

Les étapes de la migration mainframe vers RTC

Nicolas Dangeville
Dangeville.n@fr.ibm.com

RTC-EE Chief Architect

What is Rational team Concert?

 RTC is more than just an Software Configuration Management
system
Process, Planning and Work items coupled with an integrated SCM

provide a complete solution
Ability to manage distributed and z/OS source in the same

repository makes for a more integrated SCM solution
Migrating your existing SCM to RTC is only part of the job
Migration gives you the chance to review your current process to

see how RTC or the full CLM solution can help integrate all your
processes into a single tool

Rational Team Concert terminology

Stream Collection of components used to organize work, coordinate collaboration and
integration, and capture the active configuration of each component. Related to a
level in a hierarchy (e.g., promotion levels, releases, etc)

Component Collection of related artifacts (i.e., sourcefiles are logically organized into
components) that have the same lifecycle
Used to control access rights, facilitate sharing and reuse
Theoretical limit: 50000 files
Recommended: 1000 – 2000 files / component

Repository
Workspace

Workspace for 1 user synchronized with a Stream and the "Sandbox"
Situated on the RTC server

Sandbox Workspace on the hard disk (e.g. local eclipse workspace).
Note: Through the build or CLI you have jazz metadata but no eclipse metadata.
For ISPF Client a Sandbox is a collection of data sets with the same HLQ.MLQ

Change Set Contains a collection of consistent changes made to a configuration of a component.
Means for flowing file and folder changes between repository workspaces and
streams.

Work Item Captures the tasks and issues to be addressed by the team members
Associated with change sets created by the developer.
Automatically and dynamically populate plans and reports

Baseline Non-editable version of a component capturing an interesting point in time
The baseline is performed implicitly when a Snapshot is taken
Can be done manually on a given component

Snapshot Collection taken of all component baselines for a stream or repository workspace
capturing an interesting point in time

Rational Team Concert terminology (cont)

Load Action that copies selected files and folders from the repository workspace
to the sandbox (eclipse workspace or MVS data sets)

Accept Action that allows for synching the repository workspace reference with
changes delivered to the stream by other developers
Load of the accepted changes into the sandbox is automatically performed
Note – you can also accept change sets from a WI

Check-in Action that allows to save local changes into the repository workspace,
within a Change Set

Deliver Action to push the workspace changes from the workspace to the Stream

Migration planning

 The migration from a legacy mainframe SCM system to RTC involves
several steps before you have an operational system.
Pre-migration
During the migration
Post-migration

Pre-migration

 Install RTC!
 Create project areas
 Define the structure of your streams
 Define the structure of components in your stream
 Define the delivery flow between streams
 Identify the nature of the programs and the main language

definitions you will need for your IT system
 Create system definitions for data set definitions, language

definitions and translators
 Set translator variables

Planning your Rational Team Concert solution

 Various aspects of your current workflow will influence your
final stream strategy, for example:
How do you plan to do version/release maintenance
How do you want to handle emergency fixes
Do you you require different integration levels for different teams.

 Keep it simple when you first start
As teams work in RTC and get familiar with how the SCM works,

you can define new streams that will support additional needs.

Planning your Rational Team Concert solution

 Where are you going to host your server and repository?
 The RTC server can run on a multitude of environments

• Windows, Linux, AIX, Unix, zLinux, z/OS, IBMi

 The repository database can be hosted on a multitude of
environments

• DB2 on LUW, DB2 on zLinux, DB2 on z/OS, Microsoft SQL Server, Oracle to name a
few

 The server can be run on one system with the data base on
another

• eg: Server running on zLinux and database running on DB2 on z/OS

 You need to choose the best topology for the size and complexity
of your implementation

 What are your current server administration skills?

Define your projects areas

 Project Area structure
1 Project Area per line of business or application

• This depends on the team structure & relationships between
applications of the same LOB

1 Common Project Area
• To pool the RTC setting

– Roles and Process, ..
• To pool the shared definitions

– System Definitions (Language Defs, Dataset Defs, etc.)
– Build engines (?)

• Propagation by inheritance to other PA
• Defines the stream that publishes common components &

frameworks
• Access control

– Read/write to Admins only
– Read-only for all team members

Define the structure of the streams

 The stream maps to an application for an environment
 A stream must be complete

That means that it contains all the dependencies needed by all the
programs in the stream

Including common elements (framework)
Can include Components from another stream (from same or another

Project Area)

Hierarchy and Integration

Project Area

T0

Stream Development
version N + 1

Stream Dev
Team Appl1

Stream Dev
Team Appl2

Stream Dev
Team Appln

T1

Development Integration Quality Assurance

Load
Dev

Load
Int

Load
QA

Timeline
management

Possibility of
Automation

Build
Build

Evolution of the streams over time

Project Area

Stream maintenance
Prod

version N

Stream Development
version N + 1

Stream Dev
Team Appl1

Stream Dev
Team Appl2

Stream Dev
Team Appln

Project Area

Stream
Maintenance

Prod
version N

Stream Development
version N + 2

Stream Dev
Team Appl1

Stream Dev
Team Appl2

Stream Dev
team Appln

Stream Maintenance
Prod

version N + 1Rename

Project Area

Stream Maintenance
Prod

version N + 1

Evolution of the streams over time

Stream Dev
Team Appl1

Stream Dev
Team Appl2

Stream Dev
team Appln

Stream Development
version N + 2

Components
 Which logical units make up the applications (components)?

Put related artifacts or projects together so components make sense from
code reuse, application build operations and team sharing perspective

 What are the common source elements used across several
applications/modules?
Define components to be reused across applications, so they can be

maintained by certain teams, or to be shared for all teams within a project
area.

 Your development teams will work on a set of components for
which they are responsible.
When structuring the components along with architectural details bear also in

mind the organizational structure that will support it.

The component
 Corresponds to a part of an application

Divided by a topology of component types
 Component is owned by a team
 Single Platform

Simple grouping criteria
Stream by Platform / Team
A lot of components if dealing with a complex system

 Multi-Platform
No de-synchronization between client and server
Forces the same lifecycle for all technologies

 Focus of attention for the copybooks
Copy for public interface

• By public interface we mean …Copy used by an application to call another application
modules

Copy framework (cross-cutting)
• By framework we mean … copy such as authentication or security related, not owned

by a particular application

Common Stream

API-1*

API-2

API-3

Stream Appl1

API -1*

Pgm for 1

Copy frame

Public Interface

Private
Implementation

Stream Appl2

API-2

Pgm for 2

Copy frame

API-1

Stream Appl3

API-3

Pgm for 3

Copy frame

API-1

Publish of the
new baseline of

API-1

Notify teams of
changes of API-1

Copy frame

Project Area, Stream and Component Structure
 Workflow for publishing & adopting shared components

Common Stream

API-1*

API-2

API-3

Stream Appl1

API -1*

Pgm for 1

Copy frame

Public Interface

Private
Implementation

Stream Appl2

API-2

Pgm for 2

Copy frame

API-1

Stream Appl3

API-3

Pgm for 3

Copy frame

API-1

Publish of the
new baseline of

API-1

Notify teams of
changes of API-1

Copy frame

 Project Area set up

Common Project Area

Project Area Area 1 Project Area Area 2

Project Area, Stream and Component Structure

Common Stream

API-1

API-2

API-3

Stream Appl1

API -1

Pgm for 1

Copy frame

Stream Appl2

API-2

Pgm for 2

Copy frame

API-1

Stream Appl3

API-3

Pgm for 3

Copy frame

API-1

Copy frame

 Ownership of components

Common Project Area

Project Area Area 1 Project Area Area 2

Project Area, Stream and Component Structure

 Data set definitions describe data sets
involved in the build process
– E.g., a COBOL compiler data set definition

contains the name of the actual compiler PDS
and member

 Translators define a single step in the
build process.
It’s in the translator that you specify that the
build will perform a compilation, link-edit,
etc.
– E.g., a COBOL compilation translator contains

a reference to the compiler data set
definition, default compiler options, required
DD concatenation and allocations, and a
maximum successful return code

 Language definitions order the steps in
the build process
– E.g., a language definition for a main program

contains references first to the COBOL
compilation translator and second to the link-
edit translator

Language definition
(How to build a file)

Translator
(Build step)

Data set definitions
(Data from/to for build)

Create System Definitions

Translator comparison to JCL using data set definitions
JCL Line Corresponding data set

definition name

COBOL EXEC PGM=IGYCRCTL,REGION=2048K, COBOL Compiler

XX PARM=('EXIT(ADEXIT(ELAXMGUX))',
XX 'ADATA',
XX 'LIB',
XX 'TEST(NONE,SYM,SEP)',
XX 'LIST',
XX 'FLAG(I,I)'&CICS&DB2&COMP)

No DSD

XXSTEPLIB DD DISP=SHR,
…
..JCL - DISP=SHR,DSN=COBOL.V4R2.SIGYCOMP
…JCL- DISP=SHR,DSN=RDZ.V8R0M3.SFEKLOAD
…JCL- DISP=SHR,DSN=CICSTS.V4R1.CICS.SDFHLOAD
…JCL- DISP=SHR,DSN=DB2.DB40.SDSNLOAD

COBOL.SIGYCOMP
WDZ.SFEKLOAD
CICS.SDFHLOAD
DB2.SDSNLOAD

COBOL.SYSLIB DD DISP=SHR,
DSN=F057699.TEST.RTC.COPY

Copybooks

COBOL.SYSIN DD DISP=SHR,
// DSN=F057699.TEST.RTC.COBOL(EPSCMORT)

<INPUT> represents the source file
associated with the language
definition being built

//COBOL.SYSLIN DD DSN=&&OBJ,SPACE=(TRK,(3,3)),
// UNIT=SYSDA, DISP=(NEW,PASS)
// DCB=(RECFM=FB,LRECL=256,BLKSIZE=2560)

Temporary file (object deck)

SYSUT1 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
SYSUT2 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
SYSUT3 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
SYSUT4 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
SYSUT5 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
SYSUT6 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
SYSUT7 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))

Temporary file

Translator Variables

 Variable overrides

Migration

 Define the baselines that you want to import so you can capture
history in the RTC SCM

 Import a baseline from the legacy system and dispatching them to
the right component or project
Methods of migration, zimport, ISPF Client

 Iterate to capture the needed history till the current version
 Initially migrate a subset of modules that cover all the different types

of source code
Use this subset to test your builds to make sure language definitions are

correctly defined and that everything that needs to be built actually does

Migrating your source code to Rational Team
Concert

 RTC provides an import utility called zimport
The zimport SCM command line tool (aka “mass import tool”) imports

your PDS members directly into the repository
• Automatically creates the proper zComponent project structure
• Automatically creates a data set definition based on characteristics of data set on

host
• Automatically (optionally) associates language definitions with each member

You can build a source code version history of your major releases by
running a series of zimports with the same repository workspace

 You can also use the RTC ISPF Client to import a new PDS

Migrating your source code to Rational Team
Concert

 zimport preparation of data
By Component

• Separate out by type into a PDS
– Cobol
– Cobol/DB2
– Assembler

Line numbers if they exist must be stripped before import If they are getting re-
gened in PDS – also it look cleaner

• Cobol
 72-80 can leave if there are comments you want to keep

– 1-7
– Others?

zimport will scan the entire catalog looking for the datasets you define
• Make them a unique HLQ - Userid as HLQ for example

Gotchas
• Zimport will try to recall dataset from HSM. When it scans the catalog and does

not find the dataset - It will fail over and over
• Line numbers will cause RTC merge to fail

Migrating your source code to Rational Team
Concert

 What to import?
All source, recommendation is that the production baseline versions

are imported
 Cobol, PL/I, JCL, Procs, etc

• Adding in all versions will be very costly and time consuming
– If the IBM services team is engaged they have additional tools to help

 For example - A procedure has been developed to off load older
versions that can be viewed through ISPF when necessary
SCLM Language definitions, Endevor processors or Changeman

skeletons need to be converted to RTC definitions
• Language Definitions
• Translators

Migrating your source code to Rational Team
Concert

 Once zimport has been complete you can set up the rest of
your system definitions
Create any additional Data set definitions

• zimport will have created data set definitions for “inputs”
– COBOL, PL/I, ASM, JCL

• Use RTC dialogs to create data set definitions for “outputs”
– OBJ, DBRM, LOAD

• Also create data set definitions for temporary files

Migrating your source code to Rational Team
Concert

 Once you have all your translators and language
definitions defined, you can assign them to the relevant
files if you didn’t do that in zimport

Post-migration

 Migrate your builds
 Tune the system definitions by running builds on a representative

subset of your applications
You need to ensure all your code can be built and your language

definitions are correctly defined
 Prepare the system to trigger dependency builds that involve only the

new developments in RTC:
Run combination of builds and simulation builds to create the build maps
Populate your stream hierarchy
Populate the build maps in your stream hierarchy

Migrating your build to Rational Team Concert

 RTC supports capabilities for the operations of building,
promoting your code, packaging and deploying it, as such;
 You will need to understand the current build process of your

applications: what are different technologies in use for building
your applications and how you build them.

 “Stages” of your source code and where do you build
applications, just at DEV or at various levels of the hierarchy

 How are your applications deployed, with all the details of your
target deployment locations and your runtime locations

Migrating your build to Rational Team Concert

 Build Definition
 Contains the build characteristics

• Repository workspace that flows to team stream
containing the source code

– Repository workspace must be readable by the
build user

• What do I want to build? Whole repository workspace
or subset of programs

• Language definitions to be built
• Sandbox location

 Build Engine
 RTC representation of a process running on a build

machine that executes build requests

 Build Agent
 Executes the build
 Located on z/OS (for mainframe)
 Accesses RTC to retrieve source code and other

information

 Build request and build result
 Representations of the request to run a build and the

output from the build run

How it all hangs together

Build
Definition

1,N

Build
Workspace

PDS HLQ

Stream
(flow) Build Engine

1,N

1,1

1,1

1,1
Language
definition File Extension

Data Set
definition

1,N 0,N

0,N

Tasks run on the host, such
as compilation. A build can

handle several different tasks
in the order shown.

Allow you to
automatically
associate a

behavior with a
type of file in the
RTC repository

Corresponds to a STEP
in the process to run on

the host

Contributes to the step
to execute.

Corresponds to
programs / files / PDS
lines used by EXEC,

DD, SYSIN,… as in JCL

0,N

Translator

Component

zProject

zOSSRC

zFolder

zFile1

zFile2

0,N

1,1

USS Load
Directory

1,1

Simulation Build

 When you initially migrate you may not want to rebuild all
your source
 This is a time consuming task
 If you rebuild you really need to retest

 You only want to build things that have changed since your
migration

 Simulation build will go through your code and
create/update build maps so that the code you migrate looks
current

 Any subsequent changes will then force a rebuild of just the
changed modules

New in
RTC 4.0.4

Additional Considerations

 Security
https://jazz.net/wiki/bin/view/Main/ZosBuildAgentSec
http://publib.boulder.ibm.com/infocenter/clmhelp/v3r0m1/index.jsp?topi

c=%2Fcom.ibm.team.build.doc%2Ftopics%2Fr_antz_security.html
https://jazz.net/wiki/bin/view/Main/DependencyBuildScenarioOpenSSLSet

up

 ISPF Client set up
https://jazz.net/help-

dev/clm/topic/com.ibm.jazz.install.doc/topics/c_client_ispf_installation.ht
ml

 Promotion
 Deployment
 RDz Integration

Additional Resources

 Jazz.net
https://jazz.net/library/

• Articles, videos, tips, documentation, and more

https://jazz.net/library/#type=video&project=rational-team-concert
• Videos on various RTC features. Just search for keywords

 zimport additional resources
System z mass import tool overview (Information Center)
Getting my MVS files into the RTC repository (and getting them back out

again)

 Developerworks resources on migration
http://www.ibm.com/developerworks/rational/library/migrate-rational-

team-concert-zos-application-development/index.html

© Copyright IBM Corporation 2013. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS
IS without warranty of any kind, express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials.
Nothing contained in these materials is intended to, nor shall have the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or
altering the terms and conditions of the applicable license agreement governing the use of IBM software. References in these materials to IBM products, programs, or
services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or capabilities referenced in these materials may
change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future
product or feature availability in any way. IBM, the IBM logo, Rational, the Rational logo, Telelogic, the Telelogic logo, and other IBM products and services
are trademarks of the International Business Machines Corporation, in the United States, other countries or both. Other company, product,
or service names may be trademarks or service marks of others.

http://www.ibm.com/software/fr/rational/

