
1

Implementing Web Services in CICS
TS V3

Darren Beard

CICS Developer

darren_beard@uk.ibm.com

4116A

2

This presentation attempts to explain the new support provided for Web Services in
CICS TS V3.1 and CICS TS V3.2. The main emphasis is on V3.1 with some pointers
to what is new in V3.2.

2

3

Web Services Introduction
� What is a Web Service?

– A Web Service
– Describes a collection of operations
– Is network accessible
– Uses standardized XML messaging

– A Web Service is described:
– Using standard, formal XML notation (service description)
– Covers all the details necessary to interact with the service

– Message formats
– Transport protocols and location
– Independent of hardware or software platform
– Independent of programming language

4

A common program to program communication model built on existing and emerging
standards, such as, HTTP, XML, SOAP, WSDL and UDDI.

A Web service is a collection of operations that are network accessible through
standardized XML messaging.

A Web service is described using a standard, formal XML notation, called its service
description.
It covers all the details necessary to interact with the service, including message formats
(that detail the operations), transport protocols and location.

The interface hides the implementation details of the service, allowing it to be used
independently of the hardware or software platform on which it is implemented and also
independently of the programming language in which it is written. This allows and
encourages Web Services-based applications to be loosely coupled, component-oriented,
cross-technology implementations.

Web Services fulfill a specific task or a set of tasks. They can be used alone or with other
Web Services to carry out a complex aggregation or a business transaction.

3

5

WSDL
� Web Services Description Language

– XML based language to describe an interface of a
service

– WSDL comprises of
– type
– portType (WSDL 2 calls this an interface)
– message
– operation
– binding
– service
– port (WSDL 2 calls this an endpoint)

type

binding

service
port

Input

Output

portType

message

definition

operation

abstract
service
interface
definition

how the
service is
implemented

location of
service

6

type the data types in the form of XML schemas (usually)
portType an abstract set of operations mapped to one or more end points
message an abstract definition of the data in the form of a message
operation the abstract definition of the operation for the message
binding the concrete protocol and data formats for the operations
service a collection of related end points
port a combination of binding and a network address

Note that the above terms are as used in WSDL 1.1. In WSDL 2.0, some of the terms are
different, as indicated on the slide.

4

7

SOAP Messages
� What does the “standardized XML message” look

like?

– SOAP 1.1 or 1.2 message
– Soap envelope <Envelope> consisting of:

– Optional header element, <Header>

– Body element, <Body>

– Optional fault element <Fault>, may be
added by service provider

SOAP Envelope

SOAP Header

Header Block

Header Block

SOAP Body

Body sub-element

Body sub-element

Body sub-element

8

SOAP is a protocol for the exchange of information in a distributed environment. SOAP messages are
encoded as XML documents, and can be exchanged using a variety of underlying protocols.

A SOAP message is encoded as an XML document, consisting of an <Envelope> element, which contains an
optional <Header> element, and a mandatory <Body> element. The <fault> element, contained within the
<Body> is used for reporting errors.

The SOAP <Envelope> is the outermost element in every SOAP message, and contains two child elements,
an optional <Header> and a mandatory <Body>.

The SOAP <Header> is an optional element within the SOAP message, and is used to pass information in
SOAP messages that is not application payload. The SOAP header allows features to be added to a SOAP
message in a decentralized manner without prior agreement between the communicating parties. SOAP
defines a few attributes that can be used to indicate who should deal with a feature and whether it is optional
or mandatory.

The SOAP <body>, a mandatory element, containing information intended for the ultimate recipient of the
message. In CICS terms, this will become the COMMAREA for the application program.

The SOAP <fault>, an element contained within the <body>, used for reporting errors.

5

9

Production and usage of WSDL
� Requests from Service Requesters will be generated based on the information

contained in WSDL

� IDE tools help generation of WSDL or application

Service
Requester

Service
Provider

Input message

Output message

WSDL

� location
� protocol
� operation
� message format

IDE tools IDE tools

10

A web service provider needs to produce a WSDL document to describe the service which is
being provided. This document is then published, using UDDI for example, or otherwise
communicated to potential requesters of the service. Various tools may be used to assist with
the generation of the WSDL.

A web service requester needs to obtain the WSDL description of the service which it wants
to use. Based on the WSDL, an application can be produced which will be able to request the
services described in the WSDL.

IDE – Integrated Development Environment

6

11

Usage Scenarios
� CICS as a Service Provider using existing program (bottom up)

–Existing application not changed
–Existing language structure

� CICS as a Service Provider using new program (top down)
–New application

–Existing WSDL

� CICS as a Service Requester using a new program (top down)
–New application

–Existing WSDL

12

There are three usage scenarios where the CICS tooling is thought to be likely to be

applied. These situations are indicated in the foil.

7

13

Batch Tooling

(CICS Web Services Assistant)

14

The next section of the presentation explains the batch time tooling provided to assist
with web service deployment in CICS.

8

15

“Bottom up” approach to web services

�An existing CICS application is to be exposed as a web service

– Language structure(s) need to be extracted from the source
code

– If the COMMAREA is very complex, it may be necessary to
write a ‘wrapper program’ to map the COMMAREA into a form
which can be handled by the CICS tooling.

– Use a CICS supplied batch procedure (DFHLS2WS) to
convert language structure(s) to WSDL.

–The language structures can be COBOL, PL/I, C or C++
–Publish the generated WSDL, on UDDI for example.
–A file called the WSBind file is also produced.

16

For an existing CICS application, the COMMAREA will already be mapped by a language
structure. The language structure is used as input to a CICS supplied utility which runs as
a batch procedure. The procedure is called DFHLS2WS. This converts the supplied
language structure into a WSDL document. A special file, the WSBind file, is also
generated. This needs to be placed in an HFS directory where CICS will subsequently
find it and install it.

The WSDL so produced may then be published to the potential clients through the UDDI
for example.

9

17

Batch Processing (DFHLS2WS)

05 WSTEST2.
10 Wrapper.

15 SOME-DATA PIC X(79).
15 USER-DETAILS.
20 FIRST-NAME PIC X(10).
20 LAST-NAME PIC X(10).
20 AGE PIC 9(3) DISPLAY.

//JAVAPROG EXEC DFHLS2WS,
LOGFILE=/u/myuserid/wsbind/ls2ws.log
WSDL=/u/myuserid/wsdl/temp.wsdl
PGMNAME=PETS
URI=/reqpetsURI
PGMINT=CHANNEL
CONTID=mycontname
LANG=COBOL
WSBIND=/u/myuserid/wsbind/reqpet.wsbind
PDSLIB=//MYUSERID.COPYBOOK
REQMEM=INPUT01

WSBind file

WSDL

Language
structure(s)

JCL to specify
parameters

18

The foil shows an overview of the batch process when starting from a language structure (or
several language structures) and converting them into a WSDL document. The WSDL generated by
the CICS tooling will always be Document literal.

The WSBind file is also produced. The syntax diagram below is for CICS TS V3.2.

10

19

“Top down” approach to web services

�A supplied WSDL definition of a web service is to be
implemented as a CICS application

– Use CICS supplied batch procedure (DFHWS2LS)
to convert the WSDL into a language structure.

–Use the generated language structure in a CICS application
program.

–A file called the WSBind file is also produced.

20

The WSDL may be obtained from UDDI or by other means. The CICS tooling can handle
DOC literal, RPC literal or wrapped Doc literal forms of WSDL as input. The outputs from
the batch procedure are a WSBind file, as before, and a language structure which maps
the data definitions from the WSDL into a structure in the specified high level programming
language (COBOL, PL/I, C or C++).

At CICS TS V3.1, the supplied WSDL must be WSDL 1.1. At CICS TS V3.2, the supplied
WSDL can be either WSDL 1.1 or WSDL 2.0.

11

21

Batch Processing (DFHWS2LS)
<xsd:element name="SOME-MESSAGE" nillable="false">

<xsd:simpleType>
<xsd:restriction base="xsd:string">

<xsd:length value="79"/>
<xsd:whiteSpace value="preserve"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<xsd:element name="NAME" nillable="false">

<xsd:simpleType>
<xsd:restriction base="xsd:string">

<xsd:length value="20"/>
<xsd:whiteSpace value="preserve"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

//JAVAPROG EXEC DFHWS2LS,
LOGFILE=/u/myuserid/wsbind/wstest1.log
WSDL=/u/myuserid/wsdl/wstest1.wsdl
BINDING=WSTEST1HttpSoapBinding
PGMNAME=WSTEST1
URI=/wstest1
PGMINT=COMMAREA
LANG=COBOL
WSBIND=/u/myuserid/wsbind/wstest1.wsbind
PDSLIB=//MYUSERID.COPYBOOK
REQMEM=WS1IN

WSBind file

Language
structure(s)

WSDL

JCL to specify
parameters

22

The foil shows an overview of the batch process when starting from WSDL and converting into a

language structure. The language structure can be COBOL, PL/I, C or C++. The CICS tooling can

accept RPC literal, DOC literal or wrapped DOC literal WSDL as input.

The WSBind file is also produced. The syntax diagram below is for CICS TS V3.2.

12

23

Meet in the middle
�Pure ‘top down’ or ‘bottom up’ will not be suitable in all situations.

�In such situations, a wrapper program may provide a solution

– if the language structure uses data types not supported by the utility tools
–a wrapper program may be used to map commarea to a supported
data type

– when there are unnecessary fields in the language structure which you do
not want to expose externally

–a wrapper program can be used to hide unnecessary fields

– when an existing piece of WSDL is to be used with an existing program
–the WSDL and the program may not match exactly. A wrapper program
could perform some intermediate mappings.

24

Sometimes a pure ‘top down’ or ‘bottom up’ approach will not be satisfactory. The foil lists
some circumstances when is might be desirable to have a wrapper program between the
data mapping and the business logic.

13

25

Where a wrapper program fits in

Conversion Business
Logic

Wrapper
Program

SOAP
body Change the

SOAP to a
COMMAREA

Change the
COMMAREA

as required

26

The foil shows where a wrapper program fits into the scheme of things. It sits between the
conversion operation and the business logic. It is then able to perform data manipulation
either on the way in, on the way out or both ways.

14

27

Soap
Message

CICS
ApplicationCICS

ApplicationCICS
ApplicationCICS

ApplicationCICS
Application

CICS Resource Definitions

How does a SOAP message get to the required CICS application?

28

The next section of the presentation describes and explains the CICS resource definitions
which need to be installed so that the runtime can operate. How does a SOAP message
get to the required CICS application?

15

29

Decide on the Transport
� SOAP messages to and from CICS may use

–HTTP

–WMQ
� Once the decision has been taken, define either a

TCPIPSERVICE or a WMQ

30

The first thing to decide is what transport is to be used to carry the SOAP message. If it is
to be HTTP, the a TCPIPSERVICE definition is required. If the transport is to be WMQ,
then an appropriate definition is required for that.

16

31

TCPIPService

� TCPIPSERVICE definition
– Required when CICS is a service provider

– URIMAP matching will occur when protocol
(HTTP) is specified

– Some parameters ignored
– URM
– Transaction

32

A TCPIPSERVICE definition is required when CICS is the service provider and the chosen
transport is HTTP. That is, the TCPIPSERVICE definition is only required for inbound
requests.

When a TCPIPSERVICE definition is used with protocol HTTP, the URIMAP definitions will
be matched against the URI. If a match is found (it better be for Web Services) then some
parameters will be taken from the URIMAP definition instead of the TCPIPSERVICE definition.

17

33

WMQ
� WMQ definition

– Required when CICS is a
service provider

– Pick the target up from the RFH2
header if present, otherwise
default to trigger data

DEFINE

QLOCAL(‘queuename’)

DESCR(‘description’)

PROCESS(‘processname’)

INITQ(‘initqueue’)

TRIGGER

TRIGTYPE(FIRST)

TRIGDATA(‘path part of URI’)

BOTHRESH(nnn)

BOQNAME(‘requeuename’)

34

A local WebSphere MQ queue definition is required when CICS is the service provider
and the chosen transport is WMQ.

18

35

Soap
Message

CICS
ApplicationCICS

ApplicationCICS
ApplicationCICS

ApplicationCICS
Application

HTTP

http://www.mycics.co.uk/webservice

36

Even when the transport is determined, it is still required for CICS to identify this as a
SOAP message and not a web request.

19

37

Choose class of service
� CICS needs to select a number of things based on the

URI
–Class of service to be provided

–Which application program (Web service) is being
invoked

� This is achieved via a CICS resource called the
URIMAP

38

CICS needs to select a number of things based only upon the URI received. The class
of service to be used is implemented via a new CICS RDO object known as a
PIPELINE. The Web service being invoked is actually an application program. Both
of these items of information are derived from the URI by using a definition new to
CICS TS V3.1 known as a URIMAP definition.

20

39

URIMAP
� URIMAP definition

– Locates the Web Service and the Pipeline
resources required to process the request

– USAGE (PIPELINE)
– Specifies a Web Service request

– Matching the request URI
– HOST (www.mycics.co.uk)
– PATH (web_service_identifier)

– TCPIPSERVICE
– Restricts matching to a single port

– PIPELINE
– Names the Pipeline to process this request

– WEBSERVICE
– Names the associated Web Service for this

request
– TRANSACTION

– Alias transaction for the Web Service

40

The URIMAP definition is used to match a URI to a WEBSERVICE definition and a PIPELINE
definition. You should have a unique URI for each Web Service that you want to use in CICS.

The parameters that apply to a Web Service form of the URIMAP are:

USAGE (PIPELINE): This indicates that the URIMAP definition is applicable to a web service and
that the PIPELINE and WEBSERVICE parameters must be specified.

The SCHEME, HOST and PATH values must be specified to allow matching of the URI. A URI,
such as,http://www.mycics.co.uk/webservice would be decomposed to SCHEME (http),
HOST (www.mycics.co.uk) and PATH (webservice)

TCPIPSERVICE is optional on the URIMAP definition for USAGE (PIPELINE). If a named
TCPIPSERVICE is specified then only requests from that specific port will be matched against this
URIMAP definition.

The PIPELINE parameter names an installed PIPELINE resource which will be used to determine
the processing nodes or message handlers that will be invoked for this Web Service request.

The WEBSERVICE parameter names an installed WEBSERVICE requests that defines the execution
environment that lets a CICS application program operate as a Web service provider or requester.

The TRANSACTION parameter specifies the 1-4 character name of an alias transaction that is to be
used to run the user application that composes a response to the web service request.

21

41

http://www.mycics.co.uk/webservice

Soap
Message

CICS
ApplicationCICS

ApplicationCICS
ApplicationCICS

ApplicationCICS
Application

URIMAP

Pipeline 1

Pipeline 2

Pipeline 3

42

Once the URIMAP has pointed the SOAP message at a particular PIPELINE and
WEBSERVICE definition, the way to the CICS application is nearly complete.

22

43

PIPELINE
� What is a CICS pipeline?

–Responsible for dealing with SOAP headers

–Implemented as a series of programs

–Can be configured by end user by using
message handlers

Pipeline 3

44

A PIPELINE resource definition is used when a CICS application is in the role of a Web service provider
or requester. It is the responsibility of the PIPELINE to handle the SOAP headers. In general, it will not
need to change the SOAP body element at all. It is in the PIPELINE where it is possible to configure
special processing which needs to be performed for the Web services deployed in the PIPELINE. For
example, logging or security can be configured into the PIPELINE.

23

45

PIPELINE resource
� PIPELINE definition

– Defines the processing nodes for a web service
request
– Different pipelines for:

– Requester and provider

– CONFIGFILE
– HFS file that contains information about the

processing nodes that will act on a service
request and on the response

– SHELF
– HFS directory for CICS use

– WSDIR
– Name of the Web service binding directory

– HFS pickup directory

PIPELINE ==>
Group ==>
Description ==>
Status ==>
Configfile ==>
(Mixed Case) ==>

==>
==>
==>

Shelf ==>
(Mixed Case) ==>

==>
==>
==>

Wsdir ==>
(Mixed Case) ==>

==>
==>
==>

46

A PIPELINE resource definition is used when a CICS application is in the role of a Web service provider or requester. It
provides information about the processing nodes which will act on a service request and on the response. Typically, a
single PIPELINE definition defines an infrastructure that can be used by many applications. There will be separate
configuration files for CICS applications acting as a service provider and service requester.

The information about the processing nodes is supplied indirectly: the PIPELINE specifies the name of an HFS
configuration file (CONFIGFILE) which contains an XML description of the nodes and their configuration.

The SHELF is an HFS directory where CICS will copy information about installed Web Services. CICS regions into
which the PIPELINE definition is installed must have full permissions to the shelf directory--read, write, and the ability
to create subdirectories. A single shelf directory may be shared by multiple CICS regions and by multiple PIPELINE
definitions. Within a shelf directory, each CICS region uses a separate subdirectory to keep its files separate from those
of other CICS regions. Within each region's directory, each PIPELINE uses a separate subdirectory. After a CICS region
performs a cold or initial start, it deletes its subdirectories from the shelf before trying to use the shelf. You should not
attempt to modify the contents of a shelf that is referred to by an installed PIPELINE definition. If you do, the effects are
unpredictable

The Web service binding directory (WSDIR) contains Web service binding files that are associated with a PIPELINE, and
that are to be installed automatically by the CICS scanning mechanism. When the PIPELINE definition is installed, CICS
scans the directory and automatically installs any Web service binding files it finds there. Note that this happens regardless
of whether the PIPELINE is installed in enabled or disabled state. A CEMT PERFORM PIPELINE SCAN command can be
used to force CICS to scan the Web Service binding directory.

An inbound Web service request (that is, a request by which a client invokes a Web service in CICS) is associated with
a PIPELINE resource by the URIMAP resource. The URIMAP identifies the PIPELINE resource that applies to the URI
associated with the request; the PIPELINE specifies the processing that is to be performed on the message.

24

47

Pipeline Configuration
� Pipeline configuration file

– XML file that describes:

– The mandatory <service> and optional <transport> elements
– The sequence of message handlers to be invoked

– Different applications will require different configuration files

– Service provider
– Service requester
– SOAP 1.1
– SOAP 1.2
– User message handlers

– e.g. Extract USERID from the message

48

The Pipeline configuration file, named in a PIPELINE resource definition, is used to describe
the series of message handlers (i.e. the pipeline) to process the request. The configuration

file is an XML document, stored in HFS and can be edited with any XML editor.

The configuration file will contain mandatory <service> and optional <transport> elements
along with application handler <apphandler> and a service parameter list
<service_parameter_list>.

Different applications will require different configuration files. There are different pipeline
configurations necessary for a service provider and service requester as well as different
configurations for processing SOAP 1.1 and 1.2 messages. CICS provides the configuration
files necessary for CICS to function as both a service requester and a service provider
handling both SOAP 1.1 and 1.2 messages.

The configuration file can also be used to add your own user message handlers. An
example would be a user message handler to extract user identification from the message
to determine which USERID and transaction id should be used to process the message.

25

49

WEBSERVICE resource

� WEBSERVICE definition
– Defines the application specific details for a

web service request
– Defines the execution environment for

Web Service application
– PIPELINE

– Name of the pipeline where this
WEBSERVICE is to be installed

– WSBIND
– HFS name of the WS Binding file

– WSDLFILE
– HFS name of the WSDL file

– VALIDATION
– Run time SOAP message validation

against WSDL schema

WEBSERVICE ==>
Group ==>
Description ==>
Pipeline ==>
(Mixed Case) ==>

==>
==>
==>

WSBIND ==>
(Mixed Case) ==>

==>
==>
==>

WSDLFILE ==>
(Mixed Case) ==>

==>
==>

VALIDATION ==> NO NO|YES

50

A WEBSERVICE resource defines the execution environment that lets a CICS application program
operate as a Web service provider or requester. The Web service interaction in which the CICS
application participates uses SOAP messaging, and is formally described with Web service
description language (WSDL).

The execution environment contains three components that are specified in the WEBSERVICE
attributes:

A pipeline
A Web service binding file
A Web service description

Although CICS provides the usual resource definition mechanisms for creating WEBSERVICE
resources, and installing them in your CICS region, there is an alternative strategy which you can
use. You can use the scanning mechanism to install WEBSERVICE resources in your running CICS
region.

Validation: Specifies whether full validation of SOAP messages against the corresponding schema
in the Web service description should be performed at run-time. Validating a SOAP message against
its schema incurs considerable processing overhead, and you should normally specify VALIDATION(NO).
Full validation ensures that all SOAP messages which are sent and received are valid XML with
respect to the XML schema. If VALIDATION(NO) is specified, sufficient validation is performed to
ensure that the message contains well-formed XML.

26

51

CICS Web Services Definitions
� Resource Definitions

– Define the transport

– http: TCPIPSERVICE for inbound requests
– wmq: QLOCAL definition

– Find the Web Service

– URIMAP definition
– Define the qualities of service

– PIPELINE definition
– Define the Web Service execution environment

– WEBSERVICE definition

52

There are a number of interrelated resource definitions required to process a Web Service
in CICS TSV3.1.

A resource definition is required to define the transport. Both http and WebSphere MQSeries
can be used as transports. For http, a CICS TCPIPSERVICE definition is required. For WMQ,
a request queue must be defined with a QLOCAL definition.

Next CICS must determine which Web Service is required. CICS TS V3.1 uses a URIMAP
definition to map the incoming Universal Resource Identifier (URI) to a specific WEBSERVICE
definition. The associated PIPELINE definition is determined from the matching URIMAP
definition.

The PIPELINE definition is used to specify which processing nodes or message handlers
are to operate on a Web Service request.

The WEBSERVICE definition is used to specify how CICS is to execute the application.
The WSBIND file, specified in the WEBSERVICE definition, is used to tell CICS which
application program to execute, whether a COMMAREA or CHANNEL is used and how
CICS is to transform the message between an XML format and COMMAREA format.

27

53

Web Service Resource Interrelationships

HFS

WSBind

WSDL

Batch Tools

WEBSERVICE
PIPELINE
WSBIND
WSDLFILE

PIPELINE
CONFIGFILE
SHELF
WSDIR

config

URIMAP
USAGE(PIPELINE)
HOST
PATH
PIPELINE
WEBSERVICE

COMMAREA
structure

dynamic
install

pick-up directory

BINDING=
URI=
PGMNAME=
PGMINT=

CICS

dynamic
install

54

This chart shows the interrelationships between the CICS resource definitions necessary to
support Web Services.

The CICS WSDL utility will produce a WSDL file from a language structure (copybook) or
a language structure from WSDL. As part of the generation process a Web Services Binding
file (WSBIND) will be produced. The WSBIND file contains information about the CICS
program to be invoked, the name of the WSDL file, the local URI and information necessary
to populate a COMMAREA from XML and vice versa. Both the WSBIND and the WSDL file
will be used by the executing CICS region.

The URIMAP definition will name both the PIPELINE definition and the WEBSERVICE
definition. Optionally, the URIMAP can specify an installed TCPIPSERVICE name to restrict
the matching to information for the specific port named in that resource definition.

The PIPELINE resource definition will copy installed WEBSERVICE definitions to its SHELF.
The WEBSERVICE definitions can be dynamically created through the use of the pick-up
directory (WSDIR).

The WEBSERVICE definition will name the PIPELINE definition that contains the
configuration information (CONFIGFILE) on which message handlers are invoked when
processing this Web Service.

28

55

Setting up the Resources

� Define a TCPIPSERVICE (or WMQ) and a PIPELINE
� Then either

– install the PIPELINE definition or

– issue CEMT PERFORM PIPELINE SCAN
� CICS uses the PIPELINE definition to

– locate the WSBind file

–from the WSBind file, CICS will dynamically create a
WEBSERVICE resource

–CICS will also dynamically create a URIMAP definition
� Can define everything individually if preferred

56

Setting up the CICS resources is not as difficult as it might seem. It is only necessary to
define the TCPIPSERVICE (or WMQ) and the PIPELINE. Place the WSBind file generated
from the batch tooling into the HFS directory specified in the PIPELINE definition. Then
either install the PIPELINE definition or issue a CEMT PERFORM PIPELINE SCAN command.

The PIPELINE definition contains the directory name where the WSBind file can be found.
From the WSBind file, CICS will dynamically create the Web Service resource definition.
This provides CICS with enough information to be able dynamically to create a URIMAP
definition as well. So, as long as you create a valid PIPELINE definition and put the WSBind
file in the correct location, CICS will do the rest.

The necessary definitions can all be input and installed manually if preferred. The definitions
can be put into a group and the group installed as for any CICS resource.

29

57

Runtime Support

58

This section of the presentation describes the CICS runtime support for web services.

30

59

Tooling to Runtime (the connection)
�CICS provides the necessary tools and runtime for web services

–A utility can generate WSDL from language structures
– a bottom up approach from an existing application

–A utility can generate language structures from WSDL
– a top down approach to new CICS service provider or
requester programs

–XML to language structure (e.g. COMMAREA) conversion and vice
versa at runtime

–The link between the utilities and the runtime is via the WSBind file

60

CICS TS V3.1 provides both the tools to prepare applications for becoming web services and
the runtime support for them. The ‘connection’ between the tooling and the runtime, apart
from the language structures which the application programs use, is via the WSBind file.

31

61

Web Services (the complete picture)

pipeline

CICS

CICS provided
utilities

CICS Web service

conversion

WSDL

Service
Requester

IDE tools

WSBind
file

lang.
structure

top down

bottom upTools

Runtime Business
logic

62

The foil attempts to show the separate components of the batch/tooling environment and
the CICS runtime environment. The entity which connects the two is the WSBind file. This
is generated by the CICS tooling and utilised by the runtime.

32

63

Runtime Scenarios
� CICS can be the service provider

– traditional situation. CICS is the server in a
client/server scenario. A client sends a request in to
CICS.

� CICS can be the service requester
– this is where CICS is the client in the client/server

scenario. CICS is sending a request to execute a
webservice to an external service provider.

64

There are two fundamental roles which CICS can take in implementing web service support.

CICS can be the service provider. This is the traditional CICS role where it is the server

running transactions and an external client is requesting work to be performed. CICS can

also be the service requester. This is where CICS is requesting an external provider of

service to perform work on behalf of a CICS application.

33

65

What happens? (Service Provider)

� The URIMAP is used to locate the webservice which
needs to be invoked based on the URL.

� The pipeline passes a number of containers in the
pipeline channel .

– One container contains the SOAP body to be
processed

66

The pipeline code passes a number of containers to the runtime. These provide the

information required so that the runtime can correctly invoke a CICS application which

will service the request.

Containers are named blocks of data designed for passing information between

programs. You can think of them as "named communication areas (COMMAREAs)".

Programs can pass any number of containers between each other. Containers are

grouped together in sets called channels. A channel is analogous to a parameter list.

34

67

Pipeline

Pipeline Processing

SOAP
Envelope SOAP

Body

68

The pipeline receives the SOAP message from the transport. This will be the complete

envelope with headers and the body. The pipeline will process any header handling

routines and remove the envelope. Assuming that there are no errors, it will pass the

SOAP body on for further processing.

35

69

Provider overview

Pipeline

SOAP
Body

Inbound

Convert to

commarea

format and

invoke app

CICS

application

program
Convert to

SOAP and

pass to

pipeline

SOAP
Body

Outbound

Conversion

70

The foil shows, at a high level, the general flow of data through the system when CICS

is acting as the service provider. It shows the main actions performed and how the

application program fits into the picture.

36

71

What happens? (Service Requester)

� The CICS application which invokes a web service must

– place the outbound data into container DFHWS-DATA

– call the operation required and specify the webservice which
implements the operation

– handle the response which comes back in container DFHWS-
DATA

� The process is basically the reverse of the provider situation in
terms of the conversions are performed.

72

CICS can act as a service requester by an application program issuing an
EXEC CICS INVOKE WEBSERVICE call. The outbound data are placed into
container DFHWS-DATA. Any response is placed into the same container.

37

73

Requester overview

Pipeline

SOAP
Body

Outbound

Convert to

SOAP and

pass to

pipeline

Convert to

commarea

format and

pass to

application

SOAP
Body

Inbound

Conversion

CICS Application

Program

EXEC CICS INVOKE

WEBSERVICE

74

The foil summarises the runtime operations of the CICS code, when CICS is a

service requester, at a very high level. This foil also assumes that the service is

being provided remotely.

38

75

Overview of New things in
CICS TS V3.2

76

Now we look at some of the new support added in CICS TS V3.2. Everything which was
supported in CICS TS V3.1 continues to be supported, but extra capability has been
added in 3.2.

39

77

MTOM/XOP Support
� In standard SOAP messages:

– Binary objects are base64 encoded
– Significantly increases their size

– Included in the message body
– Can impact transmission time
– Also impacts message parse time (CPU)

� MTOM/XOP provides a solution to this problem
– The MTOM specification

– Defines a method for optimizing SOAP messages
– Separates out binary data
– Sends it in separate binary attachments using a MIME

Multipart/Related message
– The XOP specification

– Defines an implementation for optimizing XML messages
– Uses binary attachments in a packaging format

– Includes but is not limited to MIME messages

78

In standard SOAP messages, binary objects are base64 encoded and included in the message
body. This significantly increases their size, and for very large binary objects, this can impact
transmission time. Implementing MTOM/XOP provides a solution to this problem.

The SOAP Message Transmission Optimization Mechanism (MTOM) and XML-binary
Optimized Packaging (XOP) specifications, often referred to as MTOM/XOP, define a method
for optimizing the transmission of large base64binary data objects within SOAP messages.

The MTOM specification conceptually defines a method for optimizing SOAP messages by
separating out binary data, that would otherwise be base64 encoded, and sending it in
separate binary attachments using a MIME Multipart/Related message. This type of MIME
message is called an MTOM message. Sending the data in binary format significantly reduces
its size, thus optimizing the transmission of the SOAP message.

The XOP specification defines an implementation for optimizing XML messages using
binary attachments in a packaging format that includes but is not limited to MIME messages.

The size of the base64binary data is significantly reduced because the attachments are
encoded in binary format. The XML in the SOAP message is then converted to XOP format
by replacing the base64binary data with a special <xop:Include> element that references the
relevant MIME attachment using a URI.

40

79

MTOM/XOP Configuration
� Support for MTOM/XOP is configured through the

pipeline configuration file.

� When using MTOM/XOP, new containers are present
in the pipeline channel at runtime.

� MTOM/XOP can be used with CICS as either a
provider or a requester.

80

An example pipeline configuration file for MTOM/XOP is shown here:-

An example pipeline
<service_handler_list>

<cics_mtom_handler>
<cics_mtom_handler_configuration version="1">

<mtom_options send_mtom="same" send_when_no_xop="no" />
<xop_options apphandler_supports_xop="yes" />
<mime_options content_id_domain="example.org" />

</cics_mtom_handler_configuration>
</cics_mtom_handler>

</service_handler_list>

The extra elements are added to the pipeline configuration file prior to installing the
pipeline. New containers are also present in the pipeline channel. These are
summarized below but for full details, see the CICS infocenter.

DFHWS-CID-DOMAIN
Contains the domain name that is used to generate content-ID values for referencing binary attachments

DFHWS-MTOM-IN
Holds information about the MTOM options for the pipeline and information about the message format received

DFHWS-MTOM-OUT
Holds information about the MTOM options for the pipeline and information about what XOP processing should take
place

DFHWS-XOP-IN
Holds information about the binary attachments and their containers

DFHWS-XOP-OUT
Holds information about the containers and their binary attachments

41

81

MTOM/XOP Overview
SOAP Envelope
SOAP Header
Header Block

Header Block

SOAP Body
Body sub-element

Body sub-element

Body sub-element

CICS
apphandler

Large binary
object eg. a picture

Large binary objects are
separated from the rest of
the SOAP message and
are referenced from within
the message.

•Reduces message size
- No need for base64Binary

•Reduces transmission time
- Since message is smaller

•Reduces message parse time
- No need to parse Mbtyes

of binary data

82

CICS implements support for these specifications in both requester and provider pipelines.
As an alternative to including the base64binary data directly in the SOAP message, CICS
applications that are deployed as Web service providers or requesters can use this support
to send and receive MTOM messages with binary attachments.

You can configure this support by using additional options in the pipeline configuration file.

There are certain scenarios where CICS cannot support the XOP document format in MTOM
messages directly. For example, the Web Services security functionality and Web services
validation cannot parse the <xop:Include> elements in the XOP document. Therefore, two
modes of support are provided in the pipeline to handle XOP documents and any associated
binary attachments.

If the application handler program is capable of supporting XOP documents, such as the
standard handlers that are provided when you deploy a Web service using the Web services
assistant, then CICS performs XOP processing in direct mode. If you are using a different
application handler in the pipeline that is not capable of handling XOP documents, all XOP
processing is performed in compatibility mode.

If you are using the Web Services Security functionality or are testing with validation switched
on, all XOP processing is performed in compatibility mode even if you have specified direct
mode in the pipeline configuration file.

42

83

WSDL 2.0 Tooling support
� Web Service Assistants changes

– DFHLS2WS new options
– WSDL_1.1(<HFS filename location>)
– WSDL_2.0(<HFS filename location>)
– SOAPVER(1.1|1.2|ALL)
– URI parameter may now specify an relative or absolute URI

– DFHWS2LS new options
– Automatically determines the WSDL version
– OPERATION=value

– Specifies the subset of valid operations that are required for
a requestor

– Used to limit the size of the WSBIND file
– WSDL-SERVICE=value

– Specifies the wsdl:Service element to be used when there is
more than one Service element for a Binding element

84

New parameters are available on the DFHLS2WS batch job so that it is possible to
specify the version of WSDL to be generated from a supplied language structure.

DFHWS2LS now automatically determines the WSDL version of Web service description that
has been supplied as input. The batch job has been enhanced to provide you with more
flexibility in how to handle the Web service description.

wsdl:Bindings elements can be associated with multiple wsdl:Service elements in Web
service descriptions. A new parameter has been added to enable you to select a specific
Service element within the Web service description.

When you are creating a service requester application, you can now specify a subset of
wsdl:Operation elements that you want to implement and create a Web service binding file
based on that subset. This can be useful when you have a very large WSDL file. By only
using a subset of Operation elements, you can save on storage by generating a smaller
Web service binding file.

43

85

WSDL 2 MEPs
� Message exchange patterns supported

– In-Only
– CICS as the provider

– CICS will receive a message and send no response
– CICS as the requester

– CICS application will send a message and expect no response
– In-out

– CICS as the provider
– CICS will receive a message and respond with a normal

response or fault
– CICS as the requester

– CICS application will send a message and expect a normal
response of fault

NB. These are supported in CICS TS V3.1 but they were not called MEPs then.

86

In-only with CICS as provider This pattern is where CICS receives a message and must
not return anything to the requester even if something goes wrong. This pattern is supported
already and will continue to be supported in the same way. CICS Web Service support puts
the DFHNORESPONSE container into the SOAP handler channel to indicate that the pipeline
must not send anything to the requester.

In-only with CICS as requester This pattern is where CICS as a requester of service will
send a message to a service provider and receive no response. This situation is supported
already. The tasksending the message knows that no response is to expected, so it will not
wait for one.

In-out with CICS as provider In this pattern, CICS will receive a message from a requester
and will respond with either a normal response or with a fault message. This is a normal flow
of messages for a web service and very much in the standard CICS application pattern. It is
already supported and will continue to be so.

In-Out with CICS as requester In this pattern, CICS will send a message to a service
provider and will receive a response, which may either be a normal response or a fault
message. Again, this is a natural set of messages for a CICS application. The pattern is
already supported and will continue to be so.

44

87

WSDL 2 specific MEPs
� Message exchange patterns supported…

– Robust in-only
– CICS as the provider

– CICS will receive a message and respond only if an error occurs
– CICS as the requester

– CICS application will send a message and expect a response only if an
error occurs

– New timeout specification on the PIPELINE definition
– In-optional-out

– CICS as the provider
– CICS will receive a message and may respond with

– A normal response
– An error response
– Nothing (no response)

– CICS as the requester
– CICS application will send a message and expect:

– A normal response
– An error response
– Nothing (no response)

These patterns are new for CICS TS V3.2

88

Robust in-only with CICS as provider CICS as the service provider will receive a message
from the requester. CICS only needs to respond if an error occurs. If an error occurs in the
pipeline, a SOAP fault will be sent back to the requester.

Robust in-only with CICS as requester If CICS is the service requester in a MEP where a
response of some sort may or may not be received, then a timeout needs to be specified to
define how long CICS is to wait for any possible response. A new timeout parameter has been
added to the PIPELINE resource. The value specified is stored in binary form in a new container
called DFHWS-RESPWAIT. The value specifies the timeout value to use in seconds. This is
so as to allow the value to be interrogated and perhaps changed by handlers in the PIPELINE
if desired.

In-optional-out CICS as provider CICS as a provider with this MEP will receive a message
from the requester and then may send a normal response, may send an error response or may
send nothing back to the requester. Which option will occur is not known until runtime. The
application program will need to indicate to DFHPITL that it does not intend to send a response
by deleting the DFHWS-DATA container from the channel.

In-optional-out CICS as requester If CICS is the requester of service, it will send a message
to the service provider. The provider may respond with a normal response, an error response
or never respond at all. The situation is very similar to that for the robust in-only pattern with
CICS as the requester. The question is, how long does CICS wait for the optional response
from the provider? The solution is to use the timeout value again for this situation.

45

89

WS-Trust
� Submitted to OASIS standardization process

–Used W3C specification dated 25 February 2005 as input

� Provides a framework for building trust relationships
–Sender and Receiver in different security domains

–Security tokens must be vouched for by trusted third party

–Trusted third party, called Security Token Service (STS)

� WS-Trust defines standard protocols and standard WSDL
interfaces to communicate with an STS

90

The Web Services Trust Language specification enhances Web Services Security further
by providing a framework for requesting and issuing security tokens, and managing trust
relationships between Web service requesters and providers. This extension to the
authentication of SOAP messages enables Web services to validate and exchange security
tokens of different types using a trusted third party. This third party is called a Security
Token Service (STS).

46

91

CICS Support of WS-Trust
� Interoperate with a Security Token Server

– CICS supplied security handler
– Inbound messages

– Validate the security token in the WS-Security header
– Exchange the security token in the WS-Security header

– Outbound messages
– Exchange the security token to be used in the WS-Security

header

� Trust Client Interface
– User supplied custom message handler

– No requirement for the CICS provided security handler
– Directly interact with an STS

– Issue or validate security tokens from the message header
– Channel and container interface

92

CICS support for securing Web services has been enhanced to include an implementation of
the Web Services Trust Language (or WS-Trust) specification.

CICS can now interoperate with a Security Token Service (STS), such as Tivoli Federated
Identity Manager, to validate and issue security tokens in Web services. This enables CICS to
send and receive messages that contain a wide variety of security tokens, such as SAML
assertions and Kerberos tokens, to interoperate securely with other Web services.

You can configure the CICS-supplied security handler to define how CICS should interact with
an STS. The <wsse_handler> element in the pipeline configuration file now includes additional
elements and attributes to configure this support. CICS can either validate or exchange the
first security token or the first security token of a specific type in the message header. If you
want more sophisticated processing to take place,

CICS provides a separate Trust client interface that you can use in a custom message handler.
You can use the Trust client instead of the security handler or in addition to it.

47

93

SOAP Envelope
SOAP Header
Header Block
Header Block

SOAP Body
Body sub-element

Body sub-element

Body sub-element

WS-Trust Overview

STS
(Change Security Tokens)

SOAP Envelope
SOAP Header
Header Block
Header Block

SOAP Body
Body sub-element

Body sub-element

Body sub-element

Pipeline
(Trust Handler)

SAML assertion RACF userid token

94

The foil attempts to show in a schematic fashion what the function of WS-Trust and the STS
are. A message inbound to CICS may have security credentials which CICS cannot handle,
such as a SAML assertion. By using the Trust handler in the pipeline, CICS can request an
STS, such as TFIM, for alternative credentials which CICS is able to understand. Typically
this would be a RACF userid token. The STS is able to understand and issue credentials
as requested and CICS must trust the STS to issue valid credentials.

If CICS needs to make an outbound web services call to a provider which requires security
credentials which CICS does not understand, then the STS can be used to convert from
something which CICS does understand to something which the remote service provider
understands. It could convert RACF credentials into SAML assertions for example.

One of the benefits of using WS-Trust is that it allows CICS to communicate with requesters
and providers of service using security credentials which cannot be processed by CICS and
RACF.

48

95

Externals

96

Now we look at some of the new external interfaces provided.

49

97

INVOKE WEBSERVICE
� If an application wants to invoke a web service

–EXEC CICS INVOKE WEBSERVICE

� Allows a CICS application program to invoke a web
service

� The command is threadsafe

98

Here is the syntax diagram for invoke webservice. Full details concerning the command
can be found in the CICS infocenter.

50

99

SOAPFAULT
� If an application needs to issue a SOAP fault message

–EXEC CICS SOAPFAULT CREATE

–EXEC CICS SOAPFAULT ADD

–EXEC CICS SOAPFAULT DELETE

� Using the API takes care of whether the SOAP message is
SOAP 1.1 or SOAP 1.2 automatically.

� All of the commands are threadsafe

100

Here is the syntax diagram for SOAPFAULT CREATE. Full details of all the commands
can be found in the CICS infocenter.

51

101

Summary
� CICS Support of Web Services

– Allows for re-use of existing business assets
– No change to application code

– Allows for development of new CICS applications using web services
� CICS infrastructure support

– CICS utilities
– WSDL to language structure generation (batch tool)
– Language structure to WSDL generation (batch tool)
– Runtime support for XML to COMMAREA and vice versa mapping

– Resource definitions on-line
– URIMAP
– PIPELINE
– WEBSERVICE

– EXEC support for outbound calls and fault messages
� Monitoring, statistics and problem determination support

102

CICS Support of Web Services allows for the reuse of existing business assets in a Web Services
environment. Existing COMMAREA application programs can function as a service provider without
change.

The CICS Web Services support allows the development of new CICS applications that function as a
service requester invoking an existing web service.

CICS provides utilities that will generate a language structure (copybook) from existing Web
Service Definition Language (WSDL) or can generate WSDL from an existing language copybook. The
utility also generates information about the XML to COMMAREA transformation that allows CICS to
provide the message adapter function. In this role, CICS will be able to map the XML structure into an
existing COMMAREA and after the service provider application has finished, map the COMMAREA back
to an XML structure for subsequent transmission to the requester. CICS has the capability of not only
using a COMMAREA to pass information to the service program but can also use the new
CHANNEL/CONTAINER constructs, eliminating the 32k restriction that a COMMAREA imposes.

CICS provides RDO support for the definition of the URI mapping to a web service, definition and
configuration of the pipeline process and definition of the actual web service.

CICS provides the standard qualities of services for web support including monitoring, statistics and
problem determination support.

52

103

More Information
� Web Services Guide - A new book in the CICS Infocenter for CICS TS V3

� “Using web services for business integration” (red book)
– http://www.redbooks.ibm.com/abstracts/sg246583.html

� “Implementing CICS Web services” (red book)
– http://www.redbooks.ibm.com/redpieces/abstracts/sg247206.html

� CICS
– CICS TS V3.2 infocenter available from 2007 June 14 at

– http://publib.boulder.ibm.com/infocenter/cicsts/v3r2/index.jsp
– http://www.ibm.com/cics
– Session 4133 “Web Services, Security and Transactions”

� Service-Orientated Architecture
– http://www-306.ibm.com/software/solutions/soa/

� Web Services
– http://www-306.ibm.com/software/solutions/webservices
– CICS Update, May 2005, pp 14 - 22

104

The foil shows where you can obtain more information should you desire to do so.

53

Questions
and

Answers

106

The end.

54

107

Additional Material

108

Intentionally nearly blank.

55

109

A Pipeline Configuration File

� Pipeline XML configuration for a service provider

<?xml version="1.0" encoding="UTF-8"?>

<provider_pipeline xmlns="http://www.ibm.com/software/htp/cics/pipeline"

.....xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

.....xsi:schemaLocation=“http://www.ibm.com/software/htp/cics/pipeline
provider.xsd”>

<service>

<terminal_handler>

<cics_soap_1.1_handler/>

</terminal_handler>

</service>

<apphandler>DFHPITP</apphandler>

</provider_pipeline>

110

The simplest provider pipeline configuration:

A single CICS supplied SOAP 1.1 handler as the terminal handler to parse the soap
envelope.

AppHandler is specified as DFHPITP. This is the CICS module to be invoked by the
pipeline.

The CICS Infocenter gives several examples of configuration files which are more
complex than the one shown in the foil.

56

111

Specifications

� The runtime support is for
– CICS TS V3.1

– WSDL 1.1
– SOAP 1.1 and SOAP 1.2
– WS-I Basic Profile 1.1
– XML 1.0
– WS-I Simple SOAP Binding Profile 1.0

– CICS TS V3.2 there is also support for

– WSDL 2.0
– SOAP Message Transmission Optimization Mechanism
– XML-binary Optimized Packaging
– WS-Trust

112

WSDL 1.1 specification http://www.w3.org/TR/wsdl
SOAP 1.1 specification http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
SOAP 1.2 specification http://www.w3.org/TR/soap12-part0/
WS-I Basic Profile 1.1 http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html
XML 1.0 specification http://www.w3.org/TR/2004/REC-xml-20040204/
WS-I SSBP 1.0 specification http://www.ws-i.org/Profiles/SimpleSoapBindingProfile-1.0-2004-08-

24.html
WSDL 2.0 http://www.w3.org/TR/wsdl20-primer/
MTOM http://www.w3.org/TR/soap12-mtom/
XOP http://www.w3.org/TR/xop10/
WS-Trust http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-spec

-cd-01.html

The specifications supported can be found at the URLs listed above.

57

113

Web Services Statistics

� Pipeline statistics
– Name
– Configuration file
– Shelf directory
– WSBIND directory
– Use count

� URIMAP statistics
– Name
– Status
– Webservice name
– PIPELINE name
– etc.

� Web Service statistics
– Name
– Program interface
– Message validation
– PIPELINE name
– URIMAP name
– WSBIND file
– WSDL file
– Porttype
– Endpoint
– Program name
– Use count

114

Statistics data for URIMAPs

URIMAPs

URIMAP Name. : INQUIRE1
URIMAP Enable Status : Enabled
URIMAP Usage : Pipeline
URIMAP Scheme. : HTTP
URIMAP Host. : *
URIMAP Path. : /exampleApp/inquireSingle
TCPIPSERVICE name. : SAMPLE
WEBSERVICE name. : INQUIRE1
PIPELINE name. : SAMPLE
Templatename :
HFS File :
Analyzer : No
Converter. :
Transaction ID : CPIH
Program name :
Redirection type : None
Location for redirection . . . :
URIMAP reference count : 4
Disabled : 0
Redirected : 0

Statistics data for PIPELINES

PIPELINEs

PIPELINE Name. : SAMPLE
PIPELINE Enable Status : Enabled
Configuration file : /u/dbeard1/pipeline/testrun.cfg
Shelf directory. : /u/dbeard1/sampbind/
WSDIR pickup directory :
PIPELINE use count : 14

Statistics data for WEBSERVICES

WEBSERVICE Name : INQUIRE2
WEBSERVICE Status : Inservice
Last modified date and time . . . : 12/09/2005 / 10:07:04
URIMAP name :
PIPELINE name : SAMPLE
Web service description (WSDL). . : /u/chrisb/WasV6/wsdl/inquireCatalog.wsdl
Web service binding file. : /u/dbeard1/sampbind/inquireCatalog.wsbind
Web service WSDL binding. : DFH0XCMNHTTPSoapBinding
Endpoint. :
Validation. : No
Program interface : Commarea
Program name. : DFH0XCMN
Container :
WEBSERVICE use count. : 6

58

115

Important APARs
� PK12805

– “Provides a Java based application programming interface to the
CICS Webservice Assistant”

– Provides fixes to a few minor bugs. It is also a pre-req for PK15904

� PK15904
– “Provide NILLABLE ATTRIBUTE support for CICS Webservices”

– Provides general support for attributes, not just NILLABLE

– Provides significant performance improvement
– 4% for small SOAP messages, up to 20% for large ones!

116

PK12805 (ptfs UK09028 and UK09039) provides a Java interface to the Web services
assistants. This might be of interest to you. The APAR also provides fixes to a few
minor problems which became apparent post-GA of CICS TS V3.1.

PK15904 (ptfs UK11615 and UK11616) is an essential piece of maintenance. As well
as the nillable attribute support, the APAR provides general support for attributes.

Probably the most important provision for general users of Web services in CICS is the
performance improvement. For small SOAP messages (single output element) the
improvement is about 4%, for large messages (1000 output elements) the gain is
about 20%. If you are planning to use Web services in CICS, you should plan to apply
this APAR.

Conclusion: Apply both sets of maintenance if you want to use Web services.

59

117

Important APARs continued
� APAR PK24515

– provides WS-Security support

– Session C31 gives all the details

� APAR PK23547
– provides enhanced capability and diagnostics for CICS WEBSERVICEs
– adds support to the assistants for

– base64 encoding
– COMP-1 (float)
– COMP-2 (double)
– COBOL Level-88 toleration

118

APAR PK24515 provides support for WS-Security related specifications for CICS
TS V3.1. This support was announced some time ago and is now available. See
session 4133 for full details of this support.

APAR PK23547 is a refresh of the CICS Web services assistants
(DFHWS2LS and DFHLS2WS) from the development stream and includes both new
capability and bug fixes. It adds support for: encoding and decoding binary data using
the base64 encoding; converting COMP-1 (float) and COMP-2 (double) data types;
configurable character array mapping options; specifying the TRANSACTION and
USERID fields for auto-generated URIMAP resources; configurable CCSIDs per
WEBSERVICE; toleration of COBOL Level-88 fields; enhanced support for zoned
decimal fields in COBOL; detailed messages and SOAP Faults in the event of
conversion errors.

60

119

© IBM Corporation 2007. All Rights Reserved.

The workshops, sessions and materials have been prepared by IBM or the session speakers and reflect their own views. They are provided for
informational purposes only, and are neither intended to, nor shall have the effect of being, legal or other guidance or advice to any participant.
While efforts were made to verify the completeness and accuracy of the information contained in this presentation, it is provided AS IS without

warranty of any kind, express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, this
presentation or any other materials. Nothing contained in this presentation is intended to, nor shall have the effect of, creating any warranties or
representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of
IBM software.

References in this presentation to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates.
Product release dates and/or capabilities referenced in this presentation may change at any time at IBM’s sole discretion based on market
opportunities or other factors, and are not intended to be a commitment to future product or feature availability in any way. Nothing contained in
these materials is intended to, nor shall have the effect of, stating or implying that any activities undertaken by you will result in any specific sales,
revenue growth or other results.
Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or
performance that any user will experience will vary depending upon many factors, including considerations such as the amount of

multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve results similar to those stated here.

All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may have
achieved. Actual environmental costs and performance characteristics may vary by customer.

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries. For a complete list of
IBM trademarks, see www.ibm.com/legal/copytrade.shtml
AIX, CICS, CICSPlex, DB2, DB2 Universal Database, i5/OS, IBM, the IBM logo, IMS, iSeries, Lotus, OMEGAMON, OS/390, Parallel Sysplex, pureXML,
Rational, RCAF, Redbooks, Sametime, System i, System i5, System z , Tivoli, WebSphere, and z/OS.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.
Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.
Intel and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

