Lotus Symphony Developer’s Guide

<|lI!






Lotus Symphony Developer’s Guide

<|lI!



Note
FBefore using this information and the product it supports, read the information in[“Part 9. Appendixes” on page 141]

This edition applies to version release 1.3 of IBM Lotus Symphony and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2003, 2009.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

Part 1. About this publication 1
Chapter 1. Intended audience. .1
Chapter 2. Requirements . .1
Chapter 3. How to use this guide .1
Chapter 4. The Lotus Symphony toolkit .3
Part 2. Product overview . .7
Chapter 1. Introduction to Lotus Symphony . .7

Chapter 2. Introduction to Lotus Symphony in Lotus
Notes. . . .. L7
Chapter 3. Lotus Symphony and Lotus Notes
architecture . .7
3.1 Overview of the Lotus Symphony archltecture 7
3.2 Overview of Lotus Notes architecture . . 8
3.3 Overview of Eclipse. . . .
3.4 Overview of Lotus Expedltor 9
3.5 OpenOffice.org . . 10
Chapter 4. Lotus Symphony programmrng model 11
Chapter 5 Understanding the development
environment . . . . . . . . . . . . . .12

Part 3. Designing Lotus Symphony

applications . . . . .. . . .13
Chapter 1. Rich client apphcatrons . .. .13
Chapter 2. Lotus Symphony back-end service . . . 13
Chapter 3. Business logic. . . N
Chapter 4. Lotus Expeditor toolkit for Lotus
Symphony developers. . . R
4.1. Update from jclDesktop to ]2SE N
Chapter 5. Packaging and deployment . . . .15
5.1 Design and develop components with Lotus
Expeditor toolkit . . . . .15
5.2 Group components into features w1th the
Lotus Expeditor toolkit . . . .15
5.3 Package the features into the update 51te w1th
the Lotus Expeditor toolkit . . . . . . . .15
5.4 Distribute the update site . . . .15
5.5 Deploy the update site into Lotus Symphony 15
Chapter 6. Globalization . . . . 16
Chapter 7. Cross platform consrderatrons T (G

Chapter 8. Developing Applications for Lotus
Symphony and for Lotus Symphony in Lotus Notes. 16

Part 4. Extending Lotus Symphony . . 17
Chapter 1. Setting up the integrated development

environment . . . .17

Chapter 2. Customlzmg the Lotus Symphony user

interface . . ... ... 20
2.1 Adding a sample menu . . ... .20
2.2 Adding a control to the toolbar oL 22
2.3 Adding to the launcher button. . . . . .24
2.4 Adding a new view in the shelf view . . .25
2.5 Using the auto recognizer . . . . . . .27
2.6 Adding an item to the statusbar . . . . .32
2.7 Adding a preferences page . . . . . . .34

© Copyright IBM Corp. 2003, 2009

Chapter 3. Lotus Symphony Java APIs and

extension points. . . RN V4
3.1 Selection service . . R V4
3.2 R1chDocumentV1ewFactory ... ..o 40
3.3 RichDocumentView . . L. .42

Chapter 4. Using the UNO API to access a

document model . . . .44

Chapter 5. Packaging and deploymg your plug—lns 47
5.1 Prepare custom plug-in for deployment. . . 47
5.2 Create a feature and an Eclipse location
update site . . . . 48

5.3 Install a custom Lotus Symphony apphcatlon 52
5.4 Disable or enable custom Lotus Symphony

applications . . . . 54
5.5 Uninstall custom Lotus Symphony
application . . . . . . . . . . . . .56

Part 5. The Lotus Symphony Object

Model . . . . . . . 57

Chapter 1. Lotus Symphony Document Ob]ect

Model . . . . N V4
1.1 Overview . . .57
1.2 Handling Lotus Symphony documents .o 57

1.3 Working with Lotus Symphony document . . 59
Chapter 2. Lotus Symphony Spreadsheet Ob]ect

Model . . . . .. .66
2.1 Overview . . . .66
2.2 Handling Lotus Symphony spreadsheets .. 67

2.3 Working with Lotus Symphony spreadsheets 69
Chapter 3. Lotus Symphony Presentation object

model . . . . e e .. ... T4
3.1 Overview . . .. 74
3.2 Handling Lotus Symphony presentatrons . .75

Part 6. Lotus Expeditor and UNO

Programming. . . . . . 79
Chapter 1. Developing Lotus Exped1tor apphcatrons 79
Chapter 2. UNO Programming . . . . . .80
2.1 Getting the global service factory . . . . .80
2.2 Using the import and export functions . . . 82
2.3 Text documents. . . . . . . . . . .86
2.4 Spreadsheets. . . . . . . . . . . .91

Part 7. Sample plug-ins . . . . . . .95

Chapter 1. Hello World sample plug-in . . . . .96
1.1 Creating a new plug-in . . )
1.2 Adding the plug-in dependency ... . .9
1.3 Adding a side shelf element. . . . . . .96
1.4 Running the application . . . . . . . .99

Chapter 2. Editor View sample plug—m e (1)
2.1 Creating a plug-in . . . B (1)
2.2 Creating a new button . . . . . . . .102
2.3 Creating an editor view part . . . . . . 105

Chapter 3. Spreadsheet sample plug-in. . . . . 106
3.1 Introduction to the scenario . . . . . . 107

iii



3.2 Preview of the result.

3.3 Prepare your development environment .

3.4 Deploying the sample
3.5 Creating the sample .
3.6 Core code demonstration
3.7 Extending the sample
Chapter 4. Writer Sample plug-in.
4.1 Introduction to the scenario
4.2. Preview of the result
4.3 Deploying the sample
4.4 Using the sample .
4.5 Building the sample . .
Chapter 5. Presentation sample plug-in.
5.1 Introduction to the scenario
5.2 Preview of the result.

5.3 Prepare your development env1r0nment .

5.4 Deploying the sample
5.5 Creating the sample .
5.6 Core code demonstration .
5.7 Extending the sample
Chapter 6. C2A sample plug-in .
Chapter 7. Customizing a Sample plug in .
7.1 Introduction to the scenario
7.2 Preview of the result. .
7.3 Prepare development environment .
7.4 Deploying the sample

iV Lotus Symphony Developer’s Guide

. 107
. 108
. 108
. 109
. 112
. 113
. 113
. 114
. 114
. 115
. 115
. 117
. 120
. 121
. 121
. 121
. 121
. 121
. 123
. 126
. 126
. 127
. 127
. 128
. 128
. 128

7.5 Creating the sample .
7.6 Core code demonstration .
7.7 Extending the sample .
Chapter 8. Convertor Sample plug-in
8.1 Introduction to the scenario
8.2 Preview of the result. ..
8.3 Prepare development environment .
8.4 Deploying the sample
8.5 Design overview .
8.6 Creating the sample .
8.7 Core code demonstration
8.8 Extending the sample

Part 8. Troubleshooting and support
Chapter 1. Troubleshooting the development
environment.

Chapter 2. Troubleshootmg durmg apphcatlon
development

Chapter 3. Troubleshootmg durmg deployment .

Chapter 4. Contacting support.

Part 9. Appendixes .
Appendix . References
Appendix . Notices

. 128
. 132
. 134
. 134
. 135
. 135
. 135
. 135
. 135
. 136
. 137
. 138

139

. 139

. 139
. 139
. 140

. 14
S 141
S 141



Part 1. About this publication

Chapter 1. Intended audience

This guide is intended for Java ~ developers who have read the IBM® Lotus®
Symphony programming introduction in the Lotus Symphony forum and who
need a more in-depth understanding of the Lotus Symphony toolkit to create their
own applications. This developer’s guide is written to provide quick and easy
reference to the different components of the toolkit. For information about Lotus
Symphony programming, ¢o to the Web site at: Ihttp:/ /symphony.lotus.com/ |
lsoftware /lotus /symphony / developers.jspal

This guide does not include information about general Java programming. For
more information on the Java language and Java programming, go to the Web site
at: http://www,java.sun.com. This guide also does not cover the details of Lotus
Symphony API (application programming interface) that are covered in the
Javadoc within the toolkit.

Chapter 2. Requirements

To use the Lotus Symphony toolkit for Lotus Symphony, the Eclipse 3.4.0
development environment on Microsoft® Windows® XP or SUSE Linux® Enterprise
10 sp 1 is required.

To build samples, you must install Lotus Symphony. Samples from this toolkit can
be deployed into Lotus Symphony on all operating systems that are supported by
Lotus Symphony.

For detailed information about software requirements for the Lotus Symphony
toolkit, see the readme.txt file that is included with the toolkit. For the detailed
information about this toolkit, refer to Part 1 Chapter 4.

Chapter 3. How to use this guide

This document is composed of several major parts: product overview, designing
Lotus Symphony applications, extending IBM Lotus Symphony, IBM Lotus
Expeditor and UNO programming, example plug-ins, and troubleshooting and
support.

Part 1: : introduces the main component of the Lotus Symphony
developer’s toolkit and explains how to begin your Lotus Symphony development
journey.

Part 2: Product overview

1. |Chapter 1} introduces what Lotus Symphony is.
. [Chapter 2| introduces the embedded Lotus Symphony in the Lotus Notes.

2
3. [Chapter 3} introduces the Lotus Symphony architecture and the components.
4

. ‘Chapter 4} introduces the programming model for custom Lotus Symphony
development.

introduces the Lotus Symphony development environment.

Part 3: Designing Lotus Symphony applications

o

© Copyright IBM Corporation, 2009 1


http://symphony.lotus.com/software/lotus/symphony/developers.jspa
http://symphony.lotus.com/software/lotus/symphony/developers.jspa

Chapter 1} introduces the rich client application.
introduces Lotus Symphony back-end service.

introduces two ways to build office applications.
describes the Lotus Expeditor toolkit for Lotus Symphony

application developers.

describes Lotus Symphony application’s packaging and deployment.
[Chapter 6} describes globalization support in Lotus Symphony.

Ao bd -

‘Cha‘pter 7} describes multi-platform of Lotus Symphony application.

describes developing applications for Lotus Symphony and Lotus
Symphony in Lotus Notes.

© N oo

Part 4: Extending Lotus Symphony
1. describes step-by-step how to set up a custom Lotus Symphony

development environment.

2. [Chapter 2} introduces how to customize the user Lotus Symphony interface,
such as custom menus, toolbars, launcher items, side shelf, auto recognizer,
status bar and preferences.

3. introduces how to use the Lotus Symphony java APIs and
extensions in the Lotus Symphony toolkit.

4. introduces how to use UNO APIs to operate three kinds of
document models after getting them from Lotus Symphony APIs.

5. describes step-by-step how to deploy a custom Lotus Symphony

application and manage it.

Part 5: Lotus Symphony Object Model

* |Chapter 1} introduces how to use Lotus Symphony Document Object Model to
access text documents.

. introduces how to use Lotus Symphony Spreadsheet Object Model to
access spreadsheet documents.

. introduces how to use Lotus Symphony Presentation Object Model to

access presentation documents.

Part 6: Lotus Expeditor and UNO programming
1. introduces developing applications on the Lotus Expeditor platform.

2. introduces how to use UNO’s function in Lotus Symphony
development, such as get a global service factory, use the import/export
function, export documents to HTML file or JPEG image.

Part 7: Example plug-ins

1. describes step-by-step how to create a hello world plug-in on Lotus
Symphony. This sample adds a side shelf to say hello.

2. |Chapter 2 demonstrates how to create a simple editor in a view on Lotus
Symphony. This sample creates a sample editor in a view.

3. demonstrates how to operate a spreadsheet on a Lotus Symphony
side shelf. This sample shows how to open a spreadsheet by opening two demo
files, set and get a cell’s value and its address dynamically, how to create a
chart and how to create a DataPilot table.

4. |Chapter 4f demonstrate how to manipulate documents programmatically on a
Lotus Symphony side shelf. This sample creates a side shelf for operating a
writer document, such as creating sections, creating tables, and creating user
defined fields.

2  Lotus Symphony Developer’s Guide



o

demonstrates how to use presentations programmatically on a Lotus
Symphony side shelf. This sample creates a side shelf for operations in a
presentation, such as opening a presentation, inserting, removing, and copying
pages.

. demonstrates how to develop C2A applications based on Lotus
Symphony. Two keywords are predefined in the sample recognizer:
PropertyBroker and AutoRecognizer. Auto Recognizer engine will call the
detector to check if there are keywords found. When users click the context
menu for recognized tags, a message window is opened.

. shows a typical sample application on the Lotus Expeditor platform

on which Lotus Symphony development is based. This sample creates a custom
perspective and adds three views, an early startup when Lotus Symphony was
startup, a status bar, a custom help, a custom preference page, and a simple
globalization customizing sample.

(]

~

8. |Cha§ter 8 shows how to load documents implicitly and export to HTML or
JPEG by document type. This sample shows a button for loading documents
implicitly; a button for exporting and converting the loaded document into an
HTML file or JPEG image according its type, ODT and ODS into the HTML
file, or ODP into JPEG image array. The sample also shows a setter and getter
methods to show how to access metadata.

Part 8: Troubleshooting and support

1. [Chapter 1} describes problems and solutions about the development
environment setting up.

2. [Chapter 2} describes problems and solutions about Lotus Symphony hang
conditions when executing UNO call in Java code.

3. describes problems and solutions about applications that do not

work when plug-ins are deployed
4. describes how to get support from Lotus Symphony forum.

Part 9: Appendixes

The Appendixes of this developers guide.

Chapter 4. The Lotus Symphony toolkit

To access the toolkit, see |http://symphony.lotus.com/software/lotus/symphony /|
idevelopers.nsf/home| The Lotus Symphony download page contains links to all
the documentation and downloads. The Lotus Symphony download page contains
links to Lotus Symphony toolkit. You can extract it on your local system.

The toolkit has developer’s guides to help you learn more about Lotus Symphony.
This developer’s guide offer a detailed introduction of developing applications on
the product. Plug-ins and features which are introduced in the developer’s guides
can be found with source code in samples directory. Also, if you want to do further
development on the products, refer to the Java APIs which are supplied in javadoc
directory. To develop applications on Lotus Symphony, files in the update_site
directory help to configure the Eclipse environment.

4.1 Get started with the toolkit

To get a quick development experience using the Lotus Symphony toolkit, create a
“Hello world” plug-in. To create this plug-in, do the following steps:

Part 1. About this publication 3


http://symphony.lotus.com/software/lotus/symphony/developers.nsf/home
http://symphony.lotus.com/software/lotus/symphony/developers.nsf/home

1. Set up the development environment. Refer to Part 4 Chapter 1:|Setting up the
[integrated development environment]

2. Create a “Hello world” plug-in. Refer to Part 7 Chapter 1:|[Hello world sample|

To get more experience, the next best choice is the tutorial plug-in sample
DocumentWorkflow and the tutorial document in the Lotus Symphony toolkit.

4.2 Document

In Lotus Symphony toolkit, the following document and tutorial are supplied.
* Lotus Symphony Developer’s Guide.pdf
This guide.
* tutorial-DocumentWorkflow
A plug-in sample and a tutorial for beginning Lotus Symphony development.

4.3 Samples

There are two ways to deploy the plug-ins and features. One way is deploying
them to Lotus Symphony directly. Refer to Part 4 Chapter 5 for instructions on
how to deploy the package into Lotus Symphony. Another way is to import them
from the folder features and plugins into Eclipse, and then attaching them to
Lotus Symphony.

These samples show how to develop custom plug-ins and applications, how to use
the Lotus Symphony APIs and other support functions to add custom UI (user
interface) elements and create Lotus Symphony documents. These plug-ins run on
Lotus Symphony.

The list of sample plug-ins is as follows:

e com.ibm.productivity.tools.samples.helloworld

e com.ibm.productivity.tools.samples.DocumentWorkflow
* com.ibm.productivity.tools.samples.views

e com.ibm.productivity.tools.samples.spreadsheet

e com.ibm.productivity.tools.samples.writer

e com.ibm.productivity.tools.samples.customizing

e com.ibm.productivity.tools.samples.convertor

e com.ibm.productivity.tools.samples.presentation

e com.ibm.productivity.tools.samples.C2A

The features are used with an update site installation. When you are deploying
feature on Lotus Symphony, select
com.ibm.productivity.tools.samples.symphony.feature.

The plug-ins and features found in this guide can be run directly from the Lotus
Symphony or Lotus Notes 8.5 development environment. For instructions on
accessing and running the samples, refer to|Part 7. Sample Plug-ins|in this guide.

4.4 Java document

There are two parts of Javadoc:
* symphony consists of the API documentation for the Lotus Symphony APIs.

4 Lotus Symphony Developer’s Guide



¢ common consists of the API documentation for the Lotus Symphony Object
Model APIs.

4.5 Update site

The update_site folder contains an update site that can help you configure the
Eclipse development environment for Lotus Symphony automatically. For
instructions on how to install this update site, please refer to [Part 4 Chapter 1|

4.6 Related documentation
* Lotus Symphony Java Toolkit Javadoc Reference
* Lotus Symphony Java Toolkit readme.txt

Part 1. About this publication 5



6 Lotus Symphony Developer’s Guide



Part 2. Product overview

Chapter 1. Introduction to Lotus Symphony

Lotus Symphony is a set of applications for creating, editing, and sharing word
processing documents, spreadsheets, and presentations. Designed to handle the
majority of office tasks, the Lotus Symphony tools support the Open Document
Format (ODF), enabling organizations to access, use, and maintain their documents
over the long term without worrying about end-of-life uncertainties or ongoing
software licensing and royalty fees. By using tools that support ODEF, customers are
not locked into one particular vendor for their productivity tools. ODF helps
provide interoperability and flexibility.

With Lotus Symphony, users create, manage, edit, and import documents in ODFE.
However, Lotus Symphony tools can also import, edit, and save documents in
Microsoft® Office formats or export those documents to ODF for sharing with
ODEF-compliant applications and solutions.

Lotus Symphony offers more than a simple office application suite. Because it
leverages the Eclipse-based product IBM Lotus Expeditor and OpenOffice.org
technology, a variety of plug-ins that expand the functionality of Lotus Symphony
are available from the Lotus Symphony Web site, and third parties can build
additional plug-ins to extend Lotus Symphony.

Chapter 2. Introduction to Lotus Symphony in Lotus Notes

Lotus Symphony wraps Lotus Symphony applications as Eclipse components to
provide rich document editor service to Lotus Notes. It is a stand-alone office
productivity suite composed of IBM Lotus Symphony documents, IBM Lotus
Symphony spreadsheets, IBM Lotus Symphony presentations and many other
document editors.

In Lotus Notes, it also supplies composites application which enable users to
integrate Lotus Symphony with other services, like web services into one single
screen on Lotus Notes. At the same time, developers can use LotusScript®
programming to load Lotus Symphony documents in Lotus Notes. See introduction
of the Lotus Symphony Developer's Guide for Lotus Notes for more information.

Chapter 3. Lotus Symphony and Lotus Notes architecture

Lotus Symphony is derived from OpenOffice.org and it is built on the Eclipse
plug-in framework and the Lotus Expeditor rich client platform. In essence, Lotus
Symphony is a package of Eclipse plug-ins.

3.1 Overview of the Lotus Symphony architecture

Lotus Symphony wraps the OpenOffice.org application as Eclipse components to
provide office document applications.

This figure shows a high-level outline of the Eclipse architecture as Lotus
Symphony uses it.

© Copyright IBM Corp. 2003, 2009 7



StarBasic
binding

Eclipse is a general-purpose and open source framework on which you can
develop applications. A plug-in is the smallest unit of Eclipse platform function that
can be developed and delivered separately. Statically, Lotus Symphony is a set of
Eclipse plug-ins that re-packages OpenOffice.org; in runtime, Lotus Symphony
re-parents OpenOffice.org window into an Eclipse SWT (Standard Widget Toolkit)
control.

You can extend Lotus Symphony by creating plug-ins that extend the Lotus
Symphony plug-ins. Your plug-in can access any of the services that are exposed
by Lotus Symphony or its underlying platforms, for example, the Lotus Expeditor
platform or the Eclipse platform.

3.2 Overview of Lotus Notes architecture

For details about Lotus Notes architecture, refer to the Lotus Symphony Developer’s
Guide for Notes in Lotus Symphony toolkit.

3.3 Overview of Eclipse

Eclipse is an integrated development environment. Eclipse offers the Rich Client
Platform (RCP), which is required if you want to use the Eclipse graphic toolkit to
build stand-alone applications. For more information about Eclipse and RCP, refer
to the following resources:

http:/ /www.eclipse.org

http:/ /wiki.eclipse.org/index.php /RCP_FAQ

The following table lists and describes some of the Eclipse platform components
that Lotus Symphony uses.

Component Description

Platform runtime | Provides the foundational support for plug-ins and for the plug-in
registry, a mechanism for declaring extension points, and for extending
objects dynamically. The Eclipse runtime uses the standard OSGi
framework to define how plug-ins are packaged.

8 Lotus Symphony Developer’s Guide



Component

Description

Help

Provides a plug-in with HTML-based online help and search
capabilities. Help content is added via user’s plug-ins that are
recognized at runtime.

JFace

Provides the user interface (UI) framework, working in conjunction
with the Standard Widget Toolkit (SWT), for handling many common
UI programming tasks.

SWT

Provides access to the Ul facilities of the operating systems on which it
is implemented. SWT-built applications leverage the UI of the host
system more than do other Java toolkits, such as Swing.

Preferences

An Eclipse-managed collection of indexed windows dialog boxes.
Plug-ins can add new Preferences pages using an extension.

Workbench

Provides a highly scalable, open-ended, and multi-window
environment for managing views, editors, perspectives (task-oriented
layouts), actions, wizards, preference pages, and more.

OSGi

Provides Eclipse with the value of OSGi, which includes life cycle
management. Lotus Symphony is based on Eclipse 3.2, which is based
on OSGi R4.

3.4 Overview of Lotus Expeditor

IBM Lotus Expeditor is a server-managed client solution that extends back-end
services to new users who use a range of client devices spanning desktops,
laptops, mobile devices, and specialized devices.

There are several Lotus Expeditor solutions, including Lotus Expeditor for
Desktop, Lotus Expeditor for Devices, Lotus Expeditor Toolkit, and Lotus
Expeditor Server. The combination of the Lotus Expeditor clients and the Lotus
Expeditor server provide the end-to-end services necessary to deliver and manage
applications. Lotus Expeditor Toolkit provides a complete, integrated set of tools
that allow you to develop, debug, test, package, and deploy client applications.
Lotus Symphony is based on Lotus Expeditor for Desktop. In the remaining parts
of this document, when Lotus Expeditor is mentioned, it is intended to mean Lotus
Expeditor for Desktop.

Lotus Expeditor is an integrated client platform for desktops and laptops that
extends the J2EE programming model to clients. The client provides a rich client
platform that can operate disconnected from the enterprise such that enterprise
applications can operate when the client is online or offline.

The following table lists some of the Lotus Expeditor services that Lotus

Symphony uses.

Service Description

Application Enables users to directly install applications and components from
manager standard Eclipse update sites onto managed clients.

Embedded Provides a configurable embedded Web browser.

browser

Spell check

Is used to check misspelled words in document. It is based on the text
analyze framework.

Personalities

Defines the framework that the platform uses to determine what
perspectives or windows, menus, actions, action bar items, and status
line controls are displayed when the application starts.

Part 2. Product overview 9



Service Description

Application Is represented in the user interface as a button with a drop-down menu
launcher that contains the list of applications available to the user.

Eclipse UI Common Ul extensions provided by the Eclipse platform.

extensions

3.4.1 DEE (Desktop Execute Environment) SDK VM

The default Java™ Runtime Environment (JRE) of Lotus® Expeditor is the IBM J9
VM with the desktop Java EE class libraries, an IBM-optimized subset of Java 5
that offers a smaller footprint and faster class loading than standard Java Runtime
Environments. The desktop Java EE runtime environment also leverages a
technology known as shared classes to improve runtime performance and reduce
memory footprint. Shared classes are cached dynamically during platform
operation. However, the default configuration caches the shared classes without
debug information. This can inhibit the ability to set breakpoints. More information
on shared classes is available below. The reduction in disk footprint that the
desktop Java EE class libraries and the ]9 VM provide is quite substantial. A
standard Java 5 JRE takes approximately 65 MB of space on disk, while the
desktop Java EE runtime environment requires only approximately 17 MB of space
for installation. When creating lightweight Lotus Expeditor-based client
applications, a difference of over 45 MB can makes a difference in client download
and deployment time. To achieve this reduction in footprint, several components of
the Java 5 class libraries are not included in desktop Java EE. Most specifically,
AWT and SWING. The preferred windowing API for Lotus Expeditor is SWT. SWT
is provided as part of the core Lotus Expeditor platform. The list of classes that
have been removed from desktop Java EE is not limited to AWT and SWING. The
J9 VM used in desktop Java EE is the same code base as the IBM® Java SE 6 VM. It
includes the same JIT (Testarossa), and the same garbage collector with a
customizable policy and the same shared classes support.

The desktop Java EE VM that is included as part of most client runtime
environments has been modified to improved the performance and footprint. As a
side effect, much of the information that is needed by the Java compiler and the
Eclipse IDE is removed from the VM. Therefore, it is necessary to incude the SDK
version of the DEE VM in the client environment. The Lotus Expeditor toolkit is
able to load and use the SDK VM from the client platform. The standard and the
SDK version of the VM is available as part of the Expeditor product build. The
SDK version of the DEE VM is packaged in the com.ibm.rcp.dee.sdk.[platform].x86
plug-in.

3.4.2 The profile of Lotus Expeditor used by Lotus Symphony

Lotus Symphony uses a minimal profile of the Lotus Expeditor platform. Many
components are removed from the Lotus Expeditor platform, such as Web
Application Perspective, Portlet Viewer, WSRP, and SSO. The Lotus Symphony
profiled Lotus Expeditor platform maintains a minimal set of components required
by the rich client application model.

3.5 OpenOffice.org

OpenOffice.org is the open source project through which Sun Microsystems has
released the technology for the StarOffice Productivity Suite. All of the source code
is available under the GNU Lesser General Public License (LGPL).

10 Lotus Symphony Developer’s Guide



OpenOffice.org is based on Universal Network Objects (UNO) technology and is
the base component technology for OpenOffice.org. You can use and write
components that interact across languages, component technologies, computer
platforms, and networks. In Lotus Symphony, UNO is available on Linux, and
Windows for Java, C++ and OpenOffice.org Basic. UNO is available through the
component technology Microsoft COM for many other languages. UNO is used to
access Lotus Symphony back-end services, using its application programming
interface (API). The OpenOffice.org API is the comprehensive specification that
describes the programmable features of OpenOffice.org.

Chapter 4. Lotus Symphony programming model

Lotus Symphony is the combination of Eclipse-based Lotus Expeditor and
OpenOffice.org. Both of these products provide rich APIs for application
integration. In Lotus Symphony, the OpenOffice.org window is re-parented to a
SWT control in Eclipse. Most of the user interface items that you can add are
provided through Eclipse extension points, such as the menu, toolbar, status bar,
and preference page. With this approach, Lotus Symphony provides flexibility for
user interface integration with other Eclipse and Lotus Expeditor-based
applications.

The programming model of Lotus Symphony can be described as follows:

* User interface integration is based on Eclipse and Lotus Expeditor extension
points and a plug-in framework.

* The document content level API is based on the Lotus Symphony Object Model
APIs and OpenOffice.org UNO capability.

* The Lotus Symphony API focuses on the integration between OpenOffice.org
and Eclipse and Lotus Expeditor.

¢ The add-in mechanism is based on Lotus Expeditor application manager.

In this way, Lotus Symphony inherits the user interface flexibility of Eclipse and
Lotus Expeditor and the rich functionality of UNO APIs.

The following screen capture shows the user interface items.

Part 2. Product overview 11



it/ Hew Document — Document — IBN Lotus Notes [ ”
File Edit View Create Tools{Fluginz) Table Layout Hindow Help Menu
%) New Document % Launcher
h B & Eﬂ ®-Slee (0 Toolbar
| Elcreate - | [] & afi
[ptomro ] b § B S E-d2e 02 = Side Shelf
g 1 4 [2)/|: Text Properties = x| k
=
2 A Font
Font: Size Auto
S omebody (@ibm. com conly) | |Times Hew Romalw[|12 [v] Recognizer
Hide Auto Recognize Mark or
= Auto Kecogmizer Preterences |:”
= Background color:
© @l Effects
I
Underlining: Color:
|None M| |D2fault |
| Strikethrough: Uptions [v
r ; :
I | ® [ a1 rdet Properties | Status
| I ] h, Bar
| |Ln 3 Col 21 |Default |100% |THSERT lﬁﬁm

Chapter 5 Understanding the development environment

The development environment consists of the target platform and the integrated
development environment. The following figure describes the overall structure of

development environment.

Lotus Symphony Development
environment
Target
Eclipse IDE |
JISE WM |
Run/Debug

Lotus Symphony run-time

Ecllpse RCP
DEE Run-time version JYi

Lotus Symphony run-time at development phase

Eclipse RCP |

The target platform is the Lotus Symphony runtime, designed for users, with a
development enablement feature into the runtime. The development enablement
feature contains a desktop execute environment SDK version JVM and Javadoc

plug-ins.

The integrated development environment (IDE)is based on the Eclipse IDE. The
Lotus Expeditor toolkit provides the documentation and examples for developers.
The Lotus Symphony toolkit provides a toolkit configuration feature to configure

the development environment.

12  Lotus Symphony Developer’s Guide



Part 3. Designing Lotus Symphony applications

This part provides information about planning and designing issues before you can
develop Lotus Symphony applications. It describes the recommended approach
using the design perspective in the following chapters. For more details about how
to develop Lotus Symphony application, refer to Part 4.

Chapter 1. Rich client applications

If you want to build a graphical user interface application, the rich client
programming model is a good approach. The pattern is supported through the rich
client application model from Lotus Expeditor. Using Eclipse and Lotus Expeditor,
an application can be an aggregation of display components, including menus,
toolbars, views, status bars, and side shelves.

You can extend the Lotus Symphony editor by building plug-ins. Most of the user
interface components can be added through extension points. For details about
how to use the extension points, refer to Part 4.

You can open, save, close documents and access the document content using the
Lotus Symphony Object Model APIs. Lotus Symphony Object Model provides
entire APIs to control documents. For more information, refer to Part 5.

If you want to access the document model of a loaded document, use the UNO
APL There is typical usage provided in Part 6 Chapter 2. You can also find
samples in the Lotus Symphony toolkit.

Chapter 2. Lotus Symphony back-end service

If you want to build an application without a graphical user interface, you can use
the UNO API directly. For example, converting file formats between ODF, PDF,
HTML, or MS office format, manipulating documents invisibly, or printing
document from file storage without user interaction.

UNO provides language bindings, including Java, C/C++, OLE automation and
OpenOftfice.org basic. You can also regard the Lotus Symphony editor as a client of
the Lotus Symphony back-end service. Lotus Symphony incorporates the display
window of OpenOffice.org into a SWT control in the Eclipse environment, so that
the user interface of Lotus Symphony is re-designed and re-organized completely.
It is also possible for you to re-use the Lotus Symphony back-end service.

The major drawback of UNO is complexity. There is documentation on the Web;
you can find the OpenOffice.org software development kit and OpenOffice forum
for knowledge and support. The learning curve is still considerable.Use the public
APIs provided by Lotus Symphony first. You can get suggestions and help from
the Lotus Symphony forum about how to continue if the public APIs are not
enough.

© Copyright IBM Corp. 2003, 2009 13



Chapter 3. Business logic

When you want to build an office application, you must decide how to distribute
and manage the business logic. You can have two choices here:

* Creating a template which contains the business logic represented by script code
* Creating a separated Eclipse plug-in which contains the business logic

With the first approach, it is easy to create light-weight solutions. You can use
OpenOiffice.org Basic in Lotus Symphony documents, which is dependent on UNO
technology. However, it is hard to manage or extend the scope of business logic.

For enterprise solutions, use the second approach. An Eclipse plug-in is easy to
deploy or upgrade in Lotus Symphony. It is also easy to extend the functionality of
business logic, for example, accessing data from server. One of the most important
concepts of Lotus Expeditor is that you can create a managed client application. It
is also applied to your business logic.

Chapter 4. Lotus Expeditor toolkit for Lotus Symphony developers

Lotus Expeditor toolkit is the starting point for Lotus Symphony developers and it
provides a complete, integrated set of tools that allows you to develop, debug, test,
package, and deploy client applications.

There are several programming models defined by the Lotus Expeditor toolkit. For
example, the Web application model, the rich client application model, the portal
application model and the composite application model. From a developer’s
perspective, only the rich client application model is provided in Lotus Symphony.
For more information, refer to Lotus Expeditor documentation.

In the following sections, are typical issues related to using the Lotus Expeditor
toolkit from a design perspective.

4.1. Update from jclDesktop to J2SE

The default Java Runtime Environment (JRE) of Lotus Expeditor is IBM ]9 VM
with the jclDesktop class libraries, an IBM-optimized subset of Java 5 that offers a
smaller footprint and faster class loading than standard JREs. It is also the default
virtual machine used by Lotus Expeditor Client for Desktop.

If you need more functions, such as Swing, or AWT programming libraries that are
provided by the J2SE 5.0 virtual machine, it is possible to upgrade the default VM

used by the Lotus Symphony runtime. You can upgrade the VM to J2SE according

to the following guide:

http:/ /publib.boulder.ibm.com/infocenter/ledoc/v6rll/index.jsp?topic=/ |
com.ibm.rcp.tools.doc.admin/JVMfeatures.html]|

or from the Lotus Expeditor’s local help content on Eclipse after you finished
setting up the Lotus Symphony development environment (refer to Part 4 Chapter
1) by following;:

Start up Eclipse > Help > Help Contents > Assembling and Deploying Lotus

Expeditor Applications > Installing and launching the Lotus Expeditor Client
>Changing the virtual machine.

14 Lotus Symphony Developer’s Guide


http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp?topic=/com.ibm.rcp.tools.doc.admin/JVMfeatures.html
http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp?topic=/com.ibm.rcp.tools.doc.admin/JVMfeatures.html

Chapter 5. Packaging and deployment

Although both UNO and Lotus Expeditor provide packaging and deployment
options, the primary approach to package and deploy third-party components is
based on the update management functionality of Lotus Expeditor.

5.1 Design and develop components with Lotus Expeditor
toolkit

A Lotus Expeditor or Lotus Symphony component contains codes for certain
functionality. Additional components can be constructed in a specific structure.

A component can be represented as a plug-in or a bundle. A plug-in is a JAR file
with a plug-in manifest file named plugin.xml. The plug-in manifest describes the
plug-in to the framework and enables a plug-in to consume and provide
extensions from and to other plug-ins. A bundle is a JAR file with a bundle
manifest file named MANIFEST.MF. The bundle manifest describes the bundle to the
service framework and enables a bundle to consume and provide packages and
services from/to other bundles.

If a component can’t provide a complete implementation, fragments can be used to
complete or extend a component. For example, to support globalization, the
primary component can provide an implementation that contains translatable text
in a default language. Fragments can also be used to provide translations for
additional languages.

5.2 Group components into features with the Lotus Expeditor
toolkit

Lotus Symphony can be regarded as a set of plug-ins and fragments on disk.
Components are grouped together into features. A feature is the smallest unit of
separately downloadable and installable functionality. A feature is used to organize
the structure of the entire product. It contains important information for the
Update Manager to identify the dependency between features, and the version of
features.

For more details about how to create features step-by-step, refer to Part 4 Chapter
5.

5.3 Package the features into the update site with the Lotus
Expeditor toolkit

To make the plug-ins deployable, you are also required to generate an update site.
An update site is a set of features with a site.xml file. The site.xml file defines
root features in the update site. An update site is the smallest unit that can be
recognized by the Update Manager.

For more details about how to create an update site, refer to Part 4 Chapter 5.

5.4 Distribute the update site

You can copy the update site into each client for deployment or you can put the
update site on a server, and provide the server URL for client deployment.

5.5 Deploy the update site into Lotus Symphony

Deploy update site manually via the user interface from Lotus Symphony.

Part 3. Designing Lotus Symphony applications 15



For more information about how to deploy the update site, refer to Part 4 Chapter
5.

Chapter 6. Globalization

Globalization support in Lotus Symphony is based on International Components
for Unicode (ICU) technology provided in Lotus Expeditor platform. ICU4J is a set
of Java classes that extend the capabilities provided by the J2SE class libraries in
the areas of Unicode and internationalization support. The ICU4J classes enable
you to:

* Support multiple locales

e Support bidirectional text layouts

* Create translatable plug-ins

Chapter 7. Cross platform considerations

In the development phase, use Windows XP or SUSE Linux Enterprise 10 as the
primary development environment. The component developed can be deployed
into all platforms supported by Lotus Symphony. The Java APIs provided by Lotus
Symphony or Lotus Expeditor are platform independent. UNO APIs are also
designed for cross platform applications. Some functions can be platform
dependent, for example, OLE Automation bridge of UNO is only available on
Windows operating system.

Chapter 8. Developing Applications for Lotus Symphony and for Lotus
Symphony in Lotus Notes

Lotus Symphony is available as a standalone editor product, it is also provided in
Lotus Notes 8 client version. Either it is or it is not. The same code base is used in
the two products. You can design applications that work for both products. There
are still some issues that you should be aware of in the design phase:

* Lotus Symphony is based on a profiled Lotus Expeditor, which is small and fast,
while Lotus Notes is based on a different set of functionality of Lotus Expeditor.

* The release cycle for Lotus Symphony and Lotus Notes is different. There might
be slight differences, in each release of Lotus Notes; it will use some levels of
Lotus Symphony code.

* Some functionality is only available in Lotus Notes. For example, support of
LotusScript® and the composite application editor.

16 Lotus Symphony Developer’s Guide



Part 4. Extending Lotus Symphony

Chapter 1. Setting up the integrated development environment

The integrated development environment (IDE) is based on Eclipse 3.4 and Lotus
Symphony. All the steps in this procedure are for a Windows operating system, but
the process on the Linux operating system is similar. If you have any questions
during the set up process, refer to Part 8 Troubleshooting and support or get help
from the Lotus Symphony forum: [Lotus Symphony forum}

1. Install Lotus Symphony and the Lotus Symphony toolkit.

a.

Download Lotus Symphony from the [Lotus Symphony Web site|and Lotus

Symphony toolkit from the Iglownload pagel

Install Lotus Symphony to a local disk, for example, D:\IBM\ Lotus\
Symphony as <Symphony installation home>.

Unzip Lotus Symphony toolkit to a local disk. For details about the toolkit,
refer to Part 1 Chapter 4.

2. Enhance Lotus Symphony with the Lotus Symphony toolkit for development.

a.

Start Lotus Symphony. From the Lotus Symphony main menu, click File >
Application > Install. On the Install/Update window, select Search for new
features to install, and then click Next.

Select Add Zip/Jar Location, and select the
development_enablement_updatesite.zip update site from the Lotus
Symphony Toolkit’s update_sites folder, and then click Open > OK >
Finish.

Select Symphony Development Feature, and click Next. If you agree with
the license, select to accept the license and click Next > Finish.

Wait for the installation to finish and select Restart Now. After it restart,
close Lotus Symphony.

3. Install Eclipse SDK 3.4 and the Lotus Symphony toolkit configuration with the
Lotus Expeditor toolkit (update package).

a.

© Copyright IBM Corp. 2003, 2009

Download Eclipse 3.4 SDK from |http:/ /www.eclipse.org/downloads/| and
extract it to a local disk.

Note: For Eclipse 3.4 SDK reference platforms, refer to Eclipse embedded
readme or [readme_eclipse_3.4|

Download the |Lotus Expeditor toolkit| (use the update package of 6.2.0
edition).

Note: For Lotus Expeditor Toolkit update site installation, JDK version
5.0(1.5) is required.

Start the Eclipse IDE. From the main menu, click Help > Software Updates.
On the Software Update and Add-ons window, click the Available
Software tab. Click Add Site > Archive, select the Lotus Expeditor Toolkit
update site from Lotus Expeditor Toolkit (for example, pvc.toolkit.620-
20081017-1037-site.zip), and then click OK.

Click Add Site > Archive again, and select the
toolkit_configuration_updatesite.zip update site from the Lotus Symphony
toolkit’s update_sites folder, and then click OK.

17


http://symphony.lotus.com/software/lotus/symphony/developers.jspa
http://symphony.lotus.com/software/lotus/symphony/home.jspa
http://symphony.lotus.com/software/lotus/symphony/developers.nsf/home
http://www.eclipse.org/downloads/
http://www.eclipse.org/eclipse/development/readme_eclipse_3.4.html
http://www.ibm.com/developerworks/lotus/downloads/toolkits.html

e. Select all the features available except Lotus Expeditor Device Toolkit
feature as showing in following figure, and then click Install. After the
installation is finished, click Next.

EEX)|

| Installed Software | Available Software
|ty‘pe filter text | - _lnstall. o

Hame Versiol

Froperties

000 Lotus Expeditor Device Toolkit
[#]000 Lotus Expeditor Toolkit -
53] ﬂl]l] Uncategorized Add Site. .

Manage Sites. ..

= 000 Uncategorized

;’:[:n Symphony Configuration Feature 1:5:0
Dﬁ Ganymede Update Site RKefresh
Dd The Eclip=ze Froject Updates
R T——— 7]

[¥]5how only the latest versions of available software

I:‘Inclgde items that have already been installed

Open the ‘Antomatic Updates’ preference page to zet up an automatic update zchedule

@ Cloze |

Note: When selecting Lotus Expeditor Toolkit feature on Red Hat or SuSE
operating systems, it might throw a Nul1PointerException. This exception
does not cause problems during installation.

f. In the Feature License window, read the licensing information for each
feature that you are installing, and if you agree with the license, select to
accept the license and click Next.

g. Click Finish to begin the installation. When installation completes, you are
prompted to restart your IDE for changes to take effect. Click Yes to
continue.

Note: Clicking Apply Changes does not correct configure the environment.
4. Configure Lotus Symphony development support.

After restarting the IDE, the Lotus Expeditor Toolkit Configuration window
opens. To configure the toolkit, follow these steps:

a. Select Lotus Symphony in the Test Environment list.

b. Use the Browse button to select the Eclipse directory of the Lotus
Symphony installation location, for example, <Symphony installation
home>\framework\rcp\eclipse.

18 Lotus Symphony Developer’s Guide



= 5 o] A 5 F
& Lotus Expeditor Toolkit Configuration |§|

Test Environment Configuration

Configure test enviranment

Tesk Environment: L::utu-_: Symphony ,f_{ ||

Target Location: |C:'|,Program FilestIBM\Lotust Symphony' framewarklrepleclipse w | [Browse. i J

W Marne; |deskt0|:uEE-6.5 w |

Campiler Compliance Level: |1.5 \'{|

Test Environment Configuration Preferences

) Display each time a workspace opens

(%) Display the first time a workspace opens

) Mever display

Restare Defaulks
@ L (874 ] l Cancel J

c. Click OK.
5. Create your own project code in this Eclipse environment.
6. Launch Lotus Symphony.

a. Select Run > Run Configuration or Run > Debug Configuration from
Eclipse main menu.

b. Select the Client Services launch type and click the new icon or double
click Client Services, named the new configuration as Symphony.

c. Click Run or Debug to start Lotus Symphony.

EI'EI

File Edit V¥iew Create Tools Table Layout Window Help

2 H-®-3 |'*i"ar € (% 0 @ [ BlCreate - | 1] % || |Default Text | i
éTe}ﬂ Properties =
= A Font
Font:

Style: Font color:

" © @l Effects
,.. Underlining: Color:
!None @“DEfault |
Ln Strikethrough: [Options
!None @i !Sentenct |
U'-‘ Emphazis mark: Fosition:
= I}Tcnne i)\bove te |
; || B _— ¥
= =3
] |t s

- ||Pagel lfll | |Ln1Coll’a@|Default|—

Part 4. Extending Lotus Symphony 19



The build of Lotus Symphony that was tested with the toolkit does not
resolve all plug-ins correctly. Therefore, you might see an error report
window named Plug-in Validation. If this error occurs, click OK to
continue the launch process. You can disable this checking operation by
clearing the mark next to Validate plug-in dependencies at the bottom of
the plug-ins tab of the launcher.

Note: Use Java compiler 5.0 as for the compiler plug-ins. Java compiler 1.4
might not work correctly.

Note: On Red Hat systems, sometimes a java.lang.UnsatisfiedLinkError
exception is thrown when launching the Lotus Symphony. Try to fix it with
the command similar to the following (versionnumber means the version
number, you need change it according the version you installed) :

1dconfig /opt/ibm/Totus/Symphony/framework/shared/eclipse/plugins/
com.ibm.productivity.tools.base.system.1linux_versionnumber

Chapter 2. Customizing the Lotus Symphony user interface

20

The following examples are all you need to build a plug-in project, and then edit
the plugin.xml file directly by the code provided below. If you are not familiar
with how to build a plug-in project, go to Part 7 Sample plug-ins to see the details.

2.1 Adding a sample menu

Lotus Symphony allows you to add new menus to its main menu. The addition is
achieved through the Eclipse extension point: org.eclipse.ui.actionSets.

For convenience, menus from third parties should be added under the menu
Plug-ins. If another third party has defined the menu “Plug-ins”, you can use it;
otherwise, you should define such a menu and use it.

To add a sample menu to the Plug-ins menu, perform the following steps:
1. Extend org.eclipse.ui.actionSets extension point in the plugin.xml file:

<extension point="org.eclipse.ui.actionSets">
<actionSet id="com.ibm.lotus.symphony.example.ui.actionSet"
label="example action set"
visible="true">
<menu
id="com.ibm.rcp.ui.pluginsmenu"
label="&amp;PTug-ins"
path="additions">
<separator name="additions"/>
</menu>
<action id="com.ibm.Totus.symphony.example.ui.exampleAction"
menubarPath="com.ibm.rcp.ui.pluginsmenu/additions"
label="Sample Menu"
tooltip="Sample Menu Tooltip"
class="com.ibm.lotus.symphony.example.ui.ExampleAction"
enablesFor="1">
</action>
</actionSet>
</extension>

The label property of the action element specifies the name of the menu item or
toolbar button label. The menubarPath and toolbarPath properties specify their
location in the menu bar and toolbar.

Lotus Symphony Developer’s Guide



2. Implement the action class:

import org.eclipse.jface.action.IAction;

import org.eclipse.jface.dialogs.MessageDialog;
import org.eclipse.jface.viewers.ISelection;

import org.eclipse.ui.IWorkbenchWindow;

import org.eclipse.ui.IWorkbenchWindowActionDelegate;

public class ExampleAction implements IWorkbenchWindowActionDelegate {
private IWorkbenchWindow window;

/*
% (non-Javadoc)
*

* @see org.eclipse.ui.IWorkbenchWindowActionDelegate#dispose()
*/

public void dispose() {

1

% (non-Javadoc)

* @see org.eclipse.ui.IWorkbenchWindowActionDelegate#init(org.eclipse.ui.IWorkben
* chWindow)

*/

public void init(IWorkbenchWindow window) {

this.window = window;

}

* (non-Javadoc)

* @see org.eclipse.ui.IActionDelegate#selectionChanged(org.eclipse.jface.action.I
* Action, org.eclipse.jface.viewers.ISelection)

*/

public void selectionChanged(IAction action, ISelection selection) {

}
/*

* (non-Javadoc)
*
* @see org.eclipse.ui.IActionDelegate#run(org.eclipse.jface.action.IAction)
*/
public void run(final IAction action) {
MessageDialog.openInformation(window.getShel1(), "Information",
"Menu pressed");
}

}

The action class must implement IWorkbenchWindowActionDelegate, or
IWorkbenchWindowPulldownDelegate, for the action to be shown as a pull-down tool
item in the toolbar.

Package

The extension point is provided by the Eclipse Rich Client Platform.

See Also

http:/ /publib.boulder.ibm.com/infocenter/wsphelp /index.jsp?topic=/|
org.eclipse.platform.doc.isv/reference / extension-points/|
ore_eclipse_ui_actionSets.html|

Part 4. Extending Lotus Symphony 21


http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_ui_actionSets.html
http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_ui_actionSets.html
http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_ui_actionSets.html

Or, from the local help contents on Eclipse by following: Start up Eclipse > Help
menu> Help Centents > Platform Plug-in Developer Guide > Reference >
Extension Points Rference > org.eclipse.ui.actionSets.

Example

The code above results in the following display of the menu:

File Edit View

Tools Table Layout Window Help

18 b @ (| ECreate - | 1] 85% [~

2.2 Adding a control to the toolbar

Lotus Symphony allows you to add to the main toolbar. You should add your own
toolbar group. The addition is achieved through Lotus Expeditor extension point:
com.ibm.rcp.ui.controlSets.

To add items to the Lotus Symphony main toolbar, perform the following steps:
1. Make sure that your plug-in have the following dependencies:

e com.ibm.productivity.tools.core

e com.ibm.productivity.tools.ui.toolbar

e com.ibm.rcp.jfaceex

2. Extend the com.ibm.rcp.ui.controlSets extension point in plugin.xml file:

<extension
point="com.ibm.rcp.ui.controlSets">
<controlSet

id="com.ibm.productivity.tools.sample.documentworkflow.controlset"
label="Sample Control Set"
preferredWidth="20%"
visible="false">
<toolBar
id="com.ibm.productivity.tools.sample.documentworkflow.toolBar"
path="BEGIN_GROUP">
</tool1Bar>
<control
class="com.ibm.productivity.tools.sample.documentworkflow.SampTeControl"
id="com.ibm.productivity.tools.sample.documentworkflow.control"
toolbarPath="com.ibm.productivity.tools.sample.documentworkflow.toolBar">
</control>
</controlSet>
</extension>

22  Lotus Symphony Developer’s Guide



3. Provide a class to define your control:

import org.eclipse.jface.action.Action;

import org.eclipse.jface.action.IAction;

import org.eclipse.jface.dialogs.MessageDialog;
import org.eclipse.ui.PlatformUl;

import com.ibm.productivity.tools.ui.toolbar.Activator;
import com.ibm.productivity.tools.ui.toolbar.SODCActionContributionItem;

public class SampleControl extends SODCActionContributionItem {

public IAction createAction() {
Action action = new Action() {
public void run() {
MessageDialog.openInformation(PlatformUI.getWorkbench()
.getActiveWorkbenchWindow().getShel1(), "Information",
"Control pressed");

}
}s

action.setText("Sample");
action.setToolTipText("Sample");
// action.setImageDescriptor(Activator.imageDescriptorFromPlugin(
// Activator.PLUGIN_ID, "docs/itemCampo.png"));
return action;
1
1

4. Optional. Define an association in plugin.xml file if you want to associate your
toolbar with Lotus Symphony views.

com.ibm.productivity.tools.ui.toolbar.controlSetSODCAssociations is an
extension point defined to associate control sets with Lotus Symphony views so
that those associated control sets only display when a Lotus Symphony view is
activated. To extend this extension point, in the first place, a control set has
been defined.

The class attribute of control has to be a class that is a sub-class of
SODCActionContributionItem, which is defined in bundle
com.ibm.productivity.tools.ui.toolbar. More, the visible attribute of the
control set has to be set to false.

To associate this control set with a Lotus Symphony view, define the following
extension:

<extension
point="com.ibm.productivity.tools.ui.toolbar.controlSetSODCAssociations">
<controlSetSODCAssociation>
<controlSet
id="com.ibm.productivity.tools.sample.documentworkflow.controlset"
visible="true">
</controlSet>
</controlSetSODCAssociation>
</extension>

Here, the visible attribute defines if this control set is displayed by default.
Package

com.ibm.rcp.platform.controlSets are defined in Lotus Expeditor platform.

Part 4. Extending Lotus Symphony 23



com.ibm.productivity.tools.ui.toolbar.controlSetSymphonyAssociations are
defined in com.ibm.productivity.tools.ui.toolbar plug-in.

See Also

http:/ /publib.boulder.ibm.com/infocenter /wsphelp /index.jsp?topic=/ |
org.eclipse.platform.doc.isv/reference /extension-points / |
org_eclipse_ui_actionSets.html|

Or, from the local help contents on Eclipse by following: Start up Eclipse > Help
menu> Help Centents > Platform Plug-in Developer Guide > Reference >
Extension Points Rference > org.eclipse.ui.actionSets.

Example

The sample code above results in the following display on the toolbar:

b s 4

- =g

2.3 Adding to the launcher button

Lotus Symphony allows you to add its New button, which is under the main
menu area. The contribution is achieved through the Eclipse extension point:
com.ibm.rcp.ui.TauncherSet.

The extension point com.ibm.rcp.ui.launcherSet supports many types of launch
items including:

e A URL launch item, which opens a URL.
* A perspective launch item, which opens a perspective.
* A native program launch item, which opens a native program on the system.

* A custom launch item other than a URL, perspective ID or native program.

The following markup adds a new perspective launch item:

<extension
point="com.ibm.rcp.ui.launcherSet">
<LauncherSet
id="sym.guide.test.LauncherSet"
label="Symphony Home Web">

<urllLaunchItem
iconUrl="http://www.ibm.com/i/v14/t/us/en/search.gif"
id=" com.ibm.productivity.tools.sample.tests.googleLauncherItem"
label="Test URL Launcher Item - Symphony "
url="http://symphony.lotus.com/"/>

</LauncherSet>
</extension>

Package

The extension point is provided by Lotus Expeditor.

24 Lotus Symphony Developer’s Guide


http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_ui_actionSets.html
http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_ui_actionSets.html
http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_ui_actionSets.html

See Also

http:/ /publib.boulder.ibm.com /infocenter /ledoc/vé6r1l/index.jsp?topic=/|
com.ibm.rcp.doc.schemas/reference / extension-points /|
com_ibm_rcp_ui_launcherSet.html|

Or from the Lotus Expeditor local help content on Eclipse after you finished
setting up the Lotus Symphony development environment (Refer to Part 4 Chapter
1) : Start up Eclipse > Help > Help Contents > Developing Applications for
Lotus Expeditor > Reference information > Extension points schemas >
com.ibm.rcp.ui.launcherSet.

Example

®

4 Latus Symphony Documents

) Latus Symphony Presentations
Al Latus Symphony Spreadshests
7} Home

&3 Web Browser

# Test URL Launcher ltem - Symphony

hony

Be Free. Work Smairt.

2.4 Adding a new view in the shelf view

A sidebar is a stack of shelf views typically located on either the right or left side
of the Lotus Symphony user interface. Plug-in developers can add views to a
sidebar in the user interface, which is based on the Lotus Expeditor extension
point: com.ibm.rcp.ui.shelfViews.

Lotus Symphony makes use of the Eclipse IViewPart interface to tie each shelf
view to the workbench. Each view part has a view site that connects it to the
workbench, allowing the view to register any global actions with the site’s action
bars, including access to its own panel menu, a local toolbar, and the status line.
The view can also register any context menus with the site, or register a selection
provider to allow the workbench’s ISelectionService to include the part in its
tracking.

To add items to the Lotus Symphony shelf view, perform the following steps:
1. Make sure that your plug-in have the following dependencies:

e com.ibm.productivity.tools.ui.views

e com.ibm.productivity.tools.core

e com.ibm.rcp.jfaceex

e com.ibm.rcp.ui

e com.ibm.rcp.swtex

Part 4. Extending Lotus Symphony 25


http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp?topic=/com.ibm.rcp.doc.schemas/reference/extension-points/com_ibm_rcp_ui_launcherSet.html
http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp?topic=/com.ibm.rcp.doc.schemas/reference/extension-points/com_ibm_rcp_ui_launcherSet.html
http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp?topic=/com.ibm.rcp.doc.schemas/reference/extension-points/com_ibm_rcp_ui_launcherSet.html

2. Extend the com.ibm.rcp.ui.shelfViews extension point in plugin.xml file:

<extension
point="com.ibm.rcp.ui.shelfViews">
<shelfView

id="com.ibm.productivity.tools.sample.ShelfView"
page="RIGHT"
region="BOTTOM"
showTitTe="true"
view="com.ibm.productivity.tools.sample.ShelfView"/>

</extension>

3. Add to the org.eclipse.ui.views extension point in the plugin.xml file for the
plug-in, as seen in the following example:

<extension
point="org.eclipse.ui.views">
<category
name="Sample Category"
id="com.ibm.productivity.tools.sample">
</category>
<view
name="Document Sample"
.ic0n=ll n
category="com.ibm.productivity.tools.sample"
class="com.ibm.productivity.tools.sample.ShelfView"
id="com.ibm.productivity.tools.sample.ShelfView">
</view>
</extension>

Make sure that the following attributes are specified:
* The name attribute describes the string to be displayed in the title bar.

e The id attribute is the unique identifier of the view and is used to refer to
the view when contributing to the shelfViews extension point.

* The class attribute specifies what class is referenced in this extension.

* The icon attribute describes the icon to be displayed in the top left corner of
the title bar. The standard size is 16 x 16 pixels.

* The view should be optimally viewed in a frame approximately 186 pixels
wide. The view is also resizable. Make sure that the content can be scrolled
(if applicable), and that any toolbars do not get cut off, or have chevrons
pointing to more actions.

4. Implement the view class:

package com.ibm.productivity.tools.sample;

import org.eclipse.swt.widgets.Composite;
import org.eclipse.ui.part.ViewPart;

public class ShelfView extends ViewPart {

public void createPartControl (Composite arg@) f{
// TODO Auto-generated method stub
}

public void setFocus() {

// TODO Auto-generated method stub
}
1

26 Lotus Symphony Developer’s Guide



Package
The extension point is provided by Lotus Expeditor.

See Also

http:/ /publib.boulder.ibm.com/infocenter/ledoc/vérll /index.jsp?topic=/ |
com.ibm.rcp.tools.doc.appdev/ui_contributingtosideshelfsidebar.htm]

Or from the Lotus Expeditor local help content on Eclipse after you finished
setting up the Lotus Symphony development environment (refer to Part 4 Chapter
1) : Start up Eclipse > Help > Help Contents > Developing Applications for
Lotus Expeditor > Developing applications > Developing the application user
interface > Using personalities > Contributing to the sidebar.

Example

S e T AER

| File View Hindow Help

& ||mDocument Sample &

IBM Lotus Symphony
Be Free. Work Smart.

Create a new Document Create 8

i
| - |

2.5 Using the auto recognizer

The auto recognizer is a framework to allow users to take actions based on the text
that they input in the Lotus Symphony editor. It assists users to do extra
operations on the content of a document by underlining items in a special pattern.
It provides a gateway to provide further information and activities related to the
identified item, specific to users’ needs. By using auto recognizer, Lotus Symphony
can provide a more collaborative environment.

Note: Auto recognizer is only available in the Writer application and only single
word patterns are supported.

Part 4. Extending Lotus Symphony 27


http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp?topic=/com.ibm.rcp.tools.doc.appdev/ui_contributingtosideshelfsidebar.html
http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp?topic=/com.ibm.rcp.tools.doc.appdev/ui_contributingtosideshelfsidebar.html

Lotus Symphony provides the auto recognizer framework and also the auto
recognizer component, PropertyBroker, which is inherited from the Lotus
Expeditor platform. To use the auto recognizer, you must follow these steps:

1. Add dependencies on the com.ibm.rcp.autorecognizer and
com.ibm.rcp.propertybroker plug-ins.

2. Implement a detector to define how to detect patterns.

3. Add the action to the com.ibm.rcp.propertybroker.PropertyBrokerDefinitions
extension point.

4. Add the recognizer to the com.ibm.rcp.autorecognizer.Recognizer extension
point

The following figure is the overall architecture of the auto recognizer framework.
: "“Extension Point}
! com.ibm.rcp.autorecognizer Recognizes

Feremms s s sma s snm sy

T T T TP TR T

Auto
Recognizers

Get Action List

Property
Broker

Component

Adding the auto recognizer to the extension point

To add the auto recognizer, perform the following steps:

1. Add the com.ibm.rcp.autorecognizer.Recognizer extension point in the
plugin.xml file:

<extension
point="com.ibm.rcp.autorecognizer.Recognizer">
<types>
<define-method id="SampleRecognizer">
<type
datatype="SampleType"
default-name="SampleType"
multi-segment="true"
namespace="http://www.ibm.com/wps/c2a"/>
<custom class="com.ibm.productivity.tools.samples.C2A.
recognizer.SampleDetector"/>
</define-method>
</types>
</extension>

2. Implement a SampleDetector class to define how to detect the pattern. Only a
single word is detected by the underlying auto recognizer framework in the
document:

28  Lotus Symphony Developer’s Guide



import java.util.Arraylist;

import com.ibm.rcp.autorecognizer.recognizer.DetectResult;
import com.ibm.rcp.autorecognizer.recognizer.IDetect;

public class SampleDetector implements IDetect {

private String m_Itemlist[] = {"PropertyBroker","AutoRecognizer"};
public static ArraylList taglist= new ArraylList();

/* (non-Javadoc)

* @see com.ibm.rcp.autorecognizer.recognizer.IDetect#detect(java.lang.String)
*/

public DetectResult detect(String word) {

try {
for (int i = 0; 1 < m_Itemlist.length; i++) {

if (m_Itemlist[i].equals(word)) {
DetectResult r1t = new DetectResult();
rlt.start = 0;
rlt.offset = word.length();
rlt.value = word;
return rlt;
1
}
} catch (Exception e) {
e.printStackTrace();
}
return null;
}
1

Add an action

To add an action, perform the following steps:

1. Add the com.ibm.rcp.propertybroker.PropertyBrokerDefinitions extension
point in the plugin.xml file:

<extension
point="com.ibm.rcp.propertybroker.PropertyBrokerDefinitions">
<handler
class="com.ibm.productivity.tools.samples.C2A.actions.SampleAction"
file="wsd1/SampleAction.wsdl"
type="SWT_ACTION"/>
</extension>

2. Define the SampleAction.wsd] file:

Part 4. Extending Lotus Symphony 29



<definitions name="Sample_Service"
targetNamespace="http://www.ibm.com/wps/c2a"
xmins="http://schemas.xmlsoap.org/wsdl/"
xmins:portlet="http://www.ibm.com/wps/c2a"
xmins:soap="http://schemas.xmlsoap.org/wsd1/soap/"
xmins:tns="http://www.ibm.com/wps/c2a"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema">

<types>
<xsd:schema targetNamespace="http://www.ibm.com/wps/c2a">
<xsd:simpleType name="SampleType">
<xsd:restriction base="xsd:string">
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="Sample Status">
<xsd:restriction base="xsd:boolean">
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>
</types>

<message name="Sample_ Keyword">
<part name="keyword" type="tns:SampleType"/>
</message>

<message name="Sample_Status">
<part name="sample_status" type="tns:Sample Status"/>
</message>

<portType name="Sample_Service">
<operation name="sample_event">
<input message="tns:Sample_Keyword"/>
<output message="tns:Sample_Status"/>
</operation>

</portType>

<binding name="SampleBinding" type="tns:Sample_Service">
<portlet:binding/>
<operation name="sample_event">

<portlet:action name="SampleAction"
type="standard"
caption="SampleAction"
description="Sample Event"
actionNameParameter="ACTION_NAME"/>

<input>

<portlet:param name="keyword" partname="keyword"
caption="Sample.Event"/>

</input>

<output>
<portlet:param name="sample_status" partname="sample_status
caption="Sample.Status"/>
</output>
</operation>
</binding>
</definitions>

3. Implement a SampleAction class:

30 Lotus Symphony Developer’s Guide



import org.eclipse.core.commands.ExecutionEvent;

import org.eclipse.core.commands.ExecutionException;

import org.eclipse.core.commands.IHandler;

import org.eclipse.core.commands.IHandlerListener;

import org.eclipse.swt.SWT;

import org.eclipse.swt.widgets.Display;

import org.eclipse.swt.widgets.MessageBox;

import org.eclipse.swt.widgets.Shell;

import com.ibm.rcp.propertybroker.event.PropertyChangeEvent

public class SampleAction implements IHandler {

public void addHandlerListener(IHandlerListener arg0) {
//do nothing
1

public void dispose() {
//do nothing
}

[**
* while clicking the context menu, this method will be invoked.
*
/
public Object execute(ExecutionEvent event) throws ExecutionException {
final PropertyChangeEvent evt = (PropertyChangeEvent) event.getTrigger();
Display.getDefault().asyncExec(new Runnable() {
public void run() {
//open an message box.
Display dsp = Display.getCurrent();
Shell sh = new Shell(dsp);
MessageBox box = new MessageBox(sh, SWT.ICON_INFORMATION);
box.setText("Event");
box.setMessage("Sample event triggered by:
+ evt.getPropertyValue().getValue());
box.open();
}
s
return null;

}

public boolean isEnabled() {
return false;

}

public boolean isHandled() f{
return false;

}

public void removeHandlerListener(IHandlerListener arg0) {
//Do nothing

}

1

Package
com.ibm.rcp.autorecognizer
See also

Propertybroker extension point in Lotus Expeditor:

Part 4. Extending Lotus Symphony

31



http:/ /publib.boulder.ibm.com /infocenter /ledoc/vé6rl/index.jsp?topic=/|
com.ibm.rcp.doc.schemas/reference / extension-points /|
com_ibm_rcp_propertybroker_PropertyBrokerDefinitions.html|

Or from the Lotus Expeditor local help content on Eclipse after you finished
setting up Lotus Symphony development environment (refer to Part 4 Chapter 1)
by following: Start up Eclipse > Help > Help Contents > Developing Applications
for Lotus Expeditor > Reference information > Extension points schemas >
com.ibm.rcp.propertybroker.PropertyBrokerDefinitions.

Example

In following example, a plug-in defines that PropertyBroker and AutoRecognizer
are two keywords, and a special action (in this example, SampleAction ) is added
to this pattern. When the keywords are found in the document, the words are
underlined which indicates that this is a special pattern. If users move the cursor
to the pattern, pull-down button displays and they can click the button to invoke
pattern-related actions. The source code for this example is provided above.

This is wordrecognizer keywordl: PropertyBroker, 7
Thig is word recognizer keyword2.AutoR ecognizer, BEERETETET

Hide Auto Becognize Mark

futo Recognizer Freferences. ..

2.6 Adding an item to the status bar

Lotus Symphony allows the addition of arbitrarily sophisticated user interface
controls to the status bar and the toolbar, through the Lotus Expeditor extension
point com.ibm.rcp.ui.controlSets.

To add an item into status bar, complete the following steps:
1. Add the com.ibm.rcp.ui.controlSets extension point in the plugin.xml file:

32 Lotus Symphony Developer’s Guide


http://publib.boulder.ibm.com/infocenter/ledoc/v6r1/index.jsp?topic=/com.ibm.rcp.doc.schemas/reference/extension-points/com_ibm_rcp_propertybroker_PropertyBrokerDefinitions.html
http://publib.boulder.ibm.com/infocenter/ledoc/v6r1/index.jsp?topic=/com.ibm.rcp.doc.schemas/reference/extension-points/com_ibm_rcp_propertybroker_PropertyBrokerDefinitions.html
http://publib.boulder.ibm.com/infocenter/ledoc/v6r1/index.jsp?topic=/com.ibm.rcp.doc.schemas/reference/extension-points/com_ibm_rcp_propertybroker_PropertyBrokerDefinitions.html

<extension
point="com.ibm.rcp.ui.controlSets">
<controlSet
visible="true"
id="example.ControlSet">
<statusLine
path="BEGIN_GROUP"
id="example.statusTine">
<groupMarker name="additions"/>
</statusLine>
<control
statusLinePath="example.statusline/additions"
class="com.ibm.Lotus.Symphony.example.ExampleStatusbarItem"
id="example.control"/>
</controlSet>
</extension>

The statusLine element defines a marker location for other status line items to
be added similarly to the menu element in actionSet. The statusLinePath
property specifies the path in the statusbar.

2. Implement the control class:

package com.ibm.Lotus.Symphony.example;

import org.eclipse.jface.action.ContributionItem;
import org.eclipse.swt.SWT;

import org.eclipse.swt.custom.CLabel;

import org.eclipse.swt.widgets.Composite;

public class ExampleStatusbarItem extends ContributionItem {
public void fill(Composite parent) {
CLabel Tabel = new CLabel(parent, SWT.SHADOW_IN | SWT.LEFT);
label.setSize(300, 20);
label.setText("status");
label.setToolTipText("text");
1
1

The control class must implement IContributionItem and implement fill
(Composite parent).

Package
This extension point is provided by Lotus Expeditor.

See also

http:/ /publib.boulder.ibm.com/infocenter/ledoc/vérll /index.jsp?topic=/|
com.ibm.rcp.doc.schemas/reference / extension-points /|
com_ibm_rcp_ui_controlSets.html|

Or from the Lotus Expeditor local help content on Eclipse after you finished
setting up Lotus Symphony development environment (refer to Part 4 Chapter 1) :
Start up Eclipse > Help > Help Contents > Developing Applications for Lotus
Expeditor > Reference information > Extension points schemas >
com.ibm.rcp.ui.controlSets.

Part 4. Extending Lotus Symphony 33


http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp?topic=/com.ibm.rcp.doc.schemas/reference/extension-points/com_ibm_rcp_ui_controlSets.html
http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp?topic=/com.ibm.rcp.doc.schemas/reference/extension-points/com_ibm_rcp_ui_controlSets.html
http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp?topic=/com.ibm.rcp.doc.schemas/reference/extension-points/com_ibm_rcp_ui_controlSets.html

Example

- status

2.7 Adding a preferences page

After a plug-in has added extensions to the Lotus Symphony user interface,
preferences page lets users control some of the behaviors of the plug-in through
user preferences.

Store plug-in preferences and show them to the user on pages in the Lotus
Symphony Preferences window. Plug-in preferences are key value pairs in which
the key describes the name of the preference and the value is one of several
different types.

The org.eclipse.ui.preferencePages extension point lets you add pages to the
Lotus Symphony preferences (File > Preferences). The preferences window
presents a hierarchical list of user preference entries. Each entry displays a
corresponding preference page when selected.

To add a preference page, complete the following steps:

1. Add the org.eclipse.ui.preferencePages extension point in the plugin.xml
file:

<extension
point="org.eclipse.ui.preferencePages">

<page
class="com.ibm.lotus.symphony.example.preferences.ExamplePreferencePage"
id="com.ibm.lotus.symphony.example.preferences.ExamplePreferencePage"
name="Lotus Symphony Example"
category="com.ibm.productivity.tools.core.preferences.documenteditors
.DocumentEditors"/>

</extension>

This markup defines a preference page named Lotus Symphony Example
which is implemented by the class ExamplePreferencePage.

2. Add the org.eclipse.core.runtime.preferences extension point in the
plugin.xml file:

<extension
point="org.eclipse.core.runtime.preferences">
<initializer class="com.ibm.lotus.symphony.example.preferences
.Preferencelnitializer"/>
</extension>

The extension point org.eclipse.core.runtime.preferences lets plug-ins add
new preference scopes to the Eclipse preference mechanism and to specify the
class to run that initializes the default preference values at runtime.

3. Implement the page class.

The page class must implement the IWorkbenchPreferencePage interface. The
content of a page is defined by implementing a createContents method that
creates the SWT controls representing the page content:

34 Lotus Symphony Developer’s Guide



import org.eclipse.jface.preference.IPreferenceStore;
import org.eclipse.jface.preference.PreferencePage;
import org.eclipse.swt.SWT;

import org.eclipse.swt.layout.GridData;

import org.eclipse.swt.layout.GridLayout;

import org.eclipse.swt.widgets.Composite;

import org.eclipse.swt.widgets.Control;

import org.eclipse.swt.widgets.Label;

import org.eclipse.swt.widgets.Text;

import org.eclipse.ui.IWorkbench;

import org.eclipse.ui.IWorkbenchPreferencePage;

//import sym.guide.test.Activator;

public class ExamplePreferencePage extends PreferencePage implements
IWorkbenchPreferencePage {
private Text usrID;

public ExamplePreferencePage() {

super();
setPreferenceStore(Activator.getDefault().getPreferenceStore());
setDescription("example preference");

}

protected Control createContents(Composite parent) {
Composite composite = new Composite(parent, SWT.NULL);
composite.setlLayout (new GridLayout(2, false));
Label usrLabel = new Label(composite, SWT.NONE);
usrLabel.setText("User");
usrID = new Text(composite, SWT.BORDER|SWT.RIGHT);
usrID.setlLayoutData(new GridData (100, SWT.DEFAULT));
initializeValues();
return composite;

}

private void initializeValues() {
IPreferenceStore store = getPreferenceStore();
String userID = store.getString("USER_ID");
usrID.setText(userID);

}

protected void performApply() {
IPreferenceStore store = getPreferenceStore();
store.setValue("USER_ID", usrID.getText());

1

public boolean performOk() {
performApply();
return super.performOk();

}

protected void performDefaults() {
IPreferenceStore store = getPreferenceStore();
usriD.setText(store.getDefaultString("USER_ID"));
}

public void init(IWorkbench arg0) {
}
1

4. Implement the page class and initialize class.

Part 4. Extending Lotus Symphony 35



The initialize class is used for preference initialization:

package com.ibm.lotus.symphony.example.preferences;

import org.eclipse.core.runtime.preferences.AbstractPreferencelnitializer;
import org.eclipse.jface.preference.IPreferenceStore;

public class Preferencelnitializer extends AbstractPreferencelnitializer {
/*

* (non-Javadoc)

*

* @see org.eclipse.core.runtime.preferences.AbstractPreferencelnitializer#initial

* izeDefaultPreferences()

*/

public void initializeDefaultPreferences() {

IPreferenceStore store = Activator.getDefault().getPreferenceStore();

store.setDefault("USER_ID", "tom");

1
1

Note: If you want to contribute the preference page to root node, you can add
the following code in pTlugin.xml file. The id is the preference id when you
define your preference page. For example, WebBrowserPreferencePage is the id
for browser component provided within Lotus Symphony.

<extension
point="com.ibm.productivity.tools.baseshell.preference">
<preferenceid id="WebBrowserPreferencePage" />
</extension>

Package
The extension point is provided by the Eclipse Rich Client Platform.

See also

http:/ /publib.boulder.ibm.com /infocenter /wsphelp /index.jsp?topic=/|
org eclipse.platform.doc.isv/reference/extension-points /|
org_eclipse_ui_preferencePages.html|

Or from the local help contents on Eclipse by following: Start up Eclipse > Help
menu> Help Contents > Platform Plug-in Developer Guide > Reference >
Extension Points Reference > org.eclipse.ui.preferencePages.

36 Lotus Symphony Developer’s Guide


http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_ui_preferencePages.html
http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_ui_preferencePages.html
http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_ui_preferencePages.html

Example

r z = 1|
@P:a:‘::‘::w‘:: - @

type filter text Lotus Symphony Example - ~

- 151 LDtuE_SmPthY example preference
Aeocessibility
Color Scheme Uzear tom
-~ Colors
~~File Superwvision
File Type Associations
o Fontz
[+ Language Settings
Dacuments

[#- Lotus Sympho

ymphony Freszentations

E] Lotus
[+ Lotus Symphony Spreadsheets
- Macro Security
Memory
Frint
.- Regional Settings
View
Warning Meszages
Enterprize Management Agent
feb Browser

[Restnre ﬂefaults] [ Apply ]

&

[ &3 |

| OE | [ cence |

Chapter 3. Lotus Symphony Java APIs and extension points

3.1 Selection service

In Eclipse, the selection service provided by the Eclipse workbench allows efficient
linking of different parts within the workbench window. Each workbench window
has its own selection service instance. The service keeps track of the selection in
the currently active part and propagates selection changes to all registered
listeners. Such selection events occur when the selection in the current part is
changed or when a different part is activated. Both can be triggered by user
interaction or programmatically.

Each Lotus Symphony view registers the selection provider, so it is possible to
monitor if a selection change event occurs.

When opening or creating a document by user interaction or programmatically, the
view is opened as an Eclipse ViewPart. The view registers the selection provider to
Eclipse workbench window. When an application registers a selection listener, the
listener is notified when the selection is changed in the view.

From the user’s point of view, a selection is a set of highlighted text or objects in a
view. Internally, a selection is a data structure holding the model objects which

correspond to the graphical elements selected in the view. Almost all text or objects
can be selected in the view for these kinds of applications: writer, spreadsheet, and

Part 4. Extending Lotus Symphony 37



presentation. The selection can be presented in several ways and you can only get
the text content from the selection. It might be possible to present the selection
using HTML, ODF, or XML format.

Accessing the current selection

The Lotus Symphony workbench keeps track of the currently selected part in the
window and the selection within this part. Each view registers it as the selection
provider, even if you do not need to propagate its selection now. Your plug-in is

ready for future extensions by others.

To access the current selection of current Lotus Symphony view:

IWorkbenchWindow window = PlatformUI.getWorkbench().getActiveWorkbenchWindow();
ISelectionService service = window.getSelectionService();
ISelection selection = service.getSelection();

Retrieving text content from the selection

To get the text content from the selection:

IWorkbenchWindow window = PlatformUI.getWorkbench().getActiveWorkbenchWindow();

ISelectionService service = window.getSelectionService();

ISelection selection = service.getSelection();

IAdaptable adaptable = ( IAdaptable )selection;

RichDocumentContentSelection textSel = (RichDocumentContentSelection)adaptable
.getAdapter(RichDocumentContentSelection.class );

String text = textSel.getPlainText();

Tracking selection change

Typically views react on selection changes in the Lotus Symphony workbench
window, however, it is better to register an ISelectionListener to get notified
when the window’s current selection changes:

IWorkbenchWindow window = PlatformUI.getWorkbench().getActiveWorkbenchWindow();
ISelectionService service = window.getSelectionService();
ISelectionListener listener = new ISelectionListener(){
public void selectionChanged( IWorkbenchPart part, ISelection selection ){
//do something
1
1

service.addSelectionListener( Tistener );

Note: If you want to get notified when the selection of document content changes,
you must call the following code fragment to enable selection change service of
document:

IPreferenceStore store = SuperODCPlugin.getInstance().getPreferenceStore();
//enable document selection service to listen the document content selection
//changes.

store.setValue("Enable_Selection", true);

After that, all selection changed within document, spreadsheet and presentation
will be notified. It only affects documents that are opened after the enabling
operation. You can disable document selection change service using the following

38 Lotus Symphony Developer’s Guide



code fragment and it only affects documents that are opened after the disabling
operation.

IPreferenceStore store = SuperODCPlugin.getInstance().getPreferenceStore();
store.setValue("Enable_Selection", false);

Removing the selection listener

Remove the selection listener when you cannot handle events, such as when your
view has been closed. Use the dispose() method to remove your listener:

public void dispose() {
IWorkbenchWindow window = PlatformUI.getWorkbench().getActiveWorkbenchWindow();
ISelectionService service = window.getSelectionService();
service.removeSelectionListener( Tistener );
super.dispose();

Package

com.ibm.productivity.tools.ui.views

See also

Jjavadoc in Lotus Symphony toolkit.

Example

The sample Translation buddy view behaves in this way: whenever the text

content selection changes in the Lotus Symphony writer view, the selected text is
displayed in the Input area of the view automatically.

Part 4. Extending Lotus Symphony 39



thplicatinn Development for Lotus Notez Domino, Sametime. .. E]@|E|
File Edit View

Create Tools Flug-ins Table Layout Windew Help

A0 Application Development for Lotus M., X _

% i 3 w ﬁ] Send to Unyte meeting JCI’EEtE - @ =

Default Text | b 2z W = - i= -~ ﬁ_ - ¥E

2 Translation buddy g g 1 5 [£])
A LEVOLE FOm I A GEbu LA T A T 60 2

Input: securityrich Desigrer

enviromments that can
integrate with existing
systems and
infrastructure while
supporting customer
choice to use open

standards. fir]
Source: Englich hd
Target: |[Chinese b d
[ Tranzlate ]
Dutput: %H gD%@%jﬂﬁj¢ﬁﬂﬁﬁm - ot I 4 Domi
RiBEE i : otus Motes and Domuno supports
%gég%ﬁ%%%%%%g the IBM strategy and continues to
il s = i evulve mits lung standmg support of 'E]
FEMR RS A 2 BT s

« ||Page 1 1 /1 Ln...1 1 |Default 100% IHSERT STD HYP

3.2 RichDocumentViewFactory

The RichDocumentViewFactory class handles the creation, accessing and closing of a
rich document view. A listener can be registered through
com.ibm.productivity.tools.ui.views.Tistener extension points to monitor the
opening and closing of a rich document view. The factory class provides global
static methods to handle the rich document views.

The factory class is used to create, open or close rich document view
programmatically.

1. Create new document through the user interface or API, for example, click
File->New->Document.

2. Open the document through the user interface or APL
3. Close the document through the user Interface or API.
4. Get the list of opened views using the APL

Creating a new rich document view
Use the following example code to create a new rich document view by specifying

whether the document type is writer, spreadsheet or presentation type at creation
time:

RichDocumentViewFactory.openView( RichDocumentType.DOCUMENT TYPE);

40 Lotus Symphony Developer’s Guide



For more information about how to configure the map, see the javadoc in the
Lotus Symphony toolkit.

Opening a local file in a new rich document view

Use the following example code to open a file in a new rich document view:

String fileName = ..... ; //e.g. c:\\temp.odt
RichDocumentViewFactory.openView( fileName, false );

You can also specify the configuration map as same as opening new document. In
the above code, you set the properties template to close mode. You can also decide
whether you want to load the document as a template.

Typically, the document is loaded in a new tab, which depends on the windows
and theme settings of the preference page.

Getting the list of opened rich document views

Use the following example code to get the list of opened rich document views:

RichDocumentView[] views = RichDocumentViewFactory.getViews();

All rich document views opened in Lotus Symphony are returned.
Closing a rich document view

Use the following code to close a rich document view. The window tab is closed
when the view is closed:

RichDocumentView view =...;// get an instance of rich document view
RichDocumentViewFactory.closeView( view );

Registering the listener using the extension point

The com.ibm.productivity.tools.ui.views.listener extension point is defined to
monitor the status of the RichDocumentView instance. If a listener is registered when
RichDocumentView is created, closed or a document is loaded, then the listener is
notified. Currently the following events for rich document views are supported:

* Type_Pre_Document_Open. A rich document is about to be opened in a view.
* Type_Post_Document_Open. A rich document is opened in a view.

* Type_Pre_Document_Close. A rich document is about to be closed in a view.
* Type_Post_Document_Close. A rich document is closed in a view.

* Type_Post_Open. A rich document view is opened.

* Type_Pre_View_Close. A rich document view is about to be closed.

* Type_Post_View_Close. A rich document view is closed.

To use the listener, perform the following steps:

Part 4. Extending Lotus Symphony 41



1. Add the com.ibm.productivity.tools.ui.views.listener extension point:

<extension

id="SampleListener"

name="Sample Listener"

point="com.ibm.productivity.tools.ui.views.listener">

<listener
class="com.ibm.productivity.tools.sample.views.SampleListener"
id="SampTleListener"

/>

</extension>

2. Implement a RichDocumentViewListener class:

public class SamplelListener implements RichDocumentViewListener {
public void handleEvent(RichDocumentViewEvent event) {
System.out.printin(event.getSource());

}

}

In this example, the getSource() event returns the RichDocumentView instance
which fires the event.

Package
com.ibm.productivity.tools.ui.views.
See also

Jjavadoc in Lotus Symphony toolkit.
Example

Typically, when opening or loading a document, the document is opened in a new
tab, which depends on the windows and theme settings, in preference page. When
closing a document, the tab is closed.

3.3 RichDocumentView

The RichDocumentView provides an interface for all Lotus Symphony view instances
and defines common functions on a Lotus Symphony view. The view usually maps
to an Eclipse ViewPart internally. New user interface items binding to the ViewPart
are configurable through this interface, like the menu, toolbar, properties side bar
and status bar.

Accessing existing RichDocumentView instances

You can get or create a RichDocumentView instance through
RichDocumentViewFactory first, then use the APIs defined in RichDocumentView
to perform the following tasks:

* Open another file in the view.

* Close the document in the view.

* Save the document in the view to another file.
* Add or remove a listener.

* Get the UNO model of the current document.

42 Lotus Symphony Developer’s Guide



You also can get a RichDocumentView instance from an active document:

IWorkbenchWindow window = PlatformUI.getWorkbench().getActiveWorkbenchWindow();
IWorkbenchPage page = window.getActivePage();

IAdaptable adaptable = ( IAdaptable )page.getActivePart();

RichDocumentView view = (RichDocumentView)adaptable
.getAdapter(RichDocumentView.class);

System.out.printin( view.getFilePath() );

Using DefaultRichDocumentView directly

In addition to the RichDocumentView interface, a default implementation named
DefaultRichDocumentView is also provided. The DefaultRichDocumentView is an
instance of Eclipse ViewPart and RichDocumentView. You can write a new
perspective that aggregates several Eclipse ViewParts into one page.

Extending a new view
You can extend the default implementation to define your own view.

The following example code demonstrates how to reuse the
DefaultRichDocumentView. The sample code implements a WriterView which
creates a writer document in the ViewPart. The ViewPart can be integrated into an
Eclipse perspective or displayed by an IWorkbenchPage. Refer to Eclipse and Lotus
Expeditor programming instructions about how to use it. The complete sample
code is also provided in the Lotus Symphony toolkit samples:

public class WriterView extends DefaultRichDocumentView {

[**

* The constructor.
*/

public WriterView() {
super();

}

public void createPartControl (Composite parent) {
super.createPartControl (parent);
createlriter();

}

private void createlriter() {
NewOperation operation = OperationFactory
.createNewOperation(RichDocumentType.DOCUMENT TYPE );
operation.execute(this);
}
}

Operations on rich documents

The following code example demonstrates how to load a rich document in the rich
document view. The WriterView is created as above. There are also SaveOperation,
SaveAsOperation, and CloseOperation interface provided in the Lotus Symphony
Javadoc API. The usages are similar to LoadOperation; refer to the Javadoc API for
more details:

Part 4. Extending Lotus Symphony 43



private void ToadDocument () {
LoadOperation operation =
OperationFactory.createLoadOperation("c:\\text.odt", false);
this.executeOperation(operation);

Monitoring operations

The following code example demonstrates how to detect that a document is loaded
into the rich document view. The WriterView is created as above. The example
code demonstrates how to add an operation listener into the ViewPart when the
ViewPart is created. When a load operation is issued, the monitor is called. The
OperationlListener is applicable to all default operations and is documented in the
Lotus Symphony Javadoc APL

public class WriterView extends DefaultRichDocumentView {

[**
* The constructor.
*/

public WriterView() {
super();

public void createPartControl (Composite parent) f{
super.createPartControl (parent);
monitorLoading();

}

private void monitorLoading() {
OperationListener listener = new OperationListener() {
public void afterExecute(Operation operation, RichDocumentView view) {
if( operation instanceof LoadOperation ){
System.out.printin( "document is loaded:"
+ ( (LoadOperation)operation ).getFileName());
Object document = (( LoadOperation )operation).getUNOModel();
afterLoading( document);

}
public void beforeExecute(Operation operation, RichDocumentView view){
if( operation instanceof LoadOperation )
System.out.printIn( "document is about to be Toaded:"
+ ( (LoadOperation)operation ).getFileName());

}
Vs

this.addOperationListener( listener );
1

}

Chapter 4. Using the UNO API to access a document model

Lotus Symphony Java API is only responsible for managing the Eclipse-based
Lotus Symphony view. If you want to access and modify content within the
document, use the UNO API, which is inherited from OpenOffice.org.
Accessing the document model

In Lotus Symphony, you can use the following code to get the UNO model of the
current document:

44 1otus Symphony Developer’s Guide



RichDocumentView view = ...;
Object obj = view.getUNOModel();
XModel model = ( XModel )UnoRuntime.queryInterface( XModel.class, obj );

Using the writer document model

If the document is a writer document, all UNO APIs can be used with Java. With
the UNO AP]I, you can almost do anything you want in the document, for
example:

Navigating objects like text, paragraphs, or tables in document.

Inserting or removing objects.

Getting or setting the property of objects.
Getting or setting selections.

Accessing and modifying document metadata.

Some typical use cases are described in following sections. For more details, refer
to the OpenOffice.org SDK Developer’s Guide.

Setting the whole text of a document

Use the following sample code to change the whole text of a document:

public void setWholeTextofDocument( XModel model ) {

}

XTextDocument xdoc = ( XTextDocument ) UnoRuntime.queryInterface(

XTextDocument.class, model);

XText xdocText= xdoc.getText();

//simple text insertion

xdocText.setString ( "The whole text of this document.\n" +

"The second line...");

Inserting a table in a document

Use the following sample code to insert a table into the document:

public void insertTable( XModel model ) {
XMultiServiceFactory xDocFactory = (XMultiServiceFactory)
UnoRuntime.queryInterface(XMultiServiceFactory.class, model);
XTextDocument xdoc = ( XTextDocument ) UnoRuntime.queryInterface(

XTextDocument.class, model);

XText xdocText= xdoc.getText();

}

// Create a new table from the document's factory
try {
XTextTable xTable = (XTextTable) UnoRuntime.queryInterface(
XTextTable.class, xDocFactory .createInstance(
"com.sun.star.text.TextTable" ) );
// Specify that we want the table to have 4 rows and 4 columns

xTable.initialize( 4, 4 );

// Insert the table into the document

xdocText.insertTextContent( xdocText.getStart(), xTable, false);

catch (Exception e) {

// TODO Auto-generated catch block

}
}

e.printStackTrace();

Part 4. Extending Lotus Symphony

45



Setting text in the current cursor

Use the following sample code to set content into the current cursor:

public void setSelection( XModel model, String content ){

//the controller of the model

XController xController = model.getCurrentController();

// Query TextViewCursor

XTextViewCursorSupplier xViewCursorSupplier =
(XTextViewCursorSupplier)UnoRuntime.queryInterface(

XTextViewCursorSupplier.class, xController);

//get the view cursor

XTextViewCursor viewCursor = xViewCursorSupplier.getViewCursor();

//set the content to the view cursor

viewCursor.setString( content );

Using the spreadsheet document model

If the document is a spreadsheet document, all UNO APIs for spreadsheet
documents can be used with Java. With the UNO API, you can almost do anything
you want in the document, for example:

* Accessing sheets, cells, and cell ranges in the document.
* Modifying content of sheets, cells, or cell ranges.

* Creating charts.

* Using functions.

A typical use case is described in the following section. For more details, refer to
the spreadsheet sample in the Lotus Symphony toolkit samples and
OpenOffice.org SDK Developer’s Guide.

Setting the content of a cell

Use the following example code to set the content in column 2 row 3 in the first
sheet:

public void setCell1Text( XModel model, String content ){
//query the sheet document
XSpreadsheetDocument sheetDocument = ( XSpreadsheetDocument )
UnoRuntime.queryInterface( XSpreadsheetDocument.class, model );
XSpreadsheets xSheets = sheetDocument.getSheets();
XSpreadsheet xSheet = null;
try {
XIndexAccess xSheetsIA = (XIndexAccess)UnoRuntime
.queryInterface(XIndexAccess.class, xSheets );
//get the first sheet in the document
xSheet = (XSpreadsheet) UnoRuntime.queryInterface(XSpreadsheet.class,
xSheetsIA.getByIndex( 0 ));
XCell xCell = null;
//get cell of column 2 row 3- (column, row)
xCell = xSheet.getCel1ByPosition( 1, 2 );
xText = (XText)UnoRuntime.queryInterface( XText.class, xCell );
xText.setString( content );
} catch (Exception ex){
ex.printStackTrace();

}

46 Lotus Symphony Developer’s Guide



Using the presentation document model

If the document is a presentation document, all UNO APIs for presentation
document can be used with Java. With the UNO API, you can almost do anything
you want in the document, for example:

¢ Accessing and modifying pages and shapes in the document.
* Inserting and removing pages or shapes in the document.

* Playing the presentation.

For more details, refer to presentation sample plug-in and OpenOffice.org SDK
Developer’s Guide.

Chapter 5. Packaging and deploying your plug-ins

After you have completed plug-in development, run your code in an installed
Lotus Symphony product environment, or distribute your plug-ins to customers in
a Lotus Symphony environment.

This chapter illustrates how to package and deploy an application to Lotus
Symphony using the sample plug-in customizing as a example, which can be
found in the Lotus Symphony toolkit.

Use following steps to install your custom application into Lotus Symphony:
1. Prepare your custom plug-in for deployment.

2. Create a feature and an Eclipse location update site.

3. Install a custom Lotus Symphony application.

4. Configuration your application.

5.1 Prepare custom plug-in for deployment
The following steps prepare the plug-in for deployment:
1. Open Eclipse. Be sure to use the same workspace where you created your
plug-ins.
2. Expand your plug-in in the Package Explorer perspective.
3. Double-click the build.properties file.

4. Select the portions of the plug-in that you want to include in the build. For the
purposes of this example, all are chosen; however, this might not be necessary
in your scenario.

Part 4. Extending Lotus Symphony 47



J] detivator, java :]||'q g x =0
Build Configuration

[Jcusten Build

Euntime Taformatiss

Define the libraries, specify the order in which they should be built, and Lizt the sowrce folders that should be compiled inis each
selected Library!

= Aid Libeary
Binary Build Soares Build
Select the folders and files te include in the binery build Select the folders and files to inelude in the sowrce build:
F B - classpath B[ - classpath
F B . preisct [ 5] projeet
% 3]0 WETA-INF ¥ 7] 2 META-THF
& [ bin & FE bin
[#] b Build prepertiies [)lih build propertien
® @@ help 3 FE help
[ ] halp. wnl [ ] halp. unl
[ sk plugin. xel #1148 plugin znl

% [ resource = resowrce

BEE&E

7 G = gre
& = e sre

] [F] rupersdcbuild anl [ superodebuild ==l

b Ezxtra Classpath Eatries

Build build propartiss

5. Click File > Save.

5.2 Create a feature and an Eclipse location update site

Updates to the client platform are provided in the form of features. Features can
contain other features, or a set of related plug-ins. The Update Manager
component of the client platform handles the installation of the features, and a
user interface is provided to manage the installed features.

5.2.1 Creating a feature

A feature contains a manifest that provides basic information about the feature and
its contents, including plug-ins and fragments. A feature is deployed and delivered
in the form of a JAR file.

Now that your plug-in is ready to be deployed, it needs to be packaged in a
manner that is recognized by the Eclipse Update Manager. The Eclipse Update
Manager is an Eclipse tool that manages versions and deployment of plug-ins and
fragments.

Prior to creating a feature, you should have the plug-ins and fragments that will be
contained within the feature

1. Make sure that your plug-in is opened in the workspace you created.

2. From your workspace, select File > New > Project > Plug-in Development >
Feature Project.

3. On the Feature Properties page, enter the Feature ID, Feature Name, and
Feature Version. The Feature Provider and Install Handler Library are
optional.

48 1Lotus Symphony Developer’s Guide



= .o Honiiics a\‘

Feature Properties ,__;'[:

< I 1
Define properties that will be placed in the feature xzml file .- -

Froject name: |com. ibm. productivity. tools. samples. customizing. featrue

Use defanlt location

Feature properties

Feature ID: com. 1bm. productivity. tools. samples. customizing
Feature Hame: customizing Feature

Feature Verszion: 1.0.0

Feature FProwider: TEM

Inztall Handler Library:

@ [ <Back || Hext> || Finish || Cancel |

4. Click Next.

5. On the Referenced Plug-ins and Fragments page, select the plug-in that you
are making ready for deployment from the list, and then click Finish. The
wizard now creates your feature package and opens the feature on the
Overview tab of the feature.xml file. You can always come back to this view
(known as the feature manifest editor) by double-clicking the feature.xml file.

Part 4. Extending Lotus Symphony 49



50

General Information

This section describes general information about this feature.
com. ibm. productivity. tools. samples. customizing. featrue
1.0.1
customizing Feature

IEM

Branding Flug—in: |com. ibm. productivwity. tools. samples. customizing | | Browse. ..

Supported Environments
Specify enwironment combinations in which this feature can be installed Leawe
blank if the feature does not contain platform—specific code.
Browse ...
Browse ...

Browse ...

Erowse ...

6. There are many options in this view. Change the following fields if necessary:

a.

® oo o

In the Branding Plug-in field, click Browse field.

Select the plug-in that you want to deploy and click OK.

In the Update Site URL field, enter the Eclipse update site URL.
In the Update Site Name field, enter the site name.

In the Supported Environments section, enter operating systems, platform,
and language specifications, if these are required by your plug-in. For our
example, this section is not necessary.

Note: This information is used to specify the site that is used to load your
feature using Eclipse Update Manager. When Update Manager looks for
updates, it will look for sites defined in your update site URL. If you have
not created an Eclipse update site yet, you can change this setting later.

7. Click the Information tab.

a.

The Feature Information, Copyright, License and Sites to Visit tabs are
displayed. Feature information is displayed to the user by the Update
Manager when the feature is selected.

For each of these tabs, you can either enter a URL, if sites already exist, or
you can enter the information in the text area for each.

In the Optional URL field, enter a URL and name for any other relevant
update sites that you have.

8. Click the Plug-in tab.

a.

Confirm that your plug-in is listed in the Plug-ins and Fragments window.
If it is not, click Add and select the plug-in that you want to include, and
then click OK.

Click Version.

Lotus Symphony Developer’s Guide



C. Select Synchronize Versions on Build (recommended), as shown in the
following figure, and then click Finish. This step synchronizs your feature
version and plug-in version.

- . s |
w Uosrniies foeai e

Yersion Synchronization —
=.j =
Choose a method to synchronize featuwre and plug—in wersions. | 7

Synchronization Options

G}S}'m:hrnnize verzionz on build [recommended)

{:}Cnp}' versions from plugin and fragment manifests

OFnrce feature wersion into pluz-in and fragment manifasts

@ Finish | | Canecel

9. Your feature and plug-in are now ready to deploy.
5.2.2 Creating an update site

An update site is the key mechanism to enable installation of the application,
which includes the features and plug-ins to be deployed. For more information on
update sites, including how to create one, see the Plug-in Development
Environment Guide > Getting Started > Update Sites section of the PDE Guide.

To create an update site, complete the following steps:

1. Open Eclipse. Be sure to open the workspace where you created your plug-in
and feature.

2. Select File > New > Project > Plug-in Development > Update Site Project.
3. The New Update Site wizard has only one page:

a. Enter a Project name. You should enter the plug-in name and append
another word to denote that it is an update site project.

Select Use the default location.

c. Click Finish. The wizard creates your update site within your Eclipse
workspace.

4. To add your feature(s):

a. Double-click the site.xml file located in the Package Explorer frame. This
step opens your site manifest editor in the editor frame (center frame).

b. To add your new feature, click Add Feature. If you are adding more than
one feature or plug-in or plan to in the future, you can choose to organize
them by category.

c. Select the feature that you are including in this update site. You can select
more than one by holding down the Ctrl key. When you are finished
selecting, click OK.

Part 4. Extending Lotus Symphony 51



5. Click the Build All button. This step adds the /Features and /Plug-ins
directories to the Site project and populates them with JAR files containing
your feature and plug-in files. This step builds your update site locally.

6. Export this update site project to the file system, for example, D:\customizing.

5.3 Install a custom Lotus Symphony application

In this option, customers can deploy applications to an existing Lotus Symphony
client in a standard update site installation.

1. Launch Lotus Symphony and select File > Applications > Install.

Claose Cirl+y

T T

| Application Management

Freferences. ..

Fecent Files L4
Cloze All
Exit

Lofus Symphony
Be Free. Work Smart.

2. Select Search for new features to install and click Next.

Feature Updates
Choose the way wou want to search for featuresz to install @

OSearch for updates of the currently installed features

Select this option 1f you want to search for updates of the features you
already hawe installed.

@ﬁearch for mew features to installl

Select this option if you want to install new features from existing or new
update sites. Some sites may already be awailable. You can add new update =zite
TEL= to the search.

3. Click Add Folder Location and select the update site project from the local file
system, then click Finish button.

52 Lotus Symphony Developer’s Guide



Application Locations

location, or ZIFS/JAR location to the list. To Edit or Remowe a

To install applications, add the remote location C(UEL), folder @
location, first highlight the location name.

Location list: Select the locations to check for awailable applications

QM}' contributionfcustomizing. updatesite [ Add Bemote Location. .. J

I Add Folder Location. .. I

|Add Zip/Tar Location. .. |

lgm:-re features not applicable to this enwiromment

Hext » [ Finizh ] [ Cancel ]

4. In Updates window, select the update site, and then click Next.

Woehicras :

Search Results

Select features to install from the search result list.

Select the features to install:

# q My contribution/customizing updatesite [ Deselact All J

More Info

Froperties

[ Select Reguired

1 of 1 =elected.
Show the latest wersion of a feature only

5. To accept the terms in the license agreements in the Install window, and then
click Next.

Part 4. Extending Lotus Symphony 53



Feature License

Some of the features hawve license agreements that you need to accept
before proceeding with the installation.

@Customizing Feature 1. 0 [Enter License Description here. ]

T B

I{:i':'jl;'.[ accept the terms in the license agreements

C}I do not accept the terms in the licensze agreements

[ <Back |[  Hext> | Fimniak

6. Click Finish to install the imported feature.

Installation

The follewing features will be installed. @

Featuraz to install:

Feature Hame Feature Version Feature Size

RE—————T— B

Required space: Unlmown
Free space: 37.8 GB

7. After you have finished the installation, restart Lotus Symphony to see your
application and verify that it was successfully installed.

|r=

inish i [ Cancel J

5.4 Disable or enable custom Lotus Symphony applications

You can view and change the status for any plug-ins that you have installed in
Lotus Symphony. To disable custom application plug-ins, do the following steps:

1. Click File > Application > Application Management.

54  Lotus Symphony Developer’s Guide



Clase Cirl+

T [N

Preferences. ..

Becent Files
Close A1l
Exit

IBM Cotus Symphony
Be Free. Work Smart.

2. In the navigator, click <Symphony Install Home>\framework\shared\eclipse,
and find the custom application that you want to view and make changes to.

5% Application Management

File:

DEAEEE

= '-"E IBM Lotus Symphony
E.!%I C:\Program Files\IBMILotus)SymphoreyiFrameworkircpleclipse
- 2? Ct\Documents and SettingsiFangiIEM)Lotus)Symphonytapplications|eclipse
B% C:\Program Files\IBMILotus) Symphory Framework shared\eclipse
: cam ibm.content. operations. registry.infra.feature 1.3.0.20080820-1257
@ cam ibm.productivity kools.base.nl Feature 3.5.0,20000423-2039
@@i carm ibm.productivity kools. Feature 3.5.0,20090423-2039
&l@ cam ibm. productivity kaals, standalane. branding feature 3.5.0,20090423-203%
@ cam ibm.productivity kaals, standalane. branding.nl. feature 3.5.0,20090423-2039
com,ibm, productivity bools, standalone. feature 3.5.0,20090423-2039
E!% cUm‘ibrn.Eruductivit:.tuuls.standalune.nl.FEature 3.5.0,20090423-2039 FLIninstaII the featurs from thE-DrUdL-IEt' izl disables e
‘eature from the current configuration and remave it From
izing Feature 1.0.0 the disk.
&3‘ IEM Content Operations Reagistry 1,5.1.20090423-0130
: @ IBM Globalization Extension Functions 1.5,1,20090423-0130 View properties of the Feature such as version, provider
: @ Shared Install Site Anchaor Feature 6,1,1 name, license agreement etc.

customizing Feature 1.0.0

[Enter Feature Description here,] More info...

Available Tasks
Disahle

‘¥ou can enable ar disable the functionality of a Feature,
The Feature is not remaved by this action.

Uninstall

Show Properties

3. Click Disable in right pane and accept the restart operation, to disable this
application. The application is not removed by this action.

To enable a disabled application, do the following steps:
1. Click File > Application > Application Management.
2. Make sure that the Show Disable Features item is selected.

L'rmework'\.ecliu:q

3. Click <Symphony Install Home>\framework\shared\eclipse, to find the custom
application that you want to view and make changes to.

Part 4. Extending Lotus Symphony 55




4. Click Enable in right pane and accept the restart operation, to enable the
selected application.

5.5 Uninstall custom Lotus Symphony application
1. Click File > Application > Application Management.

2. Click <Symphony Install Home>\framework\shared\eclipse, to find the custom
application that you want to view and make changes to.

3. Click Uninstall in right pane and accept the restart operation, to uninstall the
selected application.

56 Lotus Symphony Developer’s Guide



Part 5. The Lotus Symphony Object Model

The Lotus Symphony Object Model provides APIs to control Lotus Symphony,
such as opening documents, presentations and spreadsheets, or manipulating
tables, paragraphs, sections of a document. The Lotus Symphony Object Model
supports both Java and LotusScript on Windows and Linux. LotusScript support
for Lotus Symphony object model is only available on Lotus Notes integrated with
Lotus Symphony.

The two languages share the same models, which means that the object models in
Java and LotusScript have the same properties and methods. This part only focus
on the Lotus Symphony object model in Java.

To use Lotus Symphony object model APIs in Java, you must add plug-in
com.ibm.symphony.javaapi to the dependencies of your plug-ins.

Chapter 1. Lotus Symphony Document Object Model

1.1 Overview

The Lotus Symphony Document Object Model handles the document content. It
provides access to paragraphs, sections, tables, and fields. The following figure
shows the structure of the Lotus Symphony Document Object Model.

)]

Documents property

| Documents | J TEXlGr‘aphil:s |

A IiveDocument‘:
property |

e

A |
| I
A I TextGraphic |
1

TextParagraphs ‘

= TextTables PageStyles
: T

TextDropCap | !

fom v ‘? - "I
! o= : === \_ TE;,THEIE_ : ‘ TextHeaderFooter ‘

; B 0" : )
B e VTR e e TextTableCell< | ‘ TextTablgColumns |
‘ TextFields | | TextTableR | WV N— e e —— ;
- : : L
: I ? :
poce— oo [ | — e 'i3|'| TextTableCell ; TextTableColumn |‘
| ' = | L S T ———
: : v TbleR, AR SRR R e
|_u'l_ -_“'[e-x-til-e-lli“_”_h‘m_ _Te):l — ____‘_! ‘» Border

| TextRange H Font |

1.2 Handling Lotus Symphony documents
Creating documents

Use the following method in com.ibm.symphony.javaapi.document.Documents:

public Document addDocument(String template, boolean asTemplate,
boolean visible) throws SymphonyException

© Copyright IBM Corp. 2003, 2009 57



The parameter template is the name of the template to be used for the new
document. When template is used, parameter asTemplate is used to specify
whether to load the template for editing or create a new document based on the
template. A value of true creates a new untitled document based on the template,
and a value of false loads the template for editing. If no template is used, both true
and false create a new untitled document. The parameter visible specifies whether
to open the template or new document in a visible window or tab.

The following example creates a Symphony document base on a template visibly.

Application application = Application.getInstance();
Documents documents = application.getDocuments();
Document document = documents.addDocument("D:\\test.ott", true, true);

Accessing existing documents

The class com.ibm.symphony.javaapi.document.Documents provides a method to
access an existing Lotus Symphony Document:

public Document openDocument(String fileName,
boolean visible) throws SymphonyException

The following example opens a document visibly.

Application application = Application.getInstance();
Documents documents = application.getDocuments();
Document document = documents.openDocument("D:\\test.odt", true);

Saving and exporting documents

The class com.ibm.symphony.javaapi.document.Document provides methods to
save and export documents to other format:

public void saveDocument ()
public void exportPDF(String fileName) throws SymphonyException
public void saveAsDocument(String fileName,

String fileFormat) throws SymphonyException

Parameter fileFormat of method saveAsDocument specifies the format of the
document. The following file formats are supported :

File format File type
OpenDoc Text 1.0 .odt file
OpenDoc Text Template 1.0 .ott file
MS Word 97 .doc file
Rich Text Format rtf file
Text .txt file

The following example saves a new created document.

Application application = Application.getInstance();
Documents documents = application.getDocuments();

Document document = documents.addDocument("", true, true);
document.saveAsDocument ("C:\\work.odt", "OpenDoc Text 1.0");

58 Lotus Symphony Developer’s Guide



Application application = Application.getInstance();

Documents documents = application.getDocuments();

Document document = documents.openDocument("D:\\test.odt", true);
document.exportPDF ("C:\\work.pdf");

document.saveAsDocument ("C:\\work.doc", "MS Word 97");

Closing Document

The class com.ibm.symphony.javaapi.document.Document provides this method to
close the current document:

public void closeDocument(boolean saveChanges)

If the value of parameter saveChanges is true, the document saves changes before
closing. If it is false, the document closes without saving changes.

The class com.ibm.symphony.javaapi.document.Documents provides a method to
close all opened documents:

public void closeDocuments(boolean saveChanges)

Using documents in invisible mode

Lotus Symphony Document Object Model provides ways to control documents in
invisible mode: creating or opening document invisibly. Invisible mode is useful
when operating documents in the background without breaking the user’s view.
The following example exports an existing document to a PDF file.

Application application = Application.getInstance();

Documents documents = application.getDocuments();

Document document = documents.openDocument("D:\\test.odt", false);
document.exportPDF ("C:\\work.pdf");

1.3 Working with Lotus Symphony document
Paragraphs

In Lotus Symphony Document Object Model, you can insert and remove
paragraphs, and change the content and style of a paragraph.

Accessing paragraphs

The item method of com.ibm.symphony;javaapi.document.TextParagraphs is used
to get a paragraph of a document

The following example gets the third paragraph of the document.

Application application = Application.getInstance();

Documents documents = application.getDocuments();

Document document = documents.openDocument ("C:\\Scenario\\TextParagraph.odt", true);
TextParagraph paragraph = document.getParagraphs().item(3);

Inserting paragraph

Part 5. The Lotus Symphony Object Model 59



The com.ibm.symphony.javaapi.document.TextRange class provides a method to
insert paragraph:

public TextParagraph insertParagraph(Object tableOrSection,
boolean before) throws SymphonyException

The type of parameter tableOrSection can be
com.ibm.symphonyjavaapi.document.TextTable or
com.ibm.symphonyjavaapi.document.TextSection, which means that you can only
insert paragraphs before or after a table or a section. The following example inserts
a paragraph before a table.

Application application = Application.getInstance();

Documents documents = application.getDocuments();

Document document = documents.openDocument ("C:\\Scenario\\TextParagraph.odt", true);
TextTables tables = document.getTables();

TextTable table = tables.item(2);

TextRange range = document.getContent();

TextParagraph paragraph = range.insertParagraph(table, true);

The following example insert a paragraph after paragraph 3.

TextRange range = document.getParagraphs().item(3).getRange();
range.insertBreak(range.getEnd(), Constant.SYMPHONY TEXT BREAK PARAGRAPH);

Removing paragraph

The remove method of com.ibm.symphony.javaapi.document.TextParagraph is used
to remove the paragraph.

The following example removes the second paragraph.

document.getParagraphs().item(2).remove();

Formatting paragraph

The com.ibm.symphonyjavaapi.document.TextParagraph class has several
properties to format paragraph. The following table shows these properties:

Table 1. Properties of a paragraph object

Properties Description

AutoFirstLineIndent Specifies whether to set the first line indentation automatically. If
set to true, the first line indentation is the length of two
characters, and the property FirstLineIndent does not take effect.

BackColor The background color of the paragraph. This property only takes
effect when set BackTransparent to false.

BackTransparent Specifies whether the background is transparent.

DropCap Represents a dropped capital letter at the beginning of a
paragraph.

FirstLineIndent The indentation for the first line (in 1/100 mm). If the value is

negative, set a hanging indentation.

HoriAlignment Constant. Specifies the horizontal alignment of the paragraph.

60 Lotus Symphony Developer’s Guide



Table 1. Properties of a paragraph object (continued)

Properties Description
LineSpacing Constant. Specifies the line spacing type of a paragraph.
LineSpacingHeight Returns or sets the height in regard to the LineSpacing property.

This property only takes effect when the value of property
LineSpacing is

Constant. SYMPHONY_LINESPACING_MODE_PROP or
Constant.SYMPHONY_LINESPACING_MODE_FIX .

* The value of the property LineSpacing is
Constant. SYMPHONY_LINESPACING_MODE_PROP, the
value of the property LineSpacingHeight is a proportional
value of the line height, and the range of its value is 50-200.

* The value of the property LineSpacing is
Constant. SYMPHONY_LINESPACING_MODE_FIX, the value
of the property LineSpacingHeight is a fixed height, in 1/100
mm.

PageBreakBefore Returns or sets true to allow page breaks between this and the
following paragraph, or false to prevent page breaks between
this and the following paragraph.

Range Returns the range of the paragraph. It provides access to the text
of the paragraph, and methods to insert text in the paragraph.

The following example sets a red background color for the second paragraph, and
inserts some text at the beginning of the paragraph.

Application application = Application.getInstance();

Documents documents = application.getDocuments();

Document document = documents.openDocument ("C:\\Scenario\\TextParagraph.odt", true);
TextParagraph paragraph = document.getParagraphs().item(1);
paragraph.setAutoFirstLineIndent (true);
paragraph.setBackTransparent(false);

//set background color to red
paragraph.setBackgroundColor(application.RGB(255, 0, 0));
paragraph.setHoriAlignment (Constant.SYMPHONY_TEXT_HORI_ALIGN_LEFT);
//insert text at the beginning
paragraph.getRange().insertBefore("The beginning");

Tables

Inserting tables

The com.ibm.symphonyjavaapi.document.TextTables class provides access to tables,
and methods to insert and manipulate tables.

public TextTable item(int index) throws SymphonyException
public TextTable add(TextRange position ,int numOfRow,
int numOfColumn) throws SymphonyException

The following example add a table with five rows and five columns before the
forth paragraph.

TextRange pos = document.getParagraphs().item(4).getRange().getStart();
TextTables textTables = document.getTables();

TextTable newTextTable = textTables.add(pos, 5, 5);
newTextTable.setName("tablel");

Part 5. The Lotus Symphony Object Model 61



Accessing table objects

The com.ibm.symphony.javaapi.document.TextTable class provides access to table
rows, columns, and cells, and a method to remove tables.

public TextTableCells getCells()
public TextTableColumns getColumns()
public TextTableRows getRows()
public void remove()

The following example removes the third table.

TextTables textTables = document.getTables();
TextTable table = textTables.item(3);
table.remove();

Inserting and removing table rows

The com.ibm.symphony.javaapi.document.TextTableRows class provides methods
to access, insert and remove table rows:

public TextTableRow add(int rowIndex, int count) throws SymphonyException
public TextTableRow item(int index) throws SymphonyException
public void remove(int beginIndex, int count) throws SymphonyException

The parameter rowIndex of the add method is the index of the row before which
the new rows are inserted. The parameter count is the number of rows to be
added. The parameter beginIndex of the remove method is the index of the first
row to be removed. The parameter count is the number of rows to be removed.
The following example shows how to add and remove table rows.

TextTables textTables = document.getTables();
TextTable textTable = textTables.item(1);
TextTableRows rows = textTable.getRows();
TextTableRow row = rows.add(1, 1);
System.out.printin(rows.getCount());
rows.remove(l, 2);
System.out.printin(rows.getCount());

Inserting and removing table columns

The com.ibm.symphony.javaapi.document.TextTableColumns class provides
methods to access, insert, and remove table columns:

public TextTableColumn add(int index, int count) throws SymphonyException
public TextTableColumn item(int index) throws SymphonyException
public void remove(int beginldx, int count) throws SymphonyException

The following example shows how to add and remove table columns.

62 Lotus Symphony Developer’s Guide



TextTables textTables = document.getTables();
TextTable textTable = textTables.item(1);
TextTableColumns columns = textTable.getColumns();
//add two column before the first column
TextTableColumn column = columns.add(1l, 2);
System.out.printin(columns.getCount());
columns.remove(l, 2);
System.out.printin(columns.getCount());

Accessing table cells

The com.ibm.symphonyjavaapi.document.TextTable class provides methods to
access table cells:

public TextTableCell cell(int rowIndex, int columnIndex) throws SymphonyException
public TextTableCell cell(String name) throws SymphonyException

The following example gets a cell by row index and column index.

TextTables textTables = document.getTables();
TextTable textTable = textTables.item(1);
TextTableCell cell = textTable.cell(2, 1);

The Text, Value, and Formula properties of cell

The value of a cell can be a string value or a double value. The property Text is
used to set the string value for a cell. The property Value is used to set the double
value for a cell. The value for the Text property and Value property can overwrite
each other’s value.

* When you set the value for the Text property, the value of the Value property is
the numeric conversion value of the Text property’s value.

* When you set the value for the Value property, the value of the Text property is
the string conversion value of the Value property’s value.

For example, if we set the Text property’s value as Test, the Value property’s value
is 0; if we set the Value property’s value as 26.7, the Text property’s value is 26.7.

The property Formula is used to calculate the cell value automatically by a
formula. The following example shows how to set a formula for a cell.

TextTable table = textTables.add(document.getContent().getEnd(), 7, 5);
table.cel1(1, 2).setValue(2);

table.cel1(1, 3).setValue(3);

table.cell(1, 4).setFormula("=<Bl>*<C1>");

table.cel1(2, 2).setValue(3);

table.cel1(2, 3).setValue(4);

table.cel1(2, 4).setFormula("=<B2>*<C2>");

table.cel1(3, 2).setFormula("=Sum<B1:B2>");

Sections

The com.ibm.symphonyjavaapi.document.TextSections class provides access to
sections, and a method to insert sections:

Part 5. The Lotus Symphony Object Model 63



public TextSection add(String name, TextRange position,
int count) throws SymphonyException
public TextSection item(int index)

The parameter position is the position before which the new section is inserted.
The parameter count specifies the number of columns of the new section.

The com.ibm.symphony.javaapi.document.TextSection class provides access to the
text range of the section, sets link for a section, and a method to remove section:

public String getLink()

public void setLink(String 1ink)
public void remove()

public TextRange getRange()

The following example adds a new section, and sets the second section as the new
section’s link section.

Application application = Application.getInstance();

Documents documents = application.getDocuments();

Document document = documents.openDocument("C:\\Scenario\\TextSection.odt", true);

TextSections sections = document.getSections();

TextSection section = sections.item(1);

TextSection newSection = sections.add("New section",
document.getParagraphs().item(1).getRange(), 1);

newSection.setLink(section.getName());

newSection.setLeftIndent (500);

Field

The Lotus Symphony Document Object Model supports adding and removing user
and page number fields for documents.

The class com.ibm.symphony.javaapi.document.TextFields provides access to fields
and a method to add a field:

public TextField item( int index ) throws SymphonyException
public TextField add( TextRange position, String type,
String Name ) throws SymphonyException

The parameter position of the add method is the position of the new field. The
parameter type is the type of the field, of value User or PageNumber.

The class com.ibm.symphony.javaapi.document.TextField provides ways to remove
field, set name, content or value for the user field:

public String getContent()

public void setContent(String content)
public String getName()

public void setName(String name)
public double getValue()

public void setValue(double value)
public void remove()

The value of a user field can be a string value or a double value. The property
Content is used to set the string value for a cell. The property Value is used to set

64 Lotus Symphony Developer’s Guide



the double value for a user field. The value for the Content property and Value
property can overwrite each other’s value.

* When you set the value for the Content property, the value of the Value
property is the numeric conversion value of the Content property’s value.

* When you set the value for the Value property, the value of the Content
property is the string conversion value of the Value property’s value.

For example, if we set the Content property’s value as Test, the Value property’s
value is 0; if we set the Value property’s value as 26.7, the Content property’s
value is 26.7.

The following example adds a user field at the beginning of the fourth paragraph.

Application application = Application.getInstance();

Documents documents = application.getDocuments();

Document document = documents.openDocument ("C:\\Scenario\\TextSection.odt", true);
TextFields fields = document.getFields();

TextRange range = document.getParagraphs().item(4).getRange().getStart();
TextUserField field = fields.add(range,"User","Vendor Name");
field.setContent("Peter");

Range

The com.ibm.symphonyjavaapi.document.TextRange object is contained by all the
objects with text as its content, such as document, paragraph and section. It
provides access to the text, font, start, and end of range, and methods to insert text
at the beginning or end of a range, and a method to insert breaks and paragraphs.

Accessing the range start and end

Access the start and end of the range using the properties Start and End. The start
and end position of a range is the beginning or the end of the range of which text
length is always 0.

Inserting text, breaks and paragraphs

com.ibm.symphony.javaapi.document.TextRange provides the following methods to
insert text, breaks and paragraphs:

public void insertBefore(String text)
public void insertAfter(String text)
public void insertBreak(TextRange position, int type) throws SymphonyException
public TextParagraph insertParagraph(Object tableOrSection,
boolean before) throws SymphonyException

The following example inserts a line break at the end of the third paragraph.

TextRange range = document.getParagraphs().item(3).getRange();
range.insertBreak(range.getEnd(), Constant.SYMPHONY_TEXT BREAK_LINE);

The following example inserts a paragraph before the first table, and inserts text
for the paragraph.

Part 5. The Lotus Symphony Object Model 65



TextTables tables = document.getTables();

TextTable table = tables.item(1);

TextParagraph paragraph = document.getContent().insertParagraph(table, true);
paragraph.getRange().insertBefore("my paragraph");

Importing file

Use the method importFile in classTextRange to import a doc, txt, or odt file into a
paragraph or section.

The following example imports a txt file into a paragraph.

TextRange range = document.getParagraphs().item(2).getRange();
range.importFile("c:\\import.txt");

Selection

The class com.ibm.symphony.javaapi.document.Selection represents the current
selection of a document. It provides methods to select range, copy, cut the selected
range to a clipboard, and paste data to the selected range.

public void setRange( TextRange startRange, TextRange endRange )
public void cut()

public void copy()

public void paste()

Use the following and methods in SymphonyDocumentSelection:

SetRange(StartRange, EndRange)
Copy ()

Cut()

Paste()

The parameter startRange of the method setRange is the start position of the
selection. The parameter endRange is the end position of the selection. The
following example replaces the content of second paragraph with the content of
first paragraph.

Selection selection = document.getSelection();

TextRange range = document.getParagraphs().item(1).getRange();
selection.setRange(range.getStart(), range.getEnd());
selection.copy();

TextRange range2 = document.getParagraphs().item(2).getRange();
selection.setRange(range2.getStart(), range2.getEnd());
selection.paste();

Chapter 2. Lotus Symphony Spreadsheet Object Model

2.1 Overview

Lotus Symphony Spreadsheet Object Model handles spreadsheet documents. It
provides access to spreadsheets, sheets, DataPilot tables, chart objects, and ranges.
The following figure shows the structure of the Lotus Symphony Spreadsheet
Object Model.

66 Lotus Symphony Developer’s Guide



Lotus Symphony Spreadsheet Java Classes @

Spreadsheets property

Adtives preadsheet -

2.2 Handling Lotus Symphony spreadsheets
Creating spreadsheets

To create a Lotus Symphony spreadsheet, use the following method in the class
com.ibm.symphony.javaapi.spreadsheet.Spreadsheets:

public Spreadsheet addSpreadsheet(String template, boolean newTemplate,
boolean visible) throws SymphonyException

The parameter template is the name of the template to be used for the new
spreadsheet. When template is used, the parameter newTemplate is used to specify
whether to load the template for editing or create a new spreadsheet based on the
template. A value of true creates a new untitled spreadsheet based on the template,
and a value of false to load the template for editing. If no template is used, both
true and false create a new untitled spreadsheet. The parameter visible specifies
whether to open the template or new spreadsheet in a visible window or tab.

The following example creates a Lotus Symphony spreadsheet base on a template
in visible mode.

Spreadsheets spreadsheets = Application.getInstance().getSpreadsheets();
Spreadsheet spreadsheet = spreadsheets.addSpreadsheet("D:\\test.ots", true, true);

Accessing existing spreadsheets

The class com.ibm.symphony.javaapi.spreadsheet.Spreadsheets provides method to
access an existing Lotus Symphony spreadsheet:

Part 5. The Lotus Symphony Object Model ~ 67



public Spreadsheet openSpreadsheet(String fileName, boolean visible)
throws SymphonyException

The following example opens a spreadsheet in visible mode.

Spreadsheets spreadsheets = Application.getInstance().getSpreadsheets();
Spreadsheet spreadsheet = spreadsheets.
openSpreadsheet ("D:\\test.ods", true);

Saving and exporting spreadsheets

The class com.ibm.symphony.javaapi.spreadsheet.Spreadsheet provides methods to
save and export a Lotus Symphony spreadsheet to other formats:

public void saveSpreadsheet()

public void saveAsSpreadsheet(String fileName, String fileFormat)
throws SymphonyException

public void exportPDF(String fileName) throws SymphonyException

The parameter fileFormat of the method saveAsSpreadsheet specifies the format of
the spreadsheet to save. The following file formats are supported:

File Format File Type
OpenDoc SpreadSheet 1.0 .ods file
OpenDoc SpreadSheet Template 1.0 .ots file
MS Excel 97 Xls file
Text - txt - csv (StarCalc) .csv file

The following example saves a new spreadsheet.

Spreadsheets spreadsheets = Application.getInstance().getSpreadsheets();
Spreadsheet spreadsheet = spreadsheets.addSpreadsheet("", true, true);
spreadsheet.saveAsSpreadsheet ("c:\\work.ods", "OpenDoc SpreadSheet 1.0");

Spreadsheets spreadsheets = Application.getInstance().getSpreadsheets();
Spreadsheet spreadsheet = spreadsheets.openSpreadsheet("D:\\test.ods", true);
spreadsheet.exportPDF("C:\\work.pdf");

spreadsheet.saveAsSpreadsheet ("C:\\work.x1s", "MS Excel 97");

Closing spreadsheets

The class com.ibm.symphony.javaapi.spreadsheet.Spreadsheet provides a method to
close the current spreadsheet:

public void closeSpreadsheet(boolean saveChange)

If the value of parameter saveChange is true, the spreadsheet saves changes before
closing. If it is false, the spreadsheet closes without saving changes.

The class com.ibm.symphony.javaapi.spreadsheet.Spreadsheets provides a method
to close all opened spreadsheets:

68 Lotus Symphony Developer’s Guide



public void closeSpreadsheets(boolean saveChange)

Using spreadsheet in invisible mode

Lotus Symphony Spreadsheet Object Model provides ways to use spreadsheets in
invisible mode: creating or opening spreadsheets invisibly. The following example
exports a spreadsheet to a PDF file.

Spreadsheets spreadsheets = Application.getInstance().getSpreadsheets();
Spreadsheet spreadsheet = spreadsheets.openSpreadsheet("D:\\test.ods", false);
spreadsheet.exportPDF("C:\\work.pdf");

2.3 Working with Lotus Symphony spreadsheets
Sheets

Accessing sheets

To access the sheets of a spreadsheet, use the item method in class
com.ibm.symphony.javaapi.spreadsheet.Sheets. You can also use property Previous
and Next in the class com.ibm.symphony.javaapi.spreadsheet.Sheet to access the
previous and next sheet of current sheet.

public Sheet previous()
public Sheet next()

Insert, copy and move sheets

The class com.ibm.symphony.javaapi.spreadsheet.Sheets provides a method to
insert new sheets:

public Sheet addTo(Sheet sheet, int count, boolean beforeOrAfter)
throws SymphonyException

The parameter sheet specifies the position before or after which the new sheets are
inserted. The parameter count specifies the number of sheets to be added. The
parameter beforeOrAfter specifies whether to insert the new sheets before or after
the specified sheet.

The class com.ibm.symphony.javaapi.spreadsheet.Sheet provides methods to copy
and move sheets:

public void copyTo(Sheet pre, boolean beforeOrAfter)
throws SymphonyException

public void moveTo(Sheet sheet, boolean beforeOrAfter)
throws SymphonyException

The following example inserts a sheet before the first sheet, then copies the new
sheet after the second sheet, and then moves it after the third sheet.

Part 5. The Lotus Symphony Object Model 69



Spreadsheets spreadsheets = Application.getInstance().getSpreadsheets();
Spreadsheet spreadsheet = spreadsheets.openSpreadsheet("D:\\test.ods", true);
Sheets sheets = spreadsheet.getSheets();

sheets.addTo(sheets.item(1), 1, true);

Sheet sheet = sheets.item(1);

sheet.setName("new sheet");

sheet.copyTo(sheets.item(2), false);

sheet.moveTo(sheets.item(3), false);

Removing sheets

To remove an existing sheet, use the remove method in the class
com.ibm.symphonyjavaapi.spreadsheet.Sheet.

Protect sheet

The method protect and unProtect in the class Sheet locks and unlocks the sheet
from Ul The property Protected returns whether the sheet is locked or not.

public void protect(String password)
public void unProtect(String password)
public boolean isProtected()

The following example locks the active sheet.

spreadsheet.getActiveSheet().protect("1234");
if(spreadsheet.getActiveSheet().isProtected()){

System.out.printIn("This sheet can not be modified");
1

Importing files

The Lotus Symphony Spreadsheet Object Model supports importing data from csv
files or spreadsheet files.

To import data from a csv file, use the method importCSVFile in
com.ibm.symphony.javaapi.spreadsheet.Sheet. To import data from a spreadsheet
file, use the method importFile.

public void importCSVFile(String FileName, String fieldSeperator,
String Delimiter, int firstLine, int importMode) throws SymphonyException
public void importFile(String fileName, String SheetName,
int firstLine, int importMode) throws SymphonyException

The following example imports data from a csv file into the first sheet, and
imports data from a spreadsheet into the second sheet.

Spreadsheets spreadsheets = Application.getInstance().getSpreadsheets();

Spreadsheet spreadsheet = spreadsheets.openSpreadsheet("C:\\work.ods", true);

Sheet sheet = spreadsheet.getSheets().item(1);

sheet.importCSVFile("C:\\Scenario\\CsvFile.csv", ",", "", 1,
Constant.SYMPHONY_SHEET IMPORTMODE_NORMAL) ;

sheet = spreadsheet.getSheets().item(2);

sheet.importFile("C:\\Scenario\\Sheet.ods", "A", 3,
Constant.SYMPHONY_SHEET_IMPORTMODE_NORMAL) ;

70 Lotus Symphony Developer’s Guide



Accessing cells

Use the class com.ibm.symphony.javaapi.spreadsheet.Range to access cells of a
sheet. A Range object represents a range that contains one cell or a collection of
cells in a sheet.

The class com.ibm.symphony.javaapi.spreadsheet.Sheet provides methods to get
range objects:

public Range cells(int ronIndex, int columnIndex) throws SymphonyException
public Range columns(int index) throws SymphonyException

public Range rows(int index) throws SymphonyException

public Range range(Range rangel, Range range2) throws SymphonyException
public Range range(String name)

The method cells is used to access a cell by a column index and a row index. The
method columns and rows are used to access the cells of a row and the cells of a
column.

The method range(String name) is used to access cells by name. The parameter
name can be a name of cell, for example, “C5”, or the name of a range of cells, for

example, “A1:D5".

The method range(Range rangel, Range range2) is used to access cells between the
top-left of range rangel and top-left of range range2.

The following example shows the ways to access cells.

//get one cell by row index and column index
Range onecell = sheet.cells(5, 5);
//get all cells of column 5
Range oneColumn = sheet.columns(5);
//get all cells of row 5
Range oneRow = sheet.rows(5);
//get one cell by name
onecell = sheet.range("B15");
//get a range of cells by name
Range range = sheet.range("A2:E20");
Range rangel = sheet.range("A2:E10");
Range range2 = sheet.range("B6:F20");
//get cells between top-left of rangel and top-left of rang2
range = sheet.range(rangel, range2);

Range

The class com.ibm.symphony.javaapi.spreadsheet.Range is used to handle a cell or
a range of cells. It provides ways to set values for cells, format cells, and access the
copy-cut-paste function.

Text, Value and Formula

The value of a cell can be a string value or a double value. The property Text is
used to set the string value for a cell. The property Value is used to set the double
value for a cell. The value for the Text property and Value property can overwrite
each other’s value.

* When you set the value for the Text property, the value of the Value property is
the numeric conversion value of the Text property’s value.

Part 5. The Lotus Symphony Object Model 71



* When you set the value for the Value property, the value of the Text property is
the string conversion value of the Value property’s value.

For example, if we set the Text property’s value as Test, the Value property’s value
is 0; if we set the Value property’s value as 26.7, the Text property’s value is 26.7.

The property Formula is used to calculate values automatically by a formula. The
following example shows how to set formula for a cell.

Range range = sheet.range("B7");
range.setValue(25.4);

range = sheet.range("C7");
range.setValue(32.4);

range = sheet.range("D7");
range.setFormula("=B7+C7");
System.out.printin(range.getValue());

Formating range

A range object has several properties to format cells, as the following table shows:

Table 2. Properties of a range object

Properties Description

BackColor The background color of the range. The value for this property is the
decimal value of a color. Get the decimal value using the RGB
method in the class Application.

ColumnWidth The column width in 1/100th mm of the range. If the return value is
65537, the width of the columns are different from each other.

RowHeight The row width ( in 1/100th mm) of the range. If return 65537, the
height of rows are different from each other.

Font The font of the range.

WrapText Specifies whether to wraps text in the range.

The Range class provides two methods to format range:

public void autoFit()
public void autoFormat( String tableStyleName )

The method autoFit is used to set a reasonable size for each cell of the range
automatically. The method autoFormat is used to apply a table style for the range.
A table style is a style format defined in Lotus Symphony previously. Use item
method of the class com.ibm.symphony.javaapi.spreadsheet.TableStyles to access
table styles.

The following example automatically format a range.

Range range = sheet.range("A1:E10");

range.setText("Hello World");

range.autoFormat (spreadsheet.getTableStyles().item(2).getName());
range.autoFit();

Copy, cut , paste and replace operations

The class com.ibm.symphony.javaapi.spreadsheet.Range provides methods to copy,
cut, paste, and replace data.

72  Lotus Symphony Developer’s Guide



public void cut()

public void copy()

public void paste()

public int replace( String what, String replacement, boolean matchcase )

The following example copies a range and pastes its data to another range.

Range range = sheet.range("A101:B102");
range.setText("copy");

range.copy();

Range dst = sheet.range("C101:D102");
dst.paste();

In the following example, the word "forReplace” is changed to "replaced” matching
case.

Range range = sheet.range("Al1:B2");
range.setText ("forreplace");
range = sheet.range("C1:D2");
range.setText("forReplace");
range = sheet.range("E1:F2");
range.setText ("ForReplace");
range = sheet.range("Al:F2");

range.replace("forReplace","replaced",true);

Datapilot table

To create a DataPilot table, use the add method of the class
com.ibm.symphony.javaapi.spreadsheet.DataPilotTables.

public DataPilotTable add(Range source, String name,
Range destination) throws SymphonyException

The parameter source is the source range that contains the data. The parameter
destination is the position to display the table.

After creating a DataPilot table, use the addFields method of the class
com.ibm.symphony.javaapi.spreadsheet.DataPilotTable to add fields for the
DataPilot table:

public void addFields(String[] rowfields, String[] colfields, String[] datafields,
String[] pagefields,int function) throws SymphonyException

* rowfields, specifies that the data in the fields is added as rows.
* colfields, specifies that the data in the fields is added as columns.

* datafields, specifies that the data in the fields is used to calculate the table’s
data area.

* pagefields, specifies that the data in the fields is added in the table’s page area,
where single values from the fields can be selected.

The following example creates a DataPilot table.

Part 5. The Lotus Symphony Object Model 73



String[] rowFieldsString = { "Requested By" };

String[] colFieldsString = { "Item" };

String[] dataFieldsString = { "Total Price" };

String[] pageFieldsString = { "P.0. #" };

Range src = sheet.range("Al:E15");

Range dst = sheet.cells(13, 3);

DataPilotTable table = sheet.getDataPilotTables().add(src, "DPT_NEW",dst);

table.addFields(rowFieldsString, colFieldsString, dataFieldsString,
pageFieldsString, Constant.SYMPHONY GENERAL FUNCTION_SUM);

Chart

The class com.ibm.symphony.javaapi.spreadsheet.ChartObject handles the
embedded chart object. To add an embedded chart object, use the following
method in class com.ibm.symphonyjavaapi.spreadsheet.ChartObjects.

public ChartObject add(String name,int left, int top, int width, int height,
boolean rowHeader, boolean columnHeader) throws SymphonyException
public ChartObject add(String name,int left, int top, int width,
int height) throws SymphonyException

The chartWizard method in the class com.ibm.symphonyjavaapi.spreadsheet.Chart
creates the chart on the embedded chart object.

public void chartWizard(Range range, String gallery, int plotBy,
String title, boolean hasLegend) throws SymphonyException

The parameter range is the source range of the char. The parameter gallery is the
chart type. The following example creates a chart for the range (A1:E15).

Range range = sheet.range("Al:E15");

ChartObject chartObject = sheet.getChartObjects().add("Total Report", 6000,
8000, 8000, 6000);

chartObject.getChart().chartWizard(range, Constant.SYMPHONY_ CHART PIEDIAGRAM,
Constant.SYMPHONY_CHART _PLOTBY_COLUMNS, "total", false);

Chapter 3. Lotus Symphony Presentation object model

3.1 Overview

Lotus Symphony Presentation Object Model provides APIs to open, save, close,
and export presentations to other formats. The following figure shows the structure
of the Lotus Symphony Presentation Object Model.

74  Lotus Symphony Developer’s Guide



—{ Application

P s rdatiohs property

| Presentations |
|

fue thePresentation
property :

3.2 Handling Lotus Symphony presentations
Creating presentations

The class com.ibm.symphony.javaapi.presentation.Presentations provides a method
to create a presentation:

public Presentation addPresentation(String template, boolean newTemplate,
boolean visible) throws SymphonyException

The parameter template is the name of the template to be used for the new
presentation. When template is used, the parameter newTemplate is used to
specify whether to load the template for editing or create a new presentation based
on the template. A value of true creates a new untitled presentation based on the
template, and a value of false loads the template for editing. If no template is used,
both true and false create a new untitled presentation. The parameter visible
specifies whether to open the template or new presentation in a window or tab in
visible mode.

The following example creates a presentation base on a template in visible mode.

Application application = Application.getInstance();

Presentations presentations = application.getPresentations();

Presentation presentation = presentations.addPresentation(
"D:\\test.otp", true, true);

Accessing existing presentations

The class com.ibm.symphony.javaapi.presentation.Presentations provides a method
to access a presentation:

Part 5. The Lotus Symphony Object Model 75



public Presentation openPresentation(String fileName,
boolean visible) throws SymphonyException

The following example opens a presentation in visible mode.

Application application = Application.getInstance();
Presentations presentations = application.getPresentations();
Presentation presentation = presentations.openPresentation("D:\\test.odp", true);

Saving and exporting presentations

The class com.ibm.symphony.javaapi.presentation.Presentations provides methods
to save and export presentations to other formats:

public void savePresentation()
public void exportPDF(String fileName) throws SymphonyException
public void saveAsPresentation(String fileName,

String fileFormat) throws SymphonyException

The parameter fileFormat of the method saveAsPresentation specifies the format of
the presentation when it is saved. The following file formats are supported:

File Format File Type
OpenDoc Presentation 1.0 .odp file
OpenDoc Presentation Template 1.0 .otp file
MS PowerPoint 97 .ppt file

The following example saves a new presentation.

Application application = Application.getInstance();

Presentations presentations = application.getPresentations();

Presentation presentation = presentations.addPresentation("", true, true);
presentation.saveAsPresentation("C:\\work.odp", "OpenDoc Presentation 1.0");

Application application = Application.getInstance();

Presentations presentations = application.getPresentations();

Presentation presentation = presentations.openPresentation("D:\\test.odp", true);
presentation.exportPDF("C:\\work.pdf");
presentation.saveAsPresentation("C:\\work.ppt", "MS PowerPoint 97");

Closing presentations

The class com.ibm.symphony.javaapi.presentation.Presentation provides a method
to close the current presentation:

public void closePresentation(boolean saveChange)

If the value of parameter saveChange is true, the presentation saves changes
before closing. If it is false, the presentation closes without saving changes.

The class com.ibm.symphony.javaapi.presentation.Presentations provides a method
to close all opened presentations:

76 Lotus Symphony Developer’s Guide



public void closePresentations(boolean saveChange)

Using Presentations in invisible mode

Lotus Symphony Presentation Object Model provides ways to use presentations in
invisible mode: creating or opening presentation invisibly. The following example
exports a presentation to a PDF file invisibly.

Application application = Application.getInstance();

Presentations presentations = application.getPresentations();

Presentation presentation = presentations.openPresentation("D:\\test.odp", false);
presentation.exportPDF("C:\\work.pdf");

Part 5. The Lotus Symphony Object Model 77



78 Lotus Symphony Developer’s Guide



Part 6. Lotus Expeditor and UNO Programming

Chapter 1. Developing Lotus Expeditor applications

This information focuses on how to extend Lotus Symphony with Lotus Expeditor
and Eclipse extension points. After you understand the rich client application
model in Lotus Expeditor, you can build rich client applications based on the Lotus
Symphony APIs. A large variety of applications can be built with this application
model, for example, the Lotus Notes 8 client. Lotus Notes 8 is based on Lotus
Expeditor platform and the Lotus Symphony editor is integrated as an office
component.

The composite application model is another programming pattern provided by
Lotus Expeditor. In this model, multiple applications cooperate by using
inter-component communications. With this approach, you can aggregate several
loosely coupled views into one perspective. The property broker is used to
communicate among different views. The Lotus Symphony editor supports the
composite application programming model in Lotus Notes.

1.1. Lotus Expeditor toolkit documentation

To develop plug-ins, use the Lotus Expeditor toolkit as development environment.
You can find documentations about Lotus Expeditor from Help> Help content>
Developing applications for Lotus Expeditor.

Note: The help content is available only after you install the Lotus Expeditor
toolkit into the Eclipse development environment.

1.2. Debugging and testing applications

You can use the Lotus Expeditor toolkit’s Client Services Launcher to run and
debug applications. The Client Services Launcher is very similar to Eclipse plug-in
development tools.

For more details refer to the Lotus Expeditor Application Developer’s Guide, or
you can find the information from Eclipse at Help > Help content > Developing
applications for Lotus Expeditor > Debugging and testing applications.

1.3. Packaging and deployment for local testing

You might be required to verify your applications in a locally installed instance of
Lotus Symphony during the development phase. You will need to export your
plug-ins to the local file system, and copy them into your Lotus Symphony
installation location.

For detalils, refer to the Lotus Expeditor Application Developer’s Guide, or you can
find the information from Eclipse at Help > Help content > Developing
applications for Lotus Expeditor > Packaging and deploying applications >
Deploying projects for local testing.

© Copyright IBM Corp. 2003, 2009 79



1.4. Securing applications and data

Lotus Expeditor is a secure platform that protects your application data. This
capability is provided in the com.ibm.rcp.accounts.feature feature, which is
known as the account framework in Lotus Expeditor. It is available in a Lotus
Symphony package. The account framework provides a mechanism for you to
manage account information.

For detalils, refer to the Lotus Expeditor Application Developers’s Guide, or you
can find the information from Eclipse at Help > Help content > Developing
applications for Lotus Expeditor > Securing applications and data.

Chapter 2. UNO Programming

2.1 Getting the global service factory

The com.sun.star.lang.ServiceManager factory is the main factory in every UNO
application. It is the entrance point to the UNO world of Lotus Symphony. The
following tasks can be performed from the service manager:

* Instantiate services by their service name
* Enumerate all implementations of a certain service
* Add or remove factories for a certain service at runtime

The service manager is passed to every UNO component during instantiation.

To get the ServiceManager, use the following sample code:

80 Lotus Symphony Developer’s Guide



public static XMultiServiceFactory getServiceFactory() {
XConnection conn = ProductivityToolsUtil.getUNOConnection();
XBridge mBridge;
try {
XComponentContext _ctx = com.sun.star.comp.helper.Bootstrap
.createlnitialComponentContext(null);
Object x = _ctx.getServiceManager().createInstancelithContext(
"com.sun.star.bridge.BridgeFactory", ctx);
XBridgeFactory xBridgeFactory = (XBridgeFactory) UnoRuntime
.queryInterface(XBridgeFactory.class, x);

// create a nameless bridge with no instance provider

try {

mBridge = xBridgeFactory.createBridge("SODC_Bridge", "urp",
conn, null);

} catch (BridgeExistsException beexp) {

mBridge = xBridgeFactory.getBridge("SODC_Bridge");

}

// get the remote instance

x = mBridge.getInstance("StarOffice.ServiceManager");

// Did the remote server export this object?
if (null == x)
return null;

// Query the initial object for its main factory interface

XMultiComponentFactory xOfficeMultiComponentFactory =
(XMultiComponentFactory) UnoRuntime .queryInterface
(XMuTtiComponentFactory.class, x);

// Retrieve the component context
// Query on the XPropertySet interface.

XPropertySet xProperySet = (XPropertySet) UnoRuntime
.queryInterface(XPropertySet.class,
x0fficeMultiComponentFactory);

// Get the default context from the editor service.

Object oDefaultContext = null;
try {
oDefaultContext = xProperySet
.getPropertyValue("DefaultContext");
} catch (UnknownPropertyException e) {
e.printStackTrace();
} catch (WrappedTargetException e) {
e.printStackTrace();
1
if (oDefaultContext == null)
return null;
XComponentContext context = (XComponentContext) UnoRuntime
.queryInterface(XComponentContext.class, oDefaultContext);

return (XMultiServiceFactory) UnoRuntime.queryInterface(
XMultiServiceFactory.class, context.getServiceManager());
} catch (Exception e) {
e.printStackTrace();
1
return null;

}

Part 6. Lotus Expeditor and UNO Programming



2.2 Using the import and export functions

The import and export functions are common in all three applications inside Lotus
Symphony. For different kinds of document types, there can be a different UNO
interfaces to support loading and saving operations.

The following sections detail the common interface used in all three applications
and the specific document types that can have special interface support.

Loading new or existing components
The desktop can load new and existing components from a URL. The

com.sun.star. frame.XComponentLoader interface has one method to load and
instantiate components from a URL into a frame:

com.sun.star.lang.XComponent loadComponentFromURL([in] string aURL,
[in] string aTargetFrameName, [in] Tong nSearchFlags,
[in] sequence< com.sun.star.beans.PropertyValue > aArgs );

The URL is used to describe which resource should be loaded and in what
sequence to load the arguments. For the target frame, pass "_blank” and set the
search flags to 0 to open a new frame. In most cases you do not want to reuse an
existing frame.

The URL can be of these types: file:, http:, ftp:, or private:. For new documents, a
special URL scheme is used. The scheme is private:, followed by factory as the host
name. The resource is swriter for word processor documents. For example, a new
word processor document, uses private:factory/swriter.

Storing documents

Documents are stored through their interface com.sun.star.frame.XStorable.

void storeAsURL( [in] string aURL,

sequence< com.sun.star.beans.PropertyValue > aArgs)
void storeToURL( [in] string aURL,

sequence< com.sun.star.beans.PropertyValue > aArgs)

The method storeAsUrl() is the exact representation of a File > Save As operation,
that is, it changes the current document location. In contrast, the method
storeToUr1() stores a copy to a new location, but leaves the current document
URL untouched.

For exporting purposes, a filter name can be passed to storeAsURL() and
storeToURL() that triggers an export operation to other file formats.

/** Store a document, using the MS Word 97/2000/XP Filter =/
protected void storeDocComponent (XComponent xDoc, String storeUrl)
throws Exception {
XStorable xStorable = (XStorable)UnoRuntime
.queryInterface(XStorable.class, xDoc);
PropertyValue[] storeProps = new PropertyValue[1];
storeProps[0] = new PropertyValue();
storeProps[0] .Name = "FilterName";
storeProps[0].Value = "MS Word 97";
xStorable.storeAsURL(storeUrl, storeProps);

82 Lotus Symphony Developer’s Guide



Exporting documents and drawing objects

Writer documents and Spreadsheet documents can be exported as HTML format
files. Presentation documents can export drawing objects as graphics through the
com.sun.star.drawing.GraphicExportFilter interface. After getting a
GraphicExportFilter from the ServiceManager, use its XExporter interface to
inform the filter which page, shape, or shape collection to export.

Functions in this interface include:

void setSourceDocument ( [in] com.sun.star.lang.XComponent xDoc)
boolean filter( [in] sequence< com.sun.star.beans.PropertyValue > aDescriptor)
void cancel()

The aDescriptor parameter in the filter function holds all the necessary
information about the document, such as document title, author, file name, URL,
and version. All such properties are organized in a
com.sun.star.beans.PropertyValue[] array.

Followings are some sample code for exporting function, exporting ODT and ODS
files to HTML; ODP to JPEG image files:

1. Get a file’s XComponent from a file path.

When exporting a document to whatever format, first get this file’s
com.sun.star.lang.XComponent object. The following sample code shows how
to get the ServiceManager as mentioned above:

[x%
* get document Xcomponent object.
*
* @param  sourceFile file path
*/

public static XComponent getXComponent(String sourceFile) {

XMultiServiceFactory xServiceFactory = getServiceFactory();
XComponent component = null;

try {
Object object = xServiceFactory
.createlnstance("com.sun.star.frame.Desktop");

XComponentLoader loader = (XComponentLoader) UnoRuntime
.queryInterface(XComponentLoader.class, object);

PropertyValue[] aArgs = new PropertyValue[l];

aArgs[0] = new PropertyValue();

aArgs[0] .Name = "Hidden";

aArgs[0] .Value = new Boolean(false);

String sourceURL = new String("file:///")
+ sourceFile.replace('\\', '/');

object = Tloader.loadComponentFromURL (sourceURL, " blank",
FrameSearchFlag.CREATE, aArgs);

component = (XComponent) UnoRuntime.queryInterface(
XComponent.class, object);

} catch (Exception e) {
e.printStackTrace();
}

return component;

}

Part 6. Lotus Expeditor and UNO Programming 83



2. Convert Lotus Symphony documents (odt, ods) file to a HTML file.

[ x*
* convert given document format into HTML format.
*
* @param  xDocument  document which should be exported
* @param  filepath target path for converted document
*/
Public static void convertToHTML(XComponent xDocument, String filepath){
try {
XServiceInfo xInfo = (XServiceInfo)UnoRuntime.queryInterface(
XServiceInfo.class, xDocument);

if(xInfol=null) {
// Find out possible filter name.
String sFilter = null;
if(xInfo.supportsService("com.sun.star.text.TextDocument"))
sFilter = new String("HTML (StarWriter)");
else if(xInfo.supportsService("com.sun.star.text.WebDocument"))
sFilter = new String("HTML");

else if (xInfo.supportsService("com.sun.star.sheet.SpreadsheetDocument"))
sFilter = new String("HTML (StarCalc)");

// Check for existing state of this filter.
if(sFilter!=null){
XMultiServiceFactory xSMGR = ServiceFactory.getServiceFactory();

XNameAccess xFilterContainer = (XNameAccess)UnoRuntime.
queryInterface(XNameAccess.class,
xSMGR.createInstance("com.sun.star.document.FilterFactory"));

if(xFilterContainer.hasByName(sFilter)==false)
sFilter=null;
1

// Use this filter for export.
if(sFilter!=null) {

PropertyValue[] 1Properties = new PropertyValue[2];
1Properties[0] = new PropertyValue();
1Properties[0] .Name = "FilterName";
1Properties[0].Value = sFilter;
1Properties[1] = new PropertyValue();
1Properties[1].Name = "Overwrite";
1Properties[1].Value = Boolean.TRUE;

XStorable xStore = (XStorable)UnoRuntime.
queryInterface(XStorable.class, xDocument);
String sourceURL = new String("file:///") +
filepath.replace('\\', '/');
xStore.storeAsURL (sourceURL,1Properties);
}
}
} catch(Exception ex){
ex.printStackTrace();
1

84 Lotus Symphony Developer’s Guide



3. Convert current presentation document page as a JPEG image.

[x%

* convert given presentation page into a JPEG iamge.

*

* @param  xDocument document which should be exported
* @param  nPagelndex the page's index

* @param filepath target path for converted document
*/

public static void exportJPEG(XComponent xComponent, int nPageIndex,
String filepath) {
try {
XMultiServiceFactory xServiceFactory = ServiceFactory
.getServiceFactory();
Object GraphicExportFilter = xServiceFactory
.createlnstance(GraphicExportFilter)
XExporter xExporter = (XExporter) UnoRuntime.queryInterface(
XExporter.class, GraphicExportFilter);

PropertyValue aProps[] = new PropertyValue[2];
aProps[0] = new PropertyValue();

aProps[0] .Name = "MediaType";

aProps[0].Value = "image/jpeg";

//some graphics,for example, the Windows Metafile does not have a

//Media Type, for this case aProps[0].Name = "FilterName";

//it ispossible to set a FilterName aProps[0].Value = "WMF";
java.io.File destFile = new java.io.File(fileName);
StringBuffer destUrl = new StringBuffer("file:///");
destUrl.append(destFile.getCanonicalPath().replace('\\"','/"'));

aProps[1] = new PropertyValue();
aProps[1] .Name = "URL";
aProps[1].Value = destUrl.toString();// args[ 1 1;

if (nPageIndex < getDrawPageCount (xComponent)&&nPageIndex >=0) {
XDrawPage xPage = getDrawPageByIndex(xComponent, nPagelndex);
XComponent xComp = (XComponent) UnoRuntime.queryInterface(
XComponent.class, xPage);

xExporter.setSourceDocument (xComp) ;
XFilter xFilter = (XFilter) UnoRuntime.queryInterface(
XFilter.class, xExporter);
xFilter.filter(aProps);

}

} catch (Exception ex) {
ex.printStackTrace();

}

If you need to specify the exported JPEG image size, add the size information
to the filter’s property. The code snippet is as following:

Part 6. Lotus Expeditor and UNO Programming 85



PropertyValue aProps[] = new PropertyValue[3];

aProps[0] = new PropertyValue();
aProps[0] .Name = "URL";
aProps[0].Value = destUrl.toString();// args[ 1 1;

aProps[1] = new PropertyValue();
aProps[1] .Name = "FilterName";
aProps[1].value = "JPG";

PropertyValue aFilterData[] = new PropertyValue[2];
aFilterData[0] = new PropertyValue();
aFilterData[0] .Name = "PixelWidth";
aFilterData[0].Value = new Integer(width);
aFilterData[l] = new PropertyValue();
aFilterData[1] .Name = "PixelHeight";
aFilterData[1l].Value = new Integer(heigth);

// use the FilterData hold the export image size infomation
aProps[2] = new PropertyValue();

aProps[2] .Name = "FilterData";

aProps[2].Value = aFilterData;

Using the print function

Lotus Symphony documents, spreadsheets and presentations all provide the
print-related interface com.sun.star.text.XPagePrintable, and the print-related
properties com.sun.star.view.PrinterDescriptor and
com.sun.star.view.PrintOptions. Specifically, Lotus Symphony documents
support printing multiple pages on one page by setting the property
com.sun.star.text.PagePrintSettings. Lotus Symphony spreadsheets provide
access to the addresses of all printable cell ranges by the interface
com.sun.star.sheet.XPrintAreas. Lotus Symphony presentations have some
specific properties to define if the notes and outline view should be printed by
com.sun.star.presentation.DocumentSettings. For detailed information, refer to
the OpenOffice.org SDK.

2.3 Text documents

In the Lotus Symphony Documents API, a text document is a document model
that is responsible for managing text contents, through which you can understand
how the basic data is organized and represented in the graphical user interface.

You have to work with the model directly, when you want to change it through the
Lotus Symphony API to develop applications for your own usage. The model is
similar with OpenOffice 1.1, which also has a controller object that is used to
manipulate the visual representation of the document in the view areas instead of
being used to change a document.

The model is different from the controller, and we discuss the parts of a text
document model in the Lotus Symphony API and emphasize some differences
between Lotus Symphony documents API and OpenOffice 1.1 Writer APIL. To the
parts that are the same, we provide a reference to OpenOffice 1.1 development
guide directly.

The text document model in the Lotus Symphony API has these major architectural
areas that are the same as OpenOffice 1.1 APL

» Text (core content)

86 Lotus Symphony Developer’s Guide



* Service manager (document internal)

¢ Draw page

 Text content suppliers (drawing objects)

* Text content suppliers (access content)

* Objects for styling and numbering (document wide)

The text is the core of the text document model. It consists of characters organized
in paragraphs and other text contents.

The service manager of the document model is responsible for creating all text
contents for the model, except for the paragraphs. And each document model has
its own service manager, such as the spreadsheet document model and
presentation document model. Almost all of the text contents in a text document
can be retrieved from text content suppliers which are provided by the model,
except the drawing shapes that can be found on the draw page.

The draw page is floating over the text and it is responsible for drawing contents.
Drawing contents can affect the layout of the text around it, such as wrap types.

There are also services that are for document-wide text styles and structures. The
style family suppliers are provided to customize document-wide paragraphs,
characters, pages and numbering patterns, and suppliers for line and outline
numbering.

For more ideas, refer to the Illustration 7.1 Text Document Model of the OpenOffice
1.1 Development Guide.

Word processing

The document model provides the XTextDocument interface to work with text
through the method getText(). It returns a com.sun.star.text.Text service that
handles text in Lotus Symphony documents. The text service provides interface
XText and interface XEnumerationAccess. XText is responsible for editing a text and
XEnumerationAccess is responsible for iterating over text. This part is almost the
same as OpenOffice 1.1 with following exceptions. Developers can refer to section
7.3.1 Text Documents - Working with Text Documents - Word Processing of OpenOffice
1.1 Development Guide.
* Editing text
Method setAttributes() of
com.sun.star.accessibility.XAccessibleEditableText might not work because
the valid char index range of a character string might be beyond the length of
the string.

* Inserting text files

Currently, Lotus Symphony documents does not support this function.
Developers can create unexpected issues while using the associated APIs
provided by OpenOffice 1.1.

e Auto text

The auto text function can be used to organize reusable texts, which is the same
as OpenOffice 1.1.

Part 6. Lotus Expeditor and UNO Programming 87



Formatting

Lotus Symphony documents formatting is the same as OpenOffice 1.1. Refer to
section 7.3.2 Text Documents - Working with Text Documents - Formatting of the
OpenOffice 1.1 Development Guide.

Navigating

There are types of model cursors provided to navigate characters, words,
sentences, or paragraphs. The com.sun.star.text.TextCursor service is a good
example of a model cursor that is based on the interface
com.sun.star.text.XTextCursor.

The text view cursor enables you to navigate over the document in the view by
character, line, screen page, or document page. There is only one text view cursor.
The information about the current layout, such as the number of lines and page
number must be retrieved at the view cursor. The text view cursor is a
com.sun.star.text.TextViewCursor service that includes the service
com.sun.star.text.TextLayoutCursor.

Simultaneously, the text document model provides various suppliers that retrieve
all text contents in a document. Refer to section 7.3.3 Text Documents - Working with
Text Documents - Navigating of the OpenOffice 1.1 Development Guide.

Note: In certain scenarios, the interface com.sun.star.text.XSentenceCursor might
not work when the methods isStartOfSentence() or isEnd0fSentence() are
called.

Tables

Lotus Symphony tables are text contents and consist of rows, rows consist of one
or more cells, and cells can contain text or rows. It is the same as OpenOffice 1.1
and there is no logical concept for columns. Refer to section 7.3.4 Text Documents -
Working with Text Documents - tables of the OpenOffice 1.1 Development Guide.

Note: Lotus Symphony documents enhanced the table to span pages that might
have certain influences when using table-related APIs.

The method insertByIndex() of the com.sun.star.table.XTableColumns interface
might not work because the design considers that inserting a column into a table
should not be beyond the column range of the table. This limitation means that
after the index number of insertion is beyond the range of the columns, the new
column is appended after the last column of the table.

The method removeByIndex() of the com.sun.star.table.XTableColumns interface
might not work because the prior limitation affects the column count of the table,
and leads to the failure.

The method autoFormat () of com.sun.star.table.XAutoFormattable might not
work when a table is formatted automatically. The auto-format item named
"default” and some other auto-format items are selected randomly from the
com.sun.star.sheet.TableAutoFormats service. After that, the results of two
auto-formats should be checked to determine whether they are the same or not. In
certain scenarios, the only one auto-format item named “default” is retrieved from
com.sun.star.sheet.TableAutoFormats service, which is the same as the former
one.

88 Lotus Symphony Developer’s Guide



Text fields

Text fields are text contents that are used to add another level of information to
text ranges. Usually their appearance fuses together with the surrounding text, but
actually the presented text comes from elsewhere and is generated only while
being painted. The types of Lotus Symphony fields are less than OpenOffice 1.1.
Lotus Symphony documents field commands only support insertion of the current
date, time, page number, total page numbers, and user field. If you use other
services described in OpenOffice 1.1 Development Guide, they might create
unexpected issues.

Fields are created through the com.sun.star.Tang.XMultiServiceFactory and are
inserted through the TextContent (). The following text field services are available:

e com.sun.star.text.textfield.DateTime. Show a date or time value.

* com.sun.star.text.textfield.PageCount. Show the number of pages of the
document.

» com.sun.star.text.textfield.PageNumber. Show the page number (current,
previous, next).

e com.sun.star.text.textfield.User. Variable - User Field. Creates a global
document variable and displays it whenever this field occurs in the text. This
service depends on com.sun.star.text.FieldMaster.User.

All fields support the interfaces com.sun.star.text.XTextField,
com.sun.star.util.XUpdatable, com.sun.star.text.XDependentTextField and the
service com.sun.star.text.TextContent. The method getPresentation() of the
interface com.sun.star.text.XTextField is used to generate the textual
representation of the result of the text field operation, such as a date, time, variable
value of user field or TIME (fixed), depending on the Boolean parameter.

The method update() of the interface com.sun.star.util.XUpdatable affects only
the following field types:

e Date and time fields are set to the current date and time.

¢ The ExtendedUser fields that show parts of the user data set for Lotus
Symphony, such as the user fields that are set to the current values.

* All other fields ignore calls to update().

It is the same as OpenOffice 1.1 and some of these fields need a field master that
provides the data that displays in the field. This requirement applies to the field
types User. Refer to the section 7.3.5 Text Documents - Working with Text Documents
— Text Fields of OpenOffice 1.1 Development Guide.

Bookmarks

A bookmark is a kind of text content that marks a position inside of a paragraph
or a text selection that supports the com.sun.star.text.TextContent service. The
text document model provides the interface

com.sun.star.text.XBookmarksSupplier to retrieve and collect the bookmarks.

Refer to section 7.3.6 Text Documents - Working with Text Documents - Bookmarks of
the OpenOffice 1.1 Development Guide.

Part 6. Lotus Expeditor and UNO Programming 89



Indexes and index marks

Indexes are also a kind of text content that centralize the information which is
dispersed over the document. Index marks are another kind of text content which
is the same as OpenOffice 1.1.

Refer to section 7.3.7 Text Documents - Working with Text Documents — Indexes and
Index Marks of the OpenOffice 1.1 Development Guide.

Note: Lotus Symphony documents do not feature a bibliographical index. The
Table of Contents function of Lotus Symphony documents has been enhanced,
which can influence the result of the related APIs.

Reference marks

A reference mark is a kind of text content that is acting as the target for the
com.sun.star.text.textfield.GetReference text fields. These text fields can show
the contents of reference marks in a text document and allow the user to jump to
the reference mark.

Refer to section 7.3.8 Text Documents - Working with Text Documents — Reference
Marks of the OpenOffice 1.1 Development Guide.

Note: Lotus Symphony does not support
the com.sun.star.text.textfield.GetReference field. You might encounter
unexpected issues when using the related APlIs.

Footnotes and endnotes

Footnotes and endnotes are a kind of text content that are responsible for
providing background information to the users on page footers or at the end of a
document. The footnotes and endnotes of Lotus Symphony documents are the
same as OpenOffice 1.1. Refer to section 7.3.9 Text Documents - Working with Text
Documents — Footnotes and Endnotes of the OpenOffice 1.1 Development Guide.

Shape objects in text

Shape objects are text contents that act independently of the ordinary text flow.
Shape objects can float in front or behind text, and be anchored to paragraphs or
characters in the text or page. It is the same as OpenOffice 1.1 and there are two
different kinds of shape objects in Lotus Symphony: base frames and drawing
shapes. Refer to section 7.3.10 Text Documents - Working with Text Documents — Shape
objects in Text of the OpenOffice 1.1 Development Guide.

Overall document features
Styles

Styles apply document-wide and can differentiate segments in a document that are
commonly formatted, and separate this information from the actual formatting. It
is a good way to unify the appearance of a document, and customize the
formatting of a document by altering a style, instead of using local format settings
after the document has been completed. Styles are sets of attributes that can be
applied to text or text contents in a text document in a single step.

90 Lotus Symphony Developer’s Guide



Refer to section 7.4.1 Text Documents - Overall Document Features — Styles in Text of
the OpenOffice 1.1 Development Guide.

Line and outline numbering

Line and outline numbering is the same as OpenOffice 1.1 and Lotus Symphony
provides automatic numbering for texts. For instance, paragraphs can be numbered
or listed with bullets in a hierarchical structure, chapter headings can be numbered
and lines can be counted and numbered. Refer to section 7.4.3 Text Documents -
Owerall Document Features — Line Numbering and Outline Numbering in Text of the
OpenOffice 1.1 Development Guide.

Text section

It is the same as OpenOffice 1.1. A text section is a range of complete paragraphs
that can have its own format settings and source location. Refer to section 7.4.4
Text Documents - Overall Document Features — Text Sections in Text of the OpenOffice
1.1 Development Guide.

Page layout

The Lotus Symphony page layout is the same as OpenOffice 1.1. Refer to the
section 7.4.5 Text Documents - Overall Document Features —Page Layout of the
OpenOffice 1.1 Development Guide.

Text document controller

The text document controller provides access to the graphical user interface for the
model and has knowledge about the current view status in the user interface. Refer
to section 7.5 Text Documents - Text Document Controller of the OpenOffice 1.1
Development Guide.

Text view

Text view is the same as OpenOffice 1.1. Refer to the section 7.5.1 Text Documents -
Owerall Document Features — Text Document Controller - TextView of the OpenOffice
1.1 Development Guide.

TextViewCursor

TextViewCursor is the same as OpenOffice 1.1. Refer to the section 7.5.2 Text
Documents - Overall Document Features — Text Document Controller - TextViewCursor of
the OpenOffice 1.1 Development Guide.

2.4 Spreadsheets

Spreadsheet documents derive all UNO APIs from OpenOffice.org 1.1.0. The
exposed APIs are almost the same as OO01.1.0. Comparing to OO01.1.0, functional
quality has been improved on the core function, so that the API quality is
enhanced accordingly when interfaces remain. Several APIs have been added or
changed.

Different spreadsheet elements are presented by different interfaces in different
services.

Operations of spreadsheet documents are mainly in those interfaces :

Part 6. Lotus Expeditor and UNO Programming 91



e com.sun.star.sheet.SpreadDocument. Whole document

* com.sun.star.sheet. XSpreadsheet. Sheet

* com.sun.star.frame.XStorable. Document saving and exporting

* com.sun.star.view.XPrintable. Document printing

* com.sun.star.util. XProtectable. Contains methods to protect and unprotect

spreadsheet with a password, and also including text in cells, cell ranges, table
rows, and columns

Operations of single cells are in these interface:
* com.sun.star.sheet.SheetCell. Used to present cell object
* com.sun.star.table.CellProperties . Used to format cells

Operations of cell range are in these interface: The service
com.sun.star.sheet.SheetCellranges contains most of the interface of a cell range. A cell
range can be named with com.sun.star.container. XNamed.

Operations on cell ranges are covered by com.sun.star.util. XReplaceable(Search, Find
and Replace), com.sun.star.table.TableSortDescriptor(Sort),
com.sun.star.sheet.SheetFilterDescriptor(Filter),
com.sun.star.sheet.SubtotalDescriptor(Subtotal functions). The spreadsheet interface
com.sun.star.sheet. XSheetOutline contains all the methods to control the row and
column outlines of a spreadsheet.

User interface refresh

A spreadsheet document often gets a cell value by invoking an API. Compared to
filling in the cell value manually, the API updates cell values more frequently,
which can cause the update of a large range of spreadsheet cells because of cross
referencing among cells. To resolve this issue, use this method:

interface XCel1Range;

void SyncDocument([in] boolean bEnable)

Note: This method is used to resolve the performance issue when changing the
values of a number of cells by the UNO API. This method must be called in pairs.
When SyncDocument is disabled, only cells that have a value changed are updated
in user interface. All of the formulas or charts depending on this cell do not get

refreshed until SyncDocument is enabled.

Sample code:

/**whether to sync document data and update document status when changing
% content in cells. SyncDocument (FALSE) and SyncDocument(TRUE) should be called

* in pairs.

* @param bEnable

* when bEnable is TRUE, it will sync immediately and set document modified.

* when FALSE, some data and UI don't update immediately when changing content in
* cells.

*/

SyncDocument (FALSE); //disable to update some of UI and document data
for(i=0;i<100;1++)

setcell(a, i, 1);

SyncDocument (TRUE); //enable and update immediately.

92 Lotus Symphony Developer’s Guide



Import external data from a file

Interface XArealinks;

insertAtPosition([in] com.sun.stat.Table.CellAddress aDestPos,

[in] string aFileName,

[in] string aSourceArea,
[in] string aFilter,

[in] string aFilterOptions,
[in] boolean bLink);

A new parameter, bLink, is added to this method. When bLink == True, the source
area is inserted to aDestPos with linkage kept. When bLink == False, only the
value is inserted.

Do not use the following UNO APIs because they have not been fully tested:
Interface and methods in service com.sun.star.sheet.DDELinks.

Interface and methods in service
com.sun.star.sheet.DatabaseImportDescriptor.

Interface and methods in service com.sun.star.sheet.Scenarios.
Methods in interface com.sun.star.sheet.XSheetAuditing.
Methods to import data from a Web server.

Charts

In Lotus Symphony, charts are always embedded objects inside other Lotus
Symphony documents. The chart document UNO API is almost the same as
OpenOffice.org 1.1.0. Like the spreadsheet document, enhancements have been
added in the Lotus Symphony core function, which improves the API quality.

Charts can be added into spreadsheet documents with data in a cell range. In a
presentation document or a writer document, a chart can be added as an OLE
shape. The Lotus Symphony chart API provides the capability of creating charts,
accessing existing charts, and modifying chart properties and elements. Ideally all
the operations which can be accomplished with Ul can be done by API (refer to
OpenOffice.org 1.1.0 Developer’s Guide). Because of core function, the operations
are not supported by the APIs with discrete data source in spreadsheet.

Part 6. Lotus Expeditor and UNO Programming 93



94 Lotus Symphony Developer’s Guide



Part 7. Sample plug-ins

First, you need verify the Lotus Symphony development environment on Eclipse
as following steps:

1. Set up the Lotus Symphony development environment according Lotus
Symphony Developer’s Guide provided by the toolkit.

2. Click Run from the toolbar to launch Lotus Symphony. If the Run option is
disabled, select Run > Run Configuration to open the runtime configuration
window. Select Client Services > Symphony and then click the Run button. If
asked whether you want to clear the runtime workspace, select Yes.

-l g %0 -Q- 2 G-

R

3. When the Lotus Symphony window open, click File > New > Document .

_ _ : aEE|
File Edit V¥iew Create Tools Table Layout Window Help

B EH ® -6 € XL D |Elcrte-|H @ ¢ || |Default Text [ ¢
LB 2 B b By i (@) Text Properties B

e 2 A Fort
‘_ Font: Size:

f |Times Hew Roma‘||12 |
Style: Font color:

|Regular ”Default i
Background color:

Defamit [

s © &l Effects

- Underlining: Color:

_ !None @Hﬂefault |
|.n Strikethrough; Options:

— !None | |Sentencz |

‘-D Empha=is mark: Fosition:

[ - |

: ] Home ||Above e | @
t— —

[ | ot s

=

Pagel 1/1] | a1 Col 1 ﬁ@lﬂefault |_

This window is the standard Lotus Symphony document editor. In the next
section you will add an Eclipse plug-in to the development environment and
test that it works.

Select File > Exit to close the runtime instance of Lotus Symphony before
continuing.

© Copyright IBM Corp. 2003, 2009 95



Chapter 1. Hello World sample plug-in

1.1 Creating a new plug-in
Launch the Eclipse development environment
1. Click File > New > Project .
2. Select Plug-in Project , and click Next .

3. Type com.ibm.productivity.tools.samples.helloworld in the Project name
field. Click Next.

4. Type a descriptive name in the Plug-in Name field, for example, hello world
sample.

5. Click Finish.

1.2 Adding the plug-in dependency

The following table lists some of the plug-in dependencies used by the document
library, plug-in names are abbreviated:

Plug-in Description

org.eclipse.core.runtime, org.eclipse.ui |Eclipse core plug-ins

com.ibm.productivity.tools.ui.views Lotus Symphony API plug-in
com.ibm.productivity.tools.core

Perform the following steps to add the plug-in dependency.
1. Click the Dependencies tab of the Hello world plug-in manifest.
2. Click Add.
3. Add the following plug-ins:
¢ com.ibm.productivity.tools.ui.views
* com.ibm.productivity.tools.core

Note: Add these plug-in dependencies to the MANIFEST.MF file, which defines the
plug-in. You can see the contents of this file by turning to the Plug-in Manifest
Editor’s MANIFEST.MF tab:

Require-Bundle: org.eclipse.ui,
org.eclipse.core.runtime,
com.ibm.productivity.tools.ui.views,
com.ibm.productivity.tools.core

1.3 Adding a side shelf element
1. Click the Extensions tab.
Click Add.
Add the followings extension:com.ibm.rcp.ui.shelfViews.
Click Finish.
Right-click the added extension and select New > shelfView.

A

96 Lotus Symphony Developer’s Guide



Extensions

All Extensions

i= Extension. ..

Extension Dat| o> Go Into
Set the propert|

ID: ‘ 1 Collapse All 3
Name ‘ Cut —
—_— Conw :

Selecting this menu choice adds a shelfview element to the extension
declaration. Select the newly added element and note that the Extension

Element Details is updated to show the possible attributes. Fill in the fields as
shown below.

Extensions

All Extensions

[=)-42= com. 1bm. rep. ui. shelf¥iews

m com. ibm. productivity. tools samples. helloworld. shelfview (shelfView)
[#1= org. eclipse.ui. views

Extension Element Details
Set the properties of “shelfView”

1dk: ‘com. ibm. productivity. toels. samples. helloworld. shelfwiew
viewk ‘com. ibm. productivity. tools. samples. helloworld. view
reagion: _TDP

page RIGHT

showTitle: |true

The asterisk (*) indicates a required attribute. One of particular importance is
the class attribute which indicates the Java class that will implement the
shelfview’s behavior (that is, this class defines what the side shelf area will
contain and how it will respond to user events).

6. Click the plugin.xml tab

Part 7. Sample plug-ins 97



7. Copy and paste the following into the plugin.xml file.

<extension
point="org.eclipse.ui.views">
<category
name="Helloworld Category"

id="com.ibm.productivity.tools.sample">
</category>

<view
name="Hello World"
jcon="resource/Helloworld.gif"
category="com.ibm.productivity.tools.sample"

class="com.ibm.productivity.tools.samples.helloworld.ShelfView"

id="com.ibm.productivity.tools.samples.helloworld.view">
</view>

</extension>

The view attribute of the <shelfView> tag in the com.ibm.rcp.ui.shelfViews
extension must match the id attribute of the <view> tag in the
org.eclipse.ui.views extension exactly. That is, the side-shelf content is
defined by the extensions <view> / <shelfView> pairs.

The prior steps adds a new Eclipse ViewPart to the platform. You can create

your plug-in extensions with Manifest Editor or enter the specifications directly
in the plugin.xml file.

Right-click the package com.ibm.productivity.tools.samples.helloworld in
Package Explorer, and then click New > Class.

m\l_ﬁ ——

Havigator

= E] -@: com. 1bm. productivity. tools. sample hell

1<?xml wersion="1.0" encodinc

1 A Z<?eclipse wersion="3i. 2"
T Projact...
[3 rezource o Inta -
& JEE Syztem Library [jelle X . B§> ackage
i ! Open in Hew Window =
t =), Plugz-in Dependencies

ﬂ+ Cla==
#i-(Z META-IHF Open Type Hierarchy F4

ﬁlnterface
J'T_T_\ﬁ build properties |IZ) Copy Ctrl+C @ Enum
4 plugin xnl B2 Copy Qualified ane @ Annotation

9. Input the class information as follows. You can click the Browse to search the
superclass of org.eclipse.ui.part.ViewPart.

98 Lotus Symphony Developer’s Guide



— New Java Class \z

Java Class —
Create a mew Jawa class. ( - ;
Source folder: com. ibm. productivity. tools. samples. helloworld/=sre
Fackage: com, 1bm. productiwvity, tools. samples, helloworl

DEnclosing type;

Fame: ShelfView
Modi fiers: (¥ public () default
Dabsgract Dfina:l_.

Superclass: Gorg. eclipse. ui. part. ViewFart|
Interfaces: add

Which method stubs would wou like to createf?
Dpu'hlic static void mainEtring[] args)
Dgonstructors from superclass
Inl_'nerited abstract methods
Do wou want to add comments as configured in the properties of the cwrrent project?

|:| Generate comments

[:‘?:] [ Finizh ] [ Cancel

A new Eclipse ViewPart named ShelfView is created in the
com.ibm.productivity.tools.samples.helloworld package.

1.4 Running the application

1. Check your plug-in.

Before running the application, take a look at the plugin.xml file and the newly
created class.

Part 7. Sample plug-ins 99



The plugin.xml file is like the following:

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.2"?>
<plugin>
<extension
point="com.ibm.rcp.ui.shelfViews">
<shelfView
id="com.ibm.productivity.tools.samples.helloworld.shelfview"
page="RIGHT"
region="BOTTOM"
showTitle="true"
view="com.ibm.productivity.tools.samples.helloworld.view"/>
</extension>

<extension
point="org.eclipse.ui.views">
<category
name="Helloworld Category"
id="com.ibm.productivity.tools.sample">
</category>

<view
name="Hello World"
icon="resuorce/Helloworld.gif "
category="com.ibm.productivity.tools.sample"
class="com.ibm.productivity.tools.samples.helloworld.ShelfView"
id="com.ibm.productivity.tools.samples.helloworld.view">
</view>

</extension>

</plugin>

2. Double-click the ShelfView.java file in Package Explorer, the ShelfView.java
file looks like the following:

package com.ibm.productivity.tools.samples.helloworld;

import org.eclipse.swt.SWT;

import org.eclipse.swt.layout.FillLayout;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Label;
import org.eclipse.ui.part.ViewPart;

public class ShelfView extends ViewPart {

public void createPartControl (Composite parent) f{
parent.setLayout(new FilllLayout());

Label helloLabel = new Label(parent, SWT.CENTER);
helloLabel.setText("Hello World!");

1

public void setFocus() {
}
}

3. Click Run from toolbar:
Ci-H e $-0-&-  E# -
|:E Fackage Explorer i3 vigat-:-r

100 Lotus Symphony Developer’s Guide



4. Lotus Symphony is launched, your screen should look similar to the following
image:
[ time — 200 Lot Symtumy ai@ﬁ‘

Eils Kiew [imise Tidp

| [ = Hello Warll )
|| Lotus. Symasany m e ) !
| =z -

IBM Lotus Symphony
||Be Free. Work Smart.

R 6

Wish the IBR S Lotus= Symphony ™ websie for more Infal

Eddend ihe value of Lotus Symphoeny with Plug-ins,
Work smartar by intsgrating a vade range of apphications with Lotus Symphory. Plug-ins from B, partnens and developers are
avalleble to download 8t no charge. And feel free to leave cormments oot Sy plug-in you use

Joln the discussions in our Supper Fomims

Raqueast 3 new featurs, look for answears to issues, or post & gusstion of your awn. Qur support forums are a great place to shars your
e enoe &nd 1o help athers Ekie you

G R EEEmPRELiSE = = E Sy

Hint: If the new view does not display, check the console for a message like
org.eclipse.ui.PartInitException: Could not create view: XXX and confirm
that XXX = the view id. The view attribute of the <shelfView> tag in the
com.ibm.rcp.ui.shelfViews extension must match the id attribute of the
<view> tag in the org.eclipse.ui.views extension.

Congratulations! You have reserved space in the Lotus Symphony side shelf for
your application.

Chapter 2. Editor View sample plug-in

This sample demonstrates how to create a simple editor. When launched from
within the new button group, the editor is showed as a view part in a new
perspective.

You can find the whole project with all source code from Lotus Symphony toolkit
directory (where $symphony_sdk is the home directory that the API toolkit is
installed ):

$symphony sdk/samples/eclipse/plugins/
com.ibm.productivity.tools.samples.views.

2.1 Creating a plug-in

1. Set up the integrated development environment as discussed in Part 4 Chapter
1.

2. New a plug-in project named com.ibm.productivity.tools.samples.views, for
detailed refer to Create a new plug-in in HelloWorld sample plug-in in Part 6
Chapter 1.

Part 7. Sample plug-ins 101



102

~ Hew bl M T T L a‘

Plug-in Project

Create a new plugz—in project

Project name: com. ibm. productiwity. tools. samples. wiews

Use defanlt location

Froject Settings

Create a Java project
Source folder: =re
Output foelder: bin

Target Flatform
This pluz—in is targeted to run with:

@Eclipse version: 3.2 l:l

Dg.n 0351 frameworl:

® [ <o J[ Fwi> ][ mmm

3. Add dependencies. Select the Dependencies tab, and click Add to add the
required plug-ins:

e com.ibm.rcp.ui
* com.ibm.productivity.tools.ui.views

2.2 Creating a new button

1. Select the Extensions tab and click Add. In the new extensions window, select
com.ibm.rcp.ui.launcherSet, and then click Finish.

2. In the Extensions page, right-click the added extension and select New >
LauncherSet.

Lotus Symphony Developer’s Guide



Eod

les. views

P ®com ibm, productivity. tools. samp

Extensions

All Extensions

|

...... = W

Delete 4= Extension. ..
T
ﬁ 7o Home !'—Fl'l':l-'— "
£50 Go Back i [
o Go Into
Collapse A11

3. Leave the id and label properties of the LauncherSet unchanged, and save the
plugin.xml file.

4. Right-click com.ibm.productivity.tools.samples.views.LauncherSetl, and
select New > perspectiveLaunchItem.

ccom. 1bm. productiwity. tools, 53

Extensions

All Extensions

= 2= com. ibm. rep. ui. launcherSet
b m com. ibm. productivity, tools. samples. wiews. LauncherSet]l (LauncherSet)
4 m urlLannchTtem
Delete i perspectivelaunchItem
m nativeProgramLaunchItem
% Goriomie m launchTtemTspe
P Go Back m launchTtem
o Go Into m handler
Collapze A1l m FolderTtem
oupMarleer
Cat K] aroup
s m separator
Paste 4= Extension. ..
" . L

5. Set the properties of perspectivelaunchItem as shown in the following sample
code:

Part 7. Sample plug-ins 103



104

<extension
point="com.ibm.rcp.ui.launcherSet">
<LauncherSet
id="com.ibm.productivity.tools.samples.views.LauncherSetl"
label="%simpleeditor2.launcherSetl">
<perspectivelLaunchItem
autoStart="false"
iconUrl="resources/AtualizarDoc.png"
iconUrlLarge="resources/AtualizarDoc.png"
iconUrTMedium="resources/AtualizarDoc.png"
id="com.ibm.productivity.tools.samples.views.perspectiveLaunchIteml"
label="%sample.editor.spreadsheet"
perspectiveld="com.ibm.productivity.tools.samples.views
WriterPerspective">
</perspectiveLaunchItem>
</LauncherSet>
</extension>

Make sure that the perspectiveld is

com.ibm.productivity.tools.samples.views.WriterPerspective, and then save
the plugin.xml file.

) - ——— = — e

Extensions =M

All Extenszions

= 4= ecom. ibm.rep. ui. launcherSet Add. ..
= _Iﬂ “launcherSetl™ (LauncherSet]
Ii| Sample Writer Editor (perspectiwelaunchItem)

Extension Element Details
Set the properties of “perspectivelaunchltem™
ke

1d: com. ibm. productivity. tools. samples. views. perspectivelaunchTteml

perspectiveld®: |com. ibm. productiwity. tools. samples. wiews. WriterFerspectiva

lahbel %zample. editor. spreadsheet

path

autoStart fal=e B
iconlrl: resources/AtualizarDoc. png
iconlklMedium: |resowrcesfhtualizarDoc. png
iconllrllarze: resourcesfAtualizarloc. pog

6. Add an extension at extension point org.eclipse.ui.perspective.

7. Select the plugin.xml tab. Change the extension declaration of the added
perspectives extension point as shown in the following sample code:

<extension point="org.eclipse.ui.perspectives">
<perspective
class = "com.ibm.productivity.tools.samples.views.WriterPerspective"
name = "Sample Writer Editor"
id = "com.ibm.productivity.tools.samples.views.WriterPerspective"
/>

</extension>

Lotus Symphony Developer’s Guide



8. Create a Java class named
com.ibm.productivity.tools.samples.views.WriterPerspective:

package com.ibm.productivity.tools.samples.views;

import org.eclipse.ui.IPagelayout;
import org.eclipse.ui.IPerspectiveFactory;

[**

* Perspective class of writer editor sample

*/

public class WriterPerspective implements IPerspectiveFactory {

public static final String PERSPECTIVE_ID =
"com.ibm.productivity.tools.samples.views.WriterPerspective";

public void createInitiallLayout( IPagelLayout layout ) {
//set editor area to invisible so that our view can show maximized.
layout.setEditorAreaVisible(false);

//add our writer view to this perspective
layout.addView(WriterView.VIEW_ID, IPagelayout.LEFT,
1f, Tayout.getEditorArea());

2.3 Creating an editor view part
1. Select the Extensions tab and click Add.
2. Add new extensions org.eclipse.ui.views, then click Finish.

3. Select the plugin.xml tab, and add the markup as shown in the following
sample code:

<extension
point="org.eclipse.ui.views">
<view
allowMultiple="true"
class="com.ibm.productivity.tools.samples.views.WriterView"
id="com.ibm.productivity.tools.samples.views.WriterView"
name="Writer View" />
</extension>

4. Create a view class. Select New > Class to create a new Java class for the view.
Set the Class arguments as shown below:

Package: com.ibm.productivity.tools.samples.views

Name: WriterView

Superclass:
com.ibm.productivity.tools.ui.views.DefaultRichDocumentView

and then click Finish.

Part 7. Sample plug-ins 105



5. Implement the WriterView class as shown in the following sample code:

package com.ibm.productivity.tools.samples.views;
import org.eclipse.swt.widgets.Composite;

import com.ibm.productivity.tools.ui.views.DefaultRichDocumentView;
import com.ibm.productivity.tools.ui.views.RichDocumentType;

import com.ibm.productivity.tools.ui.views.operations.NewOperation;
import com.ibm.productivity.tools.ui.views.operations.OperationFactory;

public class WriterView extends DefaultRichDocumentView {

public static final String VIEW_ID =
"com.ibm.productivity.tools.samples.views.WriterView";

public WriterView() {
super() ;

public void createPartControl(Composite parent) {
// must call super to create part control
super.createPartControl (parent);

NewOperation operation = OperationFactory.createNewOperation(
RichDocumentType.DOCUMENT TYPE );
this.executeOperation( operation );
}
}

The following figure shows the result of creating an editor viewpart:

&)

File

m EAN % Home x

&) Lotus Symphony Documents

E?J Lotus Symphony Presentations -

) Lotus Symphony Spreadsheets

'} Horre

4 Web Browser

B Sample Writer Editar
2 Sample Spreadsheet Editor
2 Sample Presentation Editor

phony
rt.

Chapter 3. Spreadsheet sample plug-in

106

This chapter shows how to begin to add a customized Lotus Symphony
spreadsheet Ul plug-in and operate the Spreadsheet on a Lotus Symphony side
shelf.

Note: All sample code used within this chapter can be found in the Lotus
Symphony toolkit, such as $symphony_sdk/samples/eclipse/plugins/
com.ibm.productivity.tools.samples.spreadsheet. You can get this toolkit from
the site: http://symphony.lotus.com/software/lotus/symphony/developers.jspa.

Lotus Symphony Developer’s Guide



In the spreadsheet sample plug-in, it shows how to:

Add a customized shelf view.

Open a spreadsheet and get the model of this document.

Insert data into the spreadsheet.

Get the current selected cell’s value and its address dynamically.
Create a chart of this sheet.

ook wNn =

Create a data pilot of this sheet.

The following figure shows this sample plug-in’s overview image.

@ spreadshect Sample = TR Loitas Sysphony: Ljh-‘l a‘

B B eEm= |SDDU [ Spreadsheet Sample Gl
4 A - B = % — les List

1 Quarter Quarter 1 Quarter 2 Quarter 3 Quarter 4 7 rads 2

2 Profit A 5000 G000 Joool____ Boonj

3 Profit B 5000 G500 7000 7500

4 Profit C | 2000 1100 1200 1300

5

B Spreadsheet

T Chart Example E Set a value to specified cell:

8 o — Value: (8000

a 1000 | | Col ¥: [E

i? oo Row 10 |2

2 T | St

13 foco [ |Qoumer)) |4

14 000 e

15 o

16 I

17 1000 K

18 0 - T - T -

19 Promta Promtb Promtc

z0 Filter

21

22 | Quarter [

23 Data Profit A Profit B Profit © Total Result

24 [Sum - Quarter 1 5000 5000 2000 13000

25 lAwerage - Quarter 2 5000 6500 1100| 4533.33333333

26 |Max - Quarter 3 7000 7000 1200 7000

27 |Min - Quarter 4 8000 7500 1300 1300

25 _[Total Sum - Quartey 5000 6000 2000 13000] £

JT 4 ) —_—— B

3.1 Introduction to the scenario

When you want to import data from a database or from files into a spreadsheet,
first, you need open the spreadsheet and get its model for operating before you
can insert data into it. So open and insert a data into a sheet is a basic operator for
operating a spreadsheet. Then you might need to create a chart for this sheet to
make a overview of this sheet’s data. Or you might need to set focus and do
analysis on this sheet, in which case you should use the data pilot.

3.2 Preview of the result

According to the scenario above, this plug-in first creates a shelf view, then adds a
list view on the side shelf to show the spreadsheet file list. Then it adds three text
fields and a button for setting data to a specified cell. It adds a button for creating
a chart and a button for creating a data pilot. When you select a cell in the sheet,
you get the value of this cell and its address on the side shelf dynamically.

Part 7. Sample plug-ins 107



108

3.3 Prepare your development environment

Refer to Part 4 Chapter 1: Setting up the integrated development environment,
which shows how to prepare your Lotus Symphony development environment
step by step.

3.4 Deploying the sample

If you already have this plug-in, you can import it into Eclipse from an existing
project by using the Eclipse import function. Otherwise, the following sections
show you how to build this plug-in.

~ Import m‘

2

Select
: ; ; ; iy
Create mew projects from an archiwve file or directory. IE - 5'

Select an import source:

=)= Feneral
[E, Archive File
QE Breakpoints
ﬁ Existing Projects into Workspace
i [:L File System
EL Preferences
= C¥5
=)= Flugz-in Dewelopment
F i_fﬂj Features
"3'%; Flugz-in=z and Fragments
[ Team

Lotus Symphony Developer’s Guide




I I 3
LR

Import Projects

Select a directory to search for existing Eclipse projects.

l(E:}'Selen:t root directory: | productiwity. tools. samples. spreadsheed m

{:}Select archive file:
Projects:

com, ibm. productivity. tools. samples. spreadsheet

E-:-p}' projects into workspace

Select A11
Deselect All

- (n

Cancel

3.5 Creating the sample
Creating a new plug-in
1. Launch the Eclipse development environment.
2. New a plug-in project named

com.ibm.productivity.tools.samples.spreadsheet, for detailed refer to Create
a new plug-in in Part 6 Chapter 1 HelloWorld sample plug-in.

Part 7. Sample plug-ins

109



= Lo Hliy—in Hey| et

Plug-in Content
Enter the data required to generate the plugzin.

Flugz—in Froperties
Flug—in ID: com. ibm. productivity. tools. samples. spreadsheet

Flug-in ¥erszion: (1.0.0

Fluz—in Hame: Spreadsheet sample

Flug—in Frowider: IEM

Cla=z=path:

Flugz—in Options

Qenerate an actiwator, a Jawa class that controls the pluz—in' s life cyele
Aetivator: com. ibm. productivwity. tools. samples. spreadsheet. Activator

This plug—in will malke contributions to the UL

Rich Client Application
Would wou lilke to create a rich client application? {:}Ies @Hg

) | <Back || Hext> || Fimish || Cancal

Adding the plug-in dependency

The following table lists some of the plug-in dependencies used by the document
library . The plug-in names are abbreviated.

Plug-in Description

org.eclipse.core.runtime org.eclipse.ui |Eclipse core plug-ins

com.ibm.productivity.tools.ui.views Lotus Symphony API plug-ins
com.ibm.productivity.tools.core

Perform the following steps to add the plug-in dependency.
1. Click the Dependencies tab of the Spreadsheet sample plug-in manifest.
2. Click Add.
3. Add the following plug-ins:
* com.ibm.productivity.tools.ui.views
e com.ibm.productivity.tools.core

110 Lotus Symphony Developer’s Guide



Dependencies

REequired Plog ins

Specify the list of plug-ins required for the operation of this
pluzin:

?;l:curg. eclipse. ul add. ..
?;_'[:curg. eclipse. core. runtime

?;_'[:ccnm. ibm. productivwity. tools. ul. views

?qlkc-:nm. ibm. productivity. tools. core e

Adding an element to the side shelf

Click the Extensions tab.

Click Add.

Add the following extension: com.ibm.rcp.ui.shelfViews.
Click Finish.

Right-click the added extension and select New > shelfView.
Click the plugin.xml tab.

No o~ =

Copy and paste the following sample code into the plugin.xml file.

<plugin>
<extension
point="org.eclipse.ui.views">
<category
name="Sample Category"
id="com.ibm.productivity.tools.sample">
</category>
<view
name="Spreadsheet Sample"
icon="resource/spreadsheetview.gif"
category="com.ibm.productivity.tools.sample"
class="com.ibm.productivity.tools.samples.spreadsheet.ui.ShelfView"
id="com.ibm.productivity.tools.samples.spreadsheet.view">
</view>

</extension>
<extension
point="com.ibm.rcp.ui.shelfViews">
<shelfView

id="com.ibm.productivity.tools.samples.spreadsheet.shelfView"
page="RIGHT"
region="BOTTOM"
showTitTe="true"
view="com.ibm.productivity.tools.samples.spreadsheet.view"/>

</extension>

</plugin>

Part 7. Sample plug-ins

111



Extensions =

A1l Extensions

= org eclipse ui. views add. ..
[=dr= com. ibm. reop. ui. shelfViews

e @ com. ibm. productivity. tools, samples. spreadsheet. shelfView (shelfView)

Extencion Flement Details
Set the properties of “shelfView”

1d#: |eom. 1bm. productivity. tools. samples. spreadsheet. shelfView

wiewk |zom. il]_:-m. _producltli_v_i ty. tools. samples. sprean_is_l}g_et. vi e

vegion: | BOTTOM [+
page RIG-]'_[T

showTitle: |true _

8. Create a folder named ui and a class named ShelfView which extends

org.eclipse.ui.part.ViewPart under this folder. The main method in this class
is shown in the following sample code:

public void createPartControl(Composite aParent) {
drawFileListGroup();
drawTableGroup();
addListener();

The method drawFileListGroup() creates a ListViewer to show the file lists for
this sample and opens the files in this list when you double-click the file name.
The method drawTableGroup() creates three text and a set button for setting the
specified cell value. It also creates a button named Chart to create a chart for
this sheet, and a button named Data Pilot to create a datapilot sample for this
sheet. There are also assistant classes for the class ShelfView, for the details see
the sample code.

3.6 Core code demonstration

The following section shows core code snippets for the function. For details, refer
to the sample code.

1. Add a side shelf to the Lotus Symphony.

Refer to the section Adding a side shelf element of Chapter 1 Hello World
sample plug-in .

2. Open a spreadsheet file and get this sheet’s model.

// the parameter url is this sheet file's url.
RichDocumentView view = RichDocumentViewFactory.openView(url, false);
Object model = view.getUNOModel();

3. Set a value in a cell:

Wherever you get data, setting a value in a cell is a basic operation. First get

the sheet’s model, then get the cell by specifying the position and setting the
value in this cell.

112  Lotus Symphony Developer’s Guide



(XSpreadsheetDocument)UnoRuntime.
queryInterface(XSpreadsheetDocument.class, model ).getSheets();

XIndexAccess xSheetsIA =(XIndexAccess)UnoRuntime.queryInterface(
XIndexAccess.class, xSheets);
//get the first sheet in the document
xSheet = (XSpreadsheet) UnoRuntime.queryInterface(
XSpreadsheet.class, xSheetsIA.getByIndex( 0 ));

oCell = xSheet.getCel1ByPosition(x , y );
oCell.setValue(value);

4. Create a chart for this sheet.

First get the chart object of this sheet by specifying the range, which decides
the cells” data in this chart, then set this chart’s properties, such as specifying
this chart as a 3D chart or a pie chart.

XTableChart chart = (XTableChartsSupplier)UnoRuntime.queryInterface(
XTableChartsSupplier.class, xSheet).getchart();

XEmbeddedObjectSupplier oEOS = (XEmbeddedObjectSupplier)UnoRuntime.
queryInterface(XEmbeddedObjectSupplier.class, chart);

5. Create a data pilot for this sheet:

First, set source range for this data pilot, and then set properties field for this
data pilot.

XDataPilotTablesSupplier xDPSupp = (XdataPilotTablesSupplier)
UnoRuntime.queryInterface(XDataPilotTablesSupplier.class, xSheet);

XDataPilotTables xDPTables = xDPSupp.getDataPilotTables();

XDataPilotDescriptor xDPDesc = xDPTables.createDataPilotDescriptor();

XIndexAccess xFields = xDPDesc.getDataPilotFields();

Object aFieldObj;

XPropertySet xFieldProp;

// use first column as column field

aFieldObj = xFields.getByIndex(0);

xFieldProp = (XPropertySet)
UnoRuntime.queryInterface(XPropertySet.class, aFieldObj);

xFieldProp.setPropertyValue ("Orientation",
DataPilotFieldOrientation.COLUMN);

3.7 Extending the sample

Next, you can add a mapping table of this sheet in the side shelf and you can add
more functions to operating a spreadsheet, such as loading, saving, and closing a
sheet. You can also export this sheet file as a HTML file.

Chapter 4. Writer Sample plug-in

This chapter provides method and instructions to create a UI plug-in used to
demonstrate how to manipulate a writer document programmatically. The sample
plug-in presents the following abilities provided by the Lotus Symphony API:

1. Loading documents

2. Adding a shelf view

3. Getting the UNO model of document
4. Creating sections

5. Creating tables

Part 7. Sample plug-ins 113



6. Creating user-defined fields

4.1 Introduction to the scenario

For the purpose of understanding the characteristic of various object types of a
writer document, we chose creating a Getting Things Done (GTD) document for
the development scenario.

GTD is a time management method for productivity success and increased focus. It
has the following concepts:

1. Context. A context refers to locations or situations, such as home, computer,
work and errands, that are suitable for doing a certain kind of to-dos.

2. Project. A project can be, for example, Repaint bedroom or Review report.

3. Action. An action is a to-do item.

A GTD document is represented as a list of contexts. Each context has a name to
identify it and contains a table for actions. Each action refers to a project. Users can
manipulate the document in the following ways:

1. Creating contexts
2. Adding projects
3. Inserting actions

4.2. Preview of the result

The UI of this plug-in to manipulate the writer document and a GTD document
this plug-in created are as follows:

&) sample
1 o 1 7 3 4 5 g (2] ||| O Writer Sample &
1:Load

- Load the demo document for the next
- operations:

.' Load Demo Document
) My GTD document =

2 2:0perations

- Content: Office Input a Content name, create a new

F Tabls cf acticrs - content section with this name and
™ - add it to this combo list:

E Digne Frogect 3 ,

: Todrg Smphay Content: Office [~ [Create]
N Test i Input a Project name and add it to

- Dafectfize Fmphaty this combo list:

5 Femiemr Hotis T -

Froject: !Notes H Add ]
o Input a Action name and insert it

3 with project name szelected into
content table:
5 Action: !Review |HInserti
o
w-

= =

= H

e R — |

From this figure we can see that:

114  Lotus Symphony Developer’s Guide



Each context is represented with a section element of the writer document. In
the section, the first line is the name of the context.

Actions are represented with a text table element of the writer document. Every
row is an action. The second column is its associated project.

Each project is represented with a user-defined field, which you can see by
double-clicking on a project. A project can be referenced by multiple actions in
multiple contexts, and using user-defined fields allows us to change a project
name easily.

You can learn the following tasks from this plug-in:

1.
2.

Getting the UNO model of a writer document.

How to create sections in a writer document and then inserting other types of
elements such as text, tables into them.

Text Tables: how to create them and then inserting content into their cells.

User-defined fields: How to create user-defined fields and insert them into the
document.

4.3 Deploying the sample

The standard deployment approach described in the developer guide applies to
this sample. Refer to Part 4 Chapter 5: Packaging and Deploying your plug-ins.

4.4 Using the sample

Launch Lotus Symphony after this plug-in is deployed. You can see a sidebar on
the right of the window. The steps to create a GTD document are as follows:

1.

Click Load Demo Document. An empty GTD document is opened in a new
page.

File Edit View Create Tools Table Layout Hindow Help

NEE Oy |4 Home x| (SRR

2B -®-Q|9 e (¥ DB |Ecet- | @ [ B & || [Hesding 1 Bbliu -
b icitiingBy sl b Bl Bt S B (Bl B Writer Sample B
1:Load
Load the demo document for the next
operations:
Load Demo Docunent
2 My GTD document 2 Operations
= Input a Content name, create a new
: content section with thiz name and
- add it to this combo list:
_ Content: ‘ ‘
: Input a Froject name and add it to
o thizs combo list:
: toject: |
Input a Action name and insert it
o with project name selected into
: content table:
E fefderas | | [Tnsert]
v-'_
v
o
-
: g
. |Page 1 | | |Lr\ 1 Cal 16 [sTD [57% |Default | |THSERT WP

Part 7. Sample plug-ins 115



2. Input a name in the Context field, such as 0ffice, then click Create. An empty
context is inserted into the end of the document:

o S |1|2 3|4|5| Breprrbrred @ O Writer Sample &
1:Load

Load the demo document for the next
operations:

Load Demo Document

Z:0perations

e Content: Office Input a Content name, create a new

- Table of actiore : content section with this name and
- : add it to this combo list:

[ Tizre [ Fregect |

3 | | | Content: [0ffice [Creats]

Input & Project name and add it to

My GTD document

thiz combo lizt:
E| Project: | [ haa |
o Input a Action name and insert it
with project name selected into
= content table:
B Action | | [Insert]
bl
I g
| S — ]

3. Input a name in the Project field, such as Lotus Symphony, then click Add. A
project is created and displays in the field.

4. Input a name in the Action field, such as Coding, select a project previously
created, and then click Insert. An action is appended into the last row of the
table.

116  Lotus Symphony Developer’s Guide



File ¥iew ¥Window Help

Im MIREE NI - (£) sample

= Writer Sample T

1.Load

Load the demo document for the next
operations:
Load Demo Document

My GTD document

2:Operations

Content: Office Input a Content mame, create a new
b content section with thiz name and
B add it to thiz combo list:
Tare Froec
Toding e Comtent: Office [creats

Input a Project name and add it to
thiz combo list:

Project: Synphony [ ada |

Input a Action name and insert it
with project name selected into
content table:

Action: Coding | EInsertH

5. You can create more contexts, projects, and actions.

4.5 Building the sample
Prepare your development environment

Refer to Part 4 Chapter 1: Setting up the integrated development environment,
which shows how to prepare your Lotus Symphony development environment
step by step.

Creating the sample
1. Create an empty plug-in named com.ibm.productivity.tools.samples.writer .
2. Open MANIFEST.MF file. On the Dependencies tab, add the following dependent
plug-ins:
e com.ibm.productivity.tools.ui.views
e com.ibm.rcp.ui
e com.ibm.productivity.tools.core

3. On the Extensions tab, add an extension on the extension point
com.ibm.rcp.ui.shelfViews. Change the part of the plugin.xmi file
corresponding to the extension with:

Part 7. Sample plug-ins 117



<extension
point="com.ibm.rcp.ui.shelfViews">
<shelfView

id="com.ibm.productivity.tools.samples.writer.shelfViewl"
page="RIGHT"
region="TOP"
showTitle="true"
view="com.ibm.productivity.tools.samples.writer.demoView"/>

</extension>

4. Add a view extension by appending the following sample code in the
plugin.xml file:

<extension
point="org.eclipse.ui.views">
<view
id="com.ibm.productivity.tools.samples.writer.demoView"
name="Writer Sample"
category="com.ibm.productivity.tools.samples"
class="com.ibm.productivity.tools.samples.writer.DemoView">
</view>
</extension>

5. Create a class com.ibm.productivity.tools.samples.writer.DemoView, override
the createPartControl method to create the controls shown on the plug-in UL
Then add listeners to handle user events. The following sample code snippets
are the main methods of the class:

[ **
* create this action with the specified project.
* @param name action name
* @param projectField
*
/
protected void createAction(String name, XPropertySet projectField) {
String tableKey = contentsCombo.getCombo().getText();
XTextTable table = (XTextTable) xTables.get(tableKey);

int TastRow = table.getRows().getCount();

XCell xCell = table.getCel1ByName("A" + Integer.toString(lastRow));
XText cellText = (XText) UnoRuntime.queryInterface(XText.class, xCell);
cellText.setString(name);

xCell = table.getCel1ByName("B" + Integer.toString(TastRow));

cellText = (XText) UnoRuntime.queryInterface(XText.class, xCell);

Object oUserField;
try {
oUserField = factory
.createlnstance("com.sun.star.text.TextField.User");
XDependentTextField xUserField = (XDependentTextField) UnoRuntime
.queryInterface(XDependentTextField.class, oUserField);
xUserField.attachTextFieldMaster(projectField);

cellText.insertTextContent(cellText.getStart(), xUserField, false);
table.getRows().insertByIndex(table.getRows().getCount(), 1);

} catch (Exception e) {
e.printStackTrace();
}
}

118 Lotus Symphony Developer’s Guide



* create a project with the name

* @param id project's ID

* @param name

* @return

*/

private XPropertySet createProject(String id, Object name) {
try {
Object oUserFieldMaster = factory

.createlnstance("com.sun.star.text.FieldMaster.User");
XPropertySet xUserFieldMaster = (XPropertySet) UnoRuntime
.queryInterface(XPropertySet.class, oUserFieldMaster);

// Set the name and value of the FieldMaster
xUserFieldMaster.setPropertyValue("Name", id);
xUserFieldMaster.setPropertyValue("Content", name);
projects.add(xUserFieldMaster);
return xUserFieldMaster;

} catch (Exception e) {
e.printStackTrace();

}

return null;

}

[**
* create this action into the content table
* @param xSection the section
* @param name the action's name
*
/
protected void createActionTable(XTextSection xSection, String name) {
try {
Object oTable = factory
.createlnstance("com.sun.star.text.TextTable");
XTextTable xTable = (XTextTable) UnoRuntime.queryInterface(XTextTable.class,
oTable);
xTables.put(name, xTable);
xTextDoc.getText().insertTextContent (xSection.getAnchor().getEnd(),
xTable, false);
XText xCellText = (XText) UnoRuntime.queryInterface(XText.class,
xTable.getCel1ByName("A1"));
xCellText.setString("Name");
xCel1Text = (XText) UnoRuntime.queryInterface(XText.class, xTable
.getCel1ByName("B1"));
xCel1Text.setString("Project");
} catch (Exception e) {
e.printStackTrace();
}
}

Part 7. Sample plug-ins 119



[x*

* create a content with the name

* @param name the content's name

* @return a XTextSection object

*

/

protected XTextSection createContent(String name) {

try {

Object oSection = factory
.createInstance("com.sun.star.text.TextSection");

XTextSection xSection = (XTextSection) UnoRuntime.queryInterface(
XTextSection.class, oSection);

XNamed xNamed = (XNamed) UnoRuntime.queryInterface(XNamed.class,
oSection);

xNamed.setName (name) ;

xTextDoc.getText().insertTextContent (xTextDoc.getText().getEnd(),
xSection, false);

xTextDoc.getText().insertString(xSection.getAnchor().getStart(),
"Content: " + name, false);

xTextDoc.getText().insertControlCharacter(
xSection.getAnchor().getEnd(),
ControlCharacter.PARAGRAPH BREAK, false);

xTextDoc.getText().insertString(xSection.getAnchor().getEnd(),
"Table of actions :", false);

createActionTable(xSection, name);

return xSection;

} catch (Exception e) {

e.printStackTrace();

}

return null;

}

6. Debug and test the sample Eclipse plug-in.

7. Package and deploy the sample plug-in. Refer to Part 4 Chapter 5: Packaging
and Deploying your plug-ins.

Chapter 5. Presentation sample plug-in

This chapter shows how to work with presentation documents.

Note: All sample code used within this chapter can be found in the Lotus
Symphony toolkit, such as $symphony_sdk/samples/eclipse/plugins/
com.ibm.productivity.tools.samples.presentation. You can get this toolkit from
the site: http://symphony.lotus.com/software/lotus/symphony/developers.jspa.

In the presentation sample plug-in, it shows how to:

Add a customized shelf view.

Open a presentation.

Add a ISelectionListener to listen for selection change.
Insert a draw page into the document.

Create shapes.

Set master page for a draw page.

Remove a draw page.

© N O hA N~

Copy a draw page.

The following figure shows this sample plug-in’s overview image.

120 Lotus Symphony Developer’s Guide



File Edit View Create Tosls Layout Presentation Table HKindow Help

WS &) Sample <
2B 8 -S|6e XKD [Ecete- & T|H*  @L®Ib i U
Page Thumbnails Il @ Presentation Sample E

Open docunent

Click "Open document” button to
open a sample presentation.

{141
il
&

title [test

—y
content |test content |
S

* test content

: =
[Insert after] fenrment page |]
=
Click “Insert after” butten to
insert a new page with the title
and content abowve. Select the page
z rumber that you want to inzert
after.
e =
Click “Remove” button to remove
current page.
3
Click "Copy” button to copy
current page, the new duplicated
page will be inserted after
current pagze
| [Pags Vien

35% (Defeult |w [Pege3 /3

A

= 101" 1= 10.38% = 0.00" ¥= 0.00"

5.1 Introduction to the scenario

You might want to generate a presentation from a database or files. First you need
to open the presentation and get its model before you can insert a new page. Also
you might want to set the master page for the new inserted page, or copy and
remove some pages. The basis operations for presentations include opening the
document, inserting, removing, or copying a page, and setting the master page.

5.2 Preview of the result

According to the scenario above, this plug-in first creates a shelf view, then adds
four groups respectively for opening the document, inserting draw pages,
removing draw pages and copying draw pages. There are two text fields for
inputting the title and content of a new page in the insert page group.

5.3 Prepare your development environment

Refer to Part 4 Chapter 1: Setting up the integrated development environment,
which shows how to prepare your Lotus Symphony development environment
step-by-step.

5.4 Deploying the sample

If you already have this plug-in, you can import it into Eclipse from an existing
project by using the Eclipse import function. For how to import this plug-in, refer
to Part 6 Chapter 3 section 3.4 Deploying the sample.

5.5 Creating the sample
Creating a new plug-in
1. Launch the Eclipse development environment.

Part 7. Sample plug-ins 121



2. New a plug-in project named
com.ibm.productivity.tools.samples.presentation. For detailed instructions
refer to Create a new plug-in in Part 6 Chapter 1 HelTloWorld sample pTlug-in.

~ Hew Hliy—r Hen e

Plug-in Content
Enter the data required to generate the plugzin.

Fluz—in Properties

PFlugz—in ID: com. 1bm. productivity. tools. samples. presentation

Flugz-in ¥er=zion: (1.0.0

Fluz—in Hame: Fresentation sample|

Flugz—in Frowider: |IEM

Cla=z=path:

Flugin Optieons

Eenerate an actiwator, a Jawa class that controls the plug—in' = life cwcle
Aetiwvator: |com. ibm. productivity. tools. samples. presentation Activator

This pluz—1in wi1ll make contributions to the UL

Rich Client Application
Would wou like to create a rich client application? {:}Ies @Hg

) |  <Back || Hext> || Finish || Cancel

Adding the plug-in dependency

The following table lists some of the plug-in dependencies used by the document
library. The plug-in names are abbreviated.

Plug-in Description
org.eclipse.core.runtime; org.eclipse.ui Eclipse core plug-ins
com.ibm.productivity.tools.ui.views Lotus Symphony API plug-ins
com.ibm.productivity.tools.core

Add the plug-in dependency listed above. For detailed instructions, refer to
interrelated content in Part 6 Chapter 3.

Adding an element to the side shelf

1. On the Extensions tab, add an extension on the extension point
com.ibm.rcp.ui.shelfViews. Change the part of the plugin.xml file.

122  Lotus Symphony Developer’s Guide



2. Copy and paste the following sample code into the plugin.xml file.

<plugin>

<extension point="org.eclipse.ui.views">
<category
name="Sample Category"
id="com.ibm.productivity.tools.sample">
</category>
<view
name="Presentation Sample"
icon="resource/icon/sample.gif"
category="com.ibm.productivity.tools.sample"
class="com.ibm.productivity.tools.samples.presentation.ui
.SampleShelfView"
id="com.ibm.productivity.tools.samples.presentation.ui
.SampleShelfView">
</view>
</extension>

<extension
point="com.ibm.rcp.ui.shelfViews">
<shelfView
id="com.ibm.productivity.tools.samples.presentation.ui.shelfView"
page="RIGHT"
region="BOTTOM"
showTitle="true"
view="com.ibm.productivity.tools.samples.presentation.ui
.SampleShelfView"/>
</extension>

</plugin>

3. Create a folder named ui and a class named ShelfView which extends
org.eclipse.ui.part.ViewPart under this folder. The main method in this class
is shown in the following sample code:

public void createPartControl (Composite parent) {
parent.setLayout (new GridLayout());
createOpenGroup (parent);
createlnsertPageGroup(parent);
createRemoveGroup (parent) ;
createCopyGroup (parent);
addSelectionListener();
refreshView(xModel);

The method createOpenGroup() creates a button named Open document to
open a sample presentation. The method createInsertPageGroup() creates two
text fields and a button named Insert after to insert a page with title and
content, and set the master page for the new inserted page. The method
createRemoveGroup () creates a button named Remove to remove current page.
The method CreateCopyGroup() creates a button named Copy to copy current
page. The method addSelectionListener() add a listener for listening selection
changes.

5.6 Core code demonstration

The following section shows core code snippets for the function. For details, refer
to the sample code.

1. Add a side shelf to Lotus Symphony.

Part 7. Sample plug-ins 123



124

Refer to the section Adding a side shelf element in Part 6 Chapter 1 Hello world
sample plug-in.
2. Open a presentation file.

// the parameter url is the presentation file's url.
RichDocumentView tempView = RichDocumentViewFactory.openView(url, false);

3. Add a selection listener to listen for selection change, and get the selected
document’s model:

SelectionService service = PlatformUI.getWorkbench().
getActiveWorkbenchWindow() .getSelectionService();
service.addSelectionListener(new ISelectionListener() {
public void selectionChanged(IWorkbenchPart arg0d, ISelection argl) {
IAdaptable adaptable = (IAdaptable) argl;
RichDocumentViewSelection selection = (RichDocumentViewSelection)
adaptable.getAdapter(RichDocumentViewSelection.class);
//get selected document
RichDocumentView view = selection.getView();
Object unoModel = view.getUNOModel();
xModel = (XModel)UnoRuntime.queryInterface(XModel.class, unoModel);
refreshView(xModel);
}
1

4. Insert a draw page into a presentation document.

/first get the the container of draw pages.

XDrawPagesSupplier xDrawPagesSupplier = (XDrawPagesSupplier)UnoRuntime
.queryInterface(XDrawPagesSupplier.class, xComponent);

XDrawPages xDrawPages = xDrawPagesSupplier.getDrawPages();

//then insert a new page.
XDrawPage xNewDrawPage = xDrawPages.insertNewByIndex(pageIndex);

5. Add a shape to a draw page.

The code below demonstrates how to create a shape and add a shape to a draw

page. The parameters pos and size are position and size of the shape. The
shapeType is the service name for the shape, such as
com.sun.star.drawing.ET1ipseShape. The text is the text that shown on the
shape.

Lotus Symphony Developer’s Guide



XShape addShape (XComponent xComponent,XDrawPage page,Point pos,
Size size, String shapeType,String text){

XShape xShape = null;

try {

XShapes xShapes = (XShapes)UnoRuntime.queryInterface( XShapes.class, page );

XMultiServiceFactory xFactory = (XMultiServiceFactory )UnoRuntime
.queryInterface(XMultiServiceFactory.class, xComponent );
Object xObj = xFactory.createInstance( shapeType );
xShape = (XShape)UnoRuntime.queryInterface(XShape.class, x0bj );
xShape.setPosition( pos );
xShape.setSize( size );
//add the shape
xShapes.add( xShape );
//set text for the shape
XText xText = (XText)UnoRuntime.queryInterface( XText.class, xShape );
xText.setString(text);

} catch (Exception e) {

// TODO Auto-generated catch block
e.printStackTrace();

1

return xShape;

6. Get a master page.

int index = ...
XMasterPagesSupplier xMasterPagesSupplier = (XMasterPagesSupplier) UnoRuntime
.queryInterface(XMasterPagesSupplier.class, xComponent);
XDrawPages xMasterPages = xMasterPagesSupplier.getMasterPages();
XDrawPage masterPage = null;
try {
Object obj = xMasterPages.getByIndex(index);
masterPage = (XDrawPage) UnoRuntime.queryInterface(XDrawPage.class,obj);
} catch (IndexOutOfBoundsException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (WrappedTargetException e) {
// TODO Auto-generated catch block
e.printStackTrace();

7. Set a master page for a draw page.

XdrawPage xNewDrawPage = ...

//query for MasterPageTarget of draw page

XMasterPageTarget xMasterPageTarget = (XMasterPageTarget)UnoRuntime
.queryInterface(XMasterPageTarget.class, xNewDrawPage);

//set master page

xMasterPageTarget.setMasterPage (masterPage);

8. Remove a draw page.

//first get the the container of draw pages.
XdrawPages XdrawPages = ...

XdrawPage xDrawPage = ...

// remove the draw page

xDrawPages.remove (xDrawPage) ;

9. Copy a draw page.

Part 7. Sample plug-ins

125



// get page duplicator

XDrawPageDuplicator duplicator= (XDrawPageDuplicator)UnoRuntime
.queryInterface(XDrawPageDuplicator.class, xModel);

//duplicate draw page.

duplicator.duplicate(xDrawPage);

5.7 Extending the sample

Next, you can add more functions to operating a presentation, such as loading,
saving, and closing a presentation. You can also create a sample chart or set
presentation effects.

Chapter 6. C2A sample plug-in

This sample demonstrates how to develop Click to Action (C2A) applications
based on Lotus Symphony.

Note: All sample code used within this chapter can be found in the Lotus
Symphony toolkit, such as $Symphony_sdk/samples/eclipse/plugins/
com.ibm.productivity.tools.samples.C2A. You can get this toolkit from the site:
http:/ /symphony.lotus.com/software/lotus/symphony/developers.jspa.

In the C2A sample plug-in, two keywords are predefined in the sample recognizer:
PropertyBroker and AutoRecognizer. The auto recognizer engine calls the detector

to check if there are such keywords found. When users click the context menu for

recognized tags, a message window is opened.

The following figure shows this sample plug-in’s overview image.

File Edit ¥Yiew Create MySample Tools Table Lapout Windew Help

This is wod recognize r ke word]: Prope thyBroker, ]
Thi is word recognizer ke yword A toRecogrizer,

Hide Auto Recognize Mark

futo Recognizer Freferences. ..

|Page i | | |Ln 1 Col 1 |STD 4% |]]efault |_|INSERT

-

126  Lotus Symphony Developer’s Guide



For more details about how to use the auto recognizer, please refer to Part 4
Chapter 2 Section 2.5.

Chapter 7. Customizing a Sample plug-in

In this sample plug-in,it shows :

the ways to use the Lotus Expeditor launch item.

a custom perspective with custom views and Lotus Symphony views.
how to create new Lotus Symphony documents of three kinds repeatedly.
how to add a status bar to show the new documents’ type.

a custom early startup when Lotus Symphony starts up.

ook wn =

a custom help document.

The following figure shows this sample plug-in’s overview image.

% Hew Files = 3| ®* & *Document =3

Create New Files

Document=:

Spreadsheets: -
Frezentations: HE 1
¥ Deseription = SR
W1V Show
Show a simple HLV message 3

r_ [~
: =
w1

L |iPage e | ILn 5 Col 73 |STD |45$!Default " |INSF.RT

Note: All sample code used within this chapter can be found in the Lotus
Symphony development toolkit, such as $symphony_sdk/samples/eclipse/plugins/
com.ibm.productivity.tools.samples.customizing. You can get the toolkit from
the site: http:/ /symphony.lotus.com/software/lotus/symphony/developers.jspa.

7.1 Introduction to the scenario

On the Lotus Expeditor platform and in the Lotus Symphony development
environment, you might need custom views and Lotus Symphony views at same
time. You might need to use a custom view to operate a Lotus Symphony view.
You might need other typical Eclipse application and Lotus Expeditor such as a
status bar, an early startup, a custom spell checker, or a custom help document.

Part 7. Sample plug-ins 127



128

7.2 Preview of the result

This plug-in first creates a perspective, and then adds three views on this
perspective. One view is used for new buttons which creates three new Lotus
Symphony documents, the other one view is used to show description, and the
third view is used to show multiple Lotus Symphony document views. Then you
will add an early startup which is invoked when Lotus Symphony starts up, a
status bar, and a sample help topic.

7.3 Prepare development environment

Refer to Part 4 Chapter 1: Setting up the integrated development environment,
which shows how to prepare your Lotus Symphony development environment
step by step.

7.4 Deploying the sample

If you already have this plug-in, you can import it into Eclipse from an existing
project using the Eclipse import function. For how to import this plug-in, refer to
Part 6 Chapter 3 section 3.4 Deploying the sample.

7.5 Creating the sample
Create a new plug-in
1. Launch the Eclipse development environment.

2. New a plug-in project named
com.ibm.productivity.tools.samples.presentation, for detailed refer to Create
a new plug-in in Part 6 Chapter 1 HelloWorld sample plug-in.

= - = 1
= Llzs Pliu—min Hen e ﬂ

Plug-in Content —
[—| =
Enter the data required to generate the plugzin

Flug—in FProperties

Flugz—in ID: com. 1bm. productivwity. tools. samples. presentation

Flugz—in ¥Yerszion: |(1.0.0

Fluz—in Hame: Presentation sample|

Flugz—in FProvider: |IEM

Claszspath:

Flugz—in Options

ﬁenerate an activator, a Java class that controls the pluz—in' s life cyecle
Aetiwator: com. ibm. productivwity. tools. samples. presentation. Actiwator

This pluzin will make contributions to the UL

Rich Client Application
Would wou like to create a rich client application? (:}'Ies @Hg

6] <Back || Next > || Finish || Cancal

Lotus Symphony Developer’s Guide



Add the plug-in dependency

The following table lists some of the plug-in dependencies used by the document
library. The plug-in names are abbreviated:

Plug-in Description

org.eclipse.core.runtime org.eclipse.ui Eclipse core plug-ins

com.ibm.productivity.tools.ui.views Lotus Symphony API plug-in
com.ibm.productivity.tools.core

Add the plug-in dependency list above, for detailed, refer to interrelated content in
Part 6 Chapter 3.

Adding a perspective and views

Click the Extensions tab.

Click Add.

Add the following extension: org.eclipse.ui.perspectives.
Click Finish.

Right-click the added extension and select New > perspective.

ook wn =

Click the plugin.xml tab.

Part 7. Sample plug-ins 129




130

7. Copy and paste the following sample code into the plugin.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.2"?>
<plugin>

<extension
point="com.ibm.rcp.ui.launcherSet">
<LauncherSet
id="com.ibm.productivity.tools.samples.views.LauncherSet"
label="Show Customizing Sample">
<perspectivelLaunchItem
autoStart="false"
iconUrl="resource/Customizing.gif"

id="com.ibm.productivity.tools.samples.views.perspectiveLaunchItem"

label="Show Customizing Sample"
perspectiveld="com.ibm.productivity.tools.samples.customizing
.perspective">
</perspectivelLaunchItem>
</LauncherSet>
</extension>

<extension
point="org.eclipse.ui.perspectives">
<perspective
class = "com.ibm.productivity.tools.samples.customizing.Prespective"
icon="resource/Customizing.gif"
name = "customizing"
id = "com.ibm.productivity.tools.samples.customizing.perspective"
/>

</extension>

<extension
point="org.eclipse.ui.views">
<view
category="com.ibm.productivity.tools.samples.customizing"
allowMultiple="true"
class="com.ibm.productivity.tools.samples.customizing.view
MriterView"
id="com.ibm.productivity.tools.samples.customizing.writerview"
icon="resource/Customizing.gif"
name="Document">
</view>

<view
category="com.ibm.productivity.tools.samples.customizing"
allowMultiple="true"
class="com.ibm.productivity.tools.samples.customizing.view
.SpreadsheetView"

id="com.ibm.productivity.tools.samples.customizing.spreadsheetview"

icon="resource/Customizing.gif"
name="Spreadsheet">
</view>

<view
category="com.ibm.productivity.tools.samples.customizing"
allowMultiple="true"
class="com.ibm.productivity.tools.samples.customizing.view
.PresentationView"

id="com.ibm.productivity.tools.samples.customizing.presentationview"

icon="resource/Customizing.gif"
name="Presentation">
</view>

Lotus Symphony Developer’s Guide



<view
category="com.ibm.productivity.tools.samples.customizing"
allowMultiple="true"
class="com.ibm.productivity.tools.samples.customizing.view
.OpenFilesView"
id="com.ibm.productivity.tools.samples.customizing.openfilesview"
icon="resource/Openfiles.gif"
name="New Files">
</view>
<view
category="com.ibm.productivity.tools.samples.customizing"
allowMultiple="true"
class="com.ibm.productivity.tools.samples.customizing.view
.DescriptionView"
id="com.ibm.productivity.tools.samples.customizing.descriptionview"
jcon="resource/Openfiles.gif"
name="Description">
</view>

<category
id="com.ibm.productivity.tools.samples.customizing"
name="customizing Category">

</category>

</extension>

<extension
point="com.ibm.rcp.ui.controlSets">
<controlSet

visible="true"
id="com.ibm.productivity.tools.samples.customizing.controlset">
<statusLine
path="BEGIN_GROUP"
id="com.ibm.productivity.tools.samples.customizing.statusline">
<groupMarker name="additions"/>
</statusLine>
<control
statusLinePath="com.ibm.productivity.tools.samples.customizing
.statusline/additions"
class="com.ibm.productivity.tools.samples.customizing

.StatusbarItem"
id="com.ibm.productivity.tools.samples.customizing.control"/>
</controlSet>

</extension>

<extension point="org.eclipse.ui.startup">
<startup class="com.ibm.productivity.tools.samples.customizing.Startup"/>
</extension>

<extension point="org.eclipse.help.toc">
<toc file="help.xml" primary="true"/>
</extension>

</plugin>

8. Create a class named Prespective which implements IPerspectiveFactory. The

main method in this class is shown in the following sample code.

Part 7. Sample plug-ins

131



132

public void createlnitiallLayout( IPagelLayout layout ) {

//set editor area to invisible so that the view shows maximized.
layout.setEditorAreaVisible(false);

//add the expeditor view to this perspective

Tayout.addView(OpenFilesView.VIEW_ID, IPagelLayout.LEFT, 0.25f,
layout.getEditorArea());

Tayout.addView(DescriptionView.VIEW_ID, IPagelLayout.BOTTOM, 0.4f,
OpenFilesView.VIEW ID);

Tayout.addView(WriterView.VIEW_ID, IPagelLayout.RIGHT, 0.75f,
layout.getEditorArea());

1

‘m o i e o : T—— Jﬁ-\
Extensions
All Extensions

[=)~2= com. 1bm. rep. ul. launcherSet
[+ @ Show Customizing Sample (LauncherSet)
[=)-dr= org. eclipse. u1. perspectives

[=dr= org. eclipse. ul. views
Document (wiew)
Spreadsheet (wiew)
Presentation (wiew)
Hew Filezs (view)

Desecription (wiew]

customizing Category [category)

&

4= com. 1bm. rep. ui. controlSets

I+

4= org. eclipsze. ui. startup

=]

7= org. eclipse. help. toc

Extension Element Details

Set the properties of “perspective”

clazsz. |com. ibm. productiwity. tools. zamples. eustomizing. Frespective
icon  |resourcefCustomizing gif

id com. 1bm. productivity. tools. samples. customlzing. perspective
iame Customizing

The method createlnitiallayout () specifies the layout of the views on the
page.

7.6 Core code demonstration

The Following section shows the core code snippet for the function. For more
details, refer to the sample code.

1.

Add a launcher item to launch a perspective.

First, add the extension point com.ibm.rcp.ui.launcherSet, then add a new
perspectivelLaunchItem and set this item’s perspectiveld attribute value as the
perspective’s id which will be launched.

2. Add a custom view and Lotus Symphony views.

Lotus Symphony Developer’s Guide



To add a custom view, refer to the Eclipse org.eclipse.ui.views extension

point reference. For Lotus Symphony views, refer to Part 5 Section 2.3 Chapter

2.
3. Add a status bar.

Refer to Part 4 Section 2.6 Chapter 2.
4. Add a custom early startup.

First, add the extension point org.eclipse.ui.startup, then create a class
named StartUp which implements org.eclipse.ui.IStartup.

<extension point="org.eclipse.ui.startup">
<startup class="com.ibm.productivity.tools.samples.customizing.Startup"/>
</extension>

5. Add a custom help topic:

ey — I5 T Egeus Sy piney

Search: | Search seope. All topies

- Contents @;. ['%5' B Customizing Sample of Contents
@’IBI Lotus Symphony
Customizing Sample of Contents Over‘."iew

B Customizing Sample Topic

By now, in this sample plug-in, it already can show:

1) aEzxpeditor launch iterm;

2) acustom perspective with custom views and

3) some new Symphony documents of three ki
4) a status bar to show the new documents” typ

5) acustom engmne of spell checks;

G) a eatly startup when Symphony was startup.

7} acustom help document

for =

PRl Wi Hinier iy

e following figure shows this sample plug-in's ¢

First, add the extension point org.eclipse.help.toc, then specify the toc file

which defines the custom help file, as shown in the following sample code:

<extension point="org.eclipse.help.toc">
<toc file="help.xml" primary="true"/>
</extension>

The following sampel code shows the content of the toc file.

<?xml version="1.0" encoding="UTF-8"?>
<?NLS TYPE="org.eclipse.help.toc"?>

<toc label="Customizing Sample of Contents">
<topic
label="Customizing Sample Topic" href="help/help.htm">
</topic>
</toc>

Part 7. Sample plug-ins

133



7.7 Extending the sample

Next, you can add a custom dictionary for spell check. You can add activities
which are assigned a name and description that provide information about the
activity.

Chapter 8. Convertor Sample plug-in

134

This plug-in sample shows a typical application of loading three kinds of Lotus
Symphony documents implicitly, which means loading a document into Lotus
Symphony but does not show it up on Lotus Symphony. The sample will export
this loaded document into HTML or JPEG format according its type. A sample
operation of accessing the meta-data of the document, to set and get a name will
modify this document.

Note: All sample code used within this chapter can be found in the Lotus
Symphony developing toolkit, such as $symphony_sdk/samples/eclipse/plugins/
com.ibm.productivity.tools.samples.convertor. You can get this toolkit from the
site: http://symphony.lotus.com/software/lotus/symphony/developers.jspa.

In this sample plug-in, it shows how to create:
1. A simple side shelf.
2. A button for loading documents implicitly.

3. A button for exporting and converting the loaded document into an HTML file
or JPEG image according its type: ODT and ODS into the HTML file or ODP
into JPEG image array.

4. A simple set and get operation to show how to access metadata.

The following figure shows this sample plug-in’s overview image.

Lotus Symphony Developer’s Guide



| ©,URD_Sample — IBN Lotus Syaphony. AEE

| File View findow Help

2| UNO Sample Elf

Lotus s}'mﬂhﬂrﬂ' Implicitly Load

Loading implicitly means
load a document of three
kind of Symphony into IEM
Lotus Symphony but does

_—-%N». not show it up on Symphony
e E=

Load Document implicitly

Export

Convert loaded document
into HIML file or JEPG
image according its type,
00T and ODS into HIML
file, ODF into a array
of JEPG images

IBM Lotus Symphony
Be Free. Work Smart.

Export Loaded Document

Meta information

Modified By: | |
— Set Value] [Get Value
Create a new Document Create a new Presentati
[~
| !El' E;a

8.1 Introduction to the scenario

You might want to load a Lotus Symphony document with its path, or you want
to load documents implicitly and convert Lotus Symphony documents into a
different type. You might also need to change some metadata of the document.

8.2 Preview of the result

According to the scenario above, this plug-in first creates a side shelf, and then
adds a button to load a document by its path implicitly, then it adds a button to
export this loaded document into a HTML file or JPEG image, and adds two
buttons to set and get this document’s metadata of modified name.

8.3 Prepare development environment

Refer to Part 4 Chapter 1: Setting up the integrated development environment,
which shows how to prepare your Lotus Symphony development environment
step by step.

8.4 Deploying the sample

If you already have this plug-in, you can import it into Eclipse from an existing
project using the Eclipse import function. For how to import this plug-in, refer to
Part 6 Chapter 3 section 3.4 Deploying the sample.

8.5 Design overview
This sample has these goals:
1. Add a side shelf.

Part 7. Sample plug-ins 135



136

2. Add two groups to load implicitly and export.
3. Add a group to change the document’s metadata.

8.6 Creating the sample
Creating a new plug-in
1. Launch the Eclipse development environment.

2. New a plug-in project named com.ibm.productivity.tools.samples.convertor,
for detailed refer to Create a new plug-in in Part 6 Chapter 1 HelloWorld
sample plug-in.

— Hew, Ping—in Er et @1

Plug-in Content = A
Enter the data required to generate the plugzin.

Flug—in Froperties

Fluzin II: com. 1bm. productivity. tools, samples. conwvertor

Flugzin Version: (1.0.0

Fluzin Hame: Conwertor sample|

Flugzin Frowvwider: [TEM

Classpath:

Flugzin Options

Qenerate an actiwator, a Jawa class that controls the plug—in' s life cyele
Activator: com. ibm. productiwity. tools. samples. conwertor. Activator

This pluz—in will make contributions to the UI

Rich Client Application
Would wou like to ereate a rieh elient application? 'C}ies {E}Hg

7 | <Back |  Hext> ||  Finish || Cancal

Adding the plug-in dependency

The following table lists some of the plug-in dependencies used by the document
library. The plug-in names are abbreviated:

Plug-in Description

org.eclipse.core.runtime org.eclipse.ui |Eclipse core plug-ins

com.ibm.productivity.tools.ui.views Lotus Symphony API plug-ins
com.ibm.productivity.tools.core

Add the plug-in dependency list above, for detailed, refer to interrelated content in
Part 6 Chapter 3 .

Lotus Symphony Developer’s Guide




Adding shelf views

1. On the Extensions tab, add an extension on the extension point
com.ibm.rcp.ui.shelfViews. Change the part of the plugin.xml file
corresponding to the extension with:

2. Copy and paste the following sample code into the pTugin.xml file.

<?xml version="1.0" encoding="UTF-8"?7>
<?eclipse version="3.2"?>
<plugin>
<extension
point="com.ibm.rcp.ui.shelfViews">
<shelfView
id="com.ibm.productivity.tools.samples.convertor.shelfViewl"
page="RIGHT"
region="TOP"
showTitle="true"
view="com.ibm.productivity.tools.samples.convertor.demoView"/>
</extension>
<extension
point="org.eclipse.ui.views">
<view
id="com.ibm.productivity.tools.samples.convertor.demoView"
name="UNO Sample"
category="com.ibm.productivity.tools.samples"
class="com.ibm.productivity.tools.samples.convertor.DemoView">
</view>
</extension>
</plugin>

8.7 Core code demonstration

The following section shows core code snippets for the function. For details, refer
to this sample code.

1. Get the com.sun.star.lang.XMultiServiceFactory object reference. Refer to
Getting the global service factory.

2. Load the Lotus Symphony document by file path implicitly.

The following sample code shows how to load the Lotus Symphony document
implicitly.

Part 7. Sample plug-ins 137



protected void ToadDocumentImplictly(String filePath) {

XMultiServiceFactory xServiceFactory = getServiceFactory();

try {

Object object = xServiceFactory
.createlnstance("com.sun.star.frame.Desktop");

XComponentLoader loader = (XComponentlLoader) UnoRuntime
.queryInterface(XComponentlLoader.class, object);

PropertyValue[] aArgs = new PropertyValue[l];

aArgs[0] = new PropertyValue();

aArgs[0] .Name = "Hidden";

aArgs[0].Value = new Boolean(true);

sourceURL = "file:///" + Path.from0SString(filePath).toPortableString();

object = loader.loadComponentFromURL(sourceURL, " blank",
FrameSearchFlag.CREATE, aArgs);

xDocument = (XComponent) UnoRuntime.queryInterface(
XComponent.class, object);

} catch (com.sun.star.io.IOException e) {

e.printStackTrace();

} catch (I11egalArgumentException e) {

e.printStackTrace();

} catch (Exception e) {

e.printStackTrace();

}

1

Create the implicit loading control by using the property named hidden and set
it to true.

3. Resolve the document type.
The following sample code shows how to resolve document type.

protected void resolveDocument() {
XServiceInfo xInfo = (XServiceInfo) UnoRuntime.queryInterface(
XServiceInfo.class, xDocument);
if (xInfo != null) {
if (xInfo.supportsService("com.sun.star.text.TextDocument")) {
filter = new String("HTML (StarWriter)");
} else if (xInfo.supportsService("com.sun.star.text.WebDocument")) {
filter = new String("HTML");
} else if (xInfo
.supportsService("com.sun.star.sheet.SpreadsheetDocument")) {
filter = new String("HTML (StarCalc)");
} else if (xInfo
.supportsService("com.sun.star.presentation.PresentationDocument")) {
// do something
1
1

4. Export the documents into a HTML file.

Refer to Exporting documents and drawing objects.

5. Export the document into a JPEG image
Refer to Exporting documents and drawing objects .

8.8 Extending the sample

Next, you can add an auto-recognizer, and use this function to convert ODP file to
SWE file.

138 Lotus Symphony Developer’s Guide



Part 8. Troubleshooting and support

Most of the troubleshooting information for the Lotus Expeditor toolkit is also
useful for Lotus Symphony developers. It involves a lots of known issues and
solutions for Lotus Expeditor developers. You can find the information from
Eclipse, Help > Help content > Lotus Expeditor Troubleshooting and support.

In the following chapters are some typical issues and solutions. If you have more
questions, contact support at Lotus Symphony Web site http://
symphony.lotus.com /software/lotus/symphony/developers.nsf/home. Common
issues during the development on Louts Symphony are already documented and
resolved.

Chapter 1. Troubleshooting the development environment

Problem: When you set up your development environment, Lotus Symphony does
not run.

Solution: Check the development tools that you are using, and following the
process in Part 4 Chapter 1. If you are using another tool or version, you can have
unexpected errors. Make sure that you have correctly installed:

1. Eclipse 3.4.0
2. Lotus Expeditor toolkit 6.2.0
3. Lotus Symphony profile tool from the Lotus Symphony toolkit

Chapter 2. Troubleshooting during application development

Problem: As you develop Lotus Symphony applications, if there are UNO calls
within your code, sometimes Lotus Symphony hangs when the code is being
executed.

Solution: Create a new job for UNO calls, especially for the functions which are
invoked by Lotus Symphony back-end. For example, the code within a listener
which is added to Lotus Symphony back-end. The sample code would look like
the following:

Job job = new Job("Your job") {
public IStatus run(IProgressMonitor progress) {
//your code comes there
return Status.OK_STATUS;

}

job.schedule();

Chapter 3. Troubleshooting during deployment

Problem: Your application works fine in the development environment, but after
you deploy it into Lotus Symphony, when Lotus Symphony is launched, your
application does not work correctly.

Solution: Perform the following steps to resolve the problem:

© Copyright IBM Corp. 2003, 2009 139



4.

5.

. Ensure that you are using the Lotus Symphony profile in the development

phase. For example, the default VM used by Lotus Symphony is jclDesktop. If
you have not upgraded the VM to J2SE, you should use the VM in
development phase. The target platform should be the Lotus Symphony
installation directory.

Check the $SymphonyDir\data\applications directory to ensure that your
plug-ins are installed successfully. Go through the feature and plug-in directory
one by one, to check if there are missing files.

Check the platform details when Lotus Symphony runs. Click Help > About
IBM Lotus Symphony, check the Feature Details, Plug-in Details and
Configuration Details. You should be able to find your applications in the list.
Configuration Details marks the status for each plug-in. If the status is
unexpected for your plug-ins, perhaps you will find out the root cause.

Check the log file for unexpected exceptions.The log files are located in
$SymphonyDir\data\logs. Check to see if there are exceptions.

Contact support if the problem remains.

Chapter 4. Contacting support

140

To contact support, you can post problems in the Lotus Symphony forum. Include
the screen captures of error, all the log files, or platform configuration information
which will be helpful to identify issues.

The log files are available in the §SymphonyDir\data\logs directory.

The platform configuration information is available from Help > About IBM Lotus
Symphony > Configuration Details.

Lotus Symphony Developer’s Guide



Part 9. Appendixes

Appendix . References

For Lotus Expeditor and Lotus Expeditor toolkit, refer to the following sites:

http:/ /www.ibm.com /software/lotus/products/expeditor/

http:/ /www-128.ibm.com/developerworks/lotus/products/expeditor/

For Lotus Notes 8, refer to the following site:

http:/ /www-306.ibm.com/software/lotus/products/notes/

For composite applications, refer to the following sites:

http:/ /www.ibm.com/developerworks/lotus/composite-apps/

http:/ /www-306.ibm.com /software/lotus/products /notes /|
compositeapplications.html|

Appendix . Notices
Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing 2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

© Copyright IBM Corp. 2003, 2009 141


http://www-306.ibm.com/software/lotus/products/notes/compositeapplications.html
http://www-306.ibm.com/software/lotus/products/notes/compositeapplications.html

142

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N

Rochester, MN 55901

US.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of

Lotus Symphony Developer’s Guide



performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee
imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work,
include a copyright notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Crop.
Sample Programs. (C) Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information soft copy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at [Copyright and trademark information| (www.ibm.com/legal /
copytrade.shtml).

Other company, product, or service names may be trademarks or service marks of
others.

Part 9. Appendixes 143


http://www.ibm.com/legal/copytrade.shtml

144 Lotus Symphony Developer’s Guide






Printed in USA



	Contents
	Part 1. About this publication
	Chapter 1. Intended audience
	Chapter 2. Requirements
	Chapter 3. How to use this guide
	Chapter 4. The Lotus Symphony toolkit

	Part 2. Product overview
	Chapter 1. Introduction to Lotus Symphony
	Chapter 2. Introduction to Lotus Symphony in Lotus Notes
	Chapter 3. Lotus Symphony and Lotus Notes architecture
	3.1 Overview of the Lotus Symphony architecture
	3.2 Overview of Lotus Notes architecture
	3.3 Overview of Eclipse
	3.4 Overview of Lotus Expeditor
	3.5 OpenOffice.org

	Chapter 4. Lotus Symphony programming model
	Chapter 5 Understanding the development environment

	Part 3. Designing Lotus Symphony applications
	Chapter 1. Rich client applications
	Chapter 2. Lotus Symphony back-end service
	Chapter 3. Business logic
	Chapter 4. Lotus Expeditor toolkit for Lotus Symphony developers
	4.1. Update from jclDesktop to J2SE

	Chapter 5. Packaging and deployment
	5.1 Design and develop components with Lotus Expeditor toolkit
	5.2 Group components into features with the Lotus Expeditor toolkit
	5.3 Package the features into the update site with the Lotus Expeditor toolkit
	5.4 Distribute the update site
	5.5 Deploy the update site into Lotus Symphony

	Chapter 6. Globalization
	Chapter 7. Cross platform considerations
	Chapter 8. Developing Applications for Lotus Symphony and for Lotus Symphony in Lotus Notes

	Part 4. Extending Lotus Symphony
	Chapter 1. Setting up the integrated development environment
	Chapter 2. Customizing the Lotus Symphony user interface
	2.1 Adding a sample menu
	2.2 Adding a control to the toolbar
	2.3 Adding to the launcher button
	2.4 Adding a new view in the shelf view
	2.5 Using the auto recognizer
	2.6 Adding an item to the status bar
	2.7 Adding a preferences page

	Chapter 3. Lotus Symphony Java APIs and extension points
	3.1 Selection service
	3.2 RichDocumentViewFactory
	3.3 RichDocumentView

	Chapter 4. Using the UNO API to access a document model
	Chapter 5. Packaging and deploying your plug-ins
	5.1 Prepare custom plug-in for deployment
	5.2 Create a feature and an Eclipse location update site
	5.3 Install a custom Lotus Symphony application
	5.4 Disable or enable custom Lotus Symphony applications
	5.5 Uninstall custom Lotus Symphony application


	Part 5. The Lotus Symphony Object Model
	Chapter 1. Lotus Symphony Document Object Model
	1.1 Overview
	1.2 Handling Lotus Symphony documents
	1.3 Working with Lotus Symphony document

	Chapter 2. Lotus Symphony Spreadsheet Object Model
	2.1 Overview
	2.2 Handling Lotus Symphony spreadsheets
	2.3 Working with Lotus Symphony spreadsheets

	Chapter 3. Lotus Symphony Presentation object model
	3.1 Overview
	3.2 Handling Lotus Symphony presentations


	Part 6. Lotus Expeditor and UNO Programming
	Chapter 1. Developing Lotus Expeditor applications
	Chapter 2. UNO Programming
	2.1 Getting the global service factory
	2.2 Using the import and export functions
	2.3 Text documents
	2.4 Spreadsheets


	Part 7. Sample plug-ins
	Chapter 1. Hello World sample plug-in
	1.1 Creating a new plug-in
	1.2 Adding the plug-in dependency
	1.3 Adding a side shelf element
	1.4 Running the application

	Chapter 2. Editor View sample plug-in
	2.1 Creating a plug-in
	2.2 Creating a new button
	2.3 Creating an editor view part

	Chapter 3. Spreadsheet sample plug-in
	3.1 Introduction to the scenario
	3.2 Preview of the result
	3.3 Prepare your development environment
	3.4 Deploying the sample
	3.5 Creating the sample
	3.6 Core code demonstration
	3.7 Extending the sample

	Chapter 4. Writer Sample plug-in
	4.1 Introduction to the scenario
	4.2. Preview of the result
	4.3 Deploying the sample
	4.4 Using the sample
	4.5 Building the sample

	Chapter 5. Presentation sample plug-in
	5.1 Introduction to the scenario
	5.2 Preview of the result
	5.3 Prepare your development environment
	5.4 Deploying the sample
	5.5 Creating the sample
	5.6 Core code demonstration
	5.7 Extending the sample

	Chapter 6. C2A sample plug-in
	Chapter 7. Customizing a Sample plug-in
	7.1 Introduction to the scenario
	7.2 Preview of the result
	7.3 Prepare development environment
	7.4 Deploying the sample
	7.5 Creating the sample
	7.6 Core code demonstration
	7.7 Extending the sample

	Chapter 8. Convertor Sample plug-in
	8.1 Introduction to the scenario
	8.2 Preview of the result
	8.3 Prepare development environment
	8.4 Deploying the sample
	8.5 Design overview
	8.6 Creating the sample
	8.7 Core code demonstration
	8.8 Extending the sample


	Part 8. Troubleshooting and support
	Chapter 1. Troubleshooting the development environment
	Chapter 2. Troubleshooting during application development
	Chapter 3. Troubleshooting during deployment
	Chapter 4. Contacting support

	Part 9. Appendixes
	Appendix . References
	Appendix . Notices


