip-key area: exit X

should return a key of length X

UEPDTKL in this area if it has X

requested optimization of load X

by skipping - XDTRD only (In)

O---O

O Values for UEPDTORC (supplied to XDTLC exit only) O

O---O

UEPDTLCS EQU A load completed successfully

UEPDTLFL EQU 128 load failed

Figure 7 (Part 2 of 2). Data table user exit parameter list

The user exits should set a return code in register 15. The return code values are
supplied by the DFHUEXIT macro. The valid values for each user exit are given in
the following descriptions.

If you want your exit programs to work for both versions of data tables support1,
you can check UEPDTFLG to find out which version of data tables support invoked
the exit program. For SDT, this flag byte also indicates which type of data table is
being used and whether the exit program is being invoked during loading.

The exit program should use either the filename (field UEPDTNAM) or the name of
the source data set (see fields UEPDTDSN and UEPDTDSL) to determine whether
this is a file for which any action is to be taken.

You can enable several exit programs at the same exit point, each of which, for
example, takes action for a particular file or data set.

1 The two versions are:

� Basic data tables support, supplied as a feature for CICS/MVS releases 2.1.1 and 2.1.2, and as part of the base CICS product
for CICS/ESA releases 3.1.1, 3.2.1, and 3.3

� Shared data tables (SDT) support, supplied as a feature for CICS/ESA release 3.3, and as part of the base CICS product for
CICS/ESA 4.1.

 Chapter 7. Customization 45

XDTRD user exit
| The XDTRD user exit is invoked just before CICS attempts to add to the data table
| a record that has been retrieved from the source data set.

| This normally occurs when the loading process retrieves a record during the
| sequential copying of the source data set. However, it can also occur when an
| application retrieves a record that is not in the data table and:

| � For a user-maintained data table, loading is still in progress, or

| � For a CICS-maintained data table, loading terminated before the end of the
| source data set was reached (because, for example, the data table was full).

The record retrieved from the source data set is passed as a parameter to the user
exit program—see fields UEPDTRA and UEPDTRL. This program can choose
(depending, for example, on the key value—see fields UEPDTKA and UEPDTKL)
whether to include the record in the data table or not.

Alternatively, the exit program can request that all subsequent records up to a
specified key are skipped—see field UEPDTSKA; these records are not passed to
the exit program. This facility is available only during loading. You can specify the
key as a complete key, or you can specify just the leading characters by padding
the skip-key area with binary zeros.

The action required is indicated by setting the return code. Depending on the
return code value, the following action is taken by CICS:

For a user-maintained data table, the program can also modify the data in the
record to reduce the storage needed for the data table. Application programs that
use the data table must be aware of any changes made to the record format by the
exit program. If the record length is changed, the exit program must set the new
length in the parameter list—see field UEPDTRL. The new length must not exceed
the data buffer length—see field UEPDTRBL.

Table 7. Return codes for XDTRD user exit. A value of UERCPURG should be
returned if the exit program has received a PURGED response to a call that it has
issued.

Return code Action

UERCDTAC Include the record in the data table. This is the default if the exit is
not activated.

UERCDTRJ Do not include the record in the data table.

UERCDTOP Skip over this record and the following records until a key is found
that is equal to or greater than the key specified in the skip-key area.

XDTAD user exit
| The XDTAD user exit is invoked when a write request is issued to a data table.

� For a user-maintained data table, the user exit is invoked once—before the
record is added to the data table.

46 CICS/ESA Shared Data Tables Guide

� For a CICS-maintained data table, the user exit is invoked twice—before the
record is added to the source data set and then again before the record is
added to the data table.

The record written by the application is passed as a parameter to the user exit
program—see fields UEPDTRA and UEPDTRL. This program can choose
(depending on the key value, for example—see fields UEPDTKA and UEPDTKL)
whether to include the record in the data table or not. This decision is indicated by
setting the return code.

Depending on the return code value, the following action is taken by CICS:

The XDTAD exit must not modify the data in the record. If you used XDTRD to
truncate the data records when the user-maintained data table was loaded, you
must code your application so that it only tries to write records of the correct format
for the data table.

Table 8. Return codes for XDTAD user exit. A value of UERCPURG should be
returned if the exit program has received a PURGED response to a call that it has
issued.

Return code Action

UERCDTAC Add the record to the data table. This is the default if the exit is not
activated.

UERCDTRJ Do not add the record to the data table.

XDTLC user exit
The XDTLC user exit is invoked at the completion of data table loading—whether
successful or not. The user exit is not invoked if the data table is closed for
any reason before loading is complete.

The exit program is informed if the loading did not complete successfully—see field
UEPDTORC. This could occur, for example, if the maximum number of records
was reached or there was insufficient virtual storage. In this case, the exit program
can request that the file is closed immediately, by setting the return code.

Depending on the return code value, the following action is taken by CICS:

Table 9. Return codes for XDTLC user exit. A value of UERCPURG should be
returned if the exit program has received a PURGED response to a call that it has
issued.

Return code Action

UERCDTOK No action; the file remains open. This is the default if the exit is not
activated.

UERCDTCL Close the file.

 Chapter 7. Customization 47

48 CICS/ESA Shared Data Tables Guide

 Chapter 8. Operations

This chapter describes the operational aspects of using data tables, such as:

� Opening and closing data tables
� MVS job control
� Interpreting data table statistics
� Activating user exits

Opening a data table
A data table must be opened before it can be used by an application. This is done
in the same way as for any CICS file, by one of the following methods:

� Automatically, by the CICS-supplied transaction CSFU, at the end of CICS
startup, if the data table is defined with OPENTIME(STARTUP) or
FILSTAT=OPENED

� Explicitly, by a CEMT or EXEC CICS request issued by the user

� Implicitly, on first reference to the data table, if the data table is defined with
OPENTIME(FIRSTREF) or FILSTAT=CLOSED. The first remote access to a
closed data table implicitly opens it.

All the rules and options for opening a CICS file also apply to a file that is defined
as a data table. In addition, the loading of the data table is initiated.

For a large data table, loading could take a significant time. The application
programming commands that can be used with a user-maintained data table, and
the performance gains that can be achieved with a CICS-maintained data table are
limited until loading is completed (see Chapter 5, “Application programming” on
page 27).

The following steps are done during the opening of the file:

1. The access method control block (ACB) for the VSAM source data set is
opened under a separate MVS task control block (TCB). This step is the same
as for any CICS file.

2. For the first data table used by a region, CICS:

� Creates MVS storage pools for use by SDT
� Creates an MVS/ESA data space for use by this region’s data tables
� Attempts a LOGON operation as a server.

3. A special CICS transaction, CSSY, is attached to load the data table into the
data space.

4. The transaction that issued the request to open the data table can now
continue processing.

5. CICS issues a message DFHFC0940 to indicate that loading has started. The
message is sent to the CSFL transient data queue.

6. The transaction that loads the data table reads the source data set
sequentially. Under the optional control of the user exit XDTRD, the
transaction copies the records into the data space. It also constructs an index
in address-space storage to facilitate subsequent access to the records.

 Copyright IBM Corp. 1992, 1994 49

7. CICS issues a message to indicate the result of the loading. The message
number is:

� If loading is successful—DFHFC0941

� If loading fails—DFHFC0942, DFHFC0943, DFHFC0945, DFHFC0946,
DFHFC0947, or DFHFC0948.

The message is sent to the CSFL transient data queue. Also, if loading fails,
the message is sent to the console. For descriptions of these messages, see
the CICS/ESA Messages and Codes manual.

8. When loading is complete (whether successful or not), the user exit XDTLC is
invoked if it is active. If the loading was not completed successfully, the exit
program can request that the data table is closed.

9. For a user-maintained data table, the ACB for the source data set is closed
when loading is complete. The data set is deallocated if it was originally
dynamically allocated and no other ACBs are open for it.

Note: During an emergency restart, any file that requires backout action is
reopened. However, if the file is defined as a data table, loading is not initiated at
that time; instead, it is initiated by the CSFU transaction at the end of the
emergency restart. This gives an opportunity for any user exits that control the
copying of records to the data table during loading to be activated at any stage of
PLTPI processing.

Closing a data table
A data table is closed in the same way as for any CICS file, by one of the following
methods:

� Explicitly, by a CEMT or EXEC CICS request issued by the user.
� Implicitly, when CICS is shutdown normally.

All the rules and options for closing a CICS file also apply to a data table. In
particular:

� The rules about the quiescing of current users of the file apply (except that the
file can be closed even when a transaction that is running in an AOR is in the
middle of a browse sequence).

� For a user-maintained data table, if the data table is defined as recoverable, all
units of work that have changed the data table must complete before the data
table can be closed.

The data space storage that is used for the data table records, and the
address-space storage that is used for the associated table-entry and index storage
is freed as part of the close operation. If a file is reopened after it has been closed,
the processing is the same as if the file had not been previously opened.

50 CICS/ESA Shared Data Tables Guide

MVS job control
Before using shared data tables, you might need to change some of your JCL
statements, modify your operational procedures, or increase the value of the
MAXUSER MVS initialization parameter. This is because MVS/ESA does not allow
more than one step of a job to act as a shared data table server. If a second job
step attempts to act as a shared data table server, CICS issues message
DFHFC0405. Also, as job steps following the server step would also be unable to
use cross-memory services with MRO, it is recommended that none of the job
steps following the server step are another execution of CICS.

If a job that includes a shared data tables server step ends before all requester job
steps that connected to this server have ended, the server address space is
terminated by MVS/ESA. If the SDT server is running under the control of a batch
initiator rather than as a started task, a new initiator must be started when this
situation occurs.

MVS/ESA terminates the batch initiator with the message IEF355A INITIATOR

TERMINATED, RESTART INITIATOR because, otherwise, for integrity reasons, MVS
would have to restrict the functions that could be used by the next job that runs
under that initiator, which might cause the job to fail. MVS does not allow an SDT
server’s ASID to be re-used until after all requester job steps that connected to the
server have ended.

Interpreting data table statistics
This section describes the statistics information that is produced by CICS to help
you monitor the activity on your data tables.

You can use the information contained in a CICS statistics report to evaluate the
benefits of using data table services. The information that is recorded for a data
table is shown in Table 10.

| Table 10. Data tables statistics

| Heading| Description

| Close Type| Type of data table close (only appears in the statistics collected
| when a data table is closed)
| Read Requests| Number of attempts to read records from data table or, in the AOR
| statistics, the number of read requests that had to be function
| shipped
| Recs ¬ in Table| Number of attempts to read records from source data set because
| the record was not found in data table. (For a user-maintained
| data table, this happens only during loading.)
| Adds from Reads| Number of attempts to copy records from source data set to data
| table during loading process (including read requests from
| applications during loading)
| Add Requests| Number of attempts to write records to data table
| Adds rejected - Exit| Number of records suppressed by XDTRD and XDTAD user exits
| Adds rejected -
| Table Full
| Number of records that were not included because the table was
| full
| Rewrite Requests| Number of attempts to rewrite records in data table
| Delete Requests| Number of attempts to delete records from data table
| Highest Table Size| Peak number of records held in data table
| Storage Alloc(K)| Number of KB allocated to data table

 Chapter 8. Operations 51

| The statistics for data tables are included in the FILES section of the statistics
| report. Four sections of FILE information are produced:

| � The “FILES - Resource Information” shows information such as the filename,
| source data set name, data set type (which will always be K for a data table,
| because the source must be a VSAM KSDS) and a DT indicator that is
| explained below.

| � The “FILES - Requests Information” shows the statistics for accesses to the
| source data set. For a loaded user-maintained data table, this contains only
| zeros.

| � The “FILES - Data Table Requests Information” shows statistics for accesses to
| the data table. The meanings of the column headings are given in Table 10 on
| page 51.

| � The “FILES - Performance Information” shows the use of VSAM strings and
| buffers, and is only of interest for a data table in that it relates to the source
| data set.

A request to a data table that is owned by another region is recorded in the
statistics report for both the requesting and file-owning regions.

| The DT Indicator is a single character that can have the values:

| T The statistics report contains data table information because the file has
| been opened as a data table.

| R The statistics report contains information for a remote file that has
| accessed a data table via shared data tables cross-memory services.

| S The statistics report contains data table information for the accesses
| made by this file to an associated data table (which has the same
| source data set).

| X The statistics report contains information for an alternate index file, and
| reports data table information for the update of the data table associated
| with a file in the same upgrade set.

| The field is blank if data table statistics are not present for the file.

| The Close Type is a single character that appears in the statistics only for the
| closing of a data table. The possible values indicate the type of close:

| C Close of a CICS-maintained data table.

| P Partial close of a CICS-maintained data table. There are still other files
| using the data table, so the data table itself has not been closed, only
| the file.

| S Close of the source data set for a user-maintained data table. This
| happens at the end of loading of the data table.

| U Close of a user-maintained data table.

A total value for the storage allocated is not included in the TOTALS line.

For information on how to obtain a statistics report, using the statistics utility
program DFHSTUP, see the CICS/ESA Operations and Utilities Guide. For a
description of the data contained in a statistics report, see the CICS/ESA
Performance Guide.

52 CICS/ESA Shared Data Tables Guide

Sample data table statistics
Figure 8, Figure 9 on page 54, and Figure 10 on page 55 show extracts from the
file statistics for a hypothetical configuration similar to that discussed in “Using
statistics to select data tables” on page 18, following conversion of the files into
data tables. These figures are used to discuss how to interpret the information
about data tables which is provided by the CICS statistics.

| Requested Statistics Report Collection Date-Time 12/25/99-23:55:41 Last Reset 21:AA:AA Applid CICFOR Jobname SDTGSTF1

| ___

| FILES - Resource Information

| ____________________________

| File Dataset Name Dataset DT Time Time Remote Remote Lsrpool

| Name Base Dataset Name (If Applicable) Type Indicator Opened Closed Name Sysid ID

| __

| APPLE CICA1.CICOWN.APPLES K T 22:12:A4 OPEN 1

| BANANA CICA1.CICOWN.BANANAS K T 22:53:56 OPEN 1

| ORANGE CICA1.CICOWN.CITRUS K T 2A:51:25 OPEN 2

| PLUM CICA1.CICOWN.PLUMS K T 21:3A:1A OPEN 4

| POTATO CICA1.CICOWN.POTATOES K T 2A:3A:1A OPEN 8

| VICTORIA CICA1.CICOWN.PLUMS K S 21:56:23 OPEN 4

| __

| Requested Statistics Report Collection Date-Time 12/25/99-23:55:41 Last Reset 21:AA:AA Applid CICFOR Jobname SDTGSTF1

| ___

| FILES - Requests Information

| ____________________________

| File Get Get Upd Browse Update Add Delete VSAM EXCP Requests

| Name Requests Requests Requests Requests Requests Requests Data Index

| ___

| APPLE 1 495 76AAA1 495 12 A 1456A 1321

| BANANA A 18A3 486A3 18A3 951 A 8212 481

| ORANGE 1A87 1A2677 1A4 1A7897 47A9 188A 2518A 1947

| PLUM A 1A 2AA1 A 2A 1A 58A 3

| POTATO A A 24173 A A A 4513 2

| VICTORIA A 3 A A 5 3 5 1

| ___

| OTOTALSO 1A88 1A4988 834882 11A195 5697 1893

| Requested Statistics Report Collection Date-Time 12/25/99-23:55:41 Last Reset 21:AA:AA Applid CICFOR Jobname SDTGSTF1

| ___

| FILES - Data Table Requests Information

| _______________________________________

| File Close Read Recs ¬ Adds from Add Adds rejected Adds rejected Rewrite Delete Highest Storage

| Name Type Requests in Table Reads Requests - Exit - Table Full Requests Requests Table Size Alloc(K)

| ___

| APPLE 11A5241 1 76AAAA 12 A A 495 A 76AA12 951A4

| BANANA 652195 A 486A2 951 2 A 18A3 A 49551 112AA

| ORANGE 1473 1191 A 47A9 A A 1A7897 188A 6A4167 266658

| PLUM 227 1 2AAA 2A A A A 1A 2A25 256

| POTATO 967A 24173 24165 A A 24165 A A 1AAA 176A

| VICTORIA 3A63 1 A 5 A A A 3 2A25 256

| ___

| OTOTALSO 1771869 25367 834767 5697 2 24165 11A195 1893 76AA12

Figure 8. CICFOR requested file statistics

 Chapter 8. Operations 53

| Requested Statistics Report Collection Date-Time 12/25/99-23:56:58 Last Reset 21:AA:AA Applid CICAOR1 Jobname SDTGSTA1

| ___

| FILES - Resource Information

| ____________________________

| File Dataset Name Dataset DT Time Time Remote Remote Lsrpool

| Name Base Dataset Name (If Applicable) Type Indicator Opened Closed Name Sysid ID

| __

| APPLE REMOTE R CLOSED CLOSED APPLE CIF1 N

| BANANA REMOTE R CLOSED CLOSED BANANA CIF1 N

| ORANGE REMOTE R CLOSED CLOSED ORANGE CIF1 N

| POTATO REMOTE R CLOSED CLOSED POTATO CIF1 N

| ZUCCHINI REMOTE R CLOSED CLOSED COURGETT CIA2 N

| __

| Requested Statistics Report Collection Date-Time 12/25/99-23:56:58 Last Reset 21:AA:AA Applid CICAOR1 Jobname SDTGSTA1

| ___

| FILES - Requests Information

| ____________________________

| File Get Get Upd Browse Update Add Delete VSAM EXCP Requests

| Name Requests Requests Requests Requests Requests Requests Data Index

| ___

| APPLE 1 52A A 52A 5 A A A

| BANANA A A A A A A A A

| ORANGE 214 38735 14 371A5 1311 63A A A

| POTATO A A 24173 A A A A A

| ZUCCHINI A A A A A A A A

| ___

| OTOTALSO 215 39255 24187 38625 1316 63A

| Requested Statistics Report Collection Date-Time 12/25/99-23:56:58 Last Reset 21:AA:AA Applid CICAOR1 Jobname SDTGSTA1

| ___

| FILES - Data Table Requests Information

| _______________________________________

| File Close Read Recs ¬ Adds from Add Adds rejected Adds rejected Rewrite Delete Highest Storage

| Name Type Requests in Table Reads Requests - Exit - Table Full Requests Requests Table Size Alloc(K)

| ___

| APPLE 13A4214 A A A A A A A A

| BANANA 441349 A A A A A A A A

| ORANGE 63384 228 A A A A A A A

| POTATO 4835 24173 A A A A A A A

| ZUCCHINI 97867 A A A A A A A A

| ___

| OTOTALSO 1911649 244A1 A A A A A A A

Figure 9. CICAOR1 requested file statistics

54 CICS/ESA Shared Data Tables Guide

| Requested Statistics Report Collection Date-Time 12/25/99-23:59:59 Last Reset 21:AA:AA Applid CICAOR2 Jobname SDTGSTA2

| ___

| FILES - Resource Information

| ____________________________

| File Dataset Name Dataset DT Time Time Remote Remote Lsrpool

| Name Base Dataset Name (If Applicable) Type Indicator Opened Closed Name Sysid ID

| __

| COURGETT CICA2.CICOWN.COURGETT K T 22:35:A2 OPEN 1

| LEMON REMOTE R CLOSED CLOSED ORANGE CIF1 N

| __

| Requested Statistics Report Collection Date-Time 12/25/99-23:59:59 Last Reset 21:AA:AA Applid CICAOR2 Jobname SDTGSTA2

| ___

| FILES - Requests Information

| ____________________________

| File Get Get Upd Browse Update Add Delete VSAM EXCP Requests

| Name Requests Requests Requests Requests Requests Requests Data Index

| ___

| COURGETT A A A A A A A A

| LEMON 946 63942 299 7A792 3398 125A A A

| ___

| OTOTALSO 946 63942 299 7A792 3398 125A

| Requested Statistics Report Collection Date-Time 12/25/99-23:59:59 Last Reset 21:AA:AA Applid CICAOR2 Jobname SDTGSTA2

| ___

| FILES - Data Table Requests Information

| _______________________________________

| File Close Read Recs ¬ Adds from Add Adds rejected Adds rejected Rewrite Delete Highest Storage

| Name Type Requests in Table Reads Requests - Exit - Table Full Requests Requests Table Size Alloc(K)

| ___

| COURGETT 27656 A A 38659A A A 27656 A 1A1232 1616A

| LEMON 324A872 1245 A A A A A A A

| ___

| OTOTALSO 3268528 1245 A 38659A A A 27656 A 1A1232

Figure 10. CICAOR2 requested file statistics

The main changes that are seen in the statistics when a file is redefined as a data
table are:

| 1. Data table statistics appear in both the owning and requesting regions showing
the use of the data table.

2. Values appear in the owning region showing the activity of loading the data
table.

3. Except during loading, the counts of Get Requests and Browse Requests in the
| “FILES - Requests Information” statistics are much reduced (often to zero)

because such requests can now be satisfied from the data table.

4. The Recs ¬ in Table figure indicates the degree to which benefit from shared
data tables support has been prevented. In an AOR it shows how many
retrieval requests have had to be function shipped. In an FOR it shows how
many records have had to be fetched from the source data set.

You should use the statistics to get an overall feel for the behavior of your data
tables, rather than attempting to explain the individual values.

 Chapter 8. Operations 55

The examples demonstrate a number of points about the statistics. These points
are discussed in the rest of this section.

 Normal loading
Adds from Reads usually shows the number of attempts to add a record during
loading2. Because the loading process involves browsing the source data set until

| the end of the file, the number of Browse Requests (in the “FILES - Requests
| Information”) equals Adds from Reads + 1 if loading completed successfully and

there have been no other browses on the source data set. The statistics for
APPLE in Figure 8 on page 53 illustrate this point.

In the CICFOR statistics shown, APPLE, BANANA, and PLUM were opened after
the last statistics reset, but ORANGE and POTATO were opened before, so the
latter do not display the load-time statistics. It is generally better to assess
statistics from a time interval that has not been distorted by loading, but you should
remember that the loading process incurs an overhead that has to be recovered by
the number of data table accesses.

Optimization of loading
The statistics for BANANA in Figure 8 on page 53 show an example in which only
a range of key values from the middle of the source data set is required in the data
table. Here, the XDTRD exit has been used to skip over any keys that are not in
this range (see “XDTRD user exit” on page 46).

Adds rejected - Exit shows the number of times the exit returned a non-zero
return code, and is 2 in this case: 1 for when the first record in the source data set
was presented, and the exit requested the load to skip on to the first key in the
desired range, and 1 for when the first key beyond this range was presented, and
the exit requested the load to skip over all remaining records to the end of the
source data set.

In a case like this, you would usually use the XDTAD exit to reject any records that
are written with keys outside the desired range. Then, the number of Adds
rejected - Exit would include the number of such records that had been written to
the file.

The number of Adds from Reads contains the number of records that were loaded
into the data table plus the two that were rejected. As for all the file and data table
statistics, this figure shows the number of attempted, rather than the number of
successful, writes.

Loading a user-maintained data table
When the loading of a user-maintained data table completes, the source data set is
closed and an unsolicited statistics record is written that reports the number of
records that are browsed from the source and written to the data table (or rejected
by the XDTRD exit). Therefore, these figures do not appear in any later statistics

| reports, such as that for COURGETT in Figure 10 on page 55. A Close Type of S
| identifies such statistics.

2 If loading has completed, but the load failed to read to the end of the source data set, then the count for a CICS-maintained data
table might also show attempts to add records that have been read from the source data set because they were not originally
loaded.

56 CICS/ESA Shared Data Tables Guide

Implicit open from the requesting region
If the file is not open in the FOR when the AOR issues the first read to it, then no
connection exists and the read is function shipped. This appears as one file Get
Request in the AOR statistics. The implicit open and subsequent loading of the
data table is triggered in the FOR.

This first read attempt from the new data table is counted in the Read Requests in
the FOR data table statistics, but as the record is not found in the data table at this
stage, it is added to the count of Recs ¬ in Table (which records the number of
times a record could not be obtained from the data table). The record is fetched
from VSAM, so the number of file Get Requests is incremented by 1. The statistics
from CICAOR1 and CICFOR for APPLE illustrate this point.

 Update requests
All update requests (writes, rewrites, and deletes) are processed by the owning
region, which also controls loading and other maintenance of the data table.

| Because of this, the data table statistics of Adds from Reads, Add Requests, Adds
| rejected, Rewrite Requests, Delete Requests, Highest Table Size, and Storage

| Alloc are always zero on the remote requesting regions.

Updates are always reflected in both the data table and the source data set for a
CICS-maintained data table, so matching numbers are often seen in the file

| statistics and the data table statistics for Add Requests and Delete Requests, and
| also for Update Requests in the file statistics compared with Rewrite Requests in
| the data table statistics. The statistics for APPLE and ORANGE illustrate this point.

These numbers might not match if not all records in the source data set are loaded
into the data table, or if some error occurs when the source data set is updated.
For example, an attempt to write a record with a duplicate key to the source data

| set is counted in the file Add Requests but no attempt is made to write the record to
| the data table, so the count of data table Add Requests is less.

In the case of a user-maintained data table, access after loading is complete is
always to the data table, so the line of file statistics always contains zeros. The
statistics for COURGETT in Figure 10 on page 55 illustrate this point.

Data table high water mark
The Highest Table Size shows the largest number of records that was present in
the data table at any one time. For APPLE, from which no records have been

| deleted, this is the number of records originally loaded, plus the number of data
| table Add Requests. For BANANA, the XDTRD user exit accepts only records that

are of interest during loading, and XDTAD performs the same task when records
are written; so the number is given by Adds from Reads plus Add Requests minus
Adds rejected - Exit.

Total storage allocated
Storage Alloc gives the number of Kilobytes that have been allocated to the data
table. This includes both address space and data space storage.

 Chapter 8. Operations 57

Reading and browsing
| The number of data table Read Requests includes browses that are satisfied by the

data table. Thus for ORANGE in Figure 9 on page 54 and LEMON in Figure 10
| on page 55 the numbers of file Browse Requests are very small (and in most
| cases they would be zero). But the number of data table Read Requests is of a

similar magnitude to the total number of Get and Browse requests that were made
before conversion of the file to a data table.

Failure to access records via the data table
The set of figures for ORANGE and LEMON show an effect that is sometimes seen
when there is much update activity on a CICS-maintained data table. In this case,
some of the read requests from remote regions might find that the record in the
data table is being updated, so these requests are function shipped to the FOR.

For example, LEMON shows 1245 Recs ¬ in Table, of which 946 are Get
Requests and 299 are Browse Requests. The function-shipped reads and browses
attempt to access the data table in CICFOR (as shown by the 1473 Read Requests

for ORANGE), by which time some of the reads can be satisfied from the data
| table, but the remainder use the source data set (as shown by the number under
| Recs ¬ in Table).

POTATO shows what can happen if an unsuitable choice of candidate is made.
Because the data table size specified in the file definition is much less than the
number of records in the source data set, only a small part of the file is loaded.
However, the file is accessed remotely by an application that browses many
records that lie beyond those that were loaded.

All those browse requests have to be function shipped to CICFOR (as shown by
the high number of Recs ¬ in Table seen in Figure 9 on page 54 for that file) and
then, on CICFOR, the source data set has to be accessed (as shown by the
number of Browse Requests in Figure 8 on page 53). An attempt is made to add
the records to the data table (see count of Adds from Reads) but as the data table
is still at its maximum number of records, they have to be rejected (see Adds

rejected - Table Full). Incidentally, the statistics record that contains the loading
figures for the file includes 1 under Adds rejected - Table Full for the record that
caused the load to terminate because the data table had reached its maximum
size.

The values of Read Requests, Recs ¬ in Table, Browse Requests, Adds from Reads,
and Adds rejected - Table Full are not all equal (as might have been expected)
because some browses reach the end of the source data set (in which case there
is no record to attempt to add to the data table) and also because often no attempt
is made to access the data table when browsing over a range of records that is
known to be missing from the data table.

Although this is an extreme example, it does illustrate the importance in certain
situations of having a good understanding of the applications. A user exit should
have been used to select the range of records on which most of the browsing
occurs.

58 CICS/ESA Shared Data Tables Guide

Multiple files with a single source
The file VICTORIA in CICFOR is included to show that when a second file is
defined with the same source data set as a file that is open as a data table (PLUM)
then it can take advantage of the data table for non-update reads and browses

| (regardless of which file is opened first). In the Resource Information for
| VICTORIA, a DT Indicator of S means that the line of data table statistics shows
| how the data table has been used by this associated file; for example, 3063 reads

or browses have been satisfied from the data table.

The same Storage Alloc and Highest Table Size statistics are reported for both
PLUM and VICTORIA because the data table is associated with both files.
Because of this, the data table TOTALS line does not include a value for the total
storage allocated. The load-time statistics are reported only for the file that initiated
the data table; that is, the file whose open caused the current instance of the data
table to be built.

Additional statistics fields
Some additional statistics about shared data tables are collected when file statistics
are gathered, but they are not formatted in a statistics report. You can write a
program to extract these additional statistics from the statistics record. For
programming information about CICS statistics, see the CICS/ESA Customization
Guide.

This section describes the fields that are related to shared data tables and are part
of the DFHA17 statistics record but are not displayed in a statistics report.

A17_DT_SIZE_CURRENT
This is a fullword at offset 160 (X'A0'). It contains the current count of records in
the data table.

A17_DT_IN_USE_TOTAL
This is a fullword at offset 168 (X'A8'). It contains the total amount of storage (in
KB) currently in use for the data table.

A17_DT_ALLOC_ENTRY
This is a fullword at offset 172 (X'AC'). It contains the amount of storage (in KB)
currently allocated from the server’s address space to hold table entries for this
data table.

A17_DT_IN_USE_ENTRY
This is a fullword at offset 176 (X'B0'). It contains the amount of storage (in KB)
in the server’s address space currently being used by table entries for this data
table.

A17_DT_ALLOC_INDEX
This is a fullword at offset 180 (X'B4'). It contains the amount of storage (in KB)
currently allocated from the server’s address space to the index for this data table.

A17_DT_IN_USE_INDEX
This is a fullword at offset 184 (X'B8'). It contains the amount of storage (in KB)
in the server’s address space currently being used by the index for this data table.

 Chapter 8. Operations 59

A17_DT_ALLOC_DATA
This is a fullword at offset 188 (X'BC'). It contains the amount of storage (in KB)
currently allocated from the data space for the data portion of the records in this
data table.

A17_DT_IN_USE_DATA
This is a fullword at offset 192 (X'C0'). It contains the amount of storage (in KB)
in the data space currently being used to hold record data for this data table.

A17_DT_REREADS
This is a fullword at offset 196 (X'C4'). It contains a count of the number of times
a read from a requesting region has retried a part of the data table section of the
request processing because the data table changed in some way after the start of
that section.

These fields are also displayed in the X'0B22' exit trace for a statistics call
amongst the fourteen statistics fullwords, which are (in the order they appear in the
trace):

Adds from Reads during load

Adds rejected - Exit during load

Adds rejected - Table Full during load

Highest Table Size

Current record count

Storage Alloc (K) or Total storage allocated

Total storage in-use

Entry storage allocated

Entry storage in-use

Index storage allocated

Index storage in-use

Data storage allocated

Data storage in-use

Rereads

Because these are internal fields, the traced values do not always correspond
exactly to those in a statistics record.

Activating user exits
To activate the data table user exits, you need to perform the following steps:

1. Decide which user exits you want to use. A description of each user exit is
included in Chapter 7, “Customization” on page 43.

2. Write the user exit programs. Examples are included in Appendix A, “Sample
user exit programs” on page 93.

3. Define the user exit programs to CICS, using the CEDA DEFINE PROGRAM
command (see the CICS/ESA Resource Definition Guide).

4. Activate the user exits, using the EXEC CICS ENABLE command (for
programming information about this command, see the CICS/ESA System
Programming Reference manual). If required, you can later deactivate the user
exits, using the EXEC CICS DISABLE command.

Unless you control the opening of a data table explicitly, with a CEMT or EXEC
CICS command, you should probably activate the user exits during CICS startup.

60 CICS/ESA Shared Data Tables Guide

Otherwise loading of the data table might begin before the user exits are activated.
To activate the user exits during startup, you need to:

1. Write one or more program list table postinitialization (PLTPI) programs that
include the EXEC CICS ENABLE commands to activate the user exits (for
programming information about PLTPI programs, see the CICS/ESA
Customization Guide).

2. Define a program list table (PLT) with an entry for each of those PLTPI
programs (see the CICS/ESA Resource Definition Guide).

3. Specify the PLTPI=suffix parameter for system initialization (see the CICS/ESA
System Definition Guide). Use the suffix of the PLT that was defined in the
previous step. This causes the PLTPI programs to be executed in the second
stage of initialization, before any files are opened.

You can use PLT shutdown (PLTSD) programs in a similar way to disable the user
exits during CICS shutdown.

 Chapter 8. Operations 61

62 CICS/ESA Shared Data Tables Guide

 Chapter 9. Problem determination

This chapter describes the trace and dump information that is produced by CICS to
help you determine the cause of a problem with data tables.

This chapter contains Diagnosis, Modification, or Tuning Information.

Explanations of the diagnostic messages and abend codes produced by SDT are
contained in the CICS/ESA Messages and Codes manual.

 Trace information
The trace table produced by CICS helps you to determine the cause of a problem.
It shows the flow of control through the CICS modules. This section describes the
entries included in the trace table by data table services. For information on the
contents of the trace table and how to obtain it, see the CICS/ESA Diagnosis
Reference.

There are two types of trace points:

� Entry and exit trace points for each of the services provided by SDT. File
control level-2 tracing must be enabled to obtain these trace points.

� Exception trace points.

Both of these types are listed separately below.

Entry and exit trace points
The following entry and exit trace points are provided by SDT:

0B13 Entry to Remote Read service

0B14 Exit from Remote Read service

0B1B Entry to Initialize Data Table Support service

0B1C Exit from Initialize Data Table Support service

0B1D Entry to Logon service

0B1E Exit from Logon service

0B1F Entry to Load service

0B20 Exit from Load service

0B21 Entry to Open, Close, Set Enablement and Statistics services

0B22 Exit from Open, Close, Set Enablement and Statistics services

0B23 Entry to local read services

0B24 Exit from local read services

0B25 Entry to update (add record, add, replace, delete) services

0B26 Exit from update services

0B2D Entry to Connect and Disconnect services

0B2E Exit from Connect and Disconnect services

 Copyright IBM Corp. 1992, 1994 63

The format of each of these trace points is described in the CICS/ESA Diagnosis
Reference manual.

Function and qualifier flags
Each entry and exit trace point contains a function field, and most of them contain a
qualifier flags field. The function field is a byte that identifies the function that was
being performed; the qualifier flags field is a byte that contains flags that qualify
some of the functions. The values of these fields are:

 Function Qualifier flags
 X'AA' Initialize X'AA' as shared data table server

X'8A' as shared data table requester

 X'A2' Add entry from source X'AA' add issued as a result of a

data set to table read request

X'4A' add issued by load transaction

 X'A3' Write entry to table X'AA' completed write

X'8A' pre-write for CMT

 X'A4' Rewrite entry in table X'AA' completed rewrite

X'8A' pre-rewrite for CMT

 X'A5' Delete entry in table X'AA' completed delete

X'8A' pre-delete for CMT

 X'A6' Commit this unit of work

 X'A7' Rollback this unit of work

 X'A8' Load data table X'AA' load OK

(on exit trace only) X'8A' source file is empty

 X'A9' Point at a record X'8A' equal match

X'4A' greater than match

X'2A' less than match

(the above can be in various

 combinations)

X'1A' test if data table is enabled

 X'AA' Retrieve record by key X'8A' equal match

X'4A' greater than match

X'2A' less than match

(the above can be in various

 combinations)

X'1A' test if data table is enabled

 X'AB' Retrieve record by token X'8A' equal match

(internal fastpath for X'4A' greater than match

a sequence of records) X'2A' less than match

(the above can be in various

 combinations)

X'1A' test if data table is enabled

 X'AC' Logon as a server

 X'AE' Open a data table

 X'AF' Close a data table

 X'1A' Collect statistics

 X'11' Set enablement state X'AA' enable data table

X'8A' disable data table

X'4A' force disablement

(always combined with disable)

 X'15' Connect to a shared data table

 X'16' Break connection to a shared data table

 X'17' Process the completion of loading

64 CICS/ESA Shared Data Tables Guide

 Response codes
Each exit trace point contains a two-byte response-code and reason-code field.
The first byte is the response code, for which the possible values are:

X'01' Successful

X'02' Exception

X'03' Disaster

X'04' Invalid

X'06' Purged

 Reason codes
Each exit trace point contains a two-byte response-code and reason-code field.
The second byte is the reason code, for which the possible values are:

X'01' Record not in data table

X'02' Duplicate (record already in data table)

X'03' Data table full (already contains the maximum number of records)

X'04' Record rejected by user exit

X'05' Failed to get storage3

X'06' Record not in data table (and table is known to be complete)

X'07' Data table service failed3

X'08' Not authorized to connect to file3

X'09' Resource is not a data table

X'0A' Remote system has not logged on as a server

X'0B' Load request failed3

X'0C' Data table is disabled

X'0D' Add request (from DASD) deliberately not processed

X'0E' Record too long

X'0F' Data table token invalid

X'10' Record not in data table (but might be in source data set)

X'11' Data table not closed as other files are still using it

X'12' Reserved

X'13' Record is in data table but not currently valid

X'14' File cannot be closed as it is disabled

X'15' Protocol error3

X'16' CICS is not an MVS subsystem

X'17' Not authorized to connect to this file3

3 This reason code might have accompanying error code information. The error code is a four-byte field that is also reported in
either an error message or an exception trace point. The possible values are described in the CICS/ESA Messages and Codes
manual, “Analyzing errors from the SVC” on page 67, and “Analyzing errors from cross-memory services” on page 70.

 Chapter 9. Problem determination 65

X'18' CICS cannot use cross-memory services

X'19' Interface parameter block format not recognized

UMT and other flags
This flag byte is included in the entry trace point on OPEN. The significant bits at
open time are:

B'1.......' CICS-maintained data table

B'01......' Recoverable user-maintained data table

B'00......' Nonrecoverable user-maintained data table

Exception trace points
The following exception trace points are provided by SDT:

AP 0B0A Unrecognized function on call to DFHDTRE

AP 0B0B Unrecognized function on call to DFHDTRR

AP 0B0C Unrecognized function on call to DFHDTUP

AP 0B0D Unrecognized function on call to DFHDTST

AP 0B0E Unrecognized function on call to DFHDTSS

AP 0B0F Unrecognized function on call to DFHDTRC

AP 0B10 Error on initializing record management

AP 0B11 Error on record manager OPEN

AP 0B12 Error on record manager CLOSE

AP 0B15 Unexpected error on call to retrieval PC

AP 0B19 Error calling data tables SVC

AP 0B1A Error calling data tables SVC

AP 0B27 CLOSE could not find table block

AP 0B28 CLOSE could not find file block

AP 0B29 Error calling data tables SVC

AP 0B2A Error calling data table SVC

AP 0B2B XDTRD exit returned invalid record length (that is, it changed the length
for a CMT, or increased the length for a UMT)

AP 0B2C Connect index exceeds maximum supported size

AP 0B2F Disastrous error when acquiring storage to pass parameters to loading
transaction

The format of each of these trace points is described in the CICS/ESA Diagnosis
Reference manual. The following two sections contain guidance on interpreting
some of the information that is traced.

66 CICS/ESA Shared Data Tables Guide

Analyzing errors from the SVC
Following an error from a call to the data tables SVC, an exception trace point is
always made, which includes an error code field identifying the reason for the error.
There are three categories of SVC error:

1. Conditions that are expected to occur, such as the remote file on a connect
attempt not being a data table, or the remote system not having logged on as a
shared data tables server. CICS takes the appropriate action for such
conditions, and no diagnostic information is needed.

2. Errors that could be due to problems in the environment, which it might be
possible to correct. For these errors, a message is issued in which the reason
code for the error is reported. The explanation of the reason code is included
in the explanation of the message (see the CICS/ESA Messages and Codes
manual).

3. Errors that indicate some sort of logic problem, or a misuse of the routines,
possibly in an attempt to circumvent integrity or security checks. These errors
are treated by CICS file control as disastrous errors, resulting in a system dump
(if you have enabled such dumping) and, in most cases, in the transaction
being abended with an AFCZ ABEND. For these, the value of the response
and reason field is normally X'0215'.

 Error codes
This section explains the error codes for the third category of errors that is
described above. These error codes are seen only in the exception trace entry.
The format of the error code is X'ffaaaaaa', in which ff identifies the type of failure,
and aaaaaa is additional information provided for some of the failures. The
possible values of ff for each trace point are described below.

Values for all trace points
The following error codes can occur for the 0B12, 0B19, 0B1A, 0B29, and 0B2A
exception trace points:

X'01' A function was specified that requires the caller to be authorized via the
CICS AFCB (authorized function control block), but the caller was not
authorized.

X'0A' The caller passed an invalid function code.

X'0B' The caller specified an invalid format of SVC call.

X'0C' An invalid parameter list address was passed to the SVC.

X'0D' A function was specified that requires the value passed in register 1 to
be 0, but it was not. The additional information contains the low-order
three bytes of the value passed.

X'12' A function was specified that requires the caller to be in Key 0
supervisor state, but the caller was not.

 Chapter 9. Problem determination 67

Values for 0B12 trace point
The 0B12 exception trace point is issued if an error is returned by the SVC on
adding or deleting an access list entry when a shared data table is being closed. In
addition to the errors that can occur at all trace points, the following are possible:

X'02' The CICS region has not yet performed SDT initialization (an anchor
block for the region has not been created).

X'0E' The specified data space STOKEN is invalid or the caller is not
authorized to use it.

X'0F' The CICS region has not completed initialization as a server.

X'13' An attempt to delete an access list entry failed because the specified
entry was not created by the data tables SVC.

All other errors result in a message being issued that contains the error code.

Values for 0B19 trace point
The 0B19 exception trace point is issued if an error is returned by the SVC on
initializing as a shared data table server. In addition to the errors that can occur at
all trace points, the following are possible:

X'02' An attempt was being made to add an access list entry before the CICS
region had performed SDT initialization (an anchor block for the region
had not yet been created).

X'0E' The specified data space STOKEN is invalid or the caller is not
authorized to use it.

X'0F' An attempt was being made to add an access list entry before the CICS
region had completed server initialization.

All other errors result in a message being issued that contains the error code.

Values for 0B1A trace point
The 0B1A exception trace point is issued if an error is returned by the SVC on
initializing as a shared data table requester. In addition to the errors that can occur
at all trace points, the following are possible:

X'05' The CICS region has already initialized as a shared data table
requester, but is now running under a different request block from that
under which it originally initialized.

All other errors result in a message being issued that contains the error code.

Values for 0B29 trace point
The 0B29 exception trace point is issued if an error is returned by the SVC on
logging on as a shared data table server. In addition to the errors that can occur at
all trace points, the following are possible:

X'02' The CICS region that is attempting to register (logon) as a server has
not yet been initialized (an anchor block for the region has not been
created).

X'04' This CICS region has already registered (logged on) as a shared data
tables server.

X'0F' The CICS region has not completed server initialization.

68 CICS/ESA Shared Data Tables Guide

X'14' The AFCS anchor block does not exist.

X'15' The CICS security block does not exist.

X'16' Either the caller is not running in a user protection key (its PSW key is
less than 8), or the caller’s TCB does not normally execute in a user
protection key (TCBPKF is less than 8).

All other errors result in a message being issued that contains the error code.

Values for 0B2A trace point
If the function code field contains X'15' then the 0B2A exception trace point
indicates an error on CONNECT (that is, on attempting to establish a connection to
a remote file). In addition to the errors that can occur at all trace points, the
following are possible:

X'02' The requesting region has not performed SDT initialization (an anchor
block for the region has not been created).

X'03' The requesting region has not completed initialization as a shared data
tables requester.

X'05' The CICS region is running under a different request block (RB) from
when it initialized as a data table requester. The additional information
part of the error code contains the RB address under which the call was
made.

X'72' The LINK to the user-replaceable DFHACEE module to find the home
address space’s security userid has failed. The additional information
part of the error code contains two bytes of the ABEND code from the
LINK. The response and reason field accompanying this error is
X'020B'.

All other errors result in a message being issued that contains the error code.

If the function code field contains X'16' then the 0B2A exception trace point
indicates an error on DISCONNECT (that is, on attempting to break the connection
to a remote file). In addition to the errors that can occur at all trace points, the
following are possible:

X'02' The requesting region has not performed SDT initialization (an anchor
block for the region has not been created).

X'03' The requesting region has not completed initialization as a shared data
tables requester.

X'05' The CICS region is running under a different request block (RB) from
when it initialized as a data table requester. The additional information
part of the error code contains the RB address under which the call was
made.

X'07' The caller has supplied an invalid index into the vector of file
connections. The additional information part of the error code contains
the low-order three bytes of the caller’s index.

X'10' The specified connection was broken previously and no longer exists.
The additional information part of the error code contains the low-order
three bytes of the caller’s index into the vector of file connections.

All other errors result in a message being issued that contains the error code.

 Chapter 9. Problem determination 69

Analyzing errors from cross-memory services
Following an unexpected error from data tables cross-memory services, an
X'0B15' exception trace entry is made. It includes the response and reason
codes and an error code field identifying the cause of the error. Such errors are all
caused either by a corruption of the routines or of the system, or by a possible
misuse of the routines.

For a response and reason of X'0215', the format of the error code is
X'ffaaaaaa', in which ff identifies the type of failure and aaaaaa is additional
information provided for some of the failures. The possible values of ff are:

X'01' An attempt to locate the CICS AFCB (authorized function control block)
made by either the cross-memory retrieval routine or the connect vector
lookup routine has failed.

X'02' The requesting CICS region has not yet performed SDT initialization (an
anchor block for the region has not yet been created and set up).

X'03' The requesting region has not completed initialization as a shared data
tables requester.

X'05' The retrieval request was issued under a request block different from
the one that performed initialization as an SDT requester.

X'06' The connect vector entry for the remote file does not contain the correct
linkage index.

X'07' The index of the connect vector entry for the remote file is beyond the
end of the connect vector.

X'08' The connect vector entry for the remote file is not marked as being in
use.

X'09' The cross-memory retrieval routine has not been called via the correct
mechanism.

A response and reason of X'0400' means that the function code passed to the
record management code running in the server region was an unrecognized value.

 Dump information
Information relevant to data tables is included in a CICS system dump to help you
determine the cause of a problem. For information on the contents of dumps and
how to obtain them, see the CICS/ESA Problem Determination Guide.

The major control blocks that are used by SDT are included in the FILE CONTROL
area of a formatted dump of the file-owning region. These control blocks are
named:

� Data Table Global Area.
This is also known as the SDT Header Block, so it uses the eye-catcher
DFHDTHEADER.

� Data Table Base Area.
This is also known as the SDT Table Block, so it uses the eye-catcher
DFHDTTABLE.

70 CICS/ESA Shared Data Tables Guide

� Data Table Path Area.
This is also known as the SDT File Block, so it uses the eye-catcher
DFHDTFILE.

The data table contents are not included in the CICS system dump because the
data space in which the data table resides is not part of the CICS address space.
If you want to see the contents of the data table, ask the system operator to use
the MVS DUMP command to request a dump of the data space DFHDT001 owned
by the appropriate CICS startup job.

The operator command DISPLAY J,CICS-startup-jobname shows information about
a CICS job, including the DSPNAMEs of data spaces that it owns. To dump the
contents of the data space, you can use the MVS DUMP command as follows:

 1. Enter

DUMP COMM=(title for your dump)

2. This generates an MVS console message

O id IEEA94D SPECIFY OPERAND(S) FOR DUMP COMMAND

3. Reply to the message with

REPLY id, DSPNAME='jobname'.DFHDTAA1

and the data space is dumped.

4. Use DISPLAY DUMP,TITLE to see which SYS1.DUMPnn data set has been used.

 Chapter 9. Problem determination 71

72 CICS/ESA Shared Data Tables Guide

Chapter 10. Using Shared Data Tables support in a sysplex

This chapter discusses the use of Shared Data Tables support in a sysplex
environment. It should be of particular interest to you if you are currently using
user-maintained data tables in a single-MVS environment, but are planning to move
to a sysplex. It might also be helpful if you already have a sysplex, because it can
show you how to exploit shared data tables support in that environment.

A shared data table can exploit shared data tables support only within a single
MVS image.4 However, you can extend the use of shared data tables to a sysplex
environment for an application that requires only read access to a shared
user-maintained data table, or for one that does not require that changes are seen
immediately.

You can replicate a user-maintained data table across the sysplex, with one data
table per MVS. You must have one Shared Data Tables (SDT) server region in
each MVS image, each owning a user-maintained data table which can be
accessed using SDT sharing by any of the other CICS regions within that MVS.
These other regions require remote file definitions, which refer to the
user-maintained data table in their server region. Each user-maintained data table
(UMT) must have the same source data set, and this data set must be readable by
all of the SDT server regions. If the access is read-only, with the data never being
updated, this will in effect provide a shared user-maintained data table in a sysplex.

If, as is probably more likely, the underlying data changes from time to time, but it
is not necessary to reflect such changes immediately in the UMTs, you may
periodically perform some processing to refresh the contents of the UMTs so that
they are updated to match the underlying data without the need to close and then
reload the UMTs. Changes are applied to the source data set, rather than to the
user-maintained data table, using CICS applications that refer to the data set by a
non-data table file definition, or using batch programs. An example application
program (see Figure 11 on page 79) illustrates how the UMTs can be refreshed to
reflect the current contents of the source data set. The program would run on each
MVS image and update the UMT in that image. Such a program could be run at
regular times during the day, or at user request. It would be most efficient to run it
in the SDT server regions, to avoid function shipping updates to the UMT.

If it is critical that the CICS regions in all the MVS images in the sysplex are
synchronised in their view of the data, the transactions that read the data must be
stopped while the refresh programs run, and restarted only after the programs have
completed on all MVS systems.

This technique is appropriate only for user-maintained data tables because:

� Where read-only access is required, a user-maintained data table is the usual
choice.
� It would not be possible with a CICS-maintained data table to apply updates to
the source data set while leaving the tables unaffected.
� Any update made to the source data set would be reflected only in the table on
the system on which the update was made.

4 But note that a shared data table can be shared using function shipping across MVS images.

 Copyright IBM Corp. 1992, 1994 73

Figure 11 on page 79 shows an example COBOL application program that
demonstrates how you can refresh the replicated UMTs.

How to refresh replicated UMTs
The following steps describe how to set up an environment to refresh replicated
UMTs. In practice, you may already have some of this in place. For example, you
may already have files defined as data tables. The steps described here assume
that you already have a sysplex environment.

1. Select a file that is appropriate.

As an illustration, consider an application that checks credit card numbers
against a list of stolen credit cards, and requires rapid access to this list. The
list is updated periodically with new batches of numbers of stolen cards. The
application accesses records in a VSAM KSDS data set named
PRODN.SOURCEDS using a filename UMTNAME. The application runs in a
sysplex consisting of two MVS images. CICS regions CICS1A, CICS1B, and
CICS1C run in the first image, and CICS2A, CICS2B and CICS2C run in the
second.

2. Set up file definitions:

� In each MVS in the sysplex, select a CICS region to be the SDT server for
this file. Within this region, define the filename by which your applications
read the data as a user-maintained data table, with the data set name as
that containing the source data.

In this illustration, CICS1A and CICS2A are set up as the server regions,
and files are defined to them called UMTNAME. The file definitions specify
DSNAME as PRODN.SOURCEDS, TABLE as USER, and allowed
operations of YES for READ, BROWSE, ADD, DELETE and UPDATE
(because this file definition will be used both for reading the data and for
updating the UMT when it is refreshed).

� For all the other regions in the sysplex, define the filename by which the
applications read the data as a remote file with the REMOTESYSTEM as
the SDT server region in the same MVS, and the REMOTENAME as the
name of the UMT in that region.

So, in this illustration, files called UMTNAME would be defined in CICS1B
and CICS1C with the REMOTESYSTEM as the sysid for CICS1A and the
REMOTENAME as UMTNAME, this time with READ and BROWSE as the
only allowed operations, because there is no need for the UMT to be
updated through these remote definitions. Similar file definitions are set up
in CICS2B and CICS2C, but for these CICS2A is the remote system.

� In each SDT server region, set up a file definition that can be used to read
the source data set when the UMTs are refreshed.

In this illustration, files named SOURCEDS are defined to CICS1A and
CICS2A, with the DSNAME as PRODN.SOURCEDS, TABLE as NO, and
allowing only READ and BROWSE operations.

� In one region in the sysplex (which has access to the source data set),
define a file that is used to apply updates to the source. The file definition
could be the same as that used by the refresh program to read the source
data set, but in this case it would need to allow both reading and updating

74 CICS/ESA Shared Data Tables Guide

operations. You might, if you prefer, decide to update the data set using a
batch program, in which case this CICS file definition would not be needed.

This illustration uses the same file definition as is used in refreshing the
UMTs. In this case, one of the regions would need to define SOURCEDS
as allowing all file operations.

3. Set up the source data set so that it can be accessed by all applications that
need to read or update it.

You can set up the data set SHAREOPTIONS so that it can be updated by the
program that applies updates to the source, and read by all others.
Alternatively, you can set up the data set so that it can be updated only when it
is not being read, and ensure that its opening is serialised. For the
shareoptions to operate throughout the sysplex, you must use GRS (Global
Resource Serialisation).

In this illustration, define PRODN.SOURCEDS either with:

� SHR(2), so that it can be updated by the region that runs the program that
applies changes to the data set and at the same time read by all the
refresh programs,

or

� SHR(1), and normally have it open to the program that applies changes;
then, when it is to be refreshed, close that access to it, and, on each server
region in turn, open it, run the refresh program, and close disable it to allow
the next region to open it.

4. Modify the example program so that it names your files for the UMT and the
source data set, and so that the data definitions match the layout of your
records. Define the program and transaction in your server regions.

The file names in the illustration are the same as those in the program
(UMTNAME and SOURCEDS). Define the program and a transaction to run it
in CICS1A and CICS2A.

5. You should now be ready to start using the replicated UMTs.

6. Prime the source data set with its initial contents.

7. Open the UMTs in the SDT server regions, to cause the contents of the source
data set to be loaded into each one.

8. Start up the applications in all regions in the sysplex. They will all be able to
access the data using SDT sharing.

The applications running in MVS 1 will access the data through the UMT in
CICS1A, and those running in MVS 2 will access it through the UMT in
CICS2A.

9. When new data arrives, update the source data set.

In this illustration, the data is updated by file SOURCEDS.

10. When you want the applications to access the new data, run the transactions in
each server region that will read the source data set and the UMT, and refresh
the latter to be in step with the former. Providing your applications are not
invalidated if the data seen on one MVS is slightly different from that seen on
another, you do not have to stop them running while you do the refresh.

 Chapter 10. Using Shared Data Tables support in a sysplex 75

Example program for refreshing a UMT
To help you write your own program, Figure 11 on page 79 shows an example of
a COBOL program that demonstrates how to refresh a UMT while it is still open, to
match the source data set.

If updates are applied frequently to the source data set, and could be applied while
the refresh program is running, this could mean that the source data set is never
exactly reflected by the UMT, because the record being processed or records
already processed could be changed. This means that the program has to be
tolerant to the possibility of the records changing. The program is also written to
allow for the possibility that the UMT itself is updated by other programs, although
you are not recommended to operate in this way (that is, the only program that
updates the UMT should be the refresh program).

Setting up and executing the example program
Edit the program, according to the comments in the example, to match the format
of the records being updated. 'UMTNAME' and 'SOURCEDS' should be renamed
to match your file definitions.

Translate, compile and link the program using a COBOL compiler.

Define the program to CICS, and define a transaction to the program. Define the
file (UMTNAME) to point to the UMT, and give it a source data set from which to
load when first opened. Define the other file (SOURCEDS) to point directly to the
source data set from which the UMT is defined to load.

Each sysplex should have one CICS region where the UMT that is to be refreshed
resides. In these regions, the definitions needed to run the refresh transaction
must be installed. In all other regions in the sysplex, the UMT should be defined as
a remote file, pointing to the UMT in the UMT-owning region. It is not necessary to
run the refresh transaction on the regions that have the UMT defined as remote.

The update strategy used will depend on the way the source data set is set up. If
the data set has the SHAREOPTIONS set so that it can be read by multiple
systems at any one time, all UMTs can be refreshed at the same time, and any
updates to the source data set can also be applied. Otherwise, when the source
data set is updated, the file that is used to read the source data set for refreshing
would need to be closed and disabled on each system for the duration of the
update. If all the UMTs are refreshed serially, the source data set could be opened
and closed to each UMT-owning region in turn, and when needed for update.

How the example program operates
First, the environment is initialized. A check is made that the UMT file is local and
is already open. If the UMT file is remote, the program issues a message and
ends. If the UMT file is not open, the progam opens it and ends (because opening
the UMT will load the latest data from the source data set without the need to
perform any more processing). A check is also made that the source file is local; if
it is remote, the program issues a message and ends. The file that directly
accesses the UMT's source data set is opened. Start browse operations are then
performed on both files to allow the program to step through them both
sequentially.

76 CICS/ESA Shared Data Tables Guide

If the environment is set up without error, the update of the UMT starts. This
involves the retrieval and comparison of pairs of records, one from the UMT and
one from the base data set.

The records retrieved are compared:

� If the records are equal, the flags are set to read the next record from the UMT
and the data set.

� If the UMT has a greater key than the data set, there is a record in the data set
that must be added to the UMT.

� If the data set has a greater key than the UMT, there is an extra record in the
UMT that needs to be removed.

� If the keys are equal, but the records are different, the UMT should be updated
with the record in the data set.

If a record must be added to the UMT, a write operation is performed.

� If the write operation succeeds, the program goes on to process the next pair
of records.

� If the write operation fails because of a record that has been inserted by
another transaction between the read and the write operation performed by the
program, an attempt is made to delete the record and write it again.

� If the second attempt fails, the program processes the next pair of records.

� When the next pair of records is processed, the current UMT record is
compared with the next record in the data set to check for further UMT record
omissions.

If a record needs to be deleted from the UMT, a delete operation is performed.

� If the delete operation succeeds, the program goes on to process the next pair
of records.

� If the delete operation fails because the record has already been deleted
between the read and delete operations, the program continues to process the
next pair of records.

� When the next pair of records is processed, the current data set record is
compared with the next record in the UMT to check for further records that
should not be in the UMT.

If a record must be updated in the UMT, a read for update operation is performed,
to get a lock on the record.

� If this is a success, the updated record is rewritten to the UMT, and the
program goes on to process the next pair of records.

� If the operation fails because another transaction has deleted the record, a
write operation is performed to put it back in.

� If the write operation fails, the program continues to process the next pair of
records.

� When the next pair of records is processed, new records are read from both
the UMT and the data set.

 Chapter 10. Using Shared Data Tables support in a sysplex 77

When the end of both files has been reached, and there are no more records left to
process, the program performs end browses on both the data set and the UMT and
returns. Note that the example does not close the file that directly accesses the
data set. If the data set cannot operate for update in a shared environment, the file
that accesses it should be set to CLOSED DISABLED, to allow it to be updated.

The program traps any unexpected errors and issues an error message on the
screen. Only the first operation on the UMT is checked (either the delete, write or
read/rewrite operations). If that fails with a return code that could be caused by a
record being changed after it was originally read, one final attempt is made to
correct the record, but this attempt is not checked. This is to prevent the program
entering a loop state.

There are further comments in the code.

78 CICS/ESA Shared Data Tables Guide

Source code for the example program

CBL XOPTS(SP)

OOO

O O

O PROGRAM NAME : UMTUPDT COBOL O

O O

O DESCRIPTIVE NAME : CICS application to dynamically update a O

O UMT with the current contents of a dataset. O

O O

O---O

O O

O OVERVIEW O

O O

O This program demonstrates how to update a user maintained O

O table (UMT) to match the data in the source dataset it was O

O loaded from when opened, whilst it remains in use by one O

O (or more) CICS systems. It can be used to update a UMT that O

O is replicated in different sysplexes so that they all match O

O the source dataset. It should be run on the FOR. O

O O

O---O

O O

O REQUIREMENTS O

O O

O This program should be translated, compiled and linked as a O

O CICS COBOL program, and defined to CICS. A transaction name O

O should be defined to this program. A UMT file, currently O

O called UMTNAME, is used to access the UMT, and a source O

O dataset file, currently called SOURCEDS, is used to directly O

O access the dataset the UMT is loaded from. These definitions O

O must be installed only in the region in which the UMT resides O

O (the FOR). Any regions in the same sysplex that use the UMT O

O remotely do not need to run any update process. O

O O

O---O

O O

O DESCRIPTION O

O O

O The program will first initialise the two files that are O

O needed, and start browsing them from the beginning. O

O Opening the UMT will cause it to be loaded if it isn't open. O

O If it is not open and the UMT is loaded, the operation of the O

O program is effectively redundant and the update code will O

O not be run. The program will also check for a remote system O

O name. If one is present for either file, then the program O

O will not run. This is to prevent function shipping occuring O

O which would obviously degrade performance. O

O O

O The program will continuously read a pair of records from the O

O two files and compare them, adding, deleting or updating any O

O records in the UMT that don't match the source dataset. O

O O

Figure 11 (Part 1 of 13). Example program to refresh a replicated UMT

 Chapter 10. Using Shared Data Tables support in a sysplex 79

O The keys of the pair of records are compared. If the key to O

O the UMT and the key to the source dataset are equal, and the O

O records match, then no update is required. If both keys are O

O equal, but the records are different, then the record in the O

O source dataset is used to update the UMT. If the key in the O

O UMT is greater than the key in the source dataset, then the O

O record(s) in the source dataset are written to the UMT until O

O the keys become equal or the UMT key becomes less than the O

O source dataset key. If the UMT key is less than the source O

O dataset key, then the record(s) in the UMT are removed until O

O the keys become equal, or the UMT key is greater than the O

O source dataset. This continues until the end of both files O

O is reached, or an unexpected error occurs. O

O O

O Any errors that are unexpected are reported to the screen, O

O and operation of the program stops. Some errors are trapped, O

O and a further attempt will be made to update the UMT. If O

O this attempt fails, no further action is taken for those O

O records, and the program will continue to process the next O

O pair. O

O O

O---O

O O

O MODIFYING THE PROGRAM O

O O

O This program may not work as is. The record structure it O

O uses assumes that a 4 character key is used to access a 4A O

O character record. The following changes will need to be made O

O to allow this program to work with different record types. O

O O

O The key that accesses the UMT and source dataset should be O

O changed. The variables that store the key are UMT-KEY and O

O DS-KEY. O

O O

O The length of the records are held in UMT-LEN and DS-LEN. O

O O

O The UMT and source dataset record variables should be changed.O

O The variables that store these are UMT-REC (which contains O

O UMT-REC-KEY and UMT-REC-TEXT), and DS-REC (which contains O

O DS-REC-KEY and DS-REC-TEXT). Additional fields can obviously O

O be added as needed. O

O O

O The filename of the UMT is set as UMTNAME. This can be O

O changed to match any UMT already defined. The source dataset O

O file is set as SOURCEDS, and can also be changed. O

O O

OOO

Figure 11 (Part 2 of 13). Example program to refresh a replicated UMT

80 CICS/ESA Shared Data Tables Guide

IDENTIFICATION DIVISION.

PROGRAM-ID. UMTUPDT.

ENVIRONMENT DIVISION.

EJECT.

DATA DIVISION.

WORKING-STORAGE SECTION.

O Declare the UMT and DS record variables

77 UMT-KEY PIC X(4) VALUE 'AAAA'.

77 UMT-LEN PIC 9(2) VALUE 4A.

A1 UMT-REC.

A3 UMT-REC-KEY PIC X(4) VALUE SPACES.

A3 UMT-REC-TEXT PIC X(36) VALUE SPACES.

77 DS-KEY PIC X(4) VALUE 'AAAA'.

77 DS-LEN PIC 9(2) VALUE 4A.

A1 DS-REC.

A3 DS-REC-KEY PIC X(4) VALUE SPACES.

A3 DS-REC-TEXT PIC X(36) VALUE SPACES.

O Declare other work variables

O Screen output strings

A1 MESSAGE-OUTPUT PIC X(26) VALUE 'UMT SUCCESSFULLY REFRESHED'.

A1 REMOTE-OUTPUT PIC X(25) VALUE 'FILE RESOURCE NOT LOCAL'.

A1 ERROR-OUTPUT.

A3 ERROR-OPNAME PIC X(8) VALUE SPACES.

A3 FILLER PIC X(15) VALUE ' RETURNED RESP '.

A3 ERROR-RESP PIC X(8) VALUE SPACES.

A3 FILLER PIC X(7) VALUE ' RESP2 '.

A3 ERROR-RESP2 PIC X(8) VALUE SPACES.

A3 FILLER PIC X(1A) VALUE ' FOR FILE '.

A3 ERROR-FILE PIC X(8) VALUE SPACES.

O End of file flags

77 UMT-EOF PIC 9(1) VALUE A.

77 DS-EOF PIC 9(1) VALUE A.

O Record retrieval flags

77 GET-NEXT-UMT PIC 9(1) VALUE 1.

77 GET-NEXT-DS PIC 9(1) VALUE 1.

O File inquire variables

77 REM-SYS-NAME PIC X(4) VALUE SPACES.

77 OPEN-STAT PIC S9(8) BINARY.

O Program operation flags

77 PROCESS-FILES PIC 9(1) VALUE 1.

77 REM-FILE PIC 9(1) VALUE A.

77 UMT-STARTBR PIC 9(1) VALUE A.

77 DS-STARTBR PIC 9(1) VALUE A.

Figure 11 (Part 3 of 13). Example program to refresh a replicated UMT

 Chapter 10. Using Shared Data Tables support in a sysplex 81

O EXEC CICS response variables

77 RESPONSE PIC S9(8) BINARY.

77 RESPONSE2 PIC S9(8) BINARY.

COPY DFHAID.

COPY DFHBMSCA.

LINKAGE SECTION.

EJECT.

PROCEDURE DIVISION USING DFHEIBLK.

OOO

O Main processing starts here. O

OOO

MAIN-PROCESSING SECTION.

O Check the UMT and dataset for processing

PERFORM FILE-CHECK.

O If the file check completed okay, process the UMT

IF (PROCESS-FILES = 1)

O Ready the UMT and DS for access

PERFORM INITIALISE

O Call the update routine until the end of both files reached

PERFORM UPDATE-UMT UNTIL (DS-EOF = 1 AND UMT-EOF = 1)

END-IF.

O Exit the program cleanly

PERFORM TRAN-FINISH.

MAIN-PROCESSING-EXIT.

GOBACK.

EJECT

OOO

O Procedures start here. O

OOO

Figure 11 (Part 4 of 13). Example program to refresh a replicated UMT

82 CICS/ESA Shared Data Tables Guide

OOO

O Check the files open status and that they aren't remote O

OOO

FILE-CHECK SECTION.

O Inquire on the UMT to get remote and open status information

MOVE SPACES TO REM-SYS-NAME.

EXEC CICS INQUIRE FILE('UMTNAME')

OPENSTATUS(OPEN-STAT)

REMOTESYSTEM(REM-SYS-NAME)

RESP(RESPONSE)

RESP2(RESPONSE2)

END-EXEC.

O Output an error if inquire on the UMT failed

IF (RESPONSE NOT = DFHRESP(NORMAL))

MOVE 'INQUIRE ' TO ERROR-OPNAME

MOVE 'UMTNAME ' TO ERROR-FILE

PERFORM PROCESS-ERROR

END-IF.

O System name is not blank if the file is defined as remote

O We don't want to do any processing if the file is remote

IF (REM-SYS-NAME NOT = SPACES)

MOVE A TO PROCESS-FILES

MOVE 1 TO REM-FILE

ELSE

O If the UMT is not open, then opening it will update it

IF (OPEN-STAT NOT = DFHVALUE(OPEN))

EXEC CICS SET FILE('UMTNAME')

OPEN

RESP(RESPONSE)

RESP2(RESPONSE2)

END-EXEC

O Check open of UMT was successful

IF (RESPONSE NOT = DFHRESP(NORMAL))

MOVE 'OPEN ' TO ERROR-OPNAME

MOVE 'UMTNAME ' TO ERROR-FILE

PERFORM PROCESS-ERROR

ELSE

O Don't want to do any processing, as open will update UMT

MOVE A TO PROCESS-FILES

END-IF

END-IF

END-IF.

O Inquire on the source dataset to get remote and open status

MOVE SPACES TO REM-SYS-NAME.

EXEC CICS INQUIRE FILE('SOURCEDS')

REMOTESYSTEM(REM-SYS-NAME)

OPENSTATUS(OPEN-STAT)

RESP(RESPONSE)

RESP2(RESPONSE2)

END-EXEC.

Figure 11 (Part 5 of 13). Example program to refresh a replicated UMT

 Chapter 10. Using Shared Data Tables support in a sysplex 83

O Output an error if inquire on the dataset failed

IF (RESPONSE NOT = DFHRESP(NORMAL))

MOVE 'INQUIRE ' TO ERROR-OPNAME

MOVE 'SOURCEDS' TO ERROR-FILE

PERFORM PROCESS-ERROR

END-IF.

O Don't do any processing if it's a remote file

IF (REM-SYS-NAME NOT = SPACES)

MOVE A TO PROCESS-FILES

MOVE 1 TO REM-FILE

ELSE

O Open the source dataset

IF (OPEN-STAT = DFHVALUE(CLOSED))

EXEC CICS SET FILE('SOURCEDS')

OPEN

RESP(RESPONSE)

RESP2(RESPONSE2)

END-EXEC

O Check open of dataset was successful

IF (RESPONSE NOT = DFHRESP(NORMAL))

MOVE 'OPEN ' TO ERROR-OPNAME

MOVE 'SOURCEDS' TO ERROR-FILE

PERFORM PROCESS-ERROR

END-IF

END-IF

END-IF.

FILE-CHECK-EXIT.

EXIT.

EJECT

OOO

O Initialise the files ready for sequential reading O

OOO

INITIALISE SECTION.

O Start browsing the UMT from the first record

EXEC CICS STARTBR FILE('UMTNAME')

RIDFLD(UMT-KEY)

GTEQ

RESP(RESPONSE)

RESP2(RESPONSE2)

END-EXEC.

O If UMT is empty (NOTFND) then treat as end of UMT and fill

IF (RESPONSE = DFHRESP(NOTFND))

MOVE 1 TO UMT-EOF

ELSE

Figure 11 (Part 6 of 13). Example program to refresh a replicated UMT

84 CICS/ESA Shared Data Tables Guide

O Output an error if the start browse for the UMT failed

IF (RESPONSE NOT = DFHRESP(NORMAL))

MOVE 'STARTBR ' TO ERROR-OPNAME

MOVE 'UMTNAME ' TO ERROR-FILE

PERFORM PROCESS-ERROR

END-IF

END-IF.

O Set UMT start browse flag

MOVE 1 TO UMT-STARTBR.

O Start browsing the dataset from the first record

EXEC CICS STARTBR FILE('SOURCEDS')

RIDFLD(DS-KEY)

GTEQ

RESP(RESPONSE)

RESP2(RESPONSE2)

END-EXEC.

O If dataset is empty then treat as end of dataset an empty UMT

IF (RESPONSE = DFHRESP(NOTFND))

MOVE 1 TO DS-EOF

ELSE

O Output an error if the start browse for the dataset failed

IF (RESPONSE NOT = DFHRESP(NORMAL))

MOVE 'STARTBR ' TO ERROR-OPNAME

MOVE 'SOURCEDS' TO ERROR-FILE

PERFORM PROCESS-ERROR

END-IF

END-IF.

O Set dataset start browse flag

MOVE 1 TO DS-STARTBR.

INITIALISE-EXIT.

EXIT.

EJECT

OOO

O Update the UMT according to the record/key states O

OOO

UPDATE-UMT SECTION.

O Get the next records from the UMT and dataset

PERFORM READ-FILES.

O If both records are the same, move to the next record

IF UMT-REC = DS-REC

MOVE 1 TO GET-NEXT-UMT

MOVE 1 TO GET-NEXT-DS

ELSE

Figure 11 (Part 7 of 13). Example program to refresh a replicated UMT

 Chapter 10. Using Shared Data Tables support in a sysplex 85

O If UMT is behind dataset then extra record in UMT so delete it.

O Also delete records from UMT if EOF DS reached before EOF UMT

IF (UMT-EOF = A AND (UMT-KEY < DS-KEY OR DS-EOF = 1))

PERFORM UMT-DELETE

END-IF

O If UMT ahead of dataset then extra record in DS so add to UMT

O Also add records to the UMT if the EOF reached before EOF DS

IF (DS-EOF = A AND (UMT-KEY > DS-KEY OR UMT-EOF = 1))

PERFORM UMT-WRITE

END-IF

O If both keys equal but record different, update UMT

IF ((DS-EOF = A AND UMT-EOF = A) AND UMT-KEY = DS-KEY)

PERFORM UMT-UPDATE

END-IF

END-IF.

UPDATE-UMT-EXIT.

EXIT.

EJECT

OOO

O Read the next record from both files O

OOO

READ-FILES SECTION.

O If the flags are set to read the next UMT record, do so

IF (GET-NEXT-UMT = 1 AND UMT-EOF = A)

MOVE SPACES TO UMT-REC

EXEC CICS READNEXT FILE('UMTNAME')

RIDFLD(UMT-KEY)

INTO(UMT-REC)

RESP(RESPONSE)

RESP2(RESPONSE2)

END-EXEC

O Set the EOF flag if the end of the UMT has been reached

IF (RESPONSE = DFHRESP(ENDFILE))

MOVE 1 TO UMT-EOF

ELSE

O Output an error if the return code from the READ is unexpected

IF (RESPONSE NOT = DFHRESP(DUPKEY) AND

RESPONSE NOT = DFHRESP(NORMAL))

MOVE 'READNEXT' TO ERROR-OPNAME

MOVE 'UMTNAME ' TO ERROR-FILE

PERFORM PROCESS-ERROR

END-IF

END-IF

END-IF.

Figure 11 (Part 8 of 13). Example program to refresh a replicated UMT

86 CICS/ESA Shared Data Tables Guide

O If the flags are set to read the next dataset record, do so

IF (GET-NEXT-DS = 1 AND DS-EOF = A)

MOVE SPACES TO DS-REC

EXEC CICS READNEXT FILE('SOURCEDS')

RIDFLD(DS-KEY)

INTO(DS-REC)

RESP(RESPONSE)

RESP2(RESPONSE2)

END-EXEC

O Set the EOF flag if the end of the dataset has been reached

IF (RESPONSE = DFHRESP(ENDFILE))

MOVE 1 TO DS-EOF

ELSE

O Output an error if the return code from the READ is unexpected

IF (RESPONSE NOT = DFHRESP(DUPKEY) AND

RESPONSE NOT = DFHRESP(NORMAL))

MOVE 'READNEXT' TO ERROR-OPNAME

MOVE 'SOURCEDS' TO ERROR-FILE

PERFORM PROCESS-ERROR

END-IF

END-IF

END-IF.

READ-FILES-EXIT.

EXIT.

EJECT

OOO

O Attempt to delete a record from the UMT O

OOO

UMT-DELETE SECTION.

O Delete the last read record in the UMT

EXEC CICS DELETE FILE('UMTNAME')

RIDFLD(UMT-KEY)

RESP(RESPONSE)

RESP2(RESPONSE2)

END-EXEC.

O Allow NORMAL and NOTFND return codes in case record has been

O deleted since it was first read, otherwise output an error

IF (RESPONSE = DFHRESP(NORMAL) OR

RESPONSE = DFHRESP(NOTFND))

O Set flags to get next UMT record, but keep same dataset record

MOVE 1 TO GET-NEXT-UMT

MOVE A TO GET-NEXT-DS

ELSE

MOVE 'DELETE ' TO ERROR-OPNAME

MOVE 'UMTNAME ' TO ERROR-FILE

PERFORM PROCESS-ERROR

END-IF.

UMT-DELETE-EXIT.

EXIT.

EJECT

Figure 11 (Part 9 of 13). Example program to refresh a replicated UMT

 Chapter 10. Using Shared Data Tables support in a sysplex 87

OOO

O Attempt to write a record to the UMT O

OOO

UMT-WRITE SECTION.

O Attempt to write the missing record using the dataset key

EXEC CICS WRITE FILE('UMTNAME')

RIDFLD(DS-KEY)

FROM(DS-REC)

RESP(RESPONSE)

RESP2(RESPONSE2)

END-EXEC.

O If the UMT has had a record written to this position since the

O read then delete it and try one last time.

O If write still unsuccessful, move to the next pair of records

IF RESPONSE = DFHRESP(DUPREC)

EXEC CICS DELETE FILE('UMTNAME')

RIDFLD(DS-KEY)

RESP(RESPONSE)

RESP2(RESPONSE2)

END-EXEC

EXEC CICS WRITE FILE('UMTNAME')

RIDFLD(DS-KEY)

FROM(DS-REC)

RESP(RESPONSE)

RESP2(RESPONSE2)

END-EXEC

ELSE

O Output an error if return code from first write was bad

O (but allow suppression return code by user exit)

IF (RESPONSE NOT = DFHRESP(NORMAL) AND

RESPONSE NOT = DFHRESP(SUPPRESSED))

MOVE 'UMTNAME ' TO ERROR-FILE

MOVE 'WRITE ' TO ERROR-OPNAME

PERFORM PROCESS-ERROR

END-IF

END-IF.

O Set flags to keep same UMT record, and get next dataset record

MOVE A TO GET-NEXT-UMT.

MOVE 1 TO GET-NEXT-DS.

UMT-WRITE-EXIT.

EXIT.

EJECT

Figure 11 (Part 10 of 13). Example program to refresh a replicated UMT

88 CICS/ESA Shared Data Tables Guide

OOO

O Attempt to update a record in the UMT to match the DS O

OOO

UMT-UPDATE SECTION.

O Attempt to get a lock on the record using read for update

EXEC CICS READ FILE('UMTNAME')

RIDFLD(UMT-KEY)

INTO(UMT-REC)

UPDATE

RESP(RESPONSE)

RESP2(RESPONSE2)

END-EXEC.

O If record has been deleted since original read, write it.

O If write is unsuccessful, move to next pair of records

IF RESPONSE = DFHRESP(NOTFND)

EXEC CICS WRITE FILE('UMTNAME')

RIDFLD(UMT-KEY)

FROM(DS-REC)

RESP(RESPONSE)

RESP2(RESPONSE2)

END-EXEC

ELSE

O If read for update was successful, write dataset record to UMT

IF RESPONSE = DFHRESP(NORMAL)

EXEC CICS REWRITE FILE('UMTNAME')

FROM(DS-REC)

RESP(RESPONSE)

RESP2(RESPONSE2)

END-EXEC

O Output an error if rewrite failed

IF RESPONSE NOT = DFHRESP(NORMAL)

MOVE 'REWRITE ' TO ERROR-OPNAME

MOVE 'UMTNAME ' TO ERROR-FILE

PERFORM PROCESS-ERROR

END-IF

ELSE

O Output an error if the read for update failed

MOVE 'READUPDT' TO ERROR-OPNAME

MOVE 'UMTNAME ' TO ERROR-FILE

PERFORM PROCESS-ERROR

END-IF

END-IF.

O Set flags to get next record for both UMT and dataset

MOVE 1 TO GET-NEXT-UMT.

MOVE 1 TO GET-NEXT-DS.

UMT-UPDATE-EXIT.

EXIT.

EJECT

Figure 11 (Part 11 of 13). Example program to refresh a replicated UMT

 Chapter 10. Using Shared Data Tables support in a sysplex 89

OOO

O Exit from the program cleanly O

OOO

TRAN-FINISH SECTION.

O End the browse operation for the UMT

IF (UMT-STARTBR = 1)

EXEC CICS ENDBR FILE('UMTNAME')

RESP(RESPONSE)

RESP2(RESPONSE2)

END-EXEC

END-IF.

O End the browse operation for the dataset

IF (DS-STARTBR = 1)

EXEC CICS ENDBR FILE('SOURCEDS')

RESP(RESPONSE)

RESP2(RESPONSE2)

END-EXEC

END-IF

O Output a message to the screen if UMT was updated

IF (REM-FILE = A)

EXEC CICS SEND TEXT

FROM(MESSAGE-OUTPUT)

ERASE

RESP(RESPONSE)

RESP2(RESPONSE2)

END-EXEC

ELSE

O Output a message if either file was defined as remote

EXEC CICS SEND TEXT

FROM(REMOTE-OUTPUT)

ERASE

RESP(RESPONSE)

RESP2(RESPONSE2)

END-EXEC

END-IF.

O End the program and return to CICS

EXEC CICS RETURN

END-EXEC.

TRAN-FINISH-EXIT.

EXIT.

EJECT

Figure 11 (Part 12 of 13). Example program to refresh a replicated UMT

90 CICS/ESA Shared Data Tables Guide

OOO

O Display error message on screen and exit program O

OOO

PROCESS-ERROR SECTION.

O Copy last return codes into the message

MOVE RESPONSE TO ERROR-RESP.

MOVE RESPONSE2 TO ERROR-RESP2.

O Output message to the screen

EXEC CICS SEND TEXT

FROM(ERROR-OUTPUT)

ERASE

RESP(RESPONSE)

RESP2(RESPONSE2)

END-EXEC.

O End the program and return to CICS

EXEC CICS RETURN

END-EXEC.

PROCESS-ERROR-EXIT.

EXIT.

Figure 11 (Part 13 of 13). Example program to refresh a replicated UMT

 Chapter 10. Using Shared Data Tables support in a sysplex 91

92 CICS/ESA Shared Data Tables Guide

Appendix A. Sample user exit programs

This appendix contains Product-sensitive Programming Interface and Associated
Guidance Information.

This appendix describes, by means of samples of coding and data definition
sequences, the conventions used in user exit programs that are used with SDT.
These samples are intended only as general guidance and do not define a
programming interface.

The exit programs are supplied with CICS, in the library SDFHSAMP.

Copybook DFHXDTDS defines the data tables user exit parameter list, which is
used in each of the following samples. DFHXDTDS is shown in Figure 7 on
page 44.

Sample XDTRD exit program

TITLE 'DFH$DTRD - Sample XDTRD Global User Exit Program'

OOO

O O

O MODULE NAME = DFH$DTRD O

O O

O DESCRIPTIVE NAME = CICS/ESA Shared Data Tables Sample XDTRD Exit O

O O

O FUNCTION = O

O The program selects records for inclusion in a data table. O

O O

O --- O

O NOTE that this program is only intended to DEMONSTRATE the use O

O of the data tables user exit XDTRD, and to show the sort of O

O information which can be obtained from the exit parameter list. O

O IT SHOULD BE TAILORED BEFORE BEING USED IN A PRODUCTION ENVIRONMENT O

O --- O

O O

O This global user exit program will be invoked, if enabled, when O

O a record which has been fetched from the source data set is about O

O to be added to the data table. O

O O

O The program can be used both on CICS systems which are using O

O Shared Data Tables support and on ones which are not. O

O It uses a flag that is passed via the data tables parameter list O

O to determine whether the exit has been invoked by shared data O

O tables support. O

O O

O The purpose of the program is to demonstrate the use of the O

O option to optimize the data table load by skipping over ranges of O

O key values which are to be excluded from the table. This option O

Figure 12 (Part 1 of 9). Sample XDTRD user exit program

 Copyright IBM Corp. 1992, 1994 93

O is only allowed for shared data tables, but the program also O

O illustrates that individual records can be rejected when the exit O

O is not invoked by the data table loading transaction, or when O

O shared data tables support is not in use. O

O O

O If the program has been invoked by shared data tables support O

O then it checks whether the source data set name passed to it is O

O the one defined by the constant EXITDSN. If so, and the exit has O

O been invoked from the loading transaction, then the skip-during- O

O load option will be used to skip (not attempt to load) any O

O records except those whose keys start with the two characters in O

O in EXITKEY. O

O O

O If the program has not been invoked by shared data tables, it O

O uses the data table name rather than the source DSname to check O

O whether this is the file from which records are to be rejected. O

O If the table name matches the constant EXITFILE then only records O

O whose keys start with the two characters in EXITKEY will be O

O accepted for inclusion in the table. O

O O

O A number of the actions taken are for illustrative purposes only, O

O rather than being the recommended way in which to code an XDTRD O

O exit program - for example, the program demonstrates how the O

O keylength passed to the exit can be used to avoid having to know O

O the keylength of the source data set, whereas in practice this O

O might well be known; and the program chooses to reject any O

O records which are not presented to it by the loading transaction, O

O whereas it would be more realistic to accept all records in the O

O desired range of keys. O

O O

O It should also be noted that there are other useful things which O

O can be done with the XDTRD exit, such as amending the contents of O

O the records as they are loaded into a user-maintained data table. O

O O

O The trace flag passed to the exit is set ON if File Control (FC) O

O level 1 tracing is enabled. O

O O

O NOTES : O

O DEPENDENCIES = 37A/XA O

O DFH$DTRD, or an exit program which is based on this O

O sample, must be defined on the CSD as a program O

O (with DATALOCATION(ANY)). O

O RESTRICTIONS = O

O This program is designed to run on CICS/ESA 3.3 or later O

O release. It requires the DFHXDTDS copybook to be O

O available at assembly time. O

O REGISTER CONVENTIONS = see code O

O MODULE TYPE = Executable O

O PROCESSOR = Assembler O

O ATTRIBUTES = Read only, AMODE 31, RMODE ANY O

O O

O---O

Figure 12 (Part 2 of 9). Sample XDTRD user exit program

94 CICS/ESA Shared Data Tables Guide

O O

O ENTRY POINT = DFH$DTRD O

O O

O PURPOSE = O

O Described above O

O O

O LINKAGE = O

O Called by the user exit handler O

O O

O INPUT = O

O Standard user exit parameter list DFHUEPAR, O

O addressed by R1 and containing a pointer to the O

O Data Tables parameter list O

O O

O OUTPUT = O

O Return code placed in R15 O

O When skipping is requested, a skip-key is returned in an O

O area whose address is passed in the parameter list O

O O

O EXIT-NORMAL = O

O Return code in R15 can be O

O UERCDTAC = accept record (include it in the table) O

O UERCDTRJ = reject record (omit it from the table) O

O UERCDTOP = optimize load by skipping on to specified key O

O (only possible with shared data tables support) O

O O

O EXIT-ERROR = O

O None O

O O

O---O

O O

O EXTERNAL REFERENCES : O

O ROUTINES = None O

O DATA AREAS = None O

O CONTROL BLOCKS = O

O User Exit Parameter list for XDTRD: DFHUEPAR O

O Data Tables User Exit Parameter List: DT_UE_PLIST O

O GLOBAL VARIABLES = None O

O O

O TABLES = None O

O O

O MACROS = O

O DFHUEXIT to generate the standard user exit parameter list O

O with the extensions for the XDTRD exit point O

O DFHUEXIT to declare the XPI (exit programming interface) O

O DFHTRPTX XPI call to issue a user trace entry O

O O

O---O

Figure 12 (Part 3 of 9). Sample XDTRD user exit program

 Appendix A. Sample user exit programs 95

O O

O DESCRIPTION of the program structure: O

O O

O 1) Standard entry code for a global user exit that uses the XPI: O

O The program sets up any definitions required, then saves O

O the caller's registers, establishes addressability, and O

O addresses the parameter lists. O

O 2) Initial section of code: O

O The program gets the key address and length from the data O

O table parameter list, then tests whether the exit was O

O invoked from shared data table code. If not, it branches O

O to the non-SDT section of code. O

O 3a) SDT code - Skipping: O

O If the source data set is the one from which records are to O

O be selected, and if the exit has been called by the data O

O table load, then the program compares the record key with O

O a value which defines the range to be included in the O

O data table, and sets return codes which will cause the O

O data table load to skip over any other keys. O

O 3b) SDT code - Tracing: O

O If FC level 1 tracing is enabled, the program issues a user O

O trace point X'A128', then branches to set R15 and return. O

O 4a) non-SDT code - choosing whether to accept record: O

O If the file name is the one for which records are to be O

O selected, then the program rejects the record if it does O

O not match the value which defines the range to be included O

O in the data table. O

O 4b) non-SDT code - Tracing: O

O If FC level 1 tracing is enabled, the program issues a user O

O trace point X'A118'. O

O 5) Set R15 and return: O

O The program sets a return code in R15 and performs O

O standard exit code for a global user exit (restores O

O caller's registers, and returns to the address that was in O

O R14 when the exit program was called). O

O O

OOO

 EJECT ,

DFHUEXIT TYPE=EP,ID=XDTRD Standard UE parameters for XDTRD

DFHUEXIT TYPE=XPIENV Exit programming interface (XPI)

 EJECT ,

COPY DFHXDTDS Additional data table UE params

 EJECT ,

 COPY DFHTRPTY Trace definitions

 EJECT ,

Figure 12 (Part 4 of 9). Sample XDTRD user exit program

96 CICS/ESA Shared Data Tables Guide

OOO

O REGISTER USAGE : O

O RA - O

O R1 - address of DFHUEPAR on input, and used by XPI calls O

O R2 - address of standard user exit parameter list, DFHUEPAR O

O R3 - record length O

O R4 - address of data set name (SDT) or data table name (non-SDT) O

O R5 - address of storage for XPI parameters O

O R6 - address of data tables parameter list, DT_UE_PLIST O

O R7 - final return code to be set in R15 O

O R8 - address of the record key O

O R9 - key length O

O R1A- address of the skip-key area (SDT only) O

O R11- base register O

O R12- address of data table flags byte, UEPDTFLG O

O R13- address of kernel stack prior to XPI CALLS O

O R14- used by XPI calls O

O R15- return code and used by XPI calls O

O (The register equates are declared by the DFHUEXIT call above) O

OOO

 SPACE 2

DFH$DTRD CSECT

DFH$DTRD AMODE 31

DFH$DTRD RMODE ANY

STM R14,R12,12(R13) Save callers registers

LR R11,R15 Set up base register

 USING DFH$DTRD,R11

LR R2,R1 Address standard parameters

 USING DFHUEPAR,R2

L R6,UEPDTPL Address data table parameters

 USING DT_UE_PLIST,R6

 L R8,UEPDTKA Key address

 L R9,UEPDTKL Key length

OOO

O Test whether the exit was invoked from shared data tables support O

OOO

TM UEPDTFLG,UEPDTSDT Were we invoked from SDT?

BZ NOTSDT Branch to non-SDT code if not

 EJECT ,

OOO

O Invoked from SDT, so can use skip optimization O

OOO

L R1A,UEPDTSKA Get skip-key area address

OOO

O Determine whether the source data set is the one on which O

O optimization by skipping is to be performed. O

O If it is not, just accept all records. O

OOO

 CLC UEPDTDSN,EXITDSN

 BNE SDTACC

Figure 12 (Part 5 of 9). Sample XDTRD user exit program

 Appendix A. Sample user exit programs 97

OOO

O Only keys in the range defined by the initial two characters in O

O EXITKEY are to be accepted, any other ranges of key values O

O are to be skipped. O

O First check whether skipping is valid - skipping can only be used O

O when the call has been issued by the loading transaction (which is O

O indicated by the UEPDTOPT flag being set). O

OOO

TM UEPDTFLG,UEPDTOPT Can we skip?

BZ SDTREJ Just reject rec if not (although O

in a production version it would O

make more sense to check whether O

the record key is in the desired O

range, and accept it if so)

OOO

O EXITKEY is currently set to 'AD', so that the effect of O

O the exit will be: O

O - If the key is less than 'AD....' then skip to a skip-key of O

O 'AD' padded with AAs. O

O - If it starts with 'AD' then accept it. O

O - If it is greater than 'AD' then skip to a skip-key of 'FF's O

O If the value of the constant EXITKEY is altered, then the program O

O will cause the new range it defines to be selected for inclusion O

O in the table. Note that if a different length of EXITKEY is O

O needed to define the range to be accepted, then the code will O

O also require amendment, as it currently assumes a length of 2. O

OOO

CLC A(2,R8),EXITKEY Is key below or above 'AD' ?

BE SDTACC If equal then just accept

BH HIGHER Above so skip to end of file

 SPACE 1

LOWER DS AH Skip forwards to 'AD...'

MVC A(2,R1A),EXITKEY Set skip-key value

LR R15,R9 Keylength for padding

SH R15,=H'3' minus 2 for 'AD' and 1 for XC

EX R15,XCSKP Clear out rest of skip key

 LA R7,UERCDTOP Indicate skipping

 B SDTTR

 SPACE 1

HIGHER DS AH Skip on to end of file

MVI A(R1A),X'FF' Set 'FF' in start of skip key

LR R15,R9 Get length of skip-key

BCTR R15,A Decrement for pad length

BCTR R15,A Decrement for MVC

EX R15,MVCSKP Propagate 'FF' through skip-key

 LA R7,UERCDTOP Indicate skipping

 B SDTTR

 SPACE 1

Figure 12 (Part 6 of 9). Sample XDTRD user exit program

98 CICS/ESA Shared Data Tables Guide

OOO

O Store return code in R7 for accept or reject O

OOO

SDTACC DS AH

 LA R7,UERCDTAC Indicate accept

 B SDTTR

SDTREJ DS AH

 LA R7,UERCDTRJ Indicate reject

 EJECT ,

OOO

O Tracing when SDT support is in use O

OOO

SDTTR L R15,UEPTRACE

TM A(R15),UEPTRON Is trace on?

BZ NOSDTTR No - do not issue trace then

L R5,UEPXSTOR Prepare for XPI call

 USING DFHTRPT_ARG,R5

 L R13,UEPSTACK

OOO

O Trace source data set name, key, record length, flags, and skip-key O

O Some of these fields are only available with SDT support O

OOO

LA R4,UEPDTDSN Point at data set name

LA R3,UEPDTRL Address of record length for trace

LA R12,UEPDTFLG Point at the data table flags

 DFHTRPTX CALL, O

 CLEAR, O

 IN, O

 FUNCTION(TRACE_PUT), O

 POINT_ID(RDTRACE2), O

 DATA1((R4),UEPDTDSL), O

 DATA2((R8),(R9)), O

 DATA3((R3),4), O

 DATA4((R12),1), O

 DATA5((R1A),(R9)), O

 OUT, O

 RESPONSE(O), O

 REASON(O)

NOSDTTR DS AH

B FINISH Go and return from exit

 EJECT ,

Figure 12 (Part 7 of 9). Sample XDTRD user exit program

 Appendix A. Sample user exit programs 99

OOO

O Exit was NOT invoked by shared data tables support O

OOO

NOTSDT DS AH

OOO

O Determine whether this data table is the one from which records O

O are to be rejected. If it is not, just accept all records. O

OOO

 CLC UEPDTNAM,EXITFILE

 BNE ACC

CLC A(2,R8),EXITKEY Does key start with 'AD' ?

BE ACC Yes, so accept it

REJ DS AH

 LA R7,UERCDTRJ Indicate reject

B TRACE Go and issue trace

ACC DS AH

 LA R7,UERCDTAC Indicate accept

 SPACE 2

OOO

O Tracing when SDT support is not in use O

OOO

TRACE L R15,UEPTRACE

TM A(R15),UEPTRON Is trace on?

BZ NOTRACE No - do not issue trace then

L R5,UEPXSTOR Prepare for XPI call

 USING DFHTRPT_ARG,R5

 L R13,UEPSTACK

OOO

O Trace data table name, key, record length, and flags O

OOO

LA R4,UEPDTNAM Point at data table name

LA R3,UEPDTRL Address of reclen for trace

LA R12,UEPDTFLG Point at the data table flags

 DFHTRPTX CALL, O

 CLEAR, O

 IN, O

 FUNCTION(TRACE_PUT), O

 POINT_ID(RDTRACE1), O

 DATA1((R4),8), O

 DATA2((R8),(R9)), O

 DATA3((R3),4), O

 DATA4((R12),1), O

 OUT, O

 RESPONSE(O), O

 REASON(O)

Figure 12 (Part 8 of 9). Sample XDTRD user exit program

100 CICS/ESA Shared Data Tables Guide

NOTRACE DS AH

 EJECT ,

OOO

O Code to set R15 return code and return control O

OOO

FINISH DS AH

LR R15,R7 Pick up exit return code

L R13,UEPEPSA Standard GLUE ending code

 L R14,12(R13)

 LM RA,R12,2A(R13)

 BR R14

 SPACE 2

OOO

O Constants and executed instructions O

OOO

EXITDSN DC CL44'CFV23.CSYSW1.SOURCED'

EXITFILE DC CL8'CICD'

EXITKEY DC C'AD'

 SPACE 1

RDTRACE1 DC XL2'118'

RDTRACE2 DC XL2'128'

 SPACE 1

MVCSKP MVC 1(O-O,R1A),A(R1A) Executed to propagate X'FF's

XCSKP XC 2(O-O,R1A),2(R1A) Executed to clear to X'AA's

 SPACE 1

 END DFH$DTRD

Figure 12 (Part 9 of 9). Sample XDTRD user exit program

 Appendix A. Sample user exit programs 101

Sample XDTAD exit program

TITLE 'DFH$DTAD - Sample XDTAD Global User Exit Program'

OOO

O O

O MODULE NAME = DFH$DTAD O

O O

O DESCRIPTIVE NAME = CICS/ESA Shared Data Tables Sample XDTAD Exit O

O O

O FUNCTION = O

O The program selects records for inclusion in a shared data table. O

O O

O --- O

O NOTE that this program is only intended to DEMONSTRATE the use O

O of the data tables user exit XDTAD, and to show the sort of O

O information which can be obtained from the exit parameter list. O

O IT SHOULD BE TAILORED BEFORE BEING USED IN A PRODUCTION ENVIRONMENT O

O --- O

O O

O This global user exit program will be invoked, if enabled, when O

O a WRITE request is issued to a data table. O

O O

O The program can be used both on CICS systems which are using O

O Shared Data Tables support, and on ones which are not. O

O It uses a flag that is passed via the data tables parameter list O

O to determine whether the exit has been invoked by shared data O

O tables support. O

O O

O The purpose of the program is to demonstrate the use of the XDTAD O

O global user exit to select only certain records for inclusion in O

O a data table. In this example, the selection is made on the O

O basis of key values. If shared data tables support is being O

O used, and the source data set for the data table is that O

O specified by the constant EXITDSN, then the program will select O

O particular keys for inclusion in the data table, and reject O

O others. For all other source data sets, or if shared data table O

O support is not in use, then all records will be accepted. O

O O

O The record selection is made on the basis of the value of the 6th O

O character in the record key. This is for illustrative purposes O

O only, as it is unlikely to be the criterion for selection in a O

O realistic environment. For example, for a shared CICS-maintained O

O data table, it might be desirable to select a group of records O

O which are known to be very frequently read by applications O

O running in other CICS regions in the MVS system. O

O O

O The trace flag passed to the exit is set ON if File Control (FC) O

O level 1 tracing is enabled. O

O O

Figure 13 (Part 1 of 6). Sample XDTAD user exit program

102 CICS/ESA Shared Data Tables Guide

O NOTES : O

O DEPENDENCIES = 37A/XA O

O DFH$DTAD, or an exit program which is based on this O

O sample, must be defined on the CSD as a program O

O (with DATALOCATION(ANY)). O

O RESTRICTIONS = O

O This program is designed to run on CICS/ESA 3.3 or later O

O release. It requires the DFHXDTDS copybook to be O

O available at assembly time. O

O REGISTER CONVENTIONS = see code O

O MODULE TYPE = Executable O

O PROCESSOR = Assembler O

O ATTRIBUTES = Read only, AMODE 31, RMODE ANY O

O O

O---O

O O

O ENTRY POINT = DFH$DTAD O

O O

O PURPOSE = O

O Described above O

O O

O LINKAGE = O

O Called by the user exit handler O

O O

O INPUT = O

O Standard user exit parameter list DFHUEPAR, O

O addressed by R1 and containing a pointer to the O

O Data Tables parameter list O

O O

O OUTPUT = O

O Return code placed in R15 O

O O

O EXIT-NORMAL = O

O Return code in R15 can be O

O UERCDTAC = accept record (include it in the table) O

O UERCDTRJ = reject record (omit it from the table) O

O O

O EXIT-ERROR = O

O None O

O O

O---O

O O

O EXTERNAL REFERENCES : O

O ROUTINES = None O

O DATA AREAS = None O

O CONTROL BLOCKS = O

O User Exit Parameter list for XDTAD: DFHUEPAR O

O Data Tables User Exit Parameter List: DT_UE_PLIST O

O GLOBAL VARIABLES = None O

O O

O TABLES = None O

O O

Figure 13 (Part 2 of 6). Sample XDTAD user exit program

 Appendix A. Sample user exit programs 103

O MACROS = O

O DFHUEXIT to generate the standard user exit parameter list O

O with the extensions for the XDTAD exit point O

O DFHUEXIT to declare the XPI (exit programming interface) O

O DFHTRPTX XPI call to issue a user trace entry O

O O

O---O

O O

O DESCRIPTION of the program structure: O

O O

O 1) Standard entry code for a global user exit that uses the XPI: O

O The program sets up any definitions required, then saves O

O the caller's registers, establishes addressability, and O

O addresses the parameter lists. O

O 2) Initial section of code: O

O The program gets the key address and length from the data O

O table parameter list, then tests whether the exit was O

O invoked from shared data table code. If not, it branches O

O to the non-SDT section of code. O

O 3a) SDT code - Tracing: O

O If FC level 1 tracing is enabled, the program issues a user O

O trace point X'A129', then branches to choose whether to O

O accept the record for inclusion in the table. O

O 3b) non-SDT code - Tracing: O

O If FC level 1 tracing is enabled, the program issues a user O

O trace point X'A119', then accepts the record, and exits. O

O 4) SDT code - choosing whether to accept record: O

O If the source data set is the one from which records are to O

O be selected, then, if the key contains a numeric character O

O in the sixth byte, the program sets the return code so that O

O the record will be accepted. If the key contains an O

O alphabetic character in the sixth byte then the program O

O sets a return code to reject the record. O

O 5) Standard exit code for a global user exit that uses the XPI: O

O Restore users registers, and return to the address that was O

O in R14 when the exit program was called. O

O O

OOO

 EJECT ,

DFHUEXIT TYPE=EP,ID=XDTAD Standard UE parameters for XDTAD

DFHUEXIT TYPE=XPIENV Exit programming interface (XPI)

 EJECT ,

COPY DFHXDTDS Additional data table UE params

 EJECT ,

 COPY DFHTRPTY Trace definitions

 EJECT ,

Figure 13 (Part 3 of 6). Sample XDTAD user exit program

104 CICS/ESA Shared Data Tables Guide

OOO

O REGISTER USAGE : O

O RA - O

O R1 - address of DFHUEPAR on input, and used by XPI calls O

O R2 - address of standard user exit parameter list, DFHUEPAR O

O R3 - O

O R4 - address of source data set name O

O R5 - address of storage for XPI parameters O

O R6 - address of data tables parameter list, DT_UE_PLIST O

O R7 - address of the trace flag O

O R8 - address of the record key O

O R9 - key length O

O R1A- address of the data table name O

O R11- base register O

O R12- address of data table flags byte, UEPDTFLG O

O R13- address of kernel stack prior to XPI CALLS O

O R14- used by XPI calls O

O R15- return code, and used by XPI calls O

O (The register equates are declared by the DFHUEXIT call above) O

OOO

 SPACE 2

DFH$DTAD CSECT

DFH$DTAD AMODE 31

DFH$DTAD RMODE ANY

STM R14,R12,12(R13) Save callers registers

LR R11,R15 Set up base register

 USING DFH$DTAD,R11

LR R2,R1 Address standard parameters

 USING DFHUEPAR,R2

L R6,UEPDTPL Address data table parameters

 USING DT_UE_PLIST,R6

OOO

O Save some fields from the parameter list that are to be traced or O

O used in selecting records O

OOO

 L R8,UEPDTKA Key address

 L R9,UEPDTKL Key length

LA R1A,UEPDTNAM Data table name

OOO

O Test whether the exit was invoked from shared data tables support O

OOO

TM UEPDTFLG,UEPDTSDT Were we invoked from SDT?

BZ NOTSDT Branch to non-SDT code if not

 EJECT ,

OOO

O Invoked from SDT, so can use SDT fields in parameter list. O

O Issue trace, then check data set name, and select records. O

OOO

L R7,UEPTRACE Address of trace flag

TM A(R7),UEPTRON Is trace on?

BZ NOSDTTR No - do not issue trace then

L R5,UEPXSTOR Prepare for XPI call

 USING DFHTRPT_ARG,R5

 L R13,UEPSTACK

Figure 13 (Part 4 of 6). Sample XDTAD user exit program

 Appendix A. Sample user exit programs 105

OOO

O Trace key, data table name, source data set name, and flags. O

O The last two fields are only meaningful for SDT support. O

OOO

LA R4,UEPDTDSN Point at the source data set name

LA R12,UEPDTFLG Point at the data table flags

 DFHTRPTX CALL, O

 CLEAR, O

 IN, O

 FUNCTION(TRACE_PUT), O

 POINT_ID(ADTRACE2), O

 DATA1((R8),(R9)), O

 DATA2((R1A),8), O

 DATA3((R4),UEPDTDSL), O

 DATA4((R12),1), O

 OUT, O

 RESPONSE(O), O

 REASON(O)

NOSDTTR B CHOOSE Go and choose whether to accept rec

 EJECT ,

OOO

O Exit has not been invoked from SDT O

O Issue trace then accept the record. O

OOO

NOTSDT L R7,UEPTRACE Address of trace flag

TM A(R7),UEPTRON Is trace on?

BZ NOTRACE No - do not issue trace then

L R5,UEPXSTOR Prepare for XPI call

 USING DFHTRPT_ARG,R5

 L R13,UEPSTACK

OOO

O Trace key and data table name O

OOO

 DFHTRPTX CALL, O

 CLEAR, O

 IN, O

 FUNCTION(TRACE_PUT), O

 POINT_ID(ADTRACE1), O

 DATA1((R8),(R9)), O

 DATA2((R1A),8), O

 OUT, O

 RESPONSE(O), O

 REASON(O)

 SPACE 1

Figure 13 (Part 5 of 6). Sample XDTAD user exit program

106 CICS/ESA Shared Data Tables Guide

NOTRACE DS AH

B ACC Go and accept the record

 EJECT ,

OOO

O Is this the data set from which records are to be selected? O

O If not, just accept record and end. O

OOO

CHOOSE DS AH

 CLC UEPDTDSN,EXITDSN

 BNE ACC

OOO

O O

O If the sixth character in the key is numeric then accept the O

O record, if it is alphabetic then reject the record. O

O This assumes that numerics have EBCDIC value >= FA O

O and that alphabetics have value < FA O

O O

OOO

CLI 5(R8),X'FA' Is sixth character >= FA ?

BL REJ If no, then go and reject record

ACC LA R15,UERCDTAC If yes, set RC to ACCEPT

 B GLUEND and end

REJ LA R15,UERCDTRJ Set RC to REJECT

 SPACE 3

GLUEND DS AH Standard GLUE ending code

 L R13,UEPEPSA

 L R14,12(R13)

 LM RA,R12,2A(R13)

 BR R14

 SPACE 2

OOO

O Constants O

OOO

EXITDSN DC CL44'CFV23.CSYSW1.SOURCED'

 SPACE 1

ADTRACE1 DC XL2'119'

ADTRACE2 DC XL2'129'

 SPACE 2

 END DFH$DTAD

Figure 13 (Part 6 of 6). Sample XDTAD user exit program

 Appendix A. Sample user exit programs 107

Sample XDTLC exit program

TITLE 'DFH$DTLC - Sample XDTLC Global User Exit Program'

OOO

O O

O MODULE NAME = DFH$DTLC O

O O

O DESCRIPTIVE NAME = CICS/ESA Shared Data Tables Sample XDTLC Exit O

O O

O FUNCTION = O

O The program rejects a data table if its load did not complete OK. O

O O

O --- O

O NOTE that this program is only intended to DEMONSTRATE the use O

O of the data tables user exit XDTLC, and to show the sort of O

O information which can be obtained from the exit parameter list. O

O IT SHOULD BE TAILORED BEFORE BEING USED IN A PRODUCTION ENVIRONMENT O

O --- O

O O

O This global user exit program will be invoked, if enabled, when O

O the load of a data table has completed. O

O O

O The program can be used both on CICS systems which are using O

O Shared Data Tables support, and on ones which are not. O

O It uses a flag that is passed via the data tables parameter list O

O to determine whether the exit has been invoked by shared data O

O tables support. O

O O

O The program will issue a user trace entry if tracing is enabled, O

O then check the setting of the load completion indicator. O

O If this shows that loading failed to complete successfully, then O

O the exit program will set a return code that rejects the table O

O by requesting that it be closed. O

O O

O The trace flag passed to the exit is set ON if File Control (FC) O

O level 1 tracing is enabled. O

O O

O NOTES : O

O DEPENDENCIES = 37A/XA O

O DFH$DTLC, or an exit program which is based on this O

O sample, must be defined on the CSD as a program O

O (with DATALOCATION(ANY)). O

O RESTRICTIONS = O

O This program is designed to run on CICS/ESA 3.3 or later O

O release. It requires the DFHXDTDS copybook to be O

O available at assembly time. O

O REGISTER CONVENTIONS = see code O

O MODULE TYPE = Executable O

O PROCESSOR = Assembler O

O ATTRIBUTES = Read only, AMODE 31, RMODE ANY O

O O

O---O

Figure 14 (Part 1 of 5). Sample XDTLC user exit program

108 CICS/ESA Shared Data Tables Guide

O O

O ENTRY POINT = DFH$DTLC O

O O

O PURPOSE = O

O Described above O

O O

O LINKAGE = O

O Called by the user exit handler O

O O

O INPUT = O

O Standard user exit parameter list DFHUEPAR, O

O addressed by R1 and containing a pointer to the O

O Data Tables parameter list O

O O

O OUTPUT = O

O Return code placed in R15 O

O O

O EXIT-NORMAL = O

O Return code in R15 can be O

O UERCDTOK = accept table O

O UERCDTCL = reject table (close it) O

O O

O EXIT-ERROR = O

O None O

O O

O---O

O O

O EXTERNAL REFERENCES : O

O ROUTINES = None O

O DATA AREAS = None O

O CONTROL BLOCKS = O

O User Exit Parameter list for XDTLC: DFHUEPAR O

O Data Tables User Exit Parameter List: DT_UE_PLIST O

O GLOBAL VARIABLES = None O

O O

O TABLES = None O

O O

O MACROS = O

O DFHUEXIT to generate the standard user exit parameter list O

O with the extensions for the XDTLC exit point O

O DFHUEXIT to declare the XPI (exit programming interface) O

O DFHTRPTX XPI call to issue a user trace entry O

O O

O---O

O O

O DESCRIPTION of the program structure: O

O O

O 1) Standard entry code for a global user exit that uses the XPI: O

O The program sets up any definitions required, then saves O

O the caller's registers, establishes addressability, and O

O addresses the parameter lists. O

Figure 14 (Part 2 of 5). Sample XDTLC user exit program

 Appendix A. Sample user exit programs 109

O 2) Tracing (only executed if FC level 1 tracing is enabled): O

O The program tests whether it was invoked from shared data O

O table code. If so, it issues a user trace point X'A126' O

O including fields from the data table parameter list which O

O are only supplied by shared data table support. If not, it O

O issues a X'A116' trace point, containing parameters which O

O are supplied by any level of data table support. O

O 3) Choosing whether to accept the table: O

O The program tests the return code from the load. If the O

O load failed to complete, then it sets UERCDTCL in R15, O

O which requests that the table should be closed. If the O

O load completed successfully, then it sets UERCDTOK in R15 O

O to keep the table open. O

O 4) Standard exit code for a global user exit that uses the XPI: O

O Restore users registers, and return to the address that was O

O in R14 when the exit program was called. O

O O

OOO

 EJECT ,

DFHUEXIT TYPE=EP,ID=XDTLC standard UE parameters for XDTLC

DFHUEXIT TYPE=XPIENV exit programming interface (XPI)

 EJECT ,

COPY DFHXDTDS Additional data table UE params

 EJECT ,

 COPY DFHTRPTY Trace definitions

 EJECT ,

OOO

O Register usage : O

O RA - O

O R1 - address of DFHUEPAR on input, and used by XPI calls O

O R2 - address of standard user exit plist, DFHUEPAR O

O R3 - O

O R4 - address of source data set name O

O R5 - address of storage for XPI parameters O

O R6 - address of data tables parameter list, DT_UE_PLIST O

O R7 - address of the trace flag, UEPTRACE O

O R8 - address of data table name O

O R9 - address of loading completion indicator, UEPDTORC O

O R1A- O

O R11- base register O

O R12- address of data table flags byte, UEPDTFLG O

O R13- address of kernel stack prior to XPI calls O

O R14- used by XPI calls O

O R15- return code, and used by XPI calls O

O (The register equates are declared by the DFHUEXIT call above) O

OOO

Figure 14 (Part 3 of 5). Sample XDTLC user exit program

110 CICS/ESA Shared Data Tables Guide

 SPACE 2

DFH$DTLC CSECT

DFH$DTLC AMODE 31

DFH$DTLC RMODE ANY

STM R14,R12,12(R13) Save caller's registers

 LR R11,R15 Establish base

 USING DFH$DTLC,R11

LR R2,R1 Address standard parameters

 USING DFHUEPAR,R2

L R6,UEPDTPL Address data table parameters

 USING DT_UE_PLIST,R6

 SPACE 1

LA R8,UEPDTNAM Address data table name

LA R9,UEPDTORC Address load return code

OOO

O Issue Trace (if tracing is enabled) O

OOO

L R7,UEPTRACE Get trace flag address

TM A(R7),UEPTRON Is trace on?

BZ CHOOSE Skip tracing if not

OOO

O Test whether the exit was invoked from shared data tables support O

OOO

TM UEPDTFLG,UEPDTSDT Were we invoked from SDT?

BZ NOTSDT Branch if not

 EJECT ,

OOO

O Exit has been invoked from SDT O

OOO

L R5,UEPXSTOR Set up XPI trace call

 USING DFHTRPT_ARG,R5

 L R13,UEPSTACK

OOO

O Trace data table name, load return code, source dsname, and flags. O

O The last two fields are only meaningful for SDT support. O

OOO

LA R4,UEPDTDSN Get source data set name

LA R12,UEPDTFLG Get data table flags

 DFHTRPTX CALL, O

 CLEAR, O

 IN, O

 FUNCTION(TRACE_PUT), O

 POINT_ID(LCTRACE2), O

 DATA1((R8),8), O

 DATA2((R9),1), O

 DATA3((R4),UEPDTDSL), O

 DATA4((R12),1), O

 OUT, O

 RESPONSE(O), O

 REASON(O)

B CHOOSE Go and test if load completed OK

 EJECT ,

Figure 14 (Part 4 of 5). Sample XDTLC user exit program

 Appendix A. Sample user exit programs 111

OOO

O Exit has not been invoked from SDT O

OOO

NOTSDT L R5,UEPXSTOR Set up XPI trace call

 USING DFHTRPT_ARG,R5

 L R13,UEPSTACK

OOO

O Trace data table name and load return code O

OOO

 DFHTRPTX CALL, O

 CLEAR, O

 IN, O

 FUNCTION(TRACE_PUT), O

 POINT_ID(LCTRACE1), O

 DATA1((R8),8), O

 DATA2((R9),1), O

 OUT, O

 RESPONSE(O), O

 REASON(O)

 EJECT ,

OOO

O If load completed successfully, then keep table open O

O If not, ask for it to be closed O

OOO

CHOOSE DS AH

CLI A(R9),UEPDTLFL Did load fail?

 BNE LOADOK

LA R15,UERCDTCL Set RC for table to be closed

 B GLUEND

LOADOK LA R15,UERCDTOK Set RC to keep table

 SPACE 3

GLUEND DS AH Standard GLUE exit code

 L R13,UEPEPSA

 L R14,12(R13)

 LM RA,R12,2A(R13)

 BR R14

 SPACE 2

OOO

O Constant Declarations O

OOO

LCTRACE1 DC XL2'116'

LCTRACE2 DC XL2'126'

 SPACE 1

 END DFH$DTLC

Figure 14 (Part 5 of 5). Sample XDTLC user exit program

112 CICS/ESA Shared Data Tables Guide

 Index

A
abend codes

AFCH 30, 31
AFCZ 67

activation of user exits 60
AFCH abend code 30, 31
AFCZ abend code 67
alternate indexes 3, 9
AOR (application-owning region)

CONNECT operation 6
definition 2

application programming
extensions for SDT 1
for a CMT

description 27
overview 9

for a UMT
description 28
overview 11

automatic journaling 10, 12

B
benefits

of data tables 4, 13
BIND security 23
browse requests

comparison with function shipping 31
comparison with VSAM 33
definition xi
for a CMT 27
for a UMT 28

C
CEDA DEFINE FILE command

description 35
example for CMT 38
example for UMT 39
LOG parameter 37
MAXNUMRECS parameter 36
OPENTIME parameter 37
RECORDFORMAT parameter 37
TABLE parameter 36

CEMT
INQUIRE command 40, 41
SET command 39, 40

CICS-maintained data table
browse requests 27
data integrity 10
definition of 35
description 9

CICS-maintained data table (continued)
journaling 10
overview 2
performance 13
read requests 27, 28
update requests 28
use during loading 28

closing a data table 31, 50
communication

between CICS and user exits 43
CONNECT

by AOR 6, 30
security checking 23

cross-memory services
advantages 1
analyzing errors 70
commands supported 27
comparison with function shipping 4, 31
use by application 29

CSFU transaction 49, 50
CSSY transaction 49
customization

user exits 43

D
daisy chaining 30
data integrity

of a CMT 10
of a UMT 12

data space
dump of contents 71
use by data tables 3, 15

data tables
application programming 27
availability 1
benefits 4
CICS load modules required 25
closing 31, 50
comparison with VSAM 32
concepts 1
customization 43
disabling 31
dump information 70
enhancements 1
on different releases of CICS 23
opening 49
operations 49
planning 13
problem determination 63
read requests 1, 27, 28
resource definition 35

 Copyright IBM Corp. 1992, 1994 113

data tables (continued)
selecting files 16
sharing 2
statistics information 51
trace information 63
update requests 1, 28, 29
use of data space 3

delete requests
comparison with VSAM 33

DFH$DTAD sample program 102
DFH$DTLC sample program 108
DFH$DTRD sample program 93
DFHDTCV 24
DFHDTSVC 24
DFHFCT macro 35
DFHMVRMS 24
DFHXDTS copybook 43
disabling a data table 31
disconnection

of AOR and data table 7, 30
DSECT

for user exit parameter list 43
dump information for data tables 70
dynamic transaction backout 12, 37

E
EIBRESP2 field 28, 32
enabling of user exits 60
exec interface

user exits 43

F
file

used as a data table 1, 16
file control

commands
overview for CMT 9, 27
overview for UMT 11, 28
supported by cross-memory services 27

user exits 43
file management

using cross-memory services 4
using function shipping 4

file security 23
FOR (file-owning region)

definition 2
LOGON operation 5

function
for trace points 64

G
gap 16, 27, 31

definition xi

I
imprecise keys

definition xi
initial state of data table

defining by CEDA 37
INQUIRE FILE command

description 40, 41
MAXNUMRECS parameter 40, 41
TABLE parameter 40, 41

installation
MVS considerations 23

installation parameter list 8
INSTLN parameter 8
integrity

of CMT data 10
of UMT data 12

interface
for user exits 43
product-sensitive programming 43, 93

INVREQ condition 28

J
journaling 10

K
key length

comparison with function shipping 32
KSDS (key-sequenced data set)

used as source data set 1, 3
with a UMT 12

L
load modules

required for data tables 25
loading

use of CMT during 28
use of UMT during 29

LOADING condition 29
local file

definition 2
LOGON

by FOR 5
security check 23

M
messages

at end of loading 49
at start of loading 49

multiple files
with same source data set 9

MVS considerations 23, 51

114 CICS/ESA Shared Data Tables Guide

N
NOSPACE condition 29
NOTFND condition 28, 29
notification

for CONNECT operations 7

O
opening a data table 49
operations for data tables 49

P
parameter list

for user exits 43
performance

benefits of data tables 4, 13
of a CMT 13
of a UMT 14

planning
for use of data tables 13

precise keys
definition xi

problem determination for data tables 63
product-sensitive programming interface 43, 93

Q
qualifier flags

for trace points 64

R
RACF

used as security manager 8
read requests

comparison with function shipping 32
comparison with VSAM 32
for a CMT 27, 28
for a UMT 28

reason codes
in trace points 65

recovery of data tables
defining by CEDA 37
during emergency restart 50

refreshing replicated UMTs 74
remote file

definition 2
requester

definition 2
resource definition

CEDA DEFINE FILE command 35
description 35
overview for a CMT 9
overview for a UMT 11

response codes
in trace points 65

S
SAF (system authorization facility)

used for security checking 8
SDT

overview 1
replacing existing services 1
security 7

SDT support
planning for 23

security checking
at AOR connect 23
at FOR logon 23
comparison with function shipping 8, 31
for data tables 7, 23
RACF considerations 8
use of SAF 8

selecting files
for use as data tables 16

server
definition 2

SET FILE command
description 39, 40
MAXNUMRECS parameter 40
TABLE parameter 39, 40

shareoption, VSAM 10
sharing

CONNECT operation 6
LOGON operation 5
SDT operations 4, 5

size of data table
defining by CEDA 36
defining by SET command 40
finding by INQUIRE command 40, 41

source data set
for data tables 1
independent of UMT 11
must be KSDS 3
used with CMT 9
with multiple files 9

statistics
additional fields 59
samples for data tables 53
to evaluate data tables 51
to select data tables 18

storage use
description 15

SUPPRESSED condition 29
SVC errors 67
SYSID parameter 29
sysplex environment

example program code 79
example program operation 76

 Index 115

sysplex environment (continued)
example program set up and execution 76
purpose of example program 76
refreshing replicated UMTs 74
using shared data tables in 73

system dump information 70

T
trace information

entry and exit points 63
exception points 66
for data tables 63
function and qualifier flags 64
reason codes 65
response codes 65

transient data queues
used for messages 49

type of data table
defining by CEDA 36
defining by SET command 39, 40
finding by INQUIRE command 40, 41

U
update requests

definition xi
for a CMT 28
for a UMT 29

user exits
activating 60
at end of loading 47
communication with CICS 43
definition 60
description 43
DSECT for parameter list 43
during loading 46
enabling 60
exit program samples 93
for exec interface 31, 43
for file control 31, 43
overview 3
parameter list 43
when adding records 46
XDTAD exit 46
XDTLC exit 47
XDTRD exit 46

user-maintained data table
browse requests 28
data integrity 12
definition of 35
description 11
journaling 12
overview 2
performance 14
read requests 28

user-maintained data table (continued)
replication in a sysplex 73
update requests 29
use during loading 29

V
VSAM

access method control block 49, 50
alternate indexes 3, 9
base cluster 9
comparison with data tables 32
shareoption 10

X
XDTAD user exit

description 46
exit program sample 102

XDTLC user exit
description 47
exit program sample 108

XDTRD user exit
description 46
exit program sample 93

116 CICS/ESA Shared Data Tables Guide

IBM

Program Number: 5655-018

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC33-1186-A1

Spine information:

IBM CICS/ESA Shared Data Tables Guide Version 4 Release 1

	Notices
	Programming interface information
	Trademarks and service marks

	Preface
	Determining if a publication is current
	Bibliography
	CICS/ESA 4.1 library
	Other CICS books

	Summary of changes
	Chapter 1. Introduction
	Data tables
	Data table sharing environment
	Source data set
	Data space
	Global user exits
	Benefits of shared data tables
	Remote file access
	How a data table is shared

	Chapter 2. CICS-maintained data table
	CMT application programming
	CMT resource definition
	CMT operations

	Chapter 3. User-maintained data table
	UMT application programming
	UMT resource definition
	UMT operations

	Chapter 4. Planning
	Performance benefits
	Selecting files for use as data tables
	Security checking
	SDT support on different releases of CICS
	Planning for SDT support

	Chapter 5. Application programming
	CICS-maintained data table
	User-maintained data table
	Use of cross-memory services
	Differences between function-shipping and cross-memory services
	Differences between SDT services and VSAM

	Chapter 6. Resource definition
	CEDA DEFINE FILE command
	EXEC CICS commands
	CEMT commands

	Chapter 7. Customization
	Communicating between CICS and exit programs
	XDTRD user exit
	XDTAD user exit
	XDTLC user exit

	Chapter 8. Operations
	Opening a data table
	Closing a data table
	MVS job control
	Interpreting data table statistics
	Activating user exits

	Chapter 9. Problem determination
	Trace information
	Analyzing errors from the SVC
	Analyzing errors from cross-memory services
	Dump information

	Chapter 10. Using Shared Data Tables support in a sysplex
	How to refresh replicated UMTs
	Example program for refreshing a UMT

	Appendix A. Sample user exit programs
	Sample XDTRD exit program
	Sample XDTAD exit program
	Sample XDTLC exit program

	Index

