
Informix Unicode
DataBlade Module

User’s Guide
Version 1.0
August 1998
Part No. 000-5211

ii Informix Unicode Data
Published by INFORMIX Press Informix Software, Inc.
4100 Bohannon Drive
Menlo Park, CA 94025-1032

Copyright  1981-1998 by Informix Software, Inc., or its subsidiaries, provided that portions may be
copyrighted by third parties, as set forth in documentation. All rights reserved.

The following are worldwide trademarks of Informix Software, Inc., or its subsidiaries, registered in the
United States of America as indicated by “,” and in numerous other countries worldwide:

INFORMIX; Illustra™; DataBlade

All other marks or symbols are registered trademarks or trademarks of their respective owners.

ACKNOWLEDGMENTS

To the extent that this software allows the user to store, display, and otherwise manipulate various forms of
data, including, without limitation, multimedia content such as photographs, movies, music and other binary
large objects (blobs), use of any single blob may potentially infringe upon numerous different third-party
intellectual and/or proprietary rights. It is the user's responsibility to avoid infringements of any such third-
party rights.

RESTRICTED RIGHTS/SPECIAL LICENSE RIGHTS

Software and documentation acquired with US Government funds are provided with rights as follows: (1) if
for civilian agency use, with Restricted Rights as defined in FAR 52.227-19; (2) if for Dept. of Defense use, with
rights as restricted by vendor's standard license, unless superseded by negotiated vendor license as prescribed
in DFAR 227.7202. Any whole or partial reproduction of software or documentation marked with this legend
must reproduce the legend.
Blade Module User’s Guide

Table of Contents

Table of
Contents
Introduction
In This Introduction 3
About This Manual 3

Organization of This Manual 3
Types of Users 4
Software Dependencies 5
Features of This Product 5

Documentation Conventions 5
Typographical Conventions 6
Icon Conventions 7
Function Syntax Conventions 7
Printed Documentation 8
On-Line Documentation 9

Informix Welcomes Your Comments 10

Chapter 1 Overview
In This Chapter 1-3
What is the Unicode DataBlade Module? 1-3
Handling Unicode Data 1-4
What is in the Unicode DataBlade Module? 1-4

The UNIvarchar Data Type. 1-5
Use of LVARCHAR 1-5
Customized Routines 1-5

Using the Unicode DataBlade Module 1-6
The Unicode Locale 1-6
Loading Data 1-6
Using UNIvarchar Columns 1-7
Casting and Comparisons 1-8

iv Inform
Chapter 2 Unicode Columns
In This Chapter 2-3
The UNIvarchar Data Type 2-3

Definition 2-3
Usage. 2-4

Locales . 2-4
A Generic Unicode Locale. 2-5
Special Considerations 2-5
Client Programs and Unicode Data 2-6

Chapter 3 Casting and Unicode
In This Chapter 3-3
The Importance of Casting 3-3

Implicit Casts 3-3
Explicit Casts 3-4
Cast Table 3-4
CHAR to UNIvarchar 3-6
NCHAR to UNIvarchar 3-9
NVARCHAR to UNIvarchar 3-11
VARCHAR to UNIvarchar 3-14
UNIvarchar to CHAR 3-16
UNIvarchar to NCHAR 3-18
UNIvarchar to NVARCHAR 3-21
UNIvarchar to VARCHAR 3-24
Using Casts with Date and Money Data Types 3-27
Examples With[Without] a UNIvarchar Cast 3-27

Chapter 4 Functions
In This Chapter 4-3

CHAR_LENGTH. 4-5
CHARACTER_LENGTH 4-8
COMPARE 4-9
CONCAT 4-12
Equal . 4-15
GreaterThan 4-17
GreaterThanOrEqual 4-20
Hash . 4-23
LessThan 4-25
LessThanOrEqual 4-27
LENGTH 4-29
MATCHES 4-32
ix Unicode DataBlade Module User’s Guide

Example 4-32
NotEqual 4-34
OCTET_LENGTH 4-36
UNICharSubstring. 4-39
UNIOctetSubstring 4-42
UNITrim 4-45

Chapter 5 Module-Specific Syntax
In This Chapter 5-3
General Information 5-3

CREATE TABLE 5-4
SELECT 5-6

Chapter 6 The gl_conv Utility
In This Chapter 6-3

gl_conv 6-4

Appendix A Sample Tables

Glossary
Table of Contents v

vi Inform
ix Unicode DataBlade Module User’s Guide

Introduction
Introduction
In This Introduction 3

About This Manual 3
Organization of This Manual 3
Types of Users 4
Software Dependencies 5
Features of This Product. 5

Documentation Conventions 5
Typographical Conventions 6
Icon Conventions 7
Function Syntax Conventions 7
Printed Documentation 8
On-Line Documentation. 9

On-Line Manuals 9
Documentation Notes, Release Notes, Machine Notes 10

Informix Welcomes Your Comments 10

2 Inform
ix Unicode DataBlade Module User’s Guide

In This Introduction
This chapter introduces the Informix Unicode DataBlade Module User’s Guide.
Read this chapter for an overview of the information provided in this manual
and for an understanding of the conventions used throughout the book.

About This Manual
This manual contains information to help you use the Informix Unicode
DataBlade module with your Informix database server. A DataBlade module
adds functionality to your database server by providing custom data types
and supporting routines. The Unicode DataBlade module enables customers
to store Unicode data in database tables and to manipulate and retrieve that
data using SQL.

This section discusses the organization of the manual, the intended audience,
and the software products you must have to use the Unicode DataBlade
module.

Organization of This Manual
The Informix Unicode DataBlade Module User’s Guide contains an overview
chapter and several reference chapters. At the end of the book, there is a
glossary.

This manual includes the following chapters:

■ This introduction provides an overview of the manual, describes the
documentation conventions used, and explains the generic style of
this documentation.
Introduction 3

Types of Users
■ Chapter 1, “Overview,” introduces the Unicode DataBlade module
and provides general information about the product.

■ Chapter 2, “Unicode Columns,” describes the UNIvarchar data type.
It also includes some relevant information about the LVARCHAR data
type.

■ Chapter 3, “Casting and Unicode,” provides information about the
implicit and explicit casts and code set conversions that are necessary
when using the UNIvarchar data type. It also includes some
examples.

■ Chapter 4, “Functions,” contains reference pages for routines used
with this DataBlade module.

■ Chapter 5, “Module-Specific Syntax,” explains what you need to
know to use common SQL statements with this DataBlade module. In
particular, it discusses the CREATE TABLE statement and the SELECT
statement.

■ Chapter 6, “The gl_conv Utility,” describes the feature that enables
users to store binary data in UNIvarchar columns.

■ Appendix A, “Sample Tables,” contains the CREATE TABLE and
INSERT statements for the tables used in the examples in this book.

A glossary of terms used with this DataBlade module and some common
database terms follows the chapters, and a comprehensive index directs you
to areas of particular interest.

Types of Users
This manual is written for:

■ customers who want to create a database in which to store data in
many natural languages.

■ customers who have Unicode data from a source that they want to
use with Informix databases. Typically this would be a customer
migrating from another database manufacturer, but it could be a
customer migrating Unicode data from a third-party application,
such as a spreadsheet.
4 Informix Unicode DataBlade Module User’s Guide

Software Dependencies
Software Dependencies
To use this product, you must be using Informix Dynamic Server with
Universal Data Option and the Global Language Support (GLS) feature.

Features of This Product
The Unicode DataBlade module extends the functionality of your Informix
database server by providing:

■ an opaque data type to handle Unicode data: UNIvarchar.

■ custom routines to support the new data type.

■ implicit and explicit casts for UNIvarchar data.

■ a utility to convert binary data to Unicode.

Documentation Conventions
This section describes the conventions that this manual uses. These conven-
tions make it easier to gather information from this and other volumes in the
documentation set.

The following conventions are covered:

■ Typographical conventions

■ Icon conventions

■ Function syntax conventions

■ Sample-code conventions
Introduction 5

Typographical Conventions
Typographical Conventions
This manual uses the following standard set of conventions to introduce new
terms, illustrate screen displays, describe command syntax, and so forth.

Tip: The text and many of the examples in this manual show function and data type
names in mixed lettercasing (uppercase and lowercase). Because your Informix
database server is case insensitive, you do not need to enter function names exactly
as shown: you can use uppercase letters, lowercase letters, or any combination of the
two.

Convention Meaning

KEYWORD All keywords appear in uppercase letters in a serif font.

italics Within text, new terms and emphasized words appear in italics.
Within syntax statements, values that you are to specify appear
in italics.

boldface Identifiers (names of classes, objects, constants, events,
functions, program variables, forms, labels, and reports),
environment variables, database names, filenames, table
names, column names, icons, menu items, command names,
and other similar terms appear in boldface.

monospace Information that the product displays on the screen and infor-
mation that you enter appear in a monospace typeface.
6 Informix Unicode DataBlade Module User’s Guide

Icon Conventions
Icon Conventions
Throughout this document, you will find text identified by icons in the
margin. These icons identify three types of information, as described in the
following table. This information is always displayed in italics.

Function Syntax Conventions
This guide uses the following conventions to specify syntax:

■ Square brackets ([]) surround optional items.

■ Curly brackets ({ }) surround items that can be repeated zero or
more times.

■ A vertical line (|) separates alternatives.

■ Function parameters are italicized; arguments that must be specified
as shown are not italicized.

■ Repeatable segments of a function are indicated with ellipses. For
example, the syntax: [(id_num [,id_num...])] represents an optional
list of any number of ID values, separated by commas.

These syntax conventions are used in Chapter 4 and Chapter 6 of this guide.

Icon Label Description

Warning: Identifies paragraphs that contain vital instructions,
cautions, or critical information

Important: Identifies paragraphs that contain significant
information about the feature or operation that is
being described

Tip: Identifies paragraphs that offer additional details or
shortcuts for the functionality that is being described
Introduction 7

Printed Documentation
Printed Documentation
The following related Informix documents complement the information
in this manual set:

■ The Getting Started guide for your database server describes the
architecture and features of your database server and offers instruc-
tions for installing and configuring it.

■ Whoever installs your Informix products should refer to the Installa-
tion Guide for your particular platform and release to ensure that
your Informix product is properly set up before you begin to work
with it. The installation guides include a matrix that depicts possible
client/server configurations.

■ Before you can use the Unicode DataBlade module, you must install
and configure your database server. The Administrator’s Guide for
your database server provides information about how to configure
your server to interact with DataBlade modules.

■ Installation instructions for the Unicode DataBlade module are
provided in the hard copy Read Me First sheet for DataBlade modules
that is packaged with this product. Once you have installed the
DataBlade module, you must use BladeManager to register it into the
database where the DataBlade module will be used. See the
DataBlade Module Installation and Registration Guide for details on
registering DataBlade modules.

■ To learn about the Informix version of Structured Query Language
(SQL), read the Informix Guide to SQL: Tutorial. It provides a tutorial
on SQL as it is implemented by Informix products. It also describes
the fundamental ideas and terminology for planning and imple-
menting a relational database.

■ Reference pages for SQL statements used with the Unicode
DataBlade module are in the Informix Guide to SQL: Syntax. (Module-
specific adjustments to this syntax are described in Chapter 5 of this
manual.)

■ A companion volume to the Tutorial and Syntax, the Informix Guide to
SQL: Reference includes details of the Informix system catalog tables,
describes Informix and common environment variables that you
should set, and describes the column data types that Informix
database servers support.
8 Informix Unicode DataBlade Module User’s Guide

On-Line Documentation
Tip: This book also contains a glossary of server-related terms.

■ The Informix Guide to GLS Functionality contains important infor-
mation about character sets, code sets, multibyte data, localization,
and working with multiple natural languages.

■ The Informix ESQL/C Programmer’s Manual is essential for anyone
writing programs using ESQL/C.

■ Informix Error Messages is useful if you do not want to look up your
error messages on-line.

Consult your Informix representative to find out what recent documentation
is available for your database server configuration.

On-Line Documentation
Several different types of on-line documentation are available:

■ On-line manuals

■ On-line help

■ On-line error messages

■ Documentation notes, release notes, and machine notes

On-Line Manuals

All the Unicode DataBlade module manuals are provided on a CD so that you
can view and search for information on-line.
Introduction 9

Informix Welcomes Your Comments
Documentation Notes, Release Notes, Machine Notes

In addition to the Informix set of manuals, the following on-line files
supplement the information in this manual.

Please examine these files because they contain vital information about
application and performance issues.

Informix Welcomes Your Comments
Please tell us what you like or dislike about our manuals. To help us with
future versions of our manuals, we want to know about any corrections or
clarifications that you would find useful. Please include the following
information:

■ The name and version of the manual you are using

■ Any comments you have about the manual

■ Your name, address, and phone number

Write to us at the following address:

Informix Software, Inc.
Technical Publications
300 Lakeside Dr., Suite 2700
Oakland, CA 94612

On-Line File Purpose

Documentation
notes

Describes features not covered in the manuals or modified since
publication.

Release notes Describes any special actions required to configure and use the
DataBlade module on your computer. Additionally, this file
contains information about any known problems and their
workarounds.

Machine notes Describes platform-specific information regarding the release.
10 Informix Unicode DataBlade Module User’s Guide

Informix Welcomes Your Comments
If you prefer to send electronic mail, our address is:

doc@informix.com

We appreciate your feedback.
Introduction 11

1
Chapter
Overview
In This Chapter . 1-3

What is the Unicode DataBlade Module? 1-3

Handling Unicode Data 1-4

What is in the Unicode DataBlade Module? 1-4
The UNIvarchar Data Type. 1-5
Use of LVARCHAR 1-5
Customized Routines. 1-5

Using the Unicode DataBlade Module 1-6
The Unicode Locale 1-6
Loading Data 1-6

Loading Fixed-Length Data 1-7
Loading Variable-Length Data 1-7

Using UNIvarchar Columns 1-7
Casting and Comparisons 1-8

1-2 Infor
mix Unicode DataBlade Module User’s Guide

In This Chapter
This book provides instructions on how to use the Informix Unicode
DataBlade module.

What is the Unicode DataBlade Module?
The Unicode DataBlade module enables a user to store data in Unicode
format and to access and manipulate data that has been stored in Unicode
format.

The Unicode DataBlade module allows you to use existing SQL statements to
store, access, and manipulate native Unicode data in the same way you
manipulate any variable character data. If you are using ESQL/C, you can
retrieve the actual Unicode data. If you are using DB-Access or another
dynamic SQL tool, your data will be the hexadecimal ASCII representation of
Unicode, returned as an LVARCHAR.

In both cases, the Unicode data is handled natively; it is not converted before
manipulation. You might, however, need to cast Unicode to another character
data type before using it in an application or some routines.

Unicode data in different columns may originate in different natural
languages. With the Unicode DataBlade module, each column’s data can
remain in its original language if the database uses the generic Unicode locale
that accompanies this DataBlade module. For more information on the
generic Unicode locale, see “A Generic Unicode Locale” on page 2-5.

Important: When you import Unicode data into your client program, you need to
establish a way for the client’s sort order to handle characters that may exist in the
languages in the database but are not part of the character set specified for the client’s
locale.
Overview 1-3

Handling Unicode Data
This DataBlade module also provides a utility, gl_conv, that you can use to
convert binary data, such as spreadsheet files, to Unicode format. Once
converted, this data can be stored in a UNIvarchar column. gl_conv also
provides a way to load delimited Unicode data into your database from a file
containing variable-width fields separated by a delimiter.

You can use the gl_conv utility to convert binary data, such as the data
exported from a spreedsheet that is stored in a particular character set, to its
Unicode equivalent format. Use the gl_conv utility to write the Unicode data
to a file that contains variable length fields separated by a delimiter. The data
can then be loaded into a database that contains UNIvarchar columns with
the SQL LOAD command.

Handling Unicode Data
Informix DataBlade modules and other customer applications can create
their own data types. The Unicode DataBlade module takes advantage of this
facility to create a data type and supporting routines that can be used in SQL
statements to store, retrieve, and manipulate data encoded in the Unicode
character set.

This data type is called UNIvarchar.

Tip: Note that it is the data that is in Unicode format. There are no Unicode data-
bases or Unicode tables. Unicode data is stored in columns, so a column can have a
UNIvarchar data type.

What is in the Unicode DataBlade Module?
The Unicode DataBlade module extends the functionality of your Informix
database server by providing the following features:

■ The UNIvarchar data type

■ Module-specific versions of database routines

■ Module-specific casts

■ The gl_conv utility
1-4 Informix Unicode DataBlade Module User’s Guide

The UNIvarchar Data Type
The UNIvarchar Data Type
The Unicode DataBlade module provides a new data type to store Unicode
data. This data type is UNIvarchar.

Use of LVARCHAR
Dynamic Server with UD Option provides a built-in character data type,
LVARCHAR, that can be used to store variable-length character data up to
2 kilobytes in length. LVARCHAR is used in casts and comparisons between
two opaque types or between one opaque and one built-in type. It can be
used to store multibyte strings.

LVARCHAR supports code-set collation of text data, as do CHAR and
VARCHAR.

For details about the LVARCHAR data type, see the Informix Guide to SQL:
Syntax and the Informix Guide to SQL: Reference.

This DataBlade module uses the LVARCHAR data type for Unicode data
when it is being transmitted between client and server. When used with
Unicode data, LVARCHAR stores the hexadecimal ASCII representation of
Unicode. LVARCHAR data types must be cast to UNIvarchar or other
character data types before they can be used in a database table. There are no
LVARCHAR columns.

The LVARCHAR data type is also used for input and output casts for opaque
data types. The LVARCHAR data type stores opaque data types in the string
(external) format. Each opaque type has an input support function and cast,
which convert it from LVARCHAR to a form that clients can manipulate. Each
also has an output support function and cast, which convert it from its
internal representation to LVARCHAR.

For examples of the hexadecimal representation of Unicode data, see the
examples in Chapter 4, “Functions.”

Customized Routines
Many of the supporting routines for data types have been redefined to work
with UNIvarchar. These functions are documented in Chapter 4, “Functions.”
Overview 1-5

Using the Unicode DataBlade Module
Using the Unicode DataBlade Module
This section provides a high-level discussion of the use of the Unicode
DataBlade module.

The Unicode Locale
In addition to the DB_LOCALE and CLIENT_LOCALE, the Unicode DataBlade
module requires a Unicode locale for both the database and the client. For
each client locale, the DataBlade module creates a compatible Unicode locale
named ll_tt.unicode, where:

This powerful feature provides flexibility and scope. To use it, however, you
must be familiar with the idiosyncrasies of various languages. Each locale
has its own characteristics, such as sort order, representation of dates, and
legal identifiers. Informix has provided a generic locale with this DataBlade
module, but you should set up your environment to handle data from
different locales in a way that achieves your objectives.

See the release notes on the product media for details about the generic locale
provided by Informix. For an in-depth discussion of locales and how to set
up a non-default locale, see the Informix Guide to GLS Functionality.

Loading Data
The following sections describe how to load fixed-length and variable-length
data into Unicode columns.

ll Language. A two-character name that represents the natural
language for a particular locale.

tt Territory. A two-character name that represents the cultural
conventions used in this locale. For example, the territory
could indicate the Swiss version of French, Italian, or German.

unicode The name of the codeset used by the locale.
1-6 Informix Unicode DataBlade Module User’s Guide

Using UNIvarchar Columns
Loading Fixed-Length Data

You can use Pload to load and unload Unicode records if they are fixed
length. Follow the instructions in the Informix Guide to GLS Functionality.

Loading Variable-Length Data

To load binary variable-length data into Unicode columns

1. Use gl_conv to convert the data to Unicode’s external hexadecimal
ASCII representation. The gl_conv utility is described in Chapter 6,
“The gl_conv Utility.”

2. Use the SQL LOAD statement to load the Unicode data into your
database.

Using UNIvarchar Columns
A UNIvarchar column works just like a VARCHAR column except to retrieve
data in Unicode format, you must write an ESQL/C program. DB-Access can
only receive LVARCHAR data, which is a hexadecimal representation of
Unicode data.

Otherwise, you can use SQL statements such as SELECT just as you would
with any other data. See Chapter 5, “Module-Specific Syntax,” for infor-
mation about required casting in the SELECT statement.
Overview 1-7

Casting and Comparisons
Casting and Comparisons
Comparisons require casts to built-in data types. LVARCHAR is particularly
useful for casting, as mentioned in “Use of LVARCHAR” on page 1-5.

To compare an opaque type to a built-in type, you must explicitly cast the
opaque type to a form that the database server understands, such as
LVARCHAR. The database server then invokes system-defined casts to
convert the results to the desired built-in type.

To compare two opaque types, call the DataBlade module specific Compare()
function in palce of the built-in Compare() function. The DataBlade module
specific Compare() function takes as parameters two UNIvarchar data types.
For more information on the Compare() function, see “COMPARE” on
page 4-9.

See Chapter 3, “Casting and Unicode,” to find out which casts are implicit
and which are explicit, and to see examples of some explicit casts.
1-8 Informix Unicode DataBlade Module User’s Guide

2
Chapter
Unicode Columns
In This Chapter . 2-3

The UNIvarchar Data Type 2-3
Definition. 2-3
Usage . 2-4

Using Built-in Server Functions 2-4

Locales . 2-4
A Generic Unicode Locale 2-5
Special Considerations 2-5
Client Programs and Unicode Data 2-6

ESQL/C . 2-6
DB-Access 2-6
Additional Information 2-6

2-2 Infor
mix Unicode DataBlade Module User’s Guide

In This Chapter
This chapter contains reference information for a new data type provided
with the Informix Unicode DataBlade module. This data type, UNIvarchar, is
used to store Unicode data in database tables.

This chapter also describes how the Unicode DataBlade module handles
tables whose UNIvarchar columns contain data in different natural
languages.

The UNIvarchar Data Type
The Unicode DataBlade module uses the UNIvarchar data type as the
database representation for Unicode data.

Definition
UNIvarchar is an opaque data type created with the following modifiers to
the CREATE OPAQUE TYPE statement.

Tip: Note that this data type can be up to 1024 bytes in length, but can hold only 512
Unicode characters since each Unicode character is 2 bytes in length.

CREATE OPAQUE TYPE Modifier Value

internallength variable

maxlen 1024 bytes (512 Unicode characters)

alignment 2
Unicode Columns 2-3

Usage
Usage
The UNIvarchar data type allows you to store native Unicode data in your
database and manipulate it as you would any VARCHAR data. Assign the
UNIvarchar data type to columns that contain data in Unicode format.

Using Built-in Server Functions

Some built-in server functions produce an inappropriate result when used
with the UNIvarchar data type. Some of these functions have been replaced
by module-specific user-defined functions, which are called in the place of
the built-in functions. You should either avoid using the others or manipulate
the results to use the external hexadecimal ASCII representation of the
UNIvarchar data.

Functions that have been customized for this DataBlade module are
described in Chapter 4, “Functions.”

Locales
A UNIvarchar column has a Unicode code set associated with it. In other
words, the data in different columns can originate in different locales—
locales that are not the same as either the client locale or the server locale. The
locale of a UNIvarchar column is based on the database’s language and
territory and on the Unicode data set.

The resulting locale is represented as ll_tt.unicode, where ll represents the
code set language and tt represents the code set territory. The Unicode locale
is described in “The Unicode Locale” on page 1-6.

The Unicode DataBlade module checks to see what the CTYPE is for the
current locale. Then it dynamically creates the corresponding Unicode locale.
For example, when the current locale is the default locale, en_us.8859-1, the
Unicode DataBlade module sets its locale to en_us.unicode. All characters
contained within the CTYPE category of this locale are available to the user.

If you need to use characters that are not contained within the CTYPE for you
locale (Korean characters, for example), then you must set the current locale
to the appropriate locale, such as ko_kr.KSC5601. The Unicode DataBlade
module would then set the locale to ko_kr.unicode.
2-4 Informix Unicode DataBlade Module User’s Guide

A Generic Unicode Locale
To load a particular locale, use the GLS API function gl_lc_load. For example,
the following statement loads the Unicode locale that corresponds to the
default locale for your server, en_us.8859-1:

gl_lc_load(ul,"en_us.unicode", NULL)

♦

A Generic Unicode Locale
A generic Unicode locale, with the appropriate code map and conversion
files, is distributed with this DataBlade module in a subdirectory of the instal-
lation root directory.

The locale file, e005.lco, contains LC_CTYPE information for the following
character sets:

■ ISO8859 characters sets from ISO8859-1 to ISO8859-9 inclusive

■ Microsoft Windows characters sets CP1250 to CP1258 inclusive

■ Asian character sets:

❑ Chinese GB2312-1980

❑ Japanese JIS\EUC 0201-1976, JIS\EUC 0208-1990, JIS\EUC
0212-1990

❑ Korean KSC5601-1992

For more details and instructions on using this locale, see the release notes on
the product media.

Important: Informix strongly encourages you to use the module-provided locale.
Doing so will greatly reduce the effort required to set up your environment.

Special Considerations
Manipulating data from multiple character sets can require some extra
planning. For example, if you want to use the characters in different character
sets as object names and identifiers, you need to specify that in your
CLIENT_LOCALE.

ESQL/C
Unicode Columns 2-5

Client Programs and Unicode Data
In addition, different character sets can have different sort orders, specified
by the locale. You need to provide instructions for sorting characters that are
not usually found in your character set.

See the Informix Guide to GLS Functionality for details.

Client Programs and Unicode Data
Client programs differ in the way they handle Unicode data.

ESQL/C

ESQL/C processes Unicode 16-bit data natively.

DB-Access

DB-Access cannot process 16-bit data. Instead of retrieving native Unicode
data, it returns an LVARCHAR containing the hexadecimal ASCII represen-
tation of Unicode.

Additional Information

DB-Access, ESQL/C, and other client applications provide varying levels of
support for localized data. Check the manual for your client application to
determine whether it supports the use of localized character sets in names
and allows you to sort data according to collation rules specified for the
locale.
2-6 Informix Unicode DataBlade Module User’s Guide

3
Chapter
Casting and Unicode
In This Chapter . 3-3

The Importance of Casting 3-3
Implicit Casts 3-3
Explicit Casts 3-4
Cast Table. 3-4
CHAR to UNIvarchar 3-6
NCHAR to UNIvarchar 3-9
NVARCHAR to UNIvarchar 3-11
VARCHAR to UNIvarchar 3-14
UNIvarchar to CHAR 3-16
UNIvarchar to NCHAR 3-18
UNIvarchar to NVARCHAR 3-21
UNIvarchar to VARCHAR 3-24
Using Casts with Date and Money Data Types 3-27
Examples With[Without] a UNIvarchar Cast. 3-27

3-2 Infor
mix Unicode DataBlade Module User’s Guide

In This Chapter
This chapter contains reference information for the casts provided with the
Informix Unicode DataBlade module. It contains reference pages for the
explicit casts between the Unicode code set and the database code set. It also
lists implicit and explicit casts that convert between internal and external
representations of data.

The Importance of Casting
Timely casting is the key to successful use of the Unicode DataBlade module.
Since UNIvarchar behaves much like VARCHAR, you can use built-in
functions as long as you cast your data correctly. This chapter lists the
implicit casts and describes the explicit casts that are available with the
Unicode DataBlade module.

Implicit Casts
The following implicit casts convert between the external ASCII hexadecimal
representation and the internal UNIvarchar representation.

From This External Representation To This Internal Representation

LVARCHAR UNIvarchar

SENDRECV UNIvarchar

IMPEXP UNIvarchar

IMPEXPBIN UNIvarchar
Casting and Unicode 3-3

Explicit Casts
Explicit Casts
The following explicit casts convert between the internal UNIvarchar repre-
sentation and the external ASCII hexadecimal representation.

Cast Table
The casts in this section convert between the Unicode code set and the code
set of the database. They must be explicit.

Use these casts to pass UNIvarchar data to module-defined or built-in
functions that operate on data of built-in character data types.

For example, to use the built-in function MATCHES to determine whether a
UNIvarchar value is A or a, you might use the following cast:

MATCHES (UNIvarchar::CHAR(30), "[aA]*")

The following table shows explicit casts to and from UNIvarchar.

From This Internal Representation To This External Representation

UNIvarchar LVARCHAR

UNIvarchar SENDRECV

UNIvarchar IMPEXP

UNIvarchar IMPEXPBIN

This Cast Returns

CHAR to UNIvarchar UNIvarchar

NCHAR to UNIvarchar UNIvarchar

VARCHAR to UNIvarchar UNIvarchar

NVARCHAR to UNIvarchar UNIvarchar

UNIvarchar to CHAR CHAR

(1 of 2)
3-4 Informix Unicode DataBlade Module User’s Guide

Cast Table
Each of these casts is described on its own reference page, where you can find
the support routines and examples for each.

Many casts done on Unicode data must be explicit. In some cases, such as
quoted strings, you must cast the value to its character representation before
casting it to UNIvarchar. This is necessary because a Unicode string is repre-
sented as a hexadecimal value (LVARCHAR), and you need to indicate that the
quoted value is a character value not a hexadecimal value.

This double cast is illustrated in the second example provided for the casts
described in this chapter.

UNIvarchar to NCHAR NCHAR

UNIvarchar to NVARCHAR NVARCHAR

UNIvarchar to VARCHAR VARCHAR

This Cast Returns

(2 of 2)
Casting and Unicode 3-5

CHAR to UNIvarchar
CHAR to UNIvarchar
You must cast CHAR strings to UNIvarchar explicitly. If you omit the explicit
cast, an error will be returned.

The support routine for this cast is UNIvarcharCastFromChar.

Examples
The following examples illustrate the explicit cast from CHAR to UNIvarchar.

Setup

Create a table named cars1 with four columns.

CREATE TABLE cars1
(
 id INTEGER,

model_c CHAR(10),
model_U UNIvarchar,
error LVARCHAR

);

Insert some data into the id and model_c columns. Because the value in the
UNIvarchar column model_U is set to NULL, no cast is needed.

INSERT INTO cars1(id, model_c, model_U)
 VALUES

 (
0,
"Jaguar XJS",
NULL

);

INSERT INTO cars1(id, model_c, model_U)
 VALUES

 (
1,
"Fiat Ritmo",
NULL

);
3-6 Informix Unicode DataBlade Module User’s Guide

CHAR to UNIvarchar
Example 1

This example updates the data in the cars1 table by setting the value of the
model_U column, which is UNIvarchar, to be the same as the value in the
model_c column, which is CHAR, for the row with an id of 0.

model_c must be cast to UNIvarchar before its data can be replicated in the
model_U column.

UPDATE cars1
SET model_U = model_c::UNIvarchar
WHERE id = 0;

This statement queries the updated record.

SELECT * FROM cars1 WHERE id = 0;

The result is shown below. The UNIvarchar value is returned as a
hexadecimal string.

id 0
model_c Jaguar XJS
model_U 004A0061006700750061007200200058004A0053
error

Example 2

This example inserts data into the model_U column of row 5 directly, by
specifying the value as a quoted string, cast to UNIvarchar.

INSERT INTO cars1(id, model_U)
VALUES
(

5,"Jaguar XJS"::CHAR(10)::UNIvarchar
);

This statement queries the newly created record.

SELECT * FROM cars1 WHERE id = 5;
Casting and Unicode 3-7

CHAR to UNIvarchar
The result of this query shows that values have been inserted in the id and
model_U columns only. The model_c column for this row is empty.

id 5
model_c
model_U 004A0061006700750061007200200058004A0053
error
3-8 Informix Unicode DataBlade Module User’s Guide

NCHAR to UNIvarchar
NCHAR to UNIvarchar
You must cast NCHAR strings to UNIvarchar explicitly. If you omit the explicit
cast, an error will be returned.

The support routine for this cast is UNIvarcharCastFromNchar.

Examples
The following examples illustrate the explicit cast from NCHAR to
UNIvarchar.

Setup

Create a table named cars2 with four columns.

CREATE TABLE cars2
(
 id INTEGER,

model_c NCHAR(10),
model_U UNIvarchar,
error LVARCHAR

);

Insert some data into the id and model_c columns. Because the value in the
UNIvarchar column model_U is set to NULL, no cast is needed.

INSERT INTO cars2(id, model_c, model_U)
 VALUES

 (
0,
"Jaguar XJS",
NULL

);

INSERT INTO cars2(id, model_c, model_U)
 VALUES

 (
1,
"Fiat Ritmo",
NULL

);
Casting and Unicode 3-9

NCHAR to UNIvarchar
Example 1

This example updates the data in the cars2 table by setting the value of the
model_U column, which is UNIvarchar, to be the same as the value in the
model_c column, which is NCHAR, for the row with an id of 1.

UPDATE cars2
SET model_U = model_c::UNIvarchar
WHERE id = 1;

This statement queries the updated record.

SELECT * FROM cars2 WHERE id = 1;

The result is shown below. The UNIvarchar value is returned as a
hexadecimal string.

id 1
model_c Fiat Ritmo
model_U 00460069006100740020005200690074006D006F
error

Example 2

This example inserts data into the model_U column of row 5 directly, by
specifying the value as a quoted string, cast to UNIvarchar.

INSERT INTO cars2(id, model_U)
VALUES
(

5,"Jaguar XJS"::NCHAR(10)::UNIvarchar
);

This statement queries the newly created record.

SELECT * FROM cars2 WHERE id = 5;

The result of this query shows that values have been inserted in the id and
model_U columns only. The model_c column for this row is empty.

id 5
model_c
model_U 004A0061006700750061007200200058004A0053
error
3-10 Informix Unicode DataBlade Module User’s Guide

NVARCHAR to UNIvarchar
NVARCHAR to UNIvarchar
You must cast NVARCHAR strings to UNIvarchar explicitly. If you omit the
explicit cast, an error will be returned.

The support routine for this cast is UNIvarcharCastFromNvarchar.

Examples
The following examples illustrate the explicit cast from NVARCHAR to
UNIvarchar.

Setup

Create a table named cars3 with four columns.

CREATE TABLE cars3
(
 id INTEGER,

model_c NVARCHAR(10),
model_U UNIvarchar,
error LVARCHAR

);

Insert some data into the id and model_c columns. Because the value in the
UNIvarchar column model_U is set to NULL, no cast is needed.

INSERT INTO cars3(id, model_c, model_U)
 VALUES

 (
0,
"Jaguar XJS",
NULL

);

INSERT INTO cars3(id, model_c, model_U)
 VALUES

 (
1,
"Fiat Ritmo",
NULL

);
Casting and Unicode 3-11

NVARCHAR to UNIvarchar
Example 1

This example updates the data in the cars3 table by setting the value of the
model_U column, which is UNIvarchar, to be the same as the value in the
model_c column, which is NVARCHAR, for the row with an id of 0.

model_c must be cast to UNIvarchar before its data can be replicated in the
model_U column. If the cast is omitted, an error will result.

UPDATE cars3
SET model_U = model_c::UNIvarchar
WHERE id = 0;

This statement queries the updated record.

SELECT * FROM cars3 WHERE id = 0;

The result is shown below. The UNIvarchar value is returned as a
hexadecimal string.

id 0
model_c Jaguar XJS
model_U 004A0061006700750061007200200058004A0053
error

Example 2

This example inserts data into the model_U column of row 5 directly, by
specifying the value as a quoted string, cast to UNIvarchar.

INSERT INTO cars3(id, model_U)
VALUES
(

5,"Jaguar XJS"::NVARCHAR(10)::UNIvarchar
);

This statement queries the newly created record.

SELECT * FROM cars3 WHERE id = 5;
3-12 Informix Unicode DataBlade Module User’s Guide

NVARCHAR to UNIvarchar
The result of this query shows that values have been inserted in the id and
model_U columns only. The model_c column for this row is empty.

id 5
model_c
model_U 004A0061006700750061007200200058004A0053
error
Casting and Unicode 3-13

VARCHAR to UNIvarchar
VARCHAR to UNIvarchar
You must cast VARCHAR strings to UNIvarchar explicitly. If you omit the
explicit cast, an error will be returned.

The support routine for this cast is UNIvarcharCastFromVarchar.

Examples
The following examples illustrate the explicit cast from VARCHAR to
UNIvarchar.

Setup

Create a table named cars4 with four columns.

CREATE TABLE cars4
(
 id INTEGER,

model_c VARCHAR(10),
model_U UNIvarchar,
error LVARCHAR

);

Insert some data into the id and model_c columns. Because the value in the
UNIvarchar column model_U is set to NULL, no cast is needed.

INSERT INTO cars4(id, model_c, model_U)
 VALUES

 (
0,
"Jaguar XJS",
NULL

);

INSERT INTO cars4(id, model_c, model_U)
 VALUES

 (
1,
"Fiat Ritmo",
NULL

);
3-14 Informix Unicode DataBlade Module User’s Guide

VARCHAR to UNIvarchar
Example 1

This example updates the data in the cars4 table by setting the value of the
model_U column, which is UNIvarchar, to be the same as the value in the
model_c column, which is VARCHAR, for the row with an id of 1.

UPDATE cars4
SET model_U = model_c::UNIvarchar
WHERE id = 1;

This statement queries the updated record.

SELECT * FROM cars4 WHERE id = 1;

The result is shown below. Note that the UNIvarchar value is returned as a
hexadecimal string.

id 1
model_c Fiat Ritmo
model_U 00460069006100740020005200690074006D006F
error

Example 2

This example inserts data into the model_U column of row 5 directly, by
specifying the value as a quoted string, cast to UNIvarchar.

INSERT INTO cars4(id, model_U)
VALUES
(

5,"Jaguar XJS"::VARCHAR(10)::UNIvarchar
);

This statement queries the newly created record.

SELECT * FROM cars4 WHERE id = 5;

The result of this query shows that values have been inserted in the id and
model_U columns only. The model_c column for this row is empty.

id 5
model_c
model_U 004A0061006700750061007200200058004A0053
error
Casting and Unicode 3-15

UNIvarchar to CHAR
UNIvarchar to CHAR
You must cast UNIvarchar strings to CHAR explicitly. If you omit the explicit
cast, an error will be returned.

The support routine for this cast is charCastFromUNIvarchar.

Examples
The following examples illustrate the explicit cast from UNIvarchar to CHAR.

Setup

Create a table named cars5 with four columns.

CREATE TABLE cars5
(
 id INTEGER,

model_U UNIvarchar,
model_c CHAR(10),
error LVARCHAR

);

Insert some data into the id and model_U columns. To be stored in the
model_U column, the character data must be explicitly cast to UNIvarchar.

INSERT INTO cars5(id, model_U, model_c)
 VALUES

 (
0,
"Jaguar XJS"::UNIvarchar,
NULL

);

INSERT INTO cars5(id, model_U, model_c)
 VALUES

 (
1,
"Fiat Ritmo"::UNIvarchar,
NULL

);
3-16 Informix Unicode DataBlade Module User’s Guide

UNIvarchar to CHAR
Example 1

This example updates the data in the cars5 table by setting the value of the
model_c column, which is CHAR, to be the same as the value in the model_U
column, which is UNIvarchar, for the row with an id of 0.

UPDATE cars5
SET model_c = model_U::CHAR(10)
WHERE id = 1;

This statement queries the updated record.

SELECT * FROM cars5 WHERE id = 1;

The result is shown below. Note that the UNIvarchar value is returned as a
hexadecimal string.

id 1
model_U 00460069006100740020005200690074006D006F
model_c Fiat Ritmo
error

Example 2

This example inserts data into the model_c column of row 5 directly, by speci-
fying the value as a quoted string, cast to CHAR.

INSERT INTO cars5(id, model_c)
VALUES
(

5,"Jaguar XJS"::UNIvarchar::CHAR(10)
);

This statement queries the newly created record.

SELECT * FROM cars5 WHERE id = 5;

The result of this query shows that values have been inserted in the id and
model_c columns only. The UNIvarchar column for this row is empty.

id 5
model_U
model_c Jaguar XJS
error
Casting and Unicode 3-17

UNIvarchar to NCHAR
UNIvarchar to NCHAR
You must cast UNIvarchar strings to NCHAR explicitly. If you omit the explicit
cast, an error will be returned.

The support routine for this cast is ncharCastFromUNIvarchar.

Examples
The following examples illustrate the explicit cast from UNIvarchar to
NCHAR.

Setup

Create a table named cars6 with four columns.

CREATE TABLE cars6
(
 id INTEGER,

model_U UNIvarchar,
model_c NCHAR(10),
error LVARCHAR

);

Insert some data into the id and model_U columns. To be stored in the
model_U column, the character data must be explicitly cast to UNIvarchar.

INSERT INTO cars6(id, model_U, model_c)
 VALUES

 (
0,
"Jaguar XJS"::UNIvarchar,
NULL

);

INSERT INTO cars6(id, model_U, model_c)
 VALUES

 (
1,
"Fiat Ritmo"::UNIvarchar,
NULL

);
3-18 Informix Unicode DataBlade Module User’s Guide

UNIvarchar to NCHAR
Example 1

This example updates the data in the cars6 table by setting the value of the
model_c column, which is NCHAR, to be the same as the value in the
model_U column, which is UNIvarchar, for the row with an id of 0.

UPDATE cars6
SET model_c = model_U::NCHAR(10)
WHERE id = 0;

This statement queries the updated record.

SELECT * FROM cars6 WHERE id = 0;

The result is shown below. Note that the UNIvarchar value is returned as a
hexadecimal string.

id 0
model_U 004A0061006700750061007200200058004A0053
model_c Jaguar XJS
error

Example 2

This example inserts data into the model_c column of row 5 directly, by speci-
fying the value as a quoted string, cast to NCHAR.

INSERT INTO cars6(id, model_c)
VALUES
(

5,"Jaguar XJS"::UNIvarchar::NCHAR(10)
);

This statement queries the newly created record.

SELECT * FROM cars6 WHERE id = 5;
Casting and Unicode 3-19

UNIvarchar to NCHAR
The result of this query shows that values have been inserted in the id and
model_c columns only. The UNIvarchar column model_U for this row is
empty.

id 5
model_U
model_c Jaguar XJS
error
3-20 Informix Unicode DataBlade Module User’s Guide

UNIvarchar to NVARCHAR
UNIvarchar to NVARCHAR
You must cast UNIvarchar strings to NVARCHAR explicitly. If you omit the
explicit cast, an error will be returned.

The support routine for this cast is nvarcharCastFromUNIvarchar.

Examples
The following examples illustrate the explicit cast from UNIvarchar to
NVARCHAR.

Setup

Create a table named cars7 with four columns.

CREATE TABLE cars7
(
 id INTEGER,

model_U UNIvarchar,
model_c NVARCHAR(10),
error LVARCHAR

);

Insert some data into the id and model_U columns. To be stored in the
model_U column, the character data must be explicitly cast to UNIvarchar.

INSERT INTO cars7(id, model_U, model_c)
 VALUES

 (
0,
"Jaguar XJS"::UNIvarchar,
NULL

);

INSERT INTO cars7(id, model_U, model_c)
 VALUES

 (
1,
"Fiat Ritmo"::UNIvarchar,
NULL

);
Casting and Unicode 3-21

UNIvarchar to NVARCHAR
Example 1

This example updates the data in the cars7 table by setting the value of the
model_c column, which is NVARCHAR, to be the same as the value in the
model_U column, which is UNIvarchar, for the row with an id of 0.

UPDATE cars7
SET model_c = model_U::NVARCHAR(10)
WHERE id = 0;

This statement queries the updated record.

SELECT * FROM cars7 WHERE id = 0;

The result is shown below. The UNIvarchar value is returned as a
hexadecimal string.

id 0
model_U 004A0061006700750061007200200058004A0053
model_c Jaguar XJS
error

Example 2

This example inserts data into the model_c column of row 5 directly, by speci-
fying the value as a quoted string.

INSERT INTO cars7(id, model_c)
VALUES
(

5,"Jaguar XJS"::UNIvarchar::NVARCHAR(10)
);

This statement queries the newly created record.

SELECT * FROM cars7 WHERE id = 5;
3-22 Informix Unicode DataBlade Module User’s Guide

UNIvarchar to NVARCHAR
The result of this query shows that values have been inserted in the id and
model_c columns only. The UNIvarchar column model_U for this row is
empty.

id 5
model_U
model_c Jaguar XJS
error
Casting and Unicode 3-23

UNIvarchar to VARCHAR
UNIvarchar to VARCHAR
You must cast UNIvarchar strings to VARCHAR explicitly. If you omit the
explicit cast, an error will be returned.

The support routine for this cast is varcharCastFromUNIvarchar.

Examples
The following examples illustrate the explicit cast from UNIvarchar to
VARCHAR.

Setup

Create a table named cars8 with four columns.

CREATE TABLE cars8
(
 id INTEGER,

model_U UNIvarchar,
model_c VARCHAR(10),
error LVARCHAR

);

Insert some data into the id and model_U columns. To be stored in the
model_U column, the character data must be explicitly cast to UNIvarchar.

INSERT INTO cars8(id, model_U, model_c)
 VALUES

 (
0,
"Jaguar XJS"::UNIvarchar,
NULL

);

INSERT INTO cars8(id, model_U, model_c)
 VALUES

 (
1,
"Fiat Ritmo"::UNIvarchar,
NULL

);
3-24 Informix Unicode DataBlade Module User’s Guide

UNIvarchar to VARCHAR
Example 1

This example updates the data in the cars8 table by setting the value of the
model_c column, which is VARCHAR, to be the same as the value in the
model_U column, which is UNIvarchar, for the row with an id of 0.

UPDATE cars8
SET model_c = model_U::VARCHAR(10)
WHERE id = 0;

This statement queries the updated record.

SELECT * FROM cars8 WHERE id = 0;

The result is shown below. Note that the UNIvarchar value is returned as a
hexadecimal string.

id 0
model_U 004A0061006700750061007200200058004A0053
model_c Jaguar XJS
error

Example 2

This example inserts data into the model_c column of row 5 directly, by speci-
fying the value as a quoted string.

INSERT INTO cars8(id, model_c)
VALUES
(

5,"Jaguar XJS"::UNIvarchar::VARCHAR(10)
);

This statement queries the newly created record.

SELECT * FROM cars8 WHERE id = 5;
Casting and Unicode 3-25

UNIvarchar to VARCHAR
The result of this query shows that values have been inserted in the id and
model_c columns only. The UNIvarchar column model_U for this row is
empty.

id 5
model_U
model_c Jaguar XJS
error
3-26 Informix Unicode DataBlade Module User’s Guide

Using Casts with Date and Money Data Types
Using Casts with Date and Money Data Types
To convert a date or money data type to UNIvarchar, you must first cast it to
a built-in character type, then cast it again to UNIvarchar.

For example, if date_of_sale is a column that contains DATE-type data, and
you want to move the dates in that column into a UNIvarchar column, you
must perform the following double cast:

date_of_sale::CHAR(30)::UNIvarchar

As with GLS, you must make any desired changes to the date format in your
program.

Examples With[Without] a UNIvarchar Cast
The pairs of examples in this section illustrate the difference in the result
when you cast to UNIvarchar and when you do not. The first example of the
pair casts to UNIvarchar, the second one does not.

1. The following SELECT statement returns 09/11/97:
SELECT
(("9/10/97"::DATE)+1)::CHAR(20)::UNIvarchar::CHAR(20)

AS DateToUvarchar
FROM univartab
WHERE itemno=1001;

The following SELECT statement returns 09/11/97:
SELECT (("9/10/97"::DATE)+1)::CHAR(20) AS DateToChar

FROM univartab
WHERE itemno=1001;
Casting and Unicode 3-27

Examples With[Without] a UNIvarchar Cast
2. The following SELECT statement returns 09/10/97:
SELECT "9/10/97"::UNIvarchar::CHAR(20)::DATE

AS UvarcharToDate
FROM univartab
WHERE itemno=1001;

The following SELECT statement returns 09/10/97:
SELECT "9/10/97"::CHAR(20)::DATE AS CharToDate

FROM univartab
WHERE itemno=1001;

3. The following SELECT statement returns $10.00:
SELECT "10"::MONEY::CHAR(20)::UNIvarchar::CHAR(20)

AS MoneyToUvarchar
FROM univartab
WHERE itemno=1001;

The following SELECT statement returns $10.00:
SELECT "10"::MONEY::CHAR(20) AS MoneyToChar

FROM univartab
WHERE itemno=1001;

4. The following SELECT statement returns $10.00, right aligned in the
column:

SELECT "10"::UNIvarchar::CHAR(20)::MONEY
AS UvarcharToMoney
FROM univartab
WHERE itemno=1001;

The following SELECT statement returns $10.00, right aligned in the
column:

SELECT "10"::CHAR(20)::MONEY AS CharToMoney
FROM univartab
WHERE itemno=1001;
3-28 Informix Unicode DataBlade Module User’s Guide

Examples With[Without] a UNIvarchar Cast
5. The following SELECT statement returns 10.0000000000000000:
SELECT "10"::FLOAT::CHAR(20)::UNIvarchar::CHAR(20)

AS FloatToUvarchar
FROM univartab
WHERE itemno=1001;

The following SELECT statement returns 10.0000000000000000:
SELECT "10"::FLOAT::CHAR(20) AS FloatToChar

FROM univartab
WHERE itemno=1001;

6. The following SELECT statement returns 10.00000000000:
SELECT "10"::UNIvarchar::CHAR(20)::FLOAT

AS UvarcharToFloat
FROM univartab
WHERE itemno=1001;

The following SELECT statement returns 10.00000000000:
SELECT "10"::CHAR(20)::FLOAT AS CharToFloat

FROM univartab
WHERE itemno=1001;

7. The following SELECT statement returns 10:
SELECT "10.0"::INT::CHAR(20)::UNIvarchar::CHAR(20)

AS IntToUvarchar
FROM univartab
WHERE itemno=1001;

The following SELECT statement returns 10:
SELECT "10.0"::INT::CHAR(20) AS IntToChar

FROM univartab
WHERE itemno=1001;
Casting and Unicode 3-29

Examples With[Without] a UNIvarchar Cast
8. The following SELECT statement returns 10, right aligned in the
column:

SELECT "10.0"::UNIvarchar::CHAR(20)::INT
AS UvarcharToInt
FROM univartab
WHERE itemno=1001;

The following SELECT statement returns 10, right aligned in the
column:

SELECT "10.0"::CHAR(20)::INT AS CharToInt
FROM univartab
WHERE itemno=1001;
3-30 Informix Unicode DataBlade Module User’s Guide

4
Chapter
Functions
In This Chapter . 4-3
CHAR_LENGTH 4-5
CHARACTER_LENGTH 4-8
COMPARE . 4-9
CONCAT . 4-12
Equal . 4-15
GreaterThan . 4-17
GreaterThanOrEqual 4-20
Hash . 4-23
LessThan . 4-25
LessThanOrEqual 4-27
LENGTH . 4-29
MATCHES . 4-32
Example . 4-32
NotEqual . 4-34
OCTET_LENGTH 4-36
UNICharSubstring 4-39
UNIOctetSubstring 4-42
UNITrim . 4-45

4-2 Infor
mix Unicode DataBlade Module User’s Guide

In This Chapter
This chapter contains reference information for the functions provided with
the Informix Unicode DataBlade module.

The following table summarizes the functions that are provided with this
module.

Function Description

CHAR_LENGTH Counts the number of characters in a string, including
trailing white spaces.

COMPARE Compares two Unicode values.

CONCAT Concatenates two Unicode expressions.

Equal Compares two values and returns TRUE if they are
equal.

GreaterThan Compares two values and returns TRUE if the first is
greater than the second.

GreaterThanOrEqual Compares two values and returns TRUE if the first is
greater than or equal to the second.

LENGTH Calculates the length of a string in bytes, excluding
trailing white spaces.

LessThan Compares two values and returns TRUE if the first is
less than the second.

LessThanOrEqual Compares two values and returns TRUE if the first is
less than or equal to the second.

NotEqual Compares two values and returns TRUE if they are not
equal.

(1 of 2)
Functions 4-3

OCTET_LENGTH Calculates the length of a string in bytes, including
trailing white spaces.

UNIvarcharExpB Casts Unicode data to binary data.

UNIvarcharExpT Calls UNIvarcharOutput.

UNIvarcharImpB Casts binary data to Unicode for storage in a database
table.

UNIvarcharImpT Calls UNIvarcharInput.

UNIvarcharInput Casts LVARCHAR data types to UNIvarchar.

UNIvarcharOutput Casts UNIvarchar data types to LVARCHAR.

UNIvarcharReceive Byte swap depends on server architecture.

UNIvarcharSend Byte swap depends on client architecture.

Function Description

(2 of 2)
4-4 Informix Unicode DataBlade Module User’s Guide

CHAR_LENGTH
CHAR_LENGTH
Determines the number of Unicode characters in a character column, string,
or variable, including trailing white spaces.

Syntax
CHAR_LENGTH (string)

Arguments

Usage
The CHAR_LENGTH function behaves just like the LENGTH function with
one exception—it counts characters rather than bytes. CHAR_LENGTH
returns the total number of characters in a UNIvarchar column, quoted string,
or variable, including trailing white spaces as defined by the locale.

With Unicode data, the number of characters is different from the number of
bytes. The LENGTH value of a double-byte string is two times the number of
characters, whereas the CHAR_LENGTH value of the same string is the actual
number of characters. Since each character occupies two bytes, a string that
has 8 Unicode characters has a CHAR_LENGTH value of 8 and a LENGTH
value of 16.

Argument Description Data Type

string The data whose length is being measured. This
can be:

■ the name of a UNIvarchar column whose
length is being measured.

■ a quoted string or any expression whose result
is a string. This value must be cast explicitly to
UNIvarchar.

■ the name of a variable (in ESQL/C and SPL
functions only).

UNIvarchar
Functions 4-5

CHAR_LENGTH
This function is called in place of the built-in CHAR_LENGTH function
whenever the string whose character length is being measured has
UNIvarchar as its data type.

See the Informix Guide to GLS Functionality for a full discussion of the use of
the CHAR_LENGTH function with multibyte characters.

Tip: It is not necessary to cast UNIvarchar characters to a built-in data type to
execute CHAR_LENGTH. If you do, the function will not return the correct result. If
the string is not already in UNIvarchar format, you must cast it to UNIvarchar. See
the examples.

Returns
This function returns an INTEGER value specifying the number of characters
in the specified column, quoted string, or variable.

Examples
Most of these examples are self-contained. Example 4 uses the books table
described in Appendix A.

1. The following example returns 8:
EXECUTE FUNCTION CHAR_LENGTH(“abcdefgh”::UNIvarchar);

CHAR_LENGTH counts characters. There are eight characters in the
quoted string.

Type of String Returns

Column The number of characters in the column, including trailing white
spaces

Quoted string The number of characters in the string, including trailing white
spaces

Variable The number of characters contained in the variable, including any
trailing white spaces, regardless of the defined length of the
variable
4-6 Informix Unicode DataBlade Module User’s Guide

CHAR_LENGTH
2. The following example returns 11:
EXECUTE FUNCTION CHAR_LENGTH(“abcdefgh “::UNIvarchar);

CHAR_LENGTH counts trailing spaces, so the 3 spaces after the h in
the quoted string are added to the 8 letter characters, for a total of 11
characters.

3. The following example returns 4:
EXECUTE FUNCTION
CHAR_LENGTH(“0067007200E10020”::LVARCHAR::UNIvarchar);

This example measures the character length of a hexadecimal string
that is 8 bytes (4 double-byte characters) long. The CHAR_LENGTH
function counts trailing spaces, so the space at the end, 0020, is
counted.

Because the original string is not in LVARCHAR format, it must first
be cast to LVARCHAR, then to UNIvarchar.

4. The following example returns 15. It uses the books table, described
in Appendix A.
SELECT CHAR_LENGTH (title)

FROM books
WHERE bookid = “10005”;

This example returns the character length of the value in the
UNIvarchar column, title, in the table, books, for the specified row.
The value in that column is Le Petit Prince. The string has 13
letters and 2 spaces, or 15 characters in all.

See Also
“LENGTH” on page 4-29
“OCTET_LENGTH” on page 4-36
Functions 4-7

CHARACTER_LENGTH
CHARACTER_LENGTH
This is another name for the CHAR_LENGTH function, which is described on
page 4-5.

Syntax
CHARACTER_LENGTH (string)
4-8 Informix Unicode DataBlade Module User’s Guide

COMPARE
COMPARE
Compares two Unicode substrings.

Syntax
COMPARE (string1, string2)

Arguments

Usage
COMPARE uses the GLS API function ifx_gl_mbxcoll to compare two
Unicode strings. It uses the locale’s collation order to determine if the value
of one string it greater than or less than the value of the other.

This function is called in place of the built-in COMPARE function whenever
the two strings being compared both have UNIvarchar as their data type.

Returns
COMPARE returns an INTEGER value that is:

■ greater than 0 if string1 is greater than string2.

■ 0 if string1 is equal to string2.

■ less than 0 if string1 is less than string2.

Examples
These examples use the books table described in Appendix A.

Argument Description Data Type

string1 The first of the two strings being compared UNIvarchar

string2 The second of the two strings being compared UNIvarchar
Functions 4-9

COMPARE
1. The following example returns 0:
SELECT title, COMPARE(title,”Me”::UNIvarchar)

FROM books
WHERE bookid = 10010;

This example compares the quoted string Me with the value in the
title column of the books table for the specified row. Since title is a
UNIvarchar column, Me is cast to UNIvarchar. And because the title
value in the specified row is also Me, the statement returns 0.

2. The following example returns a value less than 0:
SELECT title, COMPARE(title,”Ms”::UNIvarchar)

FROM books
WHERE bookid = “10010”;

This example compares the quoted string Ms with the value in the
title column. Because Me has a lower value than Ms, this statement
returns a value that is less than 0.

3. The following example returns a value greater than 0:
SELECT title, COMPARE(title,”He”::UNIvarchar)

FROM books
WHERE bookid = “10010”;

This example compares the quoted string He with the value in the
title column. Because Me has a higher value than He, the resulting
value is greater than 0.

4. The following example returns 0:
SELECT title, COMPARE(title,”004D0065”::LVARCHAR)

FROM books
WHERE bookid = “10010”;

In this example, a hexadecimal string, which is the ASCII represen-
tation of a Unicode value, is explicitly cast to LVARCHAR, which can
be compared to the UNIvarchar value in the title column because
there is an implicit cast from LVARCHAR to UNIvarchar.

004D0065 is the hexadecimal representation of the Unicode value,
Me, so the two values are the same.

To see how you must treat a quoted string that is not a hexadecimal
value, see the examples under “CONCAT.”
4-10 Informix Unicode DataBlade Module User’s Guide

COMPARE
5. The following example returns 0.

This example is the same as the previous example, except that the
explicit cast to LVARCHAR is omitted. The example still works
because the quoted string defaults to LVARCHAR. The quoted string
does not need to be cast to LVARCHAR because it is already an
LVARCHAR value.

SELECT title, COMPARE(title,”004D0065”)
FROM books
WHERE bookid = “10010”;

This example compares the hexadecimal string for Me with the value
in the title column. Both values are the same, so the result is 0.

See Also
The following functions call COMPARE:

“Equal” on page 4-15
“GreaterThan” on page 4-17
“GreaterThanOrEqual” on page 4-20
“LessThan” on page 4-25
“LessThanOrEqual” on page 4-27
“NotEqual” on page 4-34
Functions 4-11

CONCAT
CONCAT
Concatenates two UNIvarchar expressions.

Syntax
CONCAT(expr1, expr2)

Arguments

Usage
CONCAT is the operator function associated with the built-in concatenation
operator, ||.

The CONCAT function allows you to concatenate two UNIvarchar expres-
sions to produce a concatenated UNIvarchar value. The CONCAT function
appends expr2 to the end of expr1.

This function is called in place of the built-in CONCAT function whenever the
two strings being compared both have UNIvarchar as their data type.

Returns
CONCAT returns a UNIvarchar string that is the concatenation of the two
specified values.

Argument Description Data Type

expr1 The first expression in the concatenated string UNIvarchar

expr2 The second expression in the concatenated string UNIvarchar
4-12 Informix Unicode DataBlade Module User’s Guide

CONCAT
Using CONCAT with Built-In Data Types

When you want to concatenate a UNIvarchar value with a value of a built-in
data type, you need to perform a cast so that both values have the same data
type. You can either cast the UNIvarchar value to the built-in data type or cast
the built-in data type to UNIvarchar.

Because the data must be cast, there is no performance advantage in using
this function to concatenate a UNIvarchar column with a column of some
other data type.

Examples
These examples show how the CONCAT example in the Informix Guide to
SQL: Syntax would look using the Unicode CONCAT function.

These examples use the authors table, described in Appendix A. In all cases,
the result is a UNIvarchar value.

1. In this example, both expressions are UNIvarchar data, so you do not
need to cast them within the CONCAT function. The result of the
CONCAT function is cast to VARCHAR for readability. The example
returns EUFR631922France.
SELECT CONCAT(codes, country)::VARCHAR(50)

FROM authors
WHERE authid = “A0121”;

2. In this example, only the codes value is a UNIvarchar value; the
name value is a VARCHAR value and must be cast. The result of the
CONCAT function is cast to VARCHAR for readability. The example
returns EUFR631922Antoine de St. Exupery.
SELECT CONCAT(codes, name::UNIvarchar)::VARCHAR(50)

FROM authors
WHERE authid = “A0121”;
Functions 4-13

CONCAT
3. In this example, the literal value A0121 must be cast to CHAR so that
it is not considered a hexadecimal representation of the Unicode
string.

By default, a quoted string is treated as an LVARCHAR string and is
assumed to contain four-digit hexadecimal representation of each
Unicode character. (For example, an A would be represented as
0041.) The value A0121 is not a valid hexadecimal value and would
therefore return an error. If a quoted character string were, by coinci-
dence, a valid hexadecimal value, a result would be returned, but it
would not be the expected result.

In the example, the result of the CONCAT function is cast to
VARCHAR for readability. The example returns EUFR631922A0121.
SELECT CONCAT(codes, “A0121”::CHAR(10)::UNIvarchar)::VARCHAR(50)

FROM authors
WHERE authid = “A0121”;
4-14 Informix Unicode DataBlade Module User’s Guide

Equal
Equal
Compares two values to determine whether they are equal.

Syntax
Equal(string1, string2)

Arguments

Results
Equal returns:

■ t (TRUE) if string1 is equal to string2.

■ f (FALSE) if string1 is not equal to string2.

Usage
Use this function to compare two Unicode values when you want to know if
string1 is equal to string2.

The Unicode DataBlade module calls this function in place of the built-in
Equal function whenever both strings being compared have UNIvarchar as
their data type.

Equal is the operator function associated with the built-in operator, =.

Argument Description Data Type

string1 The first of the two strings being compared UNIvarchar

string2 The second of the two strings being compared UNIvarchar
Functions 4-15

Equal
Examples
These examples use the books table described in Appendix A.

1. The following example returns f:
SELECT title, Equal(title,”He”::UNIvarchar)

FROM books
WHERE bookid = “10010”;

This example compares the quoted string, He, with the value in the
title column of the books table for the specified row. Because the two
values are not equal, the statement is false.

2. The following example returns t:
SELECT title, Equal(title,”Me”::UNIvarchar)

FROM books
WHERE bookid = “10010”;

This example compares the quoted string, Me, with the value in the
title column of the books table for the specified row. Because the two
values are equal, the statement is true.

3. The following example uses the = operator and returns a bookid of
10010. Note that the quoted string is the four-digit hexadecimal
representation of Me.
SELECT bookid

FROM books
WHERE title = “004D0065”;

See Also
“COMPARE” on page 4-9
“NotEqual” on page 4-34
4-16 Informix Unicode DataBlade Module User’s Guide

GreaterThan
GreaterThan
Compares two values to determine whether the first is greater than the
second.

Syntax
GreaterThan(string1, string2)

Arguments

Results
GreaterThan returns:

■ t (TRUE) if string1 is greater than string2.

■ f (FALSE) if string1 is less than or equal to string2.

Usage
Use this function to compare two Unicode values when you want to know if
string1 is greater than string2.

This function is called in place of the built-in GreaterThan function
whenever the two strings being compared both have UNIvarchar as their
data type.

GreaterThan is the operator function associated with the built-in operator, >.

Argument Description Data Type

string1 The first of the two strings being compared UNIvarchar

string2 The second of the two strings being compared UNIvarchar
Functions 4-17

GreaterThan
Examples
These examples use the books table described in Appendix A.

1. The following example returns f:
SELECT title, GreaterThan(title,”Ms”::UNIvarchar)

FROM books
WHERE bookid = “10010”;

This example compares the quoted string Ms with the value in the
title column of the books table for the specified row. Because the first
value (Me) is less than the second (Ms), the statement is false.

2. The following example returns f:
SELECT title, GreaterThan(title,”Me”::UNIvarchar)

FROM books
WHERE bookid = “10010”;

This example compares the quoted string Me with the value in the
title column of the books table for the specified row. Because the two
values are equal, this statement is false.

3. The following example returns t:
SELECT title, GreaterThan(title,”He”::UNIvarchar)

FROM books
WHERE bookid = “10010”;

This example compares the quoted string He with the value in the
title column of the books table for the specified row. Because the first
value (Me) is greater than the second (He), the statement is true.

4. The following example returns the bookid, 10012. Note that title,
which is a UNIvarchar column, is represented in four-digit
hexadecimal format.
SELECT bookid

FROM books
WHERE title > “004D0065”;
4-18 Informix Unicode DataBlade Module User’s Guide

GreaterThan
See Also
“COMPARE” on page 4-9
“GreaterThanOrEqual” on page 4-20
“LessThan” on page 4-25
Functions 4-19

GreaterThanOrEqual
GreaterThanOrEqual
Compares two values to determine whether the first is greater than or equal
to the second.

Syntax
GreaterThanOrEqual(string1, string2)

Arguments

Results
GreaterThanOrEqual returns:

■ t (TRUE) if string1 is greater than or equal to string2.

■ f (FALSE) if string1 is less than string2.

Usage
Use this function to compare two Unicode values when you want to know if
string1 is greater than or equal to string2.

This function is called in place of the built-in GreaterThanOrEqual function
whenever the two strings being compared both have UNIvarchar as their
data type.

GreaterThanOrEqual is the operator function associated with the built-in
operator, >=.

Argument Description Data Type

string1 The first of the two strings being compared UNIvarchar

string2 The second of the two strings being compared UNIvarchar
4-20 Informix Unicode DataBlade Module User’s Guide

GreaterThanOrEqual
Examples
These examples use the books table described in Appendix A.

1. The following example returns f:
SELECT title, GreaterThanOrEqual(title,”Ms”::UNIvarchar)

FROM books
WHERE bookid = “10010”;

This example compares the quoted string, Ms, with the value in the
title column of the books table for the specified row. Because the first
value (Me) is less than the second (Ms), the statement is false.

2. The following example returns t:
SELECT title, GreaterThanOrEqual(title,”Me”::UNIvarchar)

FROM books
WHERE bookid = “10010”;

This example compares the quoted string, Me, with the value in the
title column of the books table for the specified row. Because the two
values are equal, this function is true.

3. The following example returns t:
SELECT title, GreaterThanOrEqual(title,”He”::UNIvarchar)

FROM books
WHERE bookid = “10010”;

This example compares the quoted string, He, with the value in the
title column of the books table for the specified row. Because the first
value (Me) is greater than the second (He), the statement is true.

4. The following example returns two bookid values: 10010 and 10012:
SELECT bookid
FROM books
WHERE title >= “004D0065”;

The hexadecimal value 004E0065 represents the title value Me. Two
titles in the books table meet the >= 004E0065 criteria: Me and She.
Functions 4-21

GreaterThanOrEqual
See Also
“COMPARE” on page 4-9
“GreaterThan” on page 4-17
“LessThanOrEqual” on page 4-27
4-22 Informix Unicode DataBlade Module User’s Guide

Hash
Hash
Performs the hash operation for Unicode data.

Syntax
Hash(string)

Arguments

Usage
The server uses the Hash function to cache function return values and
execute distinct aggregate queries.

Bit-hashable types have the property:

If A = B then hash(A) = hash(B)

Since UNIvarchar is based on the VARCHAR data type, it must follow the SQL
rule that requires that trailing blank spaces be ignored in equality
comparisons.

Thus two UNIvarchar values with different numbers for trailing blank spaces
have different bit representations but should be considered equal.

Argument Description Data Type

string The data whose substring is being specified. This value
can be:

■ the name of the column whose data length is being
measured.

■ a quoted literal string.

■ the name of a variable (in ESQL/C and SPL functions
only).

UNIvarchar
Functions 4-23

Hash
Returns
This function returns the hash value for the specified string or column. The
returned value is an integer.
4-24 Informix Unicode DataBlade Module User’s Guide

LessThan
LessThan
Compares two values to determine whether the first is less than the second.

Syntax
LessThan(string1, string2)

Arguments

Results
LessThan returns:

■ t (TRUE) if string1 is less than string2

■ f (FALSE) if string1 is greater than or equal to string2

Usage
Use this function to compare two Unicode values when you want to know if
string1 is less than string2.

This function is called in place of the built-in LessThan function whenever
the two strings being compared both have UNIvarchar as their data type.

LessThan is the operator function associated with the built-in operator, <.

Argument Description Data Type

string1 The first of the two strings being compared UNIvarchar

string2 The second of the two strings being compared UNIvarchar
Functions 4-25

LessThan
Examples
These examples use the books table described in Appendix A.

1. The following example returns t:
SELECT title, LessThan(title,”Ms”::UNIvarchar)

FROM books
WHERE bookid = “10010”;

This example compares the quoted string, Ms, with the value in the
title column of the books table for the specified row. Because the first
value (Me) is less than the second (Ms), the statement is true.

2. The following example returns f:
SELECT title, LessThan(title,”Me”::UNIvarchar)

FROM books
WHERE bookid = “10010”;

This example compares the quoted string, Me, with the value in the
title column of the books table for the specified row. Because the two
values are equal, this function is false.

3. The following example returns f:
SELECT title, LessThan(title,”He”::UNIvarchar)

FROM books
WHERE bookid = “10010”;

This example compares the quoted string, He, with the value in the
title column of the books table for the specified row. Because the first
value (Me) is greater than the second (He), the statement is false.

4. The following example returns two bookid values: 10005 and 10011:
SELECT bookid

FROM books
WHERE title <“004D0065”;

See Also
“COMPARE” on page 4-9
“LessThanOrEqual” on page 4-27
“GreaterThan” on page 4-17
4-26 Informix Unicode DataBlade Module User’s Guide

LessThanOrEqual
LessThanOrEqual
Compares two values to determine whether the first is less than or equal to
the second.

Syntax
LessThanOrEqual(string1, string2)

Arguments

Results
LessThanOrEqual returns:

■ t (TRUE) if string1 is less than or equal to string2.

■ f (FALSE) if string1 is greater than string2.

Usage
Use this function to compare two Unicode values when you want to know if
string1 is less than or equal to string2.

This function is called in place of the built-in LessThanOrEqual function
whenever the two strings being compared both have UNIvarchar as their
data type.

LessThanOrEqual is the operator function associated with the built-in
operator, <=.

Argument Description Data Type

string1 The first of the two strings being compared UNIvarchar

string2 The second of the two strings being compared UNIvarchar
Functions 4-27

LessThanOrEqual
Examples
These examples use the books table described in Appendix A.

1. The following example returns t:
SELECT title, LessThanOrEqual(title,”Ms”::UNIvarchar)

FROM books
WHERE bookid = “10010”;

This example compares the quoted string, Ms, with the value in the
title column of the books table for the specified row. Because the first
value (Me) is less than the second (Ms), the statement is true.

2. The following example returns t:
SELECT title, LessThanOrEqual(title,”Me”::UNIvarchar)

FROM books
WHERE bookid = “10010”;

This example compares the quoted string, Me, with the value in the
title column of the books table for the specified row. Because the two
values are equal, this function is true.

3. The following example returns f:
SELECT title, LessThanOrEqual(title,”He”::UNIvarchar)

FROM books
WHERE bookid = “10010”;

This example compares the quoted string, He, with the value in the
title column of the books table for the specified row. Because the first
value (Me) is greater than the second (He), the statement is false.

4. The following example returns three bookids: 10005, 10010 and
10011:

SELECT bookid
FROM books
WHERE title <=”004D0065”;

See Also
“COMPARE” on page 4-9
“LessThan” on page 4-25
“GreaterThanOrEqual” on page 4-20
4-28 Informix Unicode DataBlade Module User’s Guide

LENGTH
LENGTH
Calculates the length, in bytes, of the data in a column, string, or variable,
excluding trailing white spaces.

Syntax
LENGTH(data)

Arguments

Usage
The LENGTH function returns the number of bytes of data contained in a
character column, a quoted string, or a variable, excluding trailing white
spaces as defined by the locale.

When used with Unicode data, the result—the number of bytes— is different
from the number of characters. Since each character occupies two bytes, the
LENGTH of a double-byte string is two times the number of characters. That
is, a Unicode string that has 8 Unicode characters and does not end with a
space will have a LENGTH of 16.

To include white spaces in the length calculation, use OCTET_LENGTH.

See the Informix Guide to GLS Functionality for a discussion of the use of the
LENGTH function with multibyte characters.

Argument Description Data Type

data The data whose length is being measured. This
value can be:

■ the name of the column whose data length is
being measured.

■ a quoted literal string or any expression whose
result is a literal string

■ the name of a variable (in ESQL/C and SPL
functions only).

UNIvarchar
Functions 4-29

LENGTH
Tip: It is not necessary to cast UNIvarchar characters to a built-in data type to
execute LENGTH. If you do, the function will not return the correct result. If the
string is not already in UNIvarchar format, you must cast it to UNIvarchar. See the
examples.

Returns
This function returns the following values:

Examples
Most of these examples do not use tables. Example 4 uses the books table
described in Appendix A.

1. The following example returns 16:
EXECUTE FUNCTION LENGTH(“abcdefgh”::UNIvarchar);

In Unicode, all characters, including alphabetic characters, are
double-byte. That is, each letter in the literal string abcdefg is 2 bytes
long. Since the LENGTH function counts bytes, not characters, the
8-character string has a length of 16.

2. The following example returns 16:
EXECUTE FUNCTION LENGTH(“abcdefgh “::UNIvarchar);

The LENGTH function ignores trailing spaces, so the three spaces
after the h are not counted. Therefore, “abcdefg” returns the same
length as “abcdefg ”.

Type of string Returns

Column The length of the character data in the column in bytes, excluding
trailing spaces, regardless of the defined length of the column.

Quoted string The number of bytes included within the quotation marks, minus
any bytes used by trailing spaces as defined in the locale.

Variable The number of bytes in the data contained in the variable, minus
trailing spaces, regardless of the defined length of the variable.
4-30 Informix Unicode DataBlade Module User’s Guide

LENGTH
3. The following example returns 6:
EXECUTE FUNCTION
LENGTH(“0067007200E10020”::LVARCHAR::UNIvarchar);

This example measures the length of a hexadecimal string that is 8
bytes long. (A byte is represented by a character pair, for example,
E1.) A double-byte Unicode character is represented by two
character pairs (for example, 00E1.) A space in Unicode is repre-
sented by the value 0020, which is the last double-byte character in
the string. Since the LENGTH function deletes trailing spaces, these
two bytes are not counted. Therefore, the length of the string is 8
bytes - 2 bytes = 6 bytes.

Because the string is not originally in LVARCHAR format, it must first
be cast to LVARCHAR, then to UNIvarchar.

4. The following example returns 30. It refers to the books table
described in Appendix A.

SELECT LENGTH (title)
FROM books
WHERE bookid = “10005”;

This example returns the number of bytes in the UNIvarchar column,
title, in the table, books. The value of title in the specified row is Le
Petit Prince. Since the spaces in the string are not at the end of the
string, they are counted. The string has 13 letters and two spaces, or
15 double-byte characters in all, for a total length of 30 bytes.

See Also
“OCTET_LENGTH” on page 4-36
“CHAR_LENGTH” on page 4-5
Functions 4-31

MATCHES
MATCHES
Compares two character strings, optionally using wild cards.

Syntax
WHERE string1 MATCHES string2

Arguments

Usage
The Unicode DataBlade module uses the built-in MATCHES operator. There
is currently no module-specific operator or function to be called in its place.

As a result, you must cast UNIvarchar values to a built-in character type
before they are compared using a MATCHES statement.

Example
This example demonstrates the use of casts when using MATCHES. The
returned values follow the example.

Argument Description Data Type

string1 The string that is being compared to string2 Any character
data type,
including
UNIvarchar

string1 The string to which string1 is being compared Any character
data type,
including
UNIvarchar
4-32 Informix Unicode DataBlade Module User’s Guide

Example
This example uses the table univartab described in Appendix A.

SELECT itemno, car::char(30), plane::char(30)
FROM univartab
WHERE car::char(30) MATCHES “[aA][bB][Cc]”;

This statement returns the following data:

itemno (expression) (expression)

2001 abc Tax
2001 ABC T?x

The car and plane columns, which are UNIvarchar columns, have been cast
to a built-in character data type, so that the built-in MATCHES function can
be used in the WHERE clause.

See the documentation for your database server and Informix Guide to SQL:
Syntax to learn more about how MATCHES works.
Functions 4-33

NotEqual
NotEqual
Compares two values to determine whether they are not equal.

Syntax
NotEqual(string1, string2)

Arguments

Results
NotEqual returns:

■ f (FALSE) if string1 is equal to string2.

■ t (TRUE) if string1 is not equal tostring2.

Usage
Use this function to compare two Unicode values when you want to know if
string1 is not equal to string2.

This function is called in place of the built-in NotEqual function whenever
the two strings being compared both have UNIvarchar as their data type.

NotEqual is the operator function associated with the built-in operator, !=.

Argument Description Data Type

string1 The first of the two strings being compared UNIvarchar

string2 The second of the two strings being compared UNIvarchar
4-34 Informix Unicode DataBlade Module User’s Guide

NotEqual
Examples
These examples use the books table described in Appendix A.

1. The following example returns t:
SELECT title, NotEqual(title,”Ms”::UNIvarchar)

FROM books
WHERE bookid = “10010”;

This example compares the quoted string, Ms, with the value in the
title column of the books table for the specified row. Because the two
values are not equal, the statement is true.

2. The following example returns f:
SELECT title, NotEqual(title,”Me”::UNIvarchar)

FROM books
WHERE bookid = “10010”;

This example compares the quoted string, Me, with the value in the
title column of the books table for the specified row. Because the two
values are equal, the statement is false.

3. The following example returns all bookid values except 10010,
namely, 10005, 10011, and 10012:
SELECT bookid

FROM books
WHERE title !=”004D0065”;

See Also
“COMPARE” on page 4-9
“Equal” on page 4-15
Functions 4-35

OCTET_LENGTH
OCTET_LENGTH
Determines the length, in bytes, of the data in a column, string, or variable,
including trailing white spaces.

Syntax
OCTET_LENGTH(data)

Arguments

Usage
The OCTET_LENGTH function behaves just like the LENGTH function with
one exception: trailing white spaces—as defined in the locale—are included
in the count. It returns the total number of bytes contained in a character
column, a quoted string, or a variable.

When the data is Unicode data, the result—the number of bytes— is different
from the number of characters. Since each character occupies 2 bytes, the
OCTET_LENGTH of a double-byte string is two times the number of
characters. That is, a Unicode string that has 8 Unicode characters has an
OCTET_LENGTH of 16.

To exclude trailing white spaces from the length calculation, use LENGTH.

Argument Description Data Type

data The data whose length is being measured. This
can be:

■ the name of a UNIvarchar column whose
length is being measured.

■ a quoted string or any expression whose result
is a string

■ the name of a variable (in ESQL/C and SPL
functions only).

UNIvarchar
4-36 Informix Unicode DataBlade Module User’s Guide

OCTET_LENGTH
See the Informix Guide to GLS Functionality for a discussion of the use of the
LENGTH function with multibyte characters.

Tip: It is not necessary to cast UNIvarchar characters to a built-in data type to
execute OCTET_LENGTH. If you do, the function will not return the correct result.
If the string is not already in UNIvarchar format, you must cast it to UNIvarchar. See
the examples.

Returns
This function returns the number of bytes in the specified column, quoted
string, or variable.

Examples
Most of the following examples are self-contained. Example 4 uses the books
table described in Appendix A.

1. The following example returns 16:
EXECUTE FUNCTION OCTET_LENGTH(“abcdefgh”::UNIvarchar);

OCTET_LENGTH counts bytes. There are eight double-byte
characters, and therefore 16 bytes, in the quoted string.

Type of string Returns

Column The defined length of the column in bytes, regardless of the
number of bytes actually stored in the column.

Quoted string The number of bytes inside the quotation marks, including
trailing white spaces

Variable The length of the data contained in the variable, including any
trailing white spaces, regardless of the defined length of the
variable.
Functions 4-37

OCTET_LENGTH
2. The following example returns 22:
EXECUTE FUNCTION OCTET_LENGTH(“abcdefgh “::UNIvarchar);

OCTET_LENGTH counts trailing spaces, so the three spaces (6 bytes)
after the h are added to the 16 bytes occupied by the letter characters,
for a total of 22 bytes.

3. The following example returns 8:
EXECUTE FUNCTION
OCTET_LENGTH(“0067007200E10020”::LVARCHAR::UNIvarchar);

This example measures the length of a hexadecimal string that is 8
bytes (four double-byte characters) long. The OCTET_LENGTH
function counts trailing spaces, so the space at the end, 0020, is
counted.

Because the original string is not in LVARCHAR format, it must first
be cast to LVARCHAR, then to UNIvarchar.

4. The following example returns 30. (See the example under LENGTH
for the table structure and the values in the specified row.)
SELECT OCTET_LENGTH (title)

FROM books
WHERE bookid = “10005”;

This example returns the number of bytes in a UNIvarchar column,
title, in the table, books. The value in that column is Le Petit
Prince. The string has 13 letters and two spaces, or 15 double-byte
characters in all, for a total octal length of 30 bytes.

See Also
“LENGTH” on page 4-29
“CHAR_LENGTH” on page 4-5
4-38 Informix Unicode DataBlade Module User’s Guide

UNICharSubstring
UNICharSubstring
Performs the substring ([...]) operation for Unicode data, by specifying
character position.

Syntax
UNICharSubstring(string, first, last)

Arguments

Returns
UNICharSubstring returns UNIvarchar.

Argument Description Data Type

string The data whose substring is being specified. This value
can be:

■ The name of the column whose data length is being
measured.

■ A quoted literal string.

■ The name of a variable (in ESQL/C and SPL functions
only).

UNIvarchar

first The position of the first character of the specified
substring. The first character in the string is in
Position 1.

If characters 3 through 8 in a 10-byte string are specified,
this value is 3.

INTEGER

last The position of the last character of the specified
substring. The first byte in the string is in Position 1.

If characters 3 through 8 in a 10-byte string are specified,
this value is 8.

INTEGER
Functions 4-39

UNICharSubstring
Usage
Use UNICharSubstring to specify a substring of a UNIvarchar string by
character position. Using the syntax shown above, specify the position of the
first and last characters in the desired substring. The substring will be
returned in UNIvarchar format.

The first character in the string is in Position 1.

This differs from the behavior of the built-in substring operator, which
specifies byte number rather than character number. If you prefer to specify
byte numbers with UNIvarchar data, use UNIOctetSubstring.

Examples
Examples 2 and 3 use the customers table, which is described in Appendix A.

1. The following example returns 0063006400650066.
EXECUTE FUNCTION
UNICharSubstring(“abcdefgh”::UNIvarchar,3,6);

This example selects the third, fourth, fifth, and sixth characters in
the string, abcdefgh. These characters are cdef, whose hexadecimal
representation is 0063006400650066.

2. The following example returns
0039003400310031003100530046004300410030, which is the
hexadecimal representation of 94111SFCA0.
SELECT UNICharSubstring(codes, 1,10) FROM customers

WHERE custid = “00123”;

This example returns the first 10 characters of the codes column in
the customers table.

3. The following example returns 00390034003100310031, which is
the hexadecimal representation of 94111.
SELECT UNICharSubstring(codes, 1,5) FROM customers

WHERE custid = “00123”;

This statement returns only the zip code, which occupies the first five
characters of value in the codes column in the customers table.
4-40 Informix Unicode DataBlade Module User’s Guide

UNICharSubstring
See Also
“UNIOctetSubstring” on page 4-42
Functions 4-41

UNIOctetSubstring
UNIOctetSubstring
Performs the substring ([...]) operation for Unicode data, by specifying byte
position.

Syntax
UNIOctetSubstring(string, first, last)

Arguments

Returns
UNIOctetSubstring returns UNIvarchar.

Argument Description Data Type

string The data whose substring is being specified. This value
can be:

■ the name of the column whose data length is being
measured.

■ a quoted literal string.

■ the name of a variable (in ESQL/C and SPL functions
only).

UNIvarchar

first The position of the first byte of the specified substring.
The first byte in the string is in Position 1.

If bytes 3 through 8 in a 10-byte string are specified, this
value is 3.

INTEGER

last The position of the last byte of the specified substring. The
first byte in the string is in Position 1.

If bytes 3 through 8 in a 10-byte string are specified, this
value is 8.

INTEGER
4-42 Informix Unicode DataBlade Module User’s Guide

UNIOctetSubstring
Usage
Use UNIOctetSubstring to specify a substring of a UNIvarchar string by byte
position. Using the syntax shown, specify the position of the first and last
bytes in the desired substring. The substring will be returned in UNIvarchar
format.

The first byte in the string is in Position 1.

This duplicates the behavior of the built-in substring operator, [...], which is
described in the Informix Guide to GLS Functionality. It specifies byte number
rather than character number. If you prefer to specify character numbers with
UNIvarchar data, use UNICharSubstring.

Examples
The first example is self-contained. The second example uses the customers
table described in Appendix A.

1. The following example returns 00620063:
EXECUTE FUNCTION
UNIOctetSubstring(“abcdefgh”::UNIvarchar,3,6);

When the string abcdefgh is cast to UNIvarchar, each of the letters
becomes a double-byte character. The letter a, whose hexadecimal
value is 61, becomes 0061 and occupies 2 bytes. The hexadecimal
representation of the entire string is:
00610062006300640065006600670068:

The example specifies bytes 3 through 6. The third and fourth bytes
are 0062; the fifth and sixth bytes are 0063, so the result is 00620063.

2. The following example returns 00390034003100310031, which is
the hexadecimal representation of 94111:

SELECT UNIOctetSubstring(codes, 1,10) FROM customers
WHERE custid = “00123”;

This example returns a five-digit zip code, which occupies the first
five characters (10 bytes) of the codes column in the customers table.
Functions 4-43

UNIOctetSubstring
See Also
“UNICharSubstring” on page 4-39
4-44 Informix Unicode DataBlade Module User’s Guide

UNITrim
UNITrim
Removes trailing spaces from UNIvarchar data.

Syntax
UNITrim(expr)

Arguments

Usage
This function is a simplified version of the built-in SQL TRIM function.

The built-in TRIM function strips both leading and trailing pad characters.
UNITrim removes only trailing spaces. To remove leading pad characters, or
to specify a different pad character to be removed, cast the UNIvarchar data
to a built-in data type such as CHAR or VARCHAR (not LVARCHAR) and
perform a TRIM operation on the converted data. Be aware, however, that
this conversion has a performance cost.

Returns
UNITrim returns a UNIvarchar string that is identical to the original string
except that any trailing pad characters are removed.

Examples
These examples use the books table described in Appendix A.

Argument Description Data Type

expr The expression whose trailing spaces are to be
removed

UNIvarchar
Functions 4-45

UNITrim
1. The following example returns the hexadecimal value for the
trimmed title 0043006F0073006D006F0073:
SELECT UNITrim(title)::UNIvarchar

FROM books
WHERE bookid = “10011”;

Compare this to a simple SELECT without the UNITrim function,
which would return
0043006F0073006D006F0073002000200020002000200020:
SELECT title::UNIvarchar

FROM books
WHERE bookid = “10011”;

2. The following example returns the number of characters in the
trimmed title, which is 6:
SELECT CHAR_LENGTH(UNITrim(title))

FROM books
WHERE bookid = “10011”;

Compare this to a similar length operation on the untrimmed value,
which returns 12:
SELECT CHAR_LENGTH(title)

FROM books
WHERE bookid = “10011”;
4-46 Informix Unicode DataBlade Module User’s Guide

5
Chapter
Module-Specific Syntax
In This Chapter . 5-3

General Information 5-3
CREATE TABLE 5-4
SELECT . 5-6

5-2 Infor
mix Unicode DataBlade Module User’s Guide

In This Chapter
This chapter discusses the SQL syntax that is specific to the Informix Unicode
DataBlade module. It contains reference information about additions and
changes to existing SQL statements.

For the complete syntax of these statements, see the Informix Guide to SQL:
Syntax.

General Information
The UNIvarchar data type is designed to behave like the VARCHAR data type.
Therefore, you can use UNIvarchar just like a VARCHAR in SQL statements.

CREATE
TABLE

This section explains how to use
CREATE TABLE with this
DataBlade module and what
restrictions are placed upon its use.

page 5-4

SELECT This section discusses when and
how to use casts in the WHERE
clause of the SELECT statement
when querying Unicode data.

It also lists customized and unsup-
ported functions and operators.

page 5-6
Module-Specific Syntax 5-3

CREATE TABLE
CREATE TABLE
When you create a table to handle Unicode data, you must specify
UNIvarchar as the data type in the Column Definition Clause for all columns
that will hold Unicode data.

Syntax
Use this syntax when creating columns to hold Unicode data:

CREATE TABLE table_name (column_name UNIvarchar...)...

This and other module-specific syntax rules are shown in the following table.

Usage
The column definition shown in this section creates a UNIvarchar column in
a database table. Once created, a UNIvarchar column behaves like a
VARCHAR column.

Clause Use with Unicode DataBlade Module Cross-References

Column
Definition
Clause/
Data Type

Use UNIvarchar as the data type in the
column definition clause for all columns that
contain Unicode data.

Do not use the UNIvarchar data type for a
column that is a key.

“The UNIvarchar
Data Type” on
page 2-3

The Administrator’s
Guide for your
database server

Table type Any.

Storage
Option/
IN clause

You cannot store UNIvarchar data in an
extspace. It must be the default dbspace or a
separate dbspace or an sbspace.

CREATE TABLE
reference pages in
the Informix Guide
to SQL: Syntax

Table-Level
Constraints

Same as any other table. CREATE TABLE
reference pages in
the Informix Guide
to SQL: Syntax
5-4 Informix Unicode DataBlade Module User’s Guide

CREATE TABLE
Tip: Do not use a UNIvarchar column as an index key. The maximum length of a key
value in an index is 390 bytes. The value of a UNIvarchar column is 512 bytes. The
attempt to set the index key would fail and an error would be returned. For details,
see the Administrator’s Guide for your Informix database server.
Module-Specific Syntax 5-5

SELECT
SELECT
Use the SELECT statement to query data in UNIvarchar format.

There are no changes in the way you write SELECT statements for UNIvarchar
data. Treat UNIvarchar just like a VARCHAR in SQL statements.

When your SELECT statement compares UNIvarchar and regular VARCHAR
data, the Unicode DataBlade module performs an explicit cast of the
VARCHAR data to UNIvarchar before doing the comparison. This action
allows selects on UNIvarchar columns to appear no different from VARCHAR
data. The cast is transparent to the user.

Tip: Because of the nature of UNIvarchar data, this cast is actually a code set
conversion.

The WHERE Clause
When your SELECT statement compares a UNIvarchar column with a column
of a different data type, a cast must be performed so that both compared
items have the same data type. (In the Unicode DataBlade module, this cast
is actually a code set conversion.) The Unicode DataBlade module has casts
from UNIvarchar to built-in character data types, so this cast is transparent to
the user.

For example, the following statement performs an explicit cast from
VARCHAR to UNIvarchar and returns the bookid 10010:

SELECT bookid,title
FROM books
WHERE title = “Me”::UNIvarchar;
5-6 Informix Unicode DataBlade Module User’s Guide

SELECT
In the following example, the quoted string, 004800610069006b0075, the
hexadecimal ASCII representation of the word haiku, is explicitly cast to
LVARCHAR in the INSERT statement. Because title is a UNIvarchar column, an
explicit cast from UNIvarchar to VARCHAR, the data type of the value Haiku,
must take place. This example returns the bookid 10013:

INSERT INTO books
VALUES (“10013”,
“004800610069006b0075”::LVARCHAR,
“Saitoh”,
“A book of Japanese Haiku poems”

);

SELECT bookid, title
FROM books
WHERE title::VARCHAR(5) = “Haiku”;

WHERE clauses that compare UNIvarchar columns with non-UNIvarchar
columns are subject to an implicit or explicit cast whereby one column type
is converted to the other. For example, comparing a UNIvarchar with a
VARCHAR may result in a cast (a code set conversion in this case) of the
VARCHAR column to a UNIvarchar column. This is transparent to the user
and is normal Datablade module execution.

Unsupported Operators
Because of the nature of the UNIvarchar data type, the following operators
should be used with caution. When you use one of these operators with
UNIvarchar data, you must cast the UNIvarchar data to a built-in character
data type (CHAR, VARCHAR, NCHAR, NVARCHAR) in order to return correct
results.

■ MATCHES

■ DATE

■ LIKE
Module-Specific Syntax 5-7

SELECT
Custom Operators
Some operators and functions return results that are more appropriate for
single-byte data than for double-byte Unicode data. In these cases, the
Unicode DataBlade module provides custom operators and functions that
return more appropriate results. These operators and functions are listed
here and described in Chapter 4, “Functions.”

The following operators have functionality specific to the Unicode DataBlade
module. Their behavior differs from that of the corresponding server
function.

All other SQL operations, such as IN, BETWEEN, and relational operators
work normally on UNIcode data.

See the Informix Guide to SQL: Syntax for details on standard relational
operators.

Function
Related
Operator UNIvarchar function Cross-Reference

CHAR_LENGTH CHAR_LENGTH “CHAR_LENGTH”
on page 4-5

CONCAT | | CONCAT() “CONCAT” on
page 4-12

DATE Must be cast “Using Casts with
Date and Money Data
Types” on page 3-27

LENGTH LENGTH (UNIvarchar) “LENGTH” on
page 4-29

OCTET_LENGTH OCTET_LENGTH
(UNIvarchar)

“OCTET_LENGTH”
on page 4-36

SUBSTRING [] UNIOctetSubstring or
UNICharSubstring

“UNIOctetSubstring”
on page 4-42, and
“UNICharSubstring”
on page 4-39

TRIM UNITrim “UNITrim” on
page 4-45
5-8 Informix Unicode DataBlade Module User’s Guide

6
Chapter
The gl_conv Utility
In This Chapter . 6-3
gl_conv . 6-4

6-2 Infor
mix Unicode DataBlade Module User’s Guide

In This Chapter
This chapter describes the gl_conv utility and provides instructions for using
it.
The gl_conv Utility 6-3

gl_conv
gl_conv
gl_conv is a utility that is shipped with the Informix Unicode DataBlade
module. It enables you to convert binary data to Unicode, so that you can
store the data in your database. If the data fields are of variable field widths
and a delimiter character is used to separate fields, this utility can interpret
the delimiters correctly.

Syntax
gl_conv is a command line command whose syntax is:

gl_conv source_character_set target_character_set [-ddelimiter]
[-c fieldnum [, fieldnum...] .] < input_file > output_file
6-4 Informix Unicode DataBlade Module User’s Guide

gl_conv
Arguments

Argument Description Requirement

source_character_set Name of the character set of the data to be
converted.

This must be one of the character set names
contained in the registry file in the $INFOR-
MIXDIR/gls/cm3 directory.

Required

target_character_set Name of the character set to which the data is to
be converted.

This must be one of the character set names
contained in the registry file in the $INFOR-
MIXDIR/gls/cm3 directory.

Required

-d Delimiter. Specifies the kind of delimiter used to
separate different fields within the binary file.

Type the ASCII character for the delimiter after
the “-d”. If the character is a tab of a space,
enclose the entire argument in quotation marks;
for all other characters, quotation marks are not
required.

If you omit this argument, gl_conv uses the
ASCII vertical bar character (|) as the default
delimiter.

See the Examples section for sample delimiter
specifications.

Optional

-c Field list. Specifies the fields whose data is to be
converted, by ordinal number. (The first column
is “1”.)

If you omit this argument, gl_conv converts all
fields.

See the Examples section for a sample field list
specification.

Optional

input_file Name of the file whose data is being converted. Required

output_file Name of the file to which the converted data is
written.

Required
The gl_conv Utility 6-5

gl_conv
Usage
Use this utility to convert binary data that is to be loaded into UNIvarchar
columns in a database.

gl_conv converts the data in one or more fields of the specified input file and
writes the result to the specified output file. If only some of the fields are
converted, the rest of the fields are written to the output file in their original
format. To see an example of an output file, see “Examples” on page 6-7.

Converting Specific Fields

You can specify which fields to convert by using the -c option.

Specifying the Delimiter

Binary data can contain a delimiter character to separate different fields
within the binary file. The -d option allows you to specify the delimiter
character that is used.

The delimiter character can be used within the input file as a regular text
character rather than as a delimiter. If it is to be read as literal text rather than
as the symbol of a delimiter, the character must be preceded by a backslash
(\). This is common UNIX practice.

For example, if the delimiter is a colon, and one of the fields contains a colon
as part of its text, the text colon must be preceded by a backslash. In this
example, the name of the book is San Francisco: Past and Present. The
backslash before the colon in the title ensures that the colon will not be read
as a delimiter.

Smith:A.E.:San Francisco\:Past and Present:Random House:1990:

Important: There must be a delimiter at the end of each line of binary data to be
converted. Some databases do not put a delimiter at the end of a line when they export
data. If the data you are using does not have final delimiters on each line, you must
add them before you can load the data into an Informix database.
6-6 Informix Unicode DataBlade Module User’s Guide

gl_conv
Prerequisites

Before you can run the gl_conv utility, you must:

■ set the $INFORMIXDIR environment variable as instructed for your
database server.

■ install ESQL/C and make it available for use by the Unicode
DataBlade module user.

■ set the $LD_LIBRARY_PATH environment variable to point to
$INFORMIXDIR/lib and $INFORMIXDIR/lib/esql.

Examples
This section provides usage examples for the gl_conv utility.

1. The following table illustrates the use of the -d parameter.

Delimiter Value to specify Example

tab The ASCII tab character “-d “

space The ASCII space character “-d “

vertical bar (|) The ASCII “|” character.
Do not use quotation marks.

-d|

semicolon (;) The ASCII “;” character.
Do not use quotation marks.

-d;

colon (:) The ASCII “:” character.
Do not use quotation marks.

-d:
The gl_conv Utility 6-7

gl_conv
2. This example converts data in the fourth, fifth, and sixth fields of the
binary file, excel_1 and writes the converted data to the file
unicode_1. The code set of the original file is the MS code page 1252.

The file contains the following data, with fields delimited by a
vertical line:
%00234|Smith|John|Grange Rd.|Dublin|Ireland|

The following command converts the data in columns 4, 5, and 6 to
UNIvarchar:
%gl_conv 1252 unicode -c4,5,6. < excel_1 > unicode_1

Since the vertical bar is the default delimiter for gl_conv, there is no
need to specify a delimiter.

3. This example converts data in the second, third, and sixth fields of
the binary file, excel_2, and writes the converted data to unicode_2.
The contents of the fields in excel_2 is exactly the same as excel_1,
except that its code set is DOS code page 850, and the delimiter is a
tab.
%gl_conv 850 unicode "-d" -c2,3,6. < excel_2 > unicode_2

In this example, you must specify the delimiter because it is not the
default delimiter.
6-8 Informix Unicode DataBlade Module User’s Guide

gl_conv
4. This is a more extensive example that converts the second and third
fields in the file, cars&planes, to Unicode. Each record in the file has
three fields (INTEGER, VARCHAR, and VARCHAR) separated by a
vertical bar delimiter. The file’s code set is MS code page 1252.

The contents of the file are:
1001|Pontiac Firebird|Beechcraft Bonanza|
1002|Ford Mustang|Piper Warrior|
1003|Chevy - Camaro|Cessna Skylane RG|
1004|Dodge Viper|Mooney Ovation|
1005|Acura NSX|Commander H1|

The command line syntax to convert columns 2 and 3 to Unicode
data and store it in the file cars&planes.converted is:
%gl_conv 1252 unicode -c2,3. < cars&planes > cars&planes.converted

The output file looks like this.
1001|0050006f006e0074006900610063002000460069007200650062006900720064|0042006500
65006300680063007200610066007400200042006f006e0061006e007a0061|
1002|0046006f007200640020004d0075007300740061006e0067|00500069007000650072002000
570061007200720069006f0072|
The gl_conv Utility 6-9

A
Appendix
Sample Tables
This appendix shows the SQL statements used to create and
populate the tables and data used in examples in this book.

Most examples use one of these four database tables, named
books, authors, customers, and univartab.

The books Table
The books Table
The following statement created the books table:

CREATE TABLE books
(bookid CHAR(5),
 title UNIvarchar,
 author VARCHAR(30),
 summaryVARCHAR(50)
);

The examples use data from the following rows in the books table:

INSERT INTO books
VALUES (“10005”,

“Le Petit Prince”::UNIvarchar,
“Antoine de St. Exupery”,
“A fable for children and adults”

);

INSERT INTO books
VALUES (“10010”,

“Me”::UNIvarchar,
“Katherine Hepburn”,
“Autobiography of the legendary actress”

);

INSERT INTO books
VALUES (“10011”,

“Cosmos “::UNIvarchar,
“Carl Sagan”,
“Companion book to the TV series”

);

INSERT INTO books
VALUES(“10012”,

 “She”::UNIvarchar,
““,
““

);
A-2 Informix Unicode DataBlade Module User’s Guide

The authors Table
The authors Table
The following statement created the authors table:

CREATE TABLE authors
(authid CHAR(5),
 name VARCHAR (30),
 country UNIvarchar,
 codes UNIvarchar
);

The examples use data from the following row in the authors table:

INSERT INTO authors
VALUES (“A0121”,

“Antoine de St. Exupery”,
“France”::UNIvarchar,
“EUFR631922”::UNIvarchar
);

The customers Table
The following statement created the customers table:

CREATE TABLE customers
(custid CHAR(5),
 name LVARCHAR,
 addressLVARCHAR,
 codes UNIvarchar
);

The examples use data from the following row in the customers table:

INSERT INTO customers
VALUES (“00123”,

“Maria Sanchez”,
“66 San Pablo Ave., San Francisco, CA”,
“94111SFCA00123”::UNIvarchar

);
Sample Tables A-3

The univartab Table
The univartab Table
The following statement created the univartab table, a sample table used in
some examples in this book:

CREATE TABLE univartab
(
 itemno integer,
 car UNIvarchar,
 plane UNIvarchar
);

The examples use data from the following rows in the univartab table:

INSERT INTO univartab
VALUES
(

1001,
“Pontiac Firebird”::UNIvarchar,
“Beechcraft Bonanza”::UNIvarchar

);

INSERT INTO univartab (itemno, car, plane)
VALUES
(

2001,
“abc”::UNIvarchar,
“Tax”::UNIvarchar

);

INSERT INTO univartab (itemno, car, plane)
VALUES
(

2001,
“ABC”::UNIvarchar,
“T?x”::UNIvarchar);
A-4 Informix Unicode DataBlade Module User’s Guide

Glossary
Glossary
ASCII Acronym for American Standard Code for Information Inter-
change. ASCII is a 7-bit code that assigns numeric values to char-
acters—the letters, numbers, punctuation marks and other
symbols found on a typical keyboard—and to control codes. It is
the US national variant of ISO 646 and is used with most Amer-
ican microcomputers and many minicomputers.

ASCII character
set

See ASCII code set.

ASCII code set A code set based on the ASCII standard. Typically, an ASCII char-
acter set includes the 127 standard ASCII characters plus another
128 platform-specific extensions. The extensions are often used
for characters in languages other than English (ç, π), foreign
money symbols (¥,£), and mathematical symbols (÷, √). Also
called ASCII character set.

ASCII file A document file in ASCII format. Also called a text file.

byte ordering Whether the most significant byte or the least significant byte
comes first in a double-byte character set. The Unicode standard
does not specify any order of bytes inside a Unicode value.

character An element in a computer character set. A character can be a
symbol used to represent the sounds and concepts or a language
or a control character.

Examples of characters include:

■ alphabets and syllabaries (for example, hiragana),
which represent the sounds of a spoken language.

■ ideograms, which represent words and ideas.

■ special-purpose symbols, such as abbreviations (&, @, ∴, ®), mathe-
matical symbols (±, %, ∞, π), financial symbols ($, ¢, £), punctuation
and other symbols used in writing (;, —, •, ?).

■ control codes that control the display of characters (“new line,”
“delete,” and “shift”).

■ control characters that control the interaction with auxiliary devices,
such as printers (for example, “cancel”).

Symbols include letters, numbers, ideograms, punctuation marks, mathe-
matical symbols, and so forth. Control characters, such as “new line,” “back-
space,” and “shift” control the representation of the data during display and
printing; others control auxiliary devices (“print”) and perform other tasks
(“cancel”).

character set An ordered collection of characters.

Each character set has at least one code set. See code set.

Note: the term character set and code set are sometimes used interchangeably.
However, there is a difference. A character set is a set of characters. A code
set is the mapping of that character set to a set of numeric values. A character
set can have more than one code set, but a code set can have only one
character set associated with it.

client locale The locale used by the client application.

The client locale specifies the language, territory, and code set that the client
application uses to perform read and write (I/O) operations on the client
computer. In addition, an SQL API client uses the client locale for literal
strings (end-user formats), embedded SQL statements, host variables, and
data sent to or received from the database server with ESQL library functions
in an ESQL source file.

coded character
set

See code set.

code page A code set. An ordered set of characters in which a numeric index (code-point
value) is associated with each character. Some operating systems (DOS, IBM
mainframe) use this term to represent their code sets. See code set.
2 Informix Unicode DataBlade Module User’s Guide

code set A set of numerical codes that represents a character set. For each character in
a character set, there is a one-to-one mapping between that character and a
bit pattern, called a code point. Examples of code sets are ASCII, EBCDIC, and
SJIS (Shift-jis). Sometimes called coded character set.

For example, the Japanese Shift-JIS code set maps Japanese kanji (ideograms),
kana (phonetic symbols), English characters, Greek characters, and Cyrillic
characters plus some symbols to an encoding that varies between 1 and 2
bytes per character.

Note: a code set is called a character set in SQL standards documents and code
page in IBM and Microsoft documents. It is also sometimes referred to as a
coded character set.

code set order The bit-pattern order of characters within a code set. The order of the code
points in the code set determines the sort order. Alphabetical order is a code
set order.

Informix Dynamic Server with Universal Data Option collates data in CHAR,
VARCHAR, and TEXT columns in code set order.

collation The ordering of character data according to a set of rules defined by the code
set or the locale. Sometimes referred to as sort. See collation order. Collation is
discussed in detail in the Informix Guide to GLS Functionality.

collation order The order in which character data is sorted. In Informix databases, data can
be sorted according to rules defined by the code set or by the locale. See code
set order and localized order. Collation order is sometimes called sort order.

database locale The locale of the data in a database.

The database locale specifies the language, territory, and code set that the
database server needs to interpret locale-sensitive data types (NCHAR and
NVARCHAR) in a particular database correctly. The database locale
determines the following information for the database:

■ The code set whose characters are valid in any character column

■ The code set whose characters are valid in the names of database
objects such as databases, tables, columns, and views

■ The localized order to collate data from any NCHAR and NVARCHAR
columns
Glossary 3

The client application uses the database locale (as set on the client computer)
to determine whether to perform code set conversion.

double-byte 16-bit.

double-byte
characters

Characters whose representations occupy between 8 and 16 bits. Languages
that use ideograms, such as Chinese, Japanese, and Korean, generally use
double-byte characters to represent their characters. Some code sets, such as
the Japanese code set Shift-JIS, include both single-byte (kana) and double-
byte (kanji) characters.

Unicode is a double-byte code set.

external ASCII
representation

How 16-bit data is represented in an ASCII file. Unicode characters are repre-
sented as double-byte hexadecimal values. For example, a space (hexadeci-
mal “20”) is represented as “0020”.

field In this product, the term field is used in its old-fashioned sense—a field in a
record in a flat file.

GLS See Global Language Support.

Global Language
Support

A feature that enables Informix database products to easily handle different
languages, cultural conventions, and code sets for Asian, European, Latin
American, and Middle Eastern countries. See the Informix Guide to GLS Func-
tionality for a complete discussion of GLS.

hexadecimal
representation

A representation of data using a base-16 numeric system. The Informix Uni-
code DataBlade module passes Unicode data to and from the client using the
LVARCHAR data type, which is displayed in DB-Access in two-byte hexadec-
imal format. ASCII characters, which normally have a single-byte hexadeci-
mal representation (for example, hexadecimal “20” represents a space) are
displayed as double-byte hexadecimal characters (“0020” for a space).

internaldatabase
representation

How Unicode 16-bit data is stored within the database. In the
Unicode DataBlade module, Unicode data is stored in UNIvarchar columns.

locale The language-related features of a computing environment.
4 Informix Unicode DataBlade Module User’s Guide

A locale is a set of files that defines the characteristics of a particular language
(for example, French), a particular territory (for example, France) and a par-
ticular code set (for example, MS Windows Code Page 1251 or ISO 8859-1). A
locale specifies the code set; the collation order; end-user formats for mone-
tary, numeric, date, and time data; and, for comparisons, the character classi-
fication and alphabetic case conversion.

See “The Unicode Locale” on page 1-6 to see how locales are used with the
Unicode DataBlade module.

localized order The order of the characters that relates to a real language. The COLLATION
category of the locale file defines the order of the characters for that locale.

Informix Dynamic Server with Universal Data Option collates data in
NCHAR and NVARCHAR columns in code set order. UNIvarchar data is
always collated in localized order.

multibyte
character

Characters whose representations occupy more than 8-bits.

non-ASCII
characters

All characters that are not represented in the standard ASCII code set. In this
book, non-ASCII characters usually refers to double-byte characters. This term
sometimes includes the characters in the extended ASCII code set—the char-
acters whose code points are greater than 127.

opaque data type A fundamental data type you define that contains one or more values encap-
sulated with an internal length and input and output functions that convert
text to and from an internal storage format. Opaque types need user-defined
routines and user-defined operators that work on them. Synonym for base type,
user-defined base type.

server locale The locale that the database server uses for its server-specific files.

The server locale specifies the language, territory, and code set that the
database server uses to perform read and write (I/O) operations on the server
computer (the computer on which the database server runs). These I/O
operations include reading or writing the following files:

■ Diagnostic files that the database server generates to provide
additional diagnostic information

■ Log files that the database server generates to record events

■ Explain file, sqexplain.out, that the SQL statement SET EXPLAIN
generates
Glossary 5

However, the database server does not use the server locale to write files that
are in an Informix-proprietary format (database and table files).

The database server is the only Informix product that needs to know the
server locale. Any database server utilities that you run on the server instal-
lation use the client locale to read from and write to files and the database
locale, on the server computer, to access databases that are set on the server
computer.

single-byte
characters

Characters that can be represented in a single byte. Most European languages
have fewer than 256 characters, so their characters can be represented by 7-
bit or 8-bit code sets. When an application handles data in such code sets, it
can assume that 1 byte stores 1 character.

sort order Synonym of collation order.

text file See ASCII file.

Unicode A standardized, cross-platform, double-byte code set that, with a few excep-
tions, includes every character represented in regional character sets. All
characters are represented as 16-bit characters, including characters in single-
byte code sets such as ASCII. Adopted as ISO 10646.

(Note: Unicode represents Japanese kanji as Chinese characters and is there-
fore little used in Japan.)
6 Informix Unicode DataBlade Module User’s Guide

@

Index

O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Index
A
ASCII, definition of Glossary-1

C
Casting

general discussion of 1-8
importance of 3-3

Casts
CHAR to UNIvarchar 3-6
in SELECT statements 5-6
list of explicit 3-4
list of implicit 3-3
NCHAR to UNIvarchar 3-9
NVARCHAR to UNIvarchar 3-11
UNIvarchar to CHAR 3-16
UNIvarchar to NCHAR 3-18
UNIvarchar to NVARCHAR 3-21
UNIvarchar to VARCHAR 3-24
VARCHAR to UNIvarchar 3-14
with LVARCHAR 1-5

Character data
interpreting Glossary-3
using LVARCHAR with 1-5

Character set
definition Glossary-2
double-byte Glossary-4
single-byte Glossary-6

CHAR_LENGTH function,
reference 4-5

Client application
uses of client locale Glossary-2
uses of database

locale Glossary-4

Client locale, definition
of Glossary-2

Code page, definition of Glossary-2
Code point, in code-set

order Glossary-3
Code set

definition of Glossary-3
for client application Glossary-2
for database Glossary-3
for database server Glossary-5

Code-set order, definition
of Glossary-3

Collation order, definition
of Glossary-3

COMPARE function, reference 4-9
CONCAT function, reference 4-12
CREATE TABLE statement,

creating UNIvarchar
columns 5-4

D
Data representation

ASCII Glossary-4
external Glossary-4
hexadecimal Glossary-4
internal Glossary-4
Unicode Glossary-4

Data type, locale-
sensitive Glossary-3

Database locale, definition
of Glossary-3

Database server
interpreting character

data Glossary-3
uses of server locale Glossary-5

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
DB-Access
Unicode processing in 2-6
using Unicode data with 1-3

Documentation, related Intro-8
Double-byte characters, definition

of Glossary-4

E
Equal function, reference 4-15
ESQL/C program

host variables Glossary-2
literal strings Glossary-2
loading a locale in 2-5
Unicode processing in 2-6
using Unicode data in 1-3

ESQL/COBOL program
host variables Glossary-2
literal strings Glossary-2

Examples
"authors" table A-3
"books" table A-2
"customers" table A-3
"univartab" table A-4

Explicit casts, used with
UNIvarchar 3-4

F
Features, list of Intro-5
Field, use in Unicode DataBlade

module Glossary-4
Functions

CHAR_LENGTH 4-5
COMPARE 4-9
CONCAT 4-12
Equal 4-15
GreaterThan 4-17
GreaterThanOrEqual 4-20
LENGTH 4-29
LessThan 4-25
LessThanOrEqual 4-27
MATCHES 4-32
NotEqual 4-34
OCTET_LENGTH 4-36
UNITrim 4-45

G
Glossary, database server

terms Intro-9
GLS, brief description

of Glossary-4
gl_conv utility

description 6-4 to 6-6
discussion 6-4 to 6-7

gl_lc_load function, use 2-5
GreaterThan function,

reference 4-17
GreaterThanOrEqual function,

reference 4-20

H
Hashing, for Unicode data 4-23

I
Icons

Important Intro-7
Tip Intro-7
Warning Intro-7

Implicit casts, used with
UNIvarchar 3-3

Important paragraphs, icon
for Intro-7

L
Language

for client application Glossary-2
for database server Glossary-5

LENGTH function, reference 4-29
LessThan function, reference 4-25
LessThanOrEqual function,

reference 4-27
Locale

client Glossary-2
database Glossary-3
definition Glossary-4
discussion 2-4 to 2-6
generic 2-5
loading 2-5
server Glossary-5

setting up a 1-6
unicode 2-4

LVARCHAR data type
casting 1-5
use in Unicode DataBlade

module 1-5

M
MATCHES function, reference 4-32

N
NotEqual function, reference 4-34

O
OCTET_LENGTH function,

reference 4-36
Operators

custom 5-8
UNICharSubstring 4-39
UNIOctetSubstring 4-42
unsupported 5-7

S
Sample tables

"authors" A-3
"books" A-2
"customers" A-3
"univartab" A-4

SELECT statement
comparing UNIvarchar and other

data types 5-6
querying Unicode data 5-6

Server locale
definition of Glossary-5
defintion Glossary-5

Single-byte characters
definition Glossary-6

Software Dependencies Intro-5
Substring operation

using UNICharSubstring 4-39
using UNIOctetSubstring 4-42
2 Informix Unicode DataBlade Module User’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
T
Terminology, database server

glossary Intro-9
Tip icons Intro-7
Typographical conventions Intro-6

U
UNICharSubstring operator,

reference 4-39
Unicode data

data type used for 2-4
setting locales for 2-4

Unicode DataBlade module
features 1-4
high-level description 1-3 to 1-5
using 1-6 to 1-8

Unicode DataBlade User’s Guide,
organization of Intro-3

Unicode locale, provided 2-5
Unicode, definition of Glossary-6
UNIOctetSubstring operator,

reference 4-42
UNITrim function, reference 4-45
UNIvarchar

cast from CHAR 3-6
cast from NCHAR 3-9
cast from NVARCHAR 3-11
cast from VARCHAR 3-14
cast to CHAR 3-16
cast to NCHAR 3-18
cast to NVARCHAR 3-21
cast to VARCHAR 3-24
casts used with 3-3 to 3-30

UNIvarchar column
creating in a table 5-4

UNIvarchar columns, using 1-7
UNIvarchar data type

general description 1-4
usage 2-4

W
Warning icons Intro-7
Index 3

	Answers OnLine Web Site
	Table of Contents
	Introduction
	In This Introduction
	About This Manual
	Organization of This Manual
	Types of Users
	Software Dependencies
	Features of This Product

	Documentation Conventions
	Typographical Conventions
	Icon Conventions
	Function Syntax Conventions
	Printed Documentation
	On-Line Documentation
	On-Line Manuals
	Documentation Notes, Release Notes, Machine Notes

	Informix Welcomes Your Comments

	Overview
	In This Chapter
	What is the Unicode DataBlade Module?
	Handling Unicode Data
	What is in the Unicode DataBlade Module?
	The UNIvarchar Data Type
	Use of LVARCHAR
	Customized Routines

	Using the Unicode DataBlade Module
	The Unicode Locale
	Loading Data
	Loading Fixed-Length Data
	Loading Variable-Length Data

	Using UNIvarchar Columns
	Casting and Comparisons

	Unicode Columns
	In This Chapter
	The UNIvarchar Data Type
	Definition
	Usage
	Using Built-in Server Functions

	Locales
	A Generic Unicode Locale
	Special Considerations
	Client Programs and Unicode Data
	ESQL/C
	DB-Access
	Additional Information

	Casting and Unicode
	In This Chapter
	The Importance of Casting
	Implicit Casts
	Explicit Casts
	Cast Table
	CHAR to UNIvarchar
	NCHAR to UNIvarchar
	NVARCHAR to UNIvarchar
	VARCHAR to UNIvarchar
	UNIvarchar to CHAR
	UNIvarchar to NCHAR
	UNIvarchar to NVARCHAR
	UNIvarchar to VARCHAR
	Using Casts with Date and Money Data Types
	Examples With[Without] a UNIvarchar Cast

	Functions
	In This Chapter
	CHAR_LENGTH
	CHARACTER_LENGTH
	COMPARE
	CONCAT
	Equal
	GreaterThan
	GreaterThanOrEqual
	Hash
	LessThan
	LessThanOrEqual
	LENGTH
	MATCHES
	Example
	NotEqual
	OCTET_LENGTH
	UNICharSubstring
	UNIOctetSubstring
	UNITrim

	Module-Specific Syntax
	In This Chapter
	General Information
	CREATE TABLE
	SELECT

	The gl_conv Utility
	In This Chapter
	gl_conv

	Sample Tables
	Glossary
	Index

