
1

Session 4091

Beyond the 32K Commarea Limit

John Tilling

CICS Technical Planning and Strategy

Tilling@uk.ibm.com

2© 2007 IBM Corporation

Beyond the 32K Commarea Limit - Notes

This presentation will describe the capabilities provided by the Enhanced Inter-program Data Transfer
function introduced in CICS Transaction Server 3.1. This function will allow programs and
transactions to exchange more than 32K of data when using a LINK, XCTL, START or RETURN
TRANSID command.

While not technically correct, to facilitate the understanding of this capability you might think of this
capability as being equivalent to “Big COMMAREAs”.

2

3© 2007 IBM Corporation

© IBM Corporation 2007. All Rights Reserved.

The workshops, sessions and materials have been prepared by IBM or the session speakers and reflect their own views. They are provided for
informational purposes only, and are neither intended to, nor shall have the effect of being, legal or other guidance or advice to any participant.
While efforts were made to verify the completeness and accuracy of the information contained in this presentation, it is provided AS IS without

warranty of any kind, express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, this
presentation or any other materials. Nothing contained in this presentation is intended to, nor shall have the effect of, creating any warranties or
representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of
IBM software.

References in this presentation to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates.
Product release dates and/or capabilities referenced in this presentation may change at any time at IBM’s sole discretion based on market
opportunities or other factors, and are not intended to be a commitment to future product or feature availability in any way. Nothing contained in
these materials is intended to, nor shall have the effect of, stating or implying that any activities undertaken by you will result in any specific sales,
revenue growth or other results.
Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or
performance that any user will experience will vary depending upon many factors, including considerations such as the amount of

multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve results similar to those stated here.

All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may have
achieved. Actual environmental costs and performance characteristics may vary by customer.

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries. For a complete list of
IBM trademarks, see www.ibm.com/legal/copytrade.shtml
AIX, CICS, CICSPlex, DB2, DB2 Universal Database, i5/OS, IBM, the IBM logo, IMS, iSeries, Lotus, OMEGAMON, OS/390, Parallel Sysplex, pureXML,
Rational, RCAF, Redbooks, Sametime, System i, System i5, System z , Tivoli, WebSphere, and z/OS.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.
Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.
Intel and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

4© 2007 IBM Corporation

This slide left intentionally blank.

3

5© 2007 IBM Corporation

Session Agenda

� The 32k COMMAREA
– Why do we need to change?

� The “solution”
– Containers and Channels

� Scenarios
– Components

– Migration

– Best Practices

� API

� JCICS

� BTS

� System Programming
– GLUEs, TRUEs, URMs

– Monitoring and Statistics

� CICS TS 3.2 enhancements

6© 2007 IBM Corporation

Session agenda - Notes

This presentation will discuss the problems that are encountered by programs encountering the 32K
COMMAREA limitation, techniques that have been used to circumvent the 32K limitation and then will
discuss the CICS solution to the problem.

The CICS solution uses Channels and Containers to eliminate the problem. Channels are sets of
Containers. Containers are named blocks of data that hold information to be passed between
programs and transaction.

The CICS Application Programming Interface changes for both EXEC CICS commands and JCICS
classes will be examined.

The effects of Channels and Containers on Global User Exits, Task Related User Exits and User
Replaceable Modules will be described.

An example of how to migrate existing applications from their use of COMMAREAs to Channels and
Containers will be presented.

4

7© 2007 IBM Corporation

8© 2007 IBM Corporation

This slide left intentionally blank.

5

9© 2007 IBM Corporation

32K Commarea Limitation

� Program Commarea
– In a single CICS region

– LINK
– XCTL

– Across CICS regions
– Distributed Program Link

� Pseudo-conversational Commarea
– Local and transaction routing

� Similar limitation on START with data
– Single CICS region and distributed START

10© 2007 IBM Corporation

32K Commarea Limitation - Notes

The 32K COMMAREA limitation has existed since command level program was introduced in 1975.
The COMMAREA size restriction is applicable to both LINK and XCTL commands in a single region
as well as applying to COMMAREAs used by programs participating in a Distributed Program Link
(DPL) between two CICS regions (actually, the recommendation there is not to exceed 24K.)

The 32K limitation also affects the exchange of data between CICS tasks. Data can be passed
between two tasks by the use of the EXEC CICS START TRANSID FROM command. The data area
specified by the FROM option is also limited to a maximum size of 32K.

CICS transactions involved in a pseudo-conversational sequence can exchange data through the use
of the EXEC CICS RETURN TRANSID COMMAREA command. The returned COMMAREA is
subject to the same 32K size restriction.

The 32K restriction is also applicable to the External CICS Interface (EXCI) and the External Call
Interface (ECI) used by the CICS Transaction Gateway and the CICS Universal Clients. The solution
described in this presentation is not supported by EXCI or ECI.

6

11© 2007 IBM Corporation

Techniques for circumventing the 32k limit

� Passing addresses of large storage areas
– Single region solution

� Placing data in Temporary Storage

� Placing data in WebSphere MQ

� Using BTS Containers

12© 2007 IBM Corporation

Techniques for circumventing the 32k limit - Notes

Imaginative CICS programmers have developed a number of techniques for circumventing the 32K
COMMAREA restriction both within a single CICS region and between CICS regions.

Some of these techniques involve:

Passing the address of a large storage area in the COMMAREA. By using the FLENGTH option of
the GETMAIN command a storage area larger than 32K can be acquired. This solution, while simple,
will only work in a single CICS address space. A region affinity between the two programs or
transactions is created.

Passing the name of a Temporary Storage queue in the COMMAREA. By placing the data in
Temporary Storage more than 32K of data can be passed between programs or tasks. If the TS
queue is placed in a Temporary Storage Owning Region or the Coupling Facility the data can be
accessible across multiple CICS regions.

Passing the name of WebSphere MQSeries queue in the COMMAREA. By placing the data in WMQ
queues and only passing the queue name a larger amount of data can be passed between the
communicating programs or tasks.

Using CICS Business Transaction Services Containers. A BTS Container can be larger than 32K.
This is only a single-system solution, and also requires extra coding for the BTS environment.

7

13© 2007 IBM Corporation

14© 2007 IBM Corporation

This slide left intentionally blank.

8

15© 2007 IBM Corporation

Its not a multi-megabyte COMMAREA

� Larger COMMAREA sizes would exacerbate current problems

– Data structure complexity
– Overloaded copybooks

– Inefficient transmission
– Unnecessary data transmitted on DPLs

– Object code compatibility
– What about EIBCALEN?

– Code page conversions
– DFHCNV mechanism is not easy

16© 2007 IBM Corporation

Its not a multi-megabyte COMMAREA - Notes
At first glance, it would seem that a straightforward solution to this problem would be to allow a
COMMAREA length greater than 32K and all problems would be resolved. While such an
implementation would ease the 32K restriction it would not resolve all the “problems” that exist in
exchanging data today and would actually exacerbate some of the problem areas.

The current copy books used in the exchange of data today tend to be overloaded. That is, the
structures are redefined a number of times depending on whether the copybook is passing input,
output or error information. This can lead to confusion about exactly when the fields are valid.

The current overloaded COMMAREA structure does not lend itself to being efficiently transmitted
between CICS regions. The COMMAREA structure size must account for the maximum size of the
data that could be returned. By addressing the COMMAREA structure directly, CICS cannot
determine if you have changed the data contents. CICS must always return the full COMMAREA
structure from a DPL even if nothing has been changed.

The current COMMAREA structure does not allow for easily separating binary and character data.
When a COMMAREA needs to be converted to a different codepage, conversion is a very difficult and
error prone process.

Merely changing the COMMAREA length to a full word length could result in the loss of object and
source code compatibility for existing CICS programs. How would a program know if EIBCALEN was
valid or whether to check a new EIB field?

9

17© 2007 IBM Corporation

The Solution… Containers

� Named block of data designed for passing information between programs
– Like named COMMAREAs

� CONTAINER API
– Created using PUT CONTAINER

– Read using GET CONTAINER

� No CICS enforced size limitation
– Containers are stored above the line (but below the bar) in CICS TS 3.1

– Containers are stored above the bar (64 bit storage) in CICS TS 3.2

'Employee'

'Branch'

'Payslip'

18© 2007 IBM Corporation

The Solution… Containers - Notes

The solution to the 32K COMMAREA problem is to implement new constructs which solve the
previously mentioned problems. CICS Transaction Server 3.1 has done this by implementing a
simplified version of BTS Containers, and creating a new construct called a Channel.

A Container is a named block of data that can be passed to a subsequent program or transaction. It
may be easiest to think of a Container as a “named COMMAREA”. There is no CICS enforced limit on
the physical size of a single Container. You are only limited by the available user storage in the CICS
address space. Later, as we discuss “best practices”, we will discuss reasons why you might want to
use multiple Containers instead of a large single Container.

A Channel is a collection or group of Containers which can be used to pass data between programs
or transactions. Channels and COMMAREAs are mutually exclusive. That is, you may use one
technique or the other for passing data but not both on the same command.

In CICS TS 3.1, containers occupy 31 bit storage, ie they consume ECDSA storage

In CICS TS 3.2 containers are moved above the bar, ie 64 bit storage. The data is copied down below
the bar when required by the application.

10

19© 2007 IBM Corporation

The Solution… Channels

� A group of Containers
– No limit on the number of Containers in a Channel

� A Channel is a sort of program interface
– Passed on LINK, XCTL, pseudoconversational RETURN, and START commands

� Non-persistent
– Non-recoverable resource similar to commareas

'Employee'

'Branch'

'Payslip”

'Payroll'

20© 2007 IBM Corporation

The Solution… Channels - Notes

A Channel is a set of Containers that can be passed to another program or transaction. A Channel is
analogous to a parameter list.

Channels and Containers are only visible to the programs that create them and to the programs they
are passed to. When these programs terminate, CICS will automatically destroy the Containers and
release the storage they occupy.

11

21© 2007 IBM Corporation

A Simple Example

'Employee'

'Branch'

'Payslip'

'Payroll'
GET CONTAINER('Employee') INTO(emp-data)

GET CONTAINER('Branch') INTO(branch-data)

…

PUT CONTAINER('Payslip') FROM(pay-data)

PUT CONTAINER('Employee') CHANNEL('Payroll') FROM(emp-data)

GET CONTAINER('Payslip') CHANNEL('Payroll') INTO(pay-data)

PROGA

PROGB

LINK PROGRAM('PROGB') CHANNEL('Payroll')

PUT CONTAINER('Branch') CHANNEL('Payroll') FROM(branch-data)

22© 2007 IBM Corporation

A Simple Example - Notes

Here an example of how you might employ a Channel in your application program flow.

The simplest technique is to use one Channel and its collection of Containers to LINK to another
program. The name of the Channel is specified on the EXEC CICS LINK command and the target
application program knows the name of the Channel it expects to be passed.

12

23© 2007 IBM Corporation

24© 2007 IBM Corporation

This slide left intentionally blank.

13

25© 2007 IBM Corporation

Basic Scenarios for using Channels

� One Channel / One Program

� One Channel / Multiple Programs
– The Channel is the interface to a Component

Program A

EXEC CICS LINK PROGRAM(‘PROGRAMB’)
CHANNEL(‘EMPLOYEE_INFO’)

Program B

Program A

EXEC CICS LINK PROGRAM(‘PROGRAMB’)
CHANNEL(‘EMPLOYEE_INFO’)

Program CProgram B

EXEC CICS LINK PROGRAM(‘PROGRAMC’)
CHANNEL(‘EMPLOYEE_INFO’)

Component Employee-Inquiry

26© 2007 IBM Corporation

Basic Scenarios for using Channels - Notes

Another technique, shown here, is for the first program to create the Channel and Containers. This
program then LINKs to another program passing the Channel along. The second program then LINKs
to a third program, passing the same Channel. The same channel can be passsed along with the
same Containers, or a different set of Containers, for the exchange of data.

14

27© 2007 IBM Corporation

Scenario - Multiple Components

� One Program / Multiple Channels

Program A

EXEC CICS LINK PROGRAM(‘PROGRAMB’)
CHANNEL(‘EMPLOYEE_INFO’)

EXEC CICS LINK PROGRAM(‘PROGRAMC’)
CHANNEL(‘PAYROLL_INFO’)

Component Employee-Inquiry

Component Payroll-Inquiry

Program B

Program C

28© 2007 IBM Corporation

Scenario - Multiple Components - Notes

In this example, program A links to two other programs, B and C. Each program has a different
Channel describing the different interfaces. This allows for much better separation of data than the old
method of overloading the Commarea.

15

29© 2007 IBM Corporation

Scenario - Loose Binding

� Multiple Programs / Multiple Channels

Program X

EXEC CICS LINK PROGRAM(‘PROGRAMZ’)
CHANNEL(‘PUBLIC_INFO’)

Program Z

Program Y

EXEC CICS LINK PROGRAM(‘PROGRAMZ’)
CHANNEL(‘PRIVATE_INFO’)

Program A

EXEC CICS LINK PROGRAM(‘PROGRAMC’)
CHANNEL(‘EMPLOYEE_VER1’)

Program C

Program B

EXEC CICS LINK PROGRAM(‘PROGRAMC’)
CHANNEL(‘EMPLOYEE_VER2’)

Component Employee-Inquiry

Component Info

30© 2007 IBM Corporation

Scenario - Loose Binding - Notes

These two examples show what may be termed as loose binding, or loose coupling.

Program C is a server program that can process requests from a number of different clients. In the
first example, there is a new version of the data structure in a Container. Program C could be
enhanced to see which version of the container structure needs to be processed. As time permits, the
calling programs can be enhanced to use the new version of the Container structure.

In the second case, program Z normally will handle public requests from calling programs. A private
data structure is used for special administrative programs. A different Channel or Container could be
used to implement this “private protocol”.

Note that CICS does not define any security mechanism to enforce who can use a Channel name.

16

31© 2007 IBM Corporation

Migration of Programs Using LINK

� Existing application with COMMAREA

� Changed application using Channels

Program A

EXEC CICS PUT CONTAINER(structure name)
CHANNEL(channel-name)
FROM(structure)

EXEC CICS LINK PROGRAM(‘PROGRAMB’)
CHANNEL(channel-name)

EXEC CICS GET CONTAINER(structure-name)
INTO(structure)

Program B

EXEC CICS GET CONTAINER(structure-name)
SET(structure-ptr)

EXEC CICS PUT CONTAINER(structure-name)
FROM(structure)

Program A

EXEC CICS LINK PROGRAM(‘PROGRAMB’)
COMMAREA(structure)

Program B

EXEC CICS ADDRESS
COMMAREA(structure-ptr)

32© 2007 IBM Corporation

Migration of Programs Using LINK - Notes

This is an example of the changes necessary to convert an application program that is using a COMMAREA
to one using a Channel and Container. The example here only shows the commands which need to be added
or changed. Note that, if Program B changes the Container data, it must PUT the Container back before
returning, or the changes will not be visible to the caller.

There is no attempt in this example to describe how the copybook structure can be simplified. We will discuss
the question of “Best Practices” later to see how the COMMAREA copybooks could be evaluated.

17

33© 2007 IBM Corporation

Migration of Programs Using START

� Existing application with START data

� Changed application using Channels

Transaction 1

EXEC CICS PUT CONTAINER(structure-name)
CHANNEL(channel-name)
FROM(structure)

EXEC CICS START TRANSID(‘TRN2’)
CHANNEL(channel-name)

Transaction 2

EXEC CICS GET CONTAINER(structure-name)
INTO(structure)

Transaction 1

EXEC CICS START TRANSID(‘TRN2’)
FROM(structure)

Transaction 2

EXEC CICS RETRIEVE
INTO(structure)

34© 2007 IBM Corporation

Migration of Programs Using START - Notes

This is an example of the changes necessary to convert an application program that is using an EXEC CICS
START with data to a START passing a channel. The example here only shows the commands which need
to be added or changed.

There is no attempt in this example to describe how the copybook structure can be simplified. We will discuss
the question of “Best Practices” later to see how the COMMAREA copybooks could be evaluated.

Today a program may issue multiple STARTs with data for a single transaction id. CICS will start one
instance of the transaction. The program can issue multiple RETRIEVE commands to get the data. When
using the Channel option on the start, CICS will start one transaction for each START request. The started
transaction will be able to access the contents of a single Channel.

The started transaction will get a copy of the Channel, so the starting program may continue to alter the
Containers after issuing the START without affecting the data received by the started program.

18

35© 2007 IBM Corporation

Best Practices – Defined Interface

� Define the Channel and Container names in a copybook
– Shared definition of interface

� Usually each Container is a level 01 structure
– Avoids overloading copybooks

� Define interface with structures
– May not be possible for COBOL

– COBOL copybook in working storage.
– COBOL structures may be in linkage section so separate.

* Channel name
01 INQUIRY-CHANNEL PIC X(16) VALUE ’inqcustrec’.

* Container names
01 CUSTOMER-NO PIC X(16) VALUE ’custno’.
01 BRANCH-NO PIC X(16) VALUE ’branchno’.
01 CUSTOMER-RECORD PIC X(16) VALUE ’custrec’.

* Structures
01 CUSTNO PIC S9(8).
01 BRANCHNO.

02 COUNTRY PIC S9(4).
02 REGION PIC S9(4).

01 CREC.
02 CUSTNAME PIC X(80).
02 CUSTADDR1 PIC X(80).
02 CUSTADDR2 PIC X(80).
02 CUSTADDR3 PIC X(80).

36© 2007 IBM Corporation

Best Practices – Defined Interface - Notes
Use a separate Container for each structure in the copybook. Consider defining the names of the
Channel and the Containers used in that Channel in a copybook.

19

37© 2007 IBM Corporation

Best Practices – DPL Performance

� Containers which are unchanged are not returned on DPL
� There is no definition of output Containers by the caller

– Containers created by the called program are returned

� For optimal DPL performance
– Use separate Containers for “read only” versus “read/write” or “write” data

– Use separate Containers for input and output

– If a structure is optional make it a separate Container
– Use a separate Container for error information

38© 2007 IBM Corporation

Best Practices – DPL Performance - Notes
It is possible to use a Channel with a single Container to replace your existing COMMAREA usage.
While this may seem the simplest way to move from COMMAREAs to Channels and Containers it is
not a good practice to do this. If you are taking the time to change your application programs to
exploit this new function you should implement the “best practices” for Channels and Containers.

The reason for this is that when using Channels with DPL, only the changed Containers need to be
returned to the calling CICS region when a DPL is complete.

Use separate Containers for read-only data versus read-write data. This will improve the transmission
efficiency between CICS regions. A simple example of this is using different Containers for input and
output. This will allow you to simplify your copybook structure and make your programs easier to
understand and avoid the problems with REDEFINES overlays.

Use a separate Container for each structure in the copybook. This will make the program easier to
understand. In addition in some programs some output structures would be optional. A particular case
of this is error information. This will lead to clearer documentation of the error information and
improved transmission efficiency between CICS regions as the error container only needs to be sent
if present.

When checking for an error, simply issue a GET CONTAINER command and check for a
CONTAINERERR condition.

Use separate containers for different data types, such as binary data and character data. This will
improve your ability to easily move between different code pages

20

39© 2007 IBM Corporation

40© 2007 IBM Corporation

This slide left intentionally blank.

21

41© 2007 IBM Corporation

The Current Channel

� The Channel, if any, passed to the program by:
– LINK, XCTL, START or pseudo-conversation RETURN

� Does not change during the life of the program
– The program may create other Channels

� Default for EXEC CICS commands that do not explicitly specify a Channel name

GET CONTAINER('Employee') INTO(emp-data)

GET CONTAINER('Branch') INTO(branch-data)

…

PUT CONTAINER('Payslip') FROM(pay-data)

PROGB

No
CHANNEL
specified

42© 2007 IBM Corporation

The Current Channel - Notes

You may have spotted in the “Migration Example” that Program B didn’t specify the channel name on
the GET and PUT CONTAINER commands. It could have done so, but did not need to because it
was dealing with its Current Channel

A program’s Current Channel is the Channel, if any, that is passed to the program. The Current
Channel is set when a program is started by a LINK, XCTL, START or pseudo-conversational
RETURN command specifying a Channel.

While a called program can create new Channels for passing information to other called programs its
Current Channel never changes.

If a Channel is not explicitly specified on a Container command, the Current Channel is used as the
default value for the CHANNEL (channel-name) parameter.

22

43© 2007 IBM Corporation

Current Channel

Program E

EXEC CICS RETURN

Current Channel: MANAGER_INFO

Program D

EXEC CICS LINK PROGRAM(‘PROGRAME’)
CHANNEL(‘MANAGER_INFO’)

Current Channel: none

Program A

EXEC CICS LINK PROGRAM(‘PROGRAMB’)
CHANNEL(‘EMPLOYEE_INFO’)

Current Channel: none

Program C

EXEC CICS LINK PROGRAM(‘PROGRAMD’)

Current Channel: EMPLOYEE_INFO

Program B

EXEC CICS LINK PROGRAM(‘PROGRAMC’)
CHANNEL(‘EMPLOYEE_INFO’)

Current Channel: EMPLOYEE_INFO

44© 2007 IBM Corporation

Current Channel - Notes

This is an example of the program flow inside of an executing transaction. The programs link to each
other passing information through the use of a Channel. You will see that the initial program in the
transaction, program A, does not have a Current Channel. This is because the transaction was not
invoked by use of a RETURN TRANSID CHANNEL or by a START TRANSID CHANNEL command.
Program A must explicitly specify the Channel name in all Container commands that it issues.

Program A then invokes program B with a LINK command with a Channel specified. Program B has a
Current Channel of EMPLOYEE_INFO. Program B then invokes program C passing along the same
EMPLOYEE_INFO Channel. Program C will also have a Current Channel of EMPLOYEE_INFO.

Program C then proceeds to LINK to program D but does not specify a Channel (perhaps it continues
to use a COMMAREA). Thus, program D does not have a Current Channel.

Finally, program D invokes program E with a LINK command and specifies a Channel. Program E will
have a Current Channel of MANAGER_INFO.

23

45© 2007 IBM Corporation

The Scope of a Channel

� The programs which can access a Channel

� A program can access
– Its Current Channel

– Any other Channels it creates

� When no program in the link stack can access a Channel it is deleted
– Can occur on RETURN or XCTL

� Channels cannot be accessed by other tasks

46© 2007 IBM Corporation

The Scope of a Channel - Notes

The scope of a Channel defines which programs have access to the Channel. Remember that the
Channel and its associated Containers are only available to some of the programs in an executing
transaction. The scope describes where the Channel and its Container data can be accessed.

An application program can only access its Current Channel and any new Channels that it creates.
CICS itself can use Channels and Containers internally, and has the capability to create read-only
Containers within a Channel. You will find read-only Containers used in the new CICS Web Services
function.

The other important thing to note about Channel scope is that it controls when the Channel will be
deleted by CICS. When a Channel goes out of scope, that is, no application program has the ability to
access the Channel, it is deleted. CICS will check to see if it can delete a Channel at the time an
EXEC CICS RETURN or XCTL command is issued.

It is not possible for a program in one task to access a Channel belonging to another task, even when
both tasks own a Channel with the same name.

24

47© 2007 IBM Corporation

Channel Scope

Program E

EXEC CICS RETURN

Current Channel: MANAGER_INFO

Program D

EXEC CICS LINK PROGRAM(‘PROGRAME’)
CHANNEL(‘MANAGER_INFO’)

Current Channel: MANAGER_INFO

Program A

EXEC CICS LINK PROGRAM(‘PROGRAMB’)
CHANNEL(‘EMPLOYEE_INFO’)

Current Channel: none
Created Channel: EMPLOYEE_INFO

Program C

EXEC CICS LINK PROGRAM(‘PROGRAMD’)
CHANNEL(‘MANAGER_INFO’)

Current Channel: EMPLOYEE_INFO
Created Channel: MANAGER_INFO

Program B

EXEC CICS LINK PROGRAM(‘PROGRAMC’)
CHANNEL(‘EMPLOYEE_INFO’)

Current Channel: EMPLOYEE_INFO

S
co

pe
 o

f C
ha

nn
el

 E
M

P
LO

Y
E

E
_I

N
F

O

S
co

pe
 o

f C
ha

nn
el

 M
A

N
A

G
E

R
_I

N
F

O

48© 2007 IBM Corporation

Channel Scope - Notes

This is an example of how Channel scope operates. This is the same example we looked at to
determine the Current Channel of a program. The Channel scope is indicated by the two overlay
boxes.

The Channel, EMPLOYEE_INFO, is created by program A and passed to subsequent programs B
and C. This Channel is not passed on the LINK to program D so the scope of the EMPLOYEE_INFO
Channel is programs A, B and C. When program A issues an EXEC CICS return, CICS will then
delete the Channel (assuming it is not passed to another transaction on the RETURN).

The Channel, MANAGER_INFO, is created by program C and is used to exchange information with
programs D and E. The scope of the Channel is programs C, D and E. When program C issues a
RETURN command the MANAGER_INFO Channel will go out of scope and be destroyed.

Note that both EMPLOYEE_INFO and MANAGER_INFO Channels are in scope in program C.

Also note that programs D and E cannot access EMPLOYEE_INFO, but it is still in scope in programs
in the link stack (i.e. A, B and C).

25

49© 2007 IBM Corporation

50© 2007 IBM Corporation

This slide left intentionally blank.

26

51© 2007 IBM Corporation

API Commands

� Container commands
– PUT CONTAINER

– GET CONTAINER

– MOVE CONTAINER

– DELETE CONTAINER

� Program transfer commands
– LINK PROGRAM

– XCTL PROGRAM

� Inquiry commands
– ASSIGN CHANNEL

– STARTBROWSE CONTAINER

– GETNEXT CONTAINER

– ENDBROWSE CONTAINER

� Transaction transfer commands
– RETURN TRANSID

– START TRANSID

52© 2007 IBM Corporation

This slide left intentionally blank.

27

53© 2007 IBM Corporation

Container Commands

� EXEC CICS PUT CONTAINER
– Copies data into a container within the channel

– Overwrites existing data if container already exists

– Creates channel if it does not already exist
� EXEC CICS GET CONTAINER

– Retrieve the container data into user storage
� EXEC CICS MOVE CONTAINER

– Moves a container from one channel to another
– Can be used to rename a container

� EXEC CICS DELETE CONTAINER
– Deletes a container from the channel

– Does not delete the channel, even if no containers left

54© 2007 IBM Corporation

Container Commands - Notes

To create a Channel, if it doesn’t exist, and to place Container data within the Channel you can use
an EXEC CICS PUT CONTAINER CHANNEL command.

To retrieve data passed to your program you use an EXEC CICS GET CONTAINER CHANNEL
command.

28

55© 2007 IBM Corporation

EXEC CICS PUT CONTAINER
� CONTAINER (data-value)

– The name (1-16 characters) of the container
� CHANNEL (data-value)

– The name (1-16 characters) of the channel that owns the container.
– Defaults to current channel.

� FROM (data-area)
– Specifies the data area from where the data to be saved is read.

� FLENGTH (data-value)
– Specifies the length of the data area to be saved.
– Can be 0 to very large.
– This parameter is added by the translator if not specified (except C).

� FROMCCSID (data-value)
– Specifies the current Coded Character Set of the character data to be put into the container. Defaults to the CCSID of the local CICS region.

� DATATYPE (CVDA)
– BIT

– The data in the container cannot be converted.
– CHAR

– Character data which can be converted.

56© 2007 IBM Corporation

EXEC CICS PUT CONTAINER - Notes
The format and options of the EXEC CICS PUT CONTAINER command.

29

57© 2007 IBM Corporation

EXEC CICS GET CONTAINER

� CONTAINER (data-value)
– The name (1-16 characters) of the container

� CHANNEL (data-value)
– The name (1-16 characters) of the channel that owns the container.

– Defaults to current channel.

� INTO (data-area)
– Specifies the data area into which the retrieved data is to be placed.

� SET (ptr-ref)
– Specifies a data area in which the address of the retrieved data is returned

� FLENGTH (data-area)
– Specifies the length of the data area to be read.

– Returns the length actually read.

� NODATA
– Specifies the only the length of the data in the container is to be returned. The length returned will take into account the

INTOCCSID.

� INTOCCSID (data-value)
– Specifies the current Coded Character Set into which the character data is to be converted. Defaults to the CCSID of the local

CICS region.

58© 2007 IBM Corporation

EXEC CICS GET CONTAINER - Notes

The format and options of the EXEC CICS GET CONTAINER command.

If you use the SET (ptr-ref) parameter the data area returned will be valid until:

• A subsequent GET CONTAINER command is issued for the same Container in the same Channel
by any program that can access the Channel or until the Channel goes out of scope.

• A PUT CONTAINER changes the contents.

• The Container is deleted by a DELETE CONTAINER command.

• The Container is moved by a MOVE CONTAINER command.

Note - this is CICS managed storage – do NOT issue a FREEMAIN against the storage area.
The storage is task storage with crumple zones.

Should you need to ensure the data is kept, move the data to your own application storage, or use the
INTO option on the GET CONTAINER command.

30

59© 2007 IBM Corporation

Scenario – Simple Data Conversion

� PUT and GET can be used for data conversion
� Uses CICS or z/OS conversion tables

� Simple example of converting data to UTF-8

EXEC CICS PUT CONTAINER(‘temp’) CHANNEL(‘dummy’)
FROM(ebcdic-data)
CHAR

EXEC CICS GET CONTAINER(‘temp’) CHANNEL(‘dummy’)
SET(utf8-ptr) FLENGTH(utf8-len)
INTOCCSID(1208)

60© 2007 IBM Corporation

Scenario – Simple Data Conversion - Notes

In this example the ebcdic data will be converted to utf-8 by the z/OS services.
In most cases SET should be used as the length of the resultant data may change.

Only character string data is supported.

31

61© 2007 IBM Corporation

EXEC CICS MOVE CONTAINER

� CONTAINER (data-value)
– The name (1-16 characters) of the container

� CHANNEL (data-value)
– The name (1-16 characters) of the channel that owns the container.

– Defaults to current channel.

� TOCHANNEL (data-value)
– Specifies the name of the channel that will own the target container

� AS (data-value)
– Specifies the name of the target container

62© 2007 IBM Corporation

EXEC CICS MOVE CONTAINER - Notes
The format and options of the EXEC CICS MOVE CONTAINER command.

32

63© 2007 IBM Corporation

EXEC CICS DELETE CONTAINER

� CONTAINER (data-value)
– The name (1-16 characters) of the container

� CHANNEL (data-value)
– The name (1-16 characters) of the channel that owns the container.
– Defaults to current channel.

64© 2007 IBM Corporation

EXEC CICS DELETE CONTAINER - Notes
The format and options of the EXEC CICS DELETE CONTAINER command.

33

65© 2007 IBM Corporation

Program Transfer Commands

� LINK PROGRAM [CHANNEL|COMMAREA]
– Links to another program, on a local or remote system, passing the channel and container data

– Creates the channel if it doesn’t already exist

� XCTL PROGRAM [CHANNEL|COMMAREA]
– Transfers control to the program on a local system passing the channel and container data

– Creates the channel if it doesn’t already exist

66© 2007 IBM Corporation

Program Transfer Commands - Notes
To link or transfer control to another program passing a Channel and its associated Containers you
use an EXEC CICS LINK PROGRAM CHANNEL or EXEC CICS XCTL PROGRAM CHANNEL
command.

You may pass a Channel or a COMMAREA to a program but not both.

34

67© 2007 IBM Corporation

Transaction Transfer Commands

� RETURN TRANSID [CHANNEL|COMMAREA]
– Returns control to CICS, passing the channel and container data to the next transaction id

– Creates the channel if it doesn’t already exist

� START TRANSID [CHANNEL|FROM]
– Starts a task, on a local or remote system

– Copies the named channel and container data and passing it to the started task

– Creates the channel if it doesn’t already exist

68© 2007 IBM Corporation

Transaction Transfer Commands - Notes
To begin or continue a pseudo-conversational transaction you will use an EXEC CICS RETURN
TRANSID CHANNEL command. As with using a commarea, this command is only valid at the highest
logical level, that is, a program that is returning control to CICS. You may pass a Channel or
COMMAREA to the next transaction, but not both.

To start a new transaction and pass a Channel to the new task you use an EXEC CICS START
TRANSID CHANNEL command. In the case of the START command the Channel and its Containers
are copied from the original and passed to the started transaction. At this point there are two separate
copies of the Channel and Container data. If your starting program continues to make changes to the
original Container data in the Channel it will not be reflected in the copy given to the started task.
START can either pass a Channel or STAT data, but not both.

Transactions started with the CHANNEL option will have a STARTCODE of ‘S’.

Timer options are not supported by the START command when a Channel is specified.

35

69© 2007 IBM Corporation

Inquiry commands
� ASSIGN CHANNEL(data-area)

– Returns the name of the current channel

– Spaces returned if no current channel

� Container browse commands
– STARTBROWSE CONTAINER [CHANNEL(data-area)]

– GETNEXT CONTAINER (data-area)

– Container names returned in no particular order
– ENDBROWSE CONTAINER

70© 2007 IBM Corporation

Inquiry commands - Notes
You can use the EXEC CICS ASSIGN command to determine what Channel, if any, was passed to
your program. This is useful if your program can be invoked by a number of different clients each of
which can pass your program a different Channel.

The EXEC CICS ASSIGN CHANNEL command will return the 16 character name of the program’s
Current Channel if one exists. If no Current Channel exists, the name field will be set to spaces.

When your application program may be passed a Channel with a varying number of Containers it can
use the Container browse commands to discover all the Containers present in the Channel. If your
program is only attempting to determine if a specific Container has been passed, such as an error
Container, it is more efficient to issue a GET CONTAINER command against the single Container
name (e.g. ERROR), and check for a CONTAINERERR condition.

The CICS commands comprising the browse interface for containers are STARTBROWSE
CONTAINER, GETNEXT CONTAINER and ENDBROWSE CONTAINER.

The order in which the Containers are returned is not guaranteed, but all Containers will be returned.

36

71© 2007 IBM Corporation

72© 2007 IBM Corporation

This slide left intentionally blank.

37

73© 2007 IBM Corporation

New JCICS Classes

� com.ibm.cics.server.Channel
� com.ibm.cics.server.Container
� com.ibm.cics.server.ContainerIterator
� com.ibm.cics.server.ChannelErrorException
� com.ibm.cics.server.ContainerErrorException
� com.ibm.cics.server.CCSIDErrorException

74© 2007 IBM Corporation

New JCICS Classes - Notes

There are six new classes to support Channels and Containers in the Java programming language.

A Channel class used to hold Container objects.

A Container class used to hold Container data.

A ContainerIterator class used to browse the Containers in a Channel.

Exception classes to map the CICS CHANNELERR, CONTAINERERR and CCSIDER conditions

38

75© 2007 IBM Corporation

Creating a new Channel

� Use the createChannel() method of the Task class

Task t = Task.getTask();

Channel custData = t.createChannel("Customer_Data");

76© 2007 IBM Corporation

Creating a new Channel - Notes
Unlike the CICS API, in JCICS it is necessary to create a Channel object before creating any
Containers to go into the Channel.

A Channel object is created by means of the createChannel() method of the Task class.

39

77© 2007 IBM Corporation

Putting data into a Container

1. Create the Container using the createContainer() method of the Channel class

Container custRec = custData.createContainer("Customer_Record");

2. Add the data using the Container.put() method
– Data can be added as a byte array or string

String custNo = "00054321";

byte[] custRecIn = custNo.getBytes();

custRec.put(custRecIn);

– Or

custRec.put("00054321");

78© 2007 IBM Corporation

Putting data into a Container - Notes
An example of creating a new Container object and putting data into it.

A Container object is created using the createContainer() method of the Channel class. The
Container object must be created before data can be put into it using the put() method.

40

79© 2007 IBM Corporation

Passing a Channel to another program or task

� Passing a Channel to another program
– Use the link() and xctl() methods of the Program class, passing the Channel object as the parameter

programX.link(custData);

programY.xctl(custData);

� Passing a Channel to another task
– Use the issue() method of the StartRequest class, passing the Channel object as the parameter

StartRequest.issue(custData);

– Use the setNextChannel() method of the TerminalPrincipalFacility class
terminalPF.setNextChannel(custData);

80© 2007 IBM Corporation

Passing a Channel to another program or task - Notes

An example of passing a Channel to another program or another task.

The link() and xctl() methods of the Program class have been overloaded so that a Channel can be
passed as the parameter instead of a CommAreaHolder.

Similarly with the issue() method of the StartRequest class.

For pseudo-conversational return, the setNextChannel() method of the TerminalPrincipalFacility class
can be used.

41

81© 2007 IBM Corporation

Getting data from the current Channel

1. Get the current Channel object
– Use the getCurrentChannel() method of the Task class

Task t = Task.getTask();

Channel custData = t.getCurrentChannel();

Container custRec = custData.getContainer("Customer_Record");

2. Get data from a Container
– Use the Container.get() method to read the data in a Container object into a byte array:

byte[] custInfo = custRec.get();

82© 2007 IBM Corporation

Getting data from the current Channel - Notes
An example of getting the current Channel and retrieving data from a Container within the Channel.

The getCurrentChannel() method of the Task class returns a Channel object representing the current
Channel if it exists, otherwise it will return null – which should normally be tested for.

To get a Container object from a Channel, use the Channel’s getContainer() method, specifying the
Container name.

Finally, to get the data from the Container, use the Container class’s get() method to read the data
into a byte array.

42

83© 2007 IBM Corporation

Browsing Containers in the current Channel

� Use a ContainerIterator object
Task t = Task.getTask();

ContainerIterator ci = t.containerIterator();

While (ci.hasNext()) {

Container custRec = ci.next();

// Process the container... }

84© 2007 IBM Corporation

Browsing Containers in the current Channel - Notes

An example of discovering what Containers are present in the current Channel using a
ContainerIterator object.

The containerIterator() method of the Task class returns a ContainerIterator object for the current
channel, if it exists, otherwise it returns null. The ContainerIterator class implements the
java.util.Iterator interface, so the Container objects in the Channel can be obtained using the
hasNext() and next() methods.

This technique works for any Channel, not just the current Channel. Simply use the containerIterator()
method of the Channel instead of the Task.

43

85© 2007 IBM Corporation

Java Programming Example

import com.ibm.cics.server.*;
public class Payroll {
...
// create the payroll_2004 channel
Task t = Task.getTask();
Channel payroll_2004 = t.createChannel("payroll-2004");

// create the employee container Container employee =
payroll_2004.createContainer("employee");

// put the employee name into the container
employee.put("John Doe");

// create the wage container Container wage =
payroll_2004.createContainer("wage");

// put the wage into the container
wage.put("2000");

86© 2007 IBM Corporation

Java Programming Example - Notes
A sample program using Channels and Containers written in Java.

Note the lack of try-catch error handling….

44

87© 2007 IBM Corporation

Java Programming Example…

// Link to the PAYROLL program, passing the payroll_2004 channel
Program p = new Program();
p.setName("PAYR");
p.link(payroll_2004);

// Get the status container which has been returned
Container status = payroll_2004.getContainer("status");

// Get the status information
byte[] payrollStatus = status.get(); ... }

88© 2007 IBM Corporation

Java Programming Example… - Notes
A sample program using Channels and Containers written in Java.

45

89© 2007 IBM Corporation

90© 2007 IBM Corporation

This slide left intentionally blank.

46

91© 2007 IBM Corporation

Containers and Business Transaction Services

� Containers have been used in BTS applications since CICS TS 1.3
� The container commands used in a channel context are similar to those in a BTS context

– GET, PUT

– MOVE, DELETE
� Programs that issue container commands can be used in both a channel and BTS context

– Some programming restrictions
– Avoid specific reference to BTS or Channel context on commands
– Cannot move containers between BTS and channels

92© 2007 IBM Corporation

Containers and Business Transaction Services - Notes

For those of you that have used CICS Business Transaction Services (BTS), available since CICS TS
1.3, you will be familiar with Containers. BTS implemented Containers as a way of passing
information between Activities and Processes. There is no limit to the size of a Container in BTS. In
fact, there have been white papers written to describe how a programmer might use BTS Containers
as a “Big COMMAREA”.

The Containers used in the Channel context are similar to those used in BTS and the commands
used to access the Container data are similar (e.g. GET, PUT, MOVE, DELETE). However, BTS
Containers are hardened to VSAM, but Channel Containers are non-recoverable.

It is possible to have the same server program invoked both a Channel and BTS context. To
accomplish this the server program must avoid the use of options that specifically identify the context.

The server program must “call” CICS to determine the context of a command. When a Container
command is executed CICS will first check to see if there is a current Channel. If there is, then the
context of the command will be Channel. If there is no current channel, CICS will the check to see if
this is part of a BTS Activity. If this is part of a BTS Activity, then the context will be BTS. If the
program has no Channel context and no BTS context than an INVREQ will be raised.

47

93© 2007 IBM Corporation

Containers and Business Transaction Services…

! create the employee container on the payroll interface

EXEC CICS PUT CONTAINER('employee') CHANNEL('payroll')

! create the wage container on the payroll interface

EXEC CICS PUT CONTAINER('wage') CHANNEL('payroll')

! invoke the payroll service passing the payroll interface

EXEC CICS LINK PROGRAM('PAYR') CHANNEL('payroll')

! examine the status returned on the payroll interface

EXEC CICS GET CONTAINER('status') CHANNEL('payroll')

Program “PAYR”

! get the employee passed into this program

EXEC CICS GET CONTAINER('employee') INTO(emp)

:

:

! return the status to the caller

EXEC CICS PUT CONTAINER('status') FROM('OK')

DEFINE ACTIVITY('payroll') PROGRAM(‘PAYACT')

! create the employee container on the payroll interface

EXEC CICS PUT CONTAINER('employee') ACTIVITY('payroll')

FROM('Fred Smith')

! create the wage container on the payroll interface

EXEC CICS PUT CONTAINER('wage') ACTIVITY('payroll') FROM('10

pounds')

! invoke the payroll service passing the payroll interface

EXEC CICS LINK ACTIVITY('payroll')

! examine the status returned on the payroll interface

EXEC CICS GET CONTAINER('status') ACTIVITY('payroll')

INTO(status)

Program “PAYACT”

EXEC CICS RETRIEVE EVENT(...

WHEN('....

EXEC CICS LINK PROGRAM(‘PAYR')

Container-aware programs
should be insensitive to the
Type of containers that are
presented to them

BTS wrapper
controls a more
sophisticated
application

Simple clients use
a channel to pass
containers to the
service

94© 2007 IBM Corporation

Containers and Business Transaction Services… - Notes

This is an example of how a program might be designed and written to use Containers in either a
Channel or a BTS context.

48

95© 2007 IBM Corporation

96© 2007 IBM Corporation

This slide left intentionally blank.

49

97© 2007 IBM Corporation

Global User Exits

� Global User Exits can create and pass channels and containers to programs they call
� Changes to Global User Exits

– Existence bits with channel name passed to exits

– XICEREQ, XICEREQC
– XPCREQ, XPCEREQC

– Channel name added to the PCUE parameter list

– XPCFTCH
– Exits cannot access contents of channels

98© 2007 IBM Corporation

Global User Exits - Notes
CICS Global User Exits (GLUEs) are eligible to create Channels and Containers for their own use.

The parameter list passed to a number of GLUEs has changed slightly with the addition of existence
bits to signify the presence of an application’s Channel name. The exit is not able to examine the
contents of the Channel. This restriction includes browsing the Channel to determine Container
names as well as issuing a GET CONTAINER commands to retrieve the application data.

50

99© 2007 IBM Corporation

Task Related User Exits

� Task Related User Exits can create and pass channels and containers to programs they
call

100© 2007 IBM Corporation

Task Related User Exits - Notes
CICS Task Related User Exits (TRUEs) are eligible to create Channels and Containers for their own
use.

The task related user exit is not able to examine the contents of the Channel. This restriction includes
browsing the Channel to determine container names as well as issuing a GET CONTAINER
command to retrieve the application data.

51

101© 2007 IBM Corporation

User Replaceable Modules
� User Replaceable Modules can create and pass channels and containers to programs they call

– URMs may not access contents of application channels

� Changes to User Replaceable Modules
– Dynamic and distributed routing copybook

– DYRCHANL (new field)
– Name of channel associated with the request

– DYRACMAA (existing field)
– Address of Commarea or DFHROUTE Container data

– DYRLEVEL (existing field)
– Level of CICS AOR required to successfully process a routed request

– X’03’ – requires a CICS TS 3.1 system
– DYRTYPE (existing request)

– Type of request for which the routing program is invoked
– 2 - Terminal related START with no data and no channel
– 3 - Terminal related START with data but no channel
– 4 – Program link with no channel
– 6 – Non-terminal related START with no channel
– 9 - Program link with a channel
– A -Terminal related START with a channel
– B - Non-terminal related START with a channel

– DYRVER (existing field)
– Version number of the dynamic routing program interface
– CICS TS V3.1 number is 10

102© 2007 IBM Corporation

User Replaceable Modules - Notes
CICS User Replaceable Modules (URMs) are eligible to create Channels and Containers for their own
use.

The COMMAREA (parameter list) passed to the Dynamic Routing Programs changes slightly with the
addition of the Channel name in use by the application and changes to the target AOR level and the
type of request.

If a Channel is being passed, routing data which would normally be put in the Commarea can instead
be put in a special Container with the name of DFHROUTE. If it exists, the Commarea pointer
DYRACMAA will point to the contents of DFHROUTE. This allows existing routing exits to work
unchanged as long as the layout of DFHROUTE is the same as the existing Commarea. Unlike
normal Containers, DFHROUTE has a maximum length of 4K.

52

103© 2007 IBM Corporation

Monitoring
� New monitoring group DFHCHNL

– PGTOTCCT
– Total number of CICS requests for channel containers for the task

– PGBRWCCT
– Number of browse requests for channel containers for the task

– PGGETCT
– Number if GET CONTAINER requests for the task

– PGPUTCT
– Number of PUT CONTAINER requests for the task

– PGMOVCT
– Number of MOVE CONTAINER requests for the task

– PGGETCDL
– Total length, in bytes, of all the GET CONTAINER data returned

– PGPUTCDL
– Total length, in bytes, of all the PUT CONTAINER data supplied

104© 2007 IBM Corporation

Monitoring - Notes
CICS adds new task performance monitoring information for channel and container usage.

Group DFHCHNL contains the following performance data:

321 (TYPE-A, 'PGTOTCCT', 4 BYTES)
The number of CICS requests for channel containers issued by the user task.

322 (TYPE-A, 'PGBRWCCT', 4 BYTES)
The number of CICS browse requests for channel containers issued by the user task.

323 (TYPE-A, 'PGGETCCT', 4 BYTES)
The number of GET CONTAINER requests for channel containers issued by the user task.

324 (TYPE-A, 'PGPUTCCT', 4 BYTES)
The number of PUT CONTAINER requests for channel containers issued by the user task.

325 (TYPE-A, 'PGMOVCCT', 4 BYTES)
The number of MOVE CONTAINER requests for channel containers issued by the user task.

326 (TYPE-A, 'PGGETCDL', 4 BYTES)
The total length, in bytes, of the data in the containers of all the GET CONTAINER CHANNEL commands issued by the
user task.

327 (TYPE-A, 'PGPUTCDL', 4 BYTES)
The total length, in bytes, of the data in the containers of all the PUT CONTAINER CHANNEL commands issued by the
user task.

53

105© 2007 IBM Corporation

Monitoring…
� Changed monitoring group DFHPROG

– PCDLCSDL
– Total length, in bytes, of the container data for a DPL

– PCDLCRDL
– Total length, in bytes, of the container data returned from a DPL

– PCLNKCCT
– Number of LINK requests issued with the channel option for this task

– PCXCLCCT
– Number of XCTL requests issued with the channel option for this task

– PCDPLCCT
– Number of DPL requests issued with the chanel option for this task

– PCRTNCCT
– Number of RETURN requests issued with the channel option for this task

– PCRTNCDL
– Total length, in bytes, of the container data RETURNed

106© 2007 IBM Corporation

Monitoring… - Notes
CICS adds new task performance monitoring information for channel and container usage.

The following new fields are added to group DFHPROG:

286 (TYPE-A, 'PCDLCSDL', 4 BYTES)
The total length, in bytes, of the data in the containers of all the distributed program link (DPL) requests issued with the
CHANNEL option by the user task.

287 (TYPE-A, 'PCDLCRDL', 4 BYTES)
The total length, in bytes, of the data in the containers of all DPL RETURN CHANNEL commands issued by the user
task.

306 (TYPE-A, 'PCLNKCCT', 4 BYTES)
Number of program LINK requests issued with the CHANNEL option by the user task.

307 (TYPE-A, 'PCXCLCCT', 4 BYTES)
Number of program XCTL requests issued with the CHANNEL option by the user task.

308 (TYPE-A, 'PCDPLCCT', 4 BYTES)
Number of program distributed program link (DPL) requests issued with the CHANNEL option by the user task
.

309 (TYPE-A, 'PCRTNCCT', 4 BYTES)
Number of pseudoconversational RETURN requests issued with the CHANNEL option by the user task.

310 (TYPE-A, 'PCRTNCDL', 4 BYTES)
The total length, in bytes, of the data in the containers of all the pseudoconversational RETURN CHANNEL commands
issued by the user task.

54

107© 2007 IBM Corporation

Monitoring…
� Changed monitoring group DFHTASK

– ICSTACCT
– Number of START requests issued with the channel option

– ICSTACDL
– Length of the data in the containers of all the locally-executed START CHANNEL

requests
– ICSTRCCT

– Number of interval control START CHANNEL requests to be executed on remote
systems

– ICSTRCDL
– Total length of the data in the containers of all the remotely executed START

CHANNEL requests.

108© 2007 IBM Corporation

Monitoring… - Notes
CICS adds new task performance monitoring information for Channel and Container usage.

The following new fields are added to group DFHTASK:

065 (TYPE-A, 'ICSTACCT', 4 BYTES)
Total number of local interval control START requests with the CHANNEL option issued by the user task.

345 (TYPE-A, 'ICSTACDL', 4 BYTES)
Total length, in bytes, of the data in the containers of all the locally-executed START CHANNEL requests
issued by the user task.

346 (TYPE-A, 'ICSTRCCT', 4 BYTES)
Total number of interval control START CHANNEL requests, to be executed on remote systems, issued by
the user task.

347 (TYPE-A, 'ICSTRCDL', 4 BYTES)
Total length, in bytes, of the data in the containers of all the remotely-executed START CHANNEL requests
issued by the user task.

55

109© 2007 IBM Corporation

Statistics

� New fields in ISC/IRC system entry
– Number of LINK requests with channels, for function shipping

– Number of bytes sent for function shipped channel requests

– Number of bytes received for function shipped channel requests

� New fields in Connections and Modenames
– Number of program control requests with channels function shipped for this connection

– Number of bytes sent on channel function shipped requests for this connection

– Number of bytes received on channel function shipped requests for this connection

110© 2007 IBM Corporation

Statistics - Notes

There are additions to "ISC/IRC system entry: Resource statistics" and to the "Connections and Modenames
Report", both of which are mapped by the DFHA14DS DSECT. The new fields relate to channel data flowing
across the connection.

A14EST_CHANNEL: is the number of program control LINK requests, with Channels, for function shipping.
This is a subset of the number in A14ESTPC.

A14EST_CHANNEL_SENT: is the number of bytes sent on function-shipped Channel requests. This is the
sum of the data in all the Containers.

A14EST_CHANNEL_RECEIVED: is the number of bytes received on function-shipped Channel requests.
This is the sum of the data in all the Containers.

56

111© 2007 IBM Corporation

Problem Determination
� Maintenance required on prior releases to add error messages

– APARs required
– CICS TS 1.3

– PQ93048
– CICS TS 2.2 and 2.3

– PQ92437
– CICS TXSeries 5.0

– IY63855
– CICS TXSeries 5.1

– IY63888
– CICS TS for VSE

– PQ83049
– CICS for Windows

– RQ95718
– CICS for AS/400 5.3.0

– SE15875
– An attempt to ship a channel to a previous release will result in a transaction abend

– AXF9
– AXTT
– AZTD

112© 2007 IBM Corporation

Problem Determination - Notes

Maintenance is required on prior releases of CICS to enable a clean error message and abend to be
produced if you attempt to use the Channel option on a command shipped to a pre-CICS TS 3.1 release. If
the appropriate compatibility PTF has not been applied, results are unpredictable (but won’t be pleasant).

57

113© 2007 IBM Corporation

CICS TS 3.2: New 64 bit Storage Manager

– Based on existing Storage Manager domain:
– New domain level CICS64 subpools

– Storage objects managed in 2GB increments

– Amount of storage based on MEMLIMIT
– Specifed in SMFPRMxx or JCL or overridden by IEFUSI
– No GDSASIZE SIT parameter as storage cannot be preallocated
– Size could not be guaranteed

– CICS TS 3.2 requires a MEMLIMIT which is at least as big as EDSALIM
– Recommended at least 2GB

– Provides services to copy data to and from storage above the bar

– Monitoring and statistics gathering similar to that done currently

– New messages in range DFHSM0601 upwards

114© 2007 IBM Corporation

CICS TS 3.2 : Containers in 64-bit storage

� Applications are unchanged. Containers are created and manipulated in 31-bit
working storage areas.

– Applications still address containers using 31 bit ptrs

� EXEC CICS PUT CONTAINER copies the container data into 64-bit storage.
– No 4K segmentation (Performance improvement over CICS TS 3.1)

– Data conversion performed in 64-bit storage if necessary (Performance improvement over 3.1)

� EXEC CICS GET CONTAINER copies the container data from 64-bit to 31-bit
storage for the application to access

– Hence size of each container still limited by ECDSA

58

115© 2007 IBM Corporation

Summary

� Channels and Containers allow more than 32k of data to be passed between CICS
applications

– Program to program
– LINK and XCTL

– Transaction to transaction
– START and RETURN

� Allow better structuring of application data
– Different containers to prevent overloaded copybooks

� Minimal application changes required for exploitation

� Allow for data conversion between different code pages

� CICS TS 3.2 moves containers above the bar (64 bit storage)
– Copied into 31 bit storage for application use

116© 2007 IBM Corporation

Summary - Notes

Channels and Containers provide a significant benefit to the application programmer. The programmer now
has the capability to exchange more than 32K of information between application programs and started tasks
without resorting to non-standard methods..

The Channel and Container construct allows the application suite to be enhanced by adding additional
Containers to the Channel without affecting programs that do not require the additional data.

The capability to pass multiple Containers within a single Channel offers the opportunity to simplify the
copybook layout making the program easier to understand and future changes simpler to implement.

59

Questions
and

Answers

