
Architecture Independent Language Delivery

23rd Internationalization and Unicode Conference 1 Prague, Czech Republic, March 2003

 David B. Kumhyr
 Tivoli Systems Division
 IBM Corporation

Developing International Products

Most software development organizations now understand the critical importance
of producing international ready products. Marketing and sales organizations
have made this requirement quite clear to the product managers. What is not so
clear is the technical means to achieve this goal; the method is usually left to the
development organization.

Most development teams are composed of bright and talented programmers
whose engineering education did not include internationalization training or
exposure to linguistics1. Each globalized product solution developed is different
and with multiple releases and many products the resulting control, support and
development cost become enormous.

In Tivoli an internationalization team initially developed the first international
product2, which was a rewritten adaptation of the base product. Thus we took the
simple brute force approach; rewriting the base product ‘fixing’ it for a target
language and market. This approach is still a favored method for small
development companies. The advantages are that the development can be
outsourced to a team with internationalization expertise and the original
development team can concentrate on the higher priority tasks of defect support
and development of the next release.

The difficulty with this approach is that it involves the creation of a separate
product for each market, each with its own potential set of new defects for the
support organization to fix. Upgrades and fixes become increasingly difficult to
manage. What seems a simple and cheap method to support a new market
becomes a very costly ongoing effort.

 A more supportable method is to develop the base product so that it will support
all languages and locales, separating the human language and data formatting
operations using accepted internationalization techniques. This approach creates
a code base that is functionally the same in all locales, only the language is

1 Other than computational linguistics.
2 Tivoli Management Environment 3.1J for Japanese.

Architecture Independent Language Delivery

23rd Internationalization and Unicode Conference 2 Prague, Czech Republic, March 2003

different. The languages may be applied during the product install or separately
installable.

Two methods commonly used in the handling of the translations of these types of
product is to have the development team handle the installation methods and
transferring of files between translators or to have a separate team handle these
logistics.
In Tivoli after the initial foreign product release the decision was made to have
the internationalization team handle the translation and installation of the
translated files. The development teams were unsure of how to do so and did not
have the extra personnel to spare for additional development work.

At this time the entire Tivoli product suite was based upon a common
programming model. This model allowed external products to be integrated into
the Tivoli suite. Using this model for separate development enabled the
internationalization team to develop translations and deliver them as products to
be added on the base product as a translation. Thus was born the ‘language
pack’ for Tivoli.

Language Pack Background

Language packs are certainly not unique to Tivoli it is a common and logical
method for separating the translation from the development work. They are
implemented in primarily two methods; development built or translation built;
within IBM they are mostly development built.

In the development built model the development team assigns some of their
personnel to the development of the language pack. The language pack may be
integrated into the base product and executed as a choice during product
installation or as a supplemental part of the product install. These developers
integrate the translated files into the project and deal with the translation team
and the translation verification team as well as perform all of the engineering of
the installation and configuration of the product for the chosen languages.

Architecture Independent Language Delivery

23rd Internationalization and Unicode Conference 3 Prague, Czech Republic, March 2003

Server

End Point

Endpoint

End Point

Gateway

Software
Product

Software product is installed .
The installation programs
distributes and configures its
files across the system as
needed by it's architecture.

In the translation built model a separate team works with the development team
to send language files to translation, create the language installation and
coordinate testing. This architecture allowed for translation and translation testing
to be decoupled from the base product development. This helps schedules and
reduces the load on the development team but requires a service organization to
support the translation, packaging and installation.

The translation built model is the original method chosen by our
internationalization teams. Initially the process worked well, but as products
multiplied and product architectures changed it became increasingly
troublesome.

Trouble in Paradise

Quite soon each internationalization engineer in charge of developing a language
pack found himself working on five or more different products with multiple
releases during the year. Each product had different architectures, tools and
build methods. The internationalization engineer needs detailed product
architectural knowledge to produce a working language pack. They must know
how the product locates, loads and uses the translated files. While many
internationalization engineers were annoyed by problems in the language pack
process most chose simply to live with the problems developing coping strategies
for each individual symptom.

Engineers are Revolting

Architecture Independent Language Delivery

23rd Internationalization and Unicode Conference 4 Prague, Czech Republic, March 2003

A number of engineers were concerned with the increasing inefficiency and
approached product management with a manifesto, not to cause trouble but to
point out what had become a poor programming paradigm and propose a radical
solution.

Architecture Independent Language Delivery

23rd Internationalization and Unicode Conference 5 Prague, Czech Republic, March 2003

Why language packs should be built product development

1. Development knows their product and the architecture; outsiders must reverse

engineer and duplicate starting from the current state of the build.
2. Creating a separate langpack product duplicates defects of the original product while

creating new potential defects.
3. Changes to the base product necessitate changes in the language pack, however

there is no established conduit for notification. The primary notification is a build
break due to a change. Example – addition of new java files with a new classpath.

4. Creating language packs for development effectively relieves the development team
from considering the implications of NLS3 concerns in their design and
implementation phase. Weakening learning and creation of properly enabled
programs. It brings these issues back to development late in the development cycle
as defects from globalization verification test (GVT). These built in defects now are
mostly deferred since they are intrinsic and require major effort to fix. Removing the
NLS education and responsibility from base product development stunts their growth
and knowledge and sets enablement back.

5. Overloading of file types (example .xml as a source for html, java and msg cats)
means each file must be handled individually in builds based upon explicit
development knowledge of the processing intended for each file.

 The New Language Pack Manifesto

First I’ll explain the points of the manifesto which is a list of the problems faced
during development of language packs using the translation build language pack
model.

“1. Development knows their product and the architecture, outsiders must
reverse engineer and duplicate starting from the current state of the build.”

As an engineer building a language pack we must reverse engineer the product build tree
and file locations in order to first find out how the product builds the base language files
(English), where the files are placed after the installation and how the files are accessed
(path, environment variables, etc.)

“2. Creating a separate langpack product duplicates defects of the original
product while creating new potential defects.”

In addition to duplicating the product (multiplied by the number of languages translated
into) we also manipulate product files and environment posing the potential for creating
new defects.

3 National Language Support

Architecture Independent Language Delivery

23rd Internationalization and Unicode Conference 6 Prague, Czech Republic, March 2003

“3. Changes to the base product necessitate changes in the language pack,
however there is no established conduit for notification. The primary notification
is a build break due to a change. Example – addition of new java files with a new
classpath.”

During development there are many changes, our language pack design may be
predicated upon things that may have changed since our design breaking our language
pack. There was no process set up to identify and notify us of these changes.

“4. Creating language packs for development effectively relieves the
development team from considering the implications of NLS concerns in their
design and implementation phase. Weakening learning and creation of properly
enabled programs. It brings these issues back to development late in the
development cycle as defects from GVT. These built in defects now are mostly
deferred since they are intrinsic and require major effort to fix. Removing the NLS
education and responsibility from base product development stunts their growth
and knowledge and sets enablement back.”

While the development engineers were happy to be relieved of the need to work on
internationalization issues it also kept them in isolation from this important skill.
Development engineers were inadequately prepared to solve enablement defects that
were reported late in the development cycle – as a consequence of separate language
pack development.

“5. Overloading of file types (example .xml as a source for html, java and msg
cats) means each file must be handled individually in builds based upon explicit
development knowledge of the processing intended for each file.”

As Tivoli moved to greater usage of XML and it’s ability to be used as a base for multiple
target file types (type overloading) generic build rules were not adequate to process
them. Individual product architectural knowledge was required.

Product management was well aware of the problems. They agreed to review our
solution.4

Callback Language Pack Model

The Callback Language Pack Model (CLPM) is a new approach, which divorces
the process of product development and translation delivery from the
development architecture. Using object encapsulation techniques we isolate and
separate as much of the product development details from the translations
details.

4 IBM Research Journal, “Product Architecture Independent Method for Language File Delivery”,
David Kumhyr, Perry Statham, Keiichi Yamamoto.

Architecture Independent Language Delivery

23rd Internationalization and Unicode Conference 7 Prague, Czech Republic, March 2003

Our new language pack would consist of the translated files and be delivered on
separately installable media with a standardized language pack Installation
program. This installer can install the languages for one or more product at a
time.

The function of the CLPM installer is limited to unpacking and moving files to a
location accessible by the product and to notify the product the delivery has been
made.5 Another attractive point is that this architecture is broadly applicable to
diverse software products. The language installer can be standardized and
internationalized installer that is uniform in look and feel and operation across the
entire IBM product suite.

 After it has received the notification the application program processes the
language files in the manner it needs. For example the application program may
move files to new locations or deploy files to endpoints. The application may also
modify paths, classpaths and environments variables.

This encapsulation of function and data allows the translation team to translate
and deliver without detailed product knowledge and the product team to ship their
product prior to translation being completed. The architecture further allows
additional language to be added without product architectural changes,
corrections to be made to translations without product impact and patches made
by program owners without language impacts.

Server

End Point

Endpoint

End Point

Gateway

Language
Pack

Language Pack is installed .
The installation copies all
files onto a target system and
at the end of the instalation a
call is made to the software
product notifying it of the
language pack delivery. The
program distributes and
configures its files across the
system as needed by it's
architecture.

5 An easy way to understand the process is to think of a freight delivery; the delivering agent may
have no knowledge of the contents nor your intended use or the ultimate location within your
house. You do have the knowledge so following the delivery you perform the moving and
configuration.

Architecture Independent Language Delivery

23rd Internationalization and Unicode Conference 8 Prague, Czech Republic, March 2003

CLPM Components

The CLPM installation consists of the following two components:

• An independent installer to deliver the translated versions of the product
files and manifest to the target system.

• A call to a product supplied executable to process the files in the product’s

preferred manner.

CLPM Method Details

A uniform language pack installation program is used as a container to install the
language pack. A simple and consistent interface allowing the installing user to
select the products and languages they wish to install is presented. The user
selects their choices and executes.

Each language pack needs only a very few stable pieces of data in advance
relating to the product it is installing for. These are:

• Product title

• Product version number

• Product AVA code6

• Location of product callback

• Execution command for callback

• Authority for execution of callback

When the installation of the language pack is executed the files for the selected
languages are copied to the target system. After the files are copied the
installation calls a procedure that invokes the target program’s callback
executable. The product callback uses a standardized naming convention (the
AVA code of the product) and passes the version number of the product and the

6 IBM products each have a unique 3 letter code called AVA code. Other companies may have
similar methods for categorizing their products.

Architecture Independent Language Delivery

23rd Internationalization and Unicode Conference 9 Prague, Czech Republic, March 2003

fully qualified name of a manifest file listing all of the delivered language pack
files.

The callback program is named using a standardized naming convention; the
IBM AVA code of the product combined with “_NLS”. For example Tivoli’s
Weblogic PAC product implements it’s callback as a UNIX shell script. It is
named GWL_NLS.sh. This script parses the list of files and performs the product
language configuration (adding classpaths) and then distributes the files to
endpoint nodes.

The method of separating the language delivery from the distribution and
configuration relieves the internationalization team from modifying the products
classpath or other environmental configurations. This frees the product groups
from concern that the language packs are making product modifications outside
the scope of their control. It also decouples the internationalization team from
having to know about product specific manipulations of files. The processing of
the language pack files should be done paralleling the processing done by the
development team for their base language files.

CLPM Installer

This component is responsible for copying the products translatable files to the
target machine. How the files are delivered to the target system is not essential
to the architecture independent language pack process. The features that should
be implemented by a CLPM installer are:

• The user interface for language pack installers is uniform for all products.

• The installer should execute culturally correctly in all locales.

• The language presented the user is selectable.

• The user may select any or all of the languages to be installed and that
they may be installed at any time after the product is installed. (install can
also be used to refresh translations)

The installer must also create a manifest file of all of the files that are installed
and a final installation action that calls the correct <AVA>_NLS executable
following the successful installation of the files.

Architecture Independent Language Delivery

23rd Internationalization and Unicode Conference 10 Prague, Czech Republic, March 2003

E-Language Pack Installation

In a web based or e-business environment the language pack may be installed
as a jar file that is transferred to the client upon a specific request (as selected by
the user) or as a result of a browser setting change (like a lang or local attribute
changing). The deliver mechanism in this instance would be a jar file delivered
for the registered applications though the installation process would be similar
utilizing a call-back process to execute the installation and configuration for the
language files.

Product Installation Actions

Following the successful installation of the files by the CLPM installer a process
needs to be executed that will perform product specific actions on the delivered
files. The mechanism to perform these actions can be any type of executable
entity. This entity is executed and passed the version number, path location and
name of the manifest file.

Product Installation Executable

This executable performs the product specific actions. The default naming for this
executable is created using the product AVA code; <AVA_NLS a UNIX shell
script. Some of these actions are checking that the correct version level is met
and parsing the manifest file. Each file is then processed into the format need by
the product. For instance individual .class files can be added into the products
base language jar file or moved into class directories. The executable also
moves these files to their destination for the programs use for example in
distributed applications moving files to endpoint nodes. If early language binding
is done the files are moved to the binding location.

Architecture Independent Language Delivery

23rd Internationalization and Unicode Conference 11 Prague, Czech Republic, March 2003

In Tivoli NLS team created a sample template <AVA>_NLS executable. This
shell script prototypes functions to parse the manifest file, move files into other
locations, create/modify dependency sets, update jar files, etc. This example is a
Tivoli PAC specific script, products are not limited in the type of executable entity
that they choose to use for their application.

Example pseudo code for a product installation:

// Generic actions

Check version level

 if !ok – error exit

Check manifest file exists

 if !ok – error exit

Check files specified in manifest

 if !ok – error exit

// Application specific actions

Process files in manifest list that need further (e.g. jarring into specific archives)

Move files to server locations

Move files to other locations (e.g. nodes, clients)

Update paths, classpaths other environment variables

Exit

Automatic Generation of Language Pack

In Tivoli the distribution, source control and receipt of files for translation is
handled through an automated process. This process is encoded in a tool called
WebFM (web file management), it is possible to launch a process as a last step
of the file processing in WebFM.

This automated process could build a language pack from the translated files.
For example all .msg files could be compiled into .cats and then be compiled into
an InstallShield image. Using InstallShield Multi-Platform to create a template
installer .XML file the values that need to be altered between different products
can be easily identified and substituted. This would allow the automatic
generation of language packs as a last step in the file management system.

Architecture Independent Language Delivery

23rd Internationalization and Unicode Conference 12 Prague, Czech Republic, March 2003

Major Advantages

A major advantage of this architecture comes from the fact that it is now possible
to separate the current entanglement of the language pack development from the
product development.

Potential advantages are that products can dynamically create classpaths
without impacting international enabling. Development regains control over all of
their product files and locations. Defects won’t be inadvertently introduced by
localization.

• Allows translations to be updated in the field at any time

• Prevents product functional defect introduction by translation

• Enables decoupled development and translation

• Creates language packs that are uniform across products

• Creates a universal language pack

Delivery of translations for software products is a major planning, coordination
and design task for development and translation teams. The document describes
a method for delivering translations that is independent of development
architecture or tools. This architecture allows translation and translation testing to
be decoupled from product development. Eventually the production of language
packs may even become fully automated.

