
Cloud and Continuous Delivery

Martin Nally, IBM Fellow and VP

A Personal Story

I have made major changes in my professional life
I want to share with you
What I saw happening
What I did
What I learned
Why I think it might matter to you too

Major Change Coming

There are periods of relative stability (e.g.
mainframe, client/server, web 1.0/2.0) and times
of major dislocation
In periods of stability, we use technology to work

better, faster.
In major dislocations, we completely change how

we work
I think we are headed for a major dislocation

My personal crisis

From mastery to mystery
Conferences
University faculties

Retire or respond?

I resigned my CTO position
I set out to figure out this new world
What is really going on?
Why is it going on?
What will be the consequences?

What I saw: technology change

 Java, C#

WebSphere App
Server

DB2, Oracle

WebSphere NT
XML

Python, Ruby, PHP, Perl,
Javascript, Scala, Lua, …

UWSGi, (G)Unicorn, Mod-
WSGI, Mongrel, Passenger,
node.js

MongoDB, Cassandra,
HBase, CouchDB,
ZooKeeper, …

HA/Proxy, memcached
 JSON, RDF

What I saw: leadership change

IBM, Oracle,
Microsoft, HP, …

Amazon, Google, Netflix,
Etsy, Facebook, …,
dozens of others,
especially “born on the
web” companies

What I did

Learned a lot of new technology
Implemented a lot of smaller applications
No IBM/vendor technology (“know your enemy”)
Cloud native, Multi-tenant, Continuous deployment,

Secure, mobile front-ends and “single-page apps”,
linked data integration, …

Hope to build something significant to deploy
Work in progress

What I learned

Fundamental change in development process
Primary driver is speed-to-business-value
Dramatic reduction in cycle times
Cycle ends with measured value, not delivery

Secondary drivers
Scaling
Cost

Not considered
Investment protection/stability

Facebook

https://www.facebook.com/video/video.php?v=1
0100259101684977
“Every work day Facebook is safely updated with

hundreds of changes including bug fixes, new
features, and product improvements.”

Etsy

“The premier destination for hand-made goods,
vintage items, and craft supplies”
http://www.slideshare.net/beamrider9/continuo

us-deployment-at-etsy-a-tale-of-two-approaches
Deploy Stats: 2012
Deployed to production 6, 419 times
On average 535 per month, 25/day
Additional 3851 config-only deploys
196 different people deployed to production

• “Engineers deploy the site”.
• “also Designers, Product Folk, Upper Management, … ”

How is this done?

No separation between development and
production
Abandoning the concept of a release
Total automation of test, deployment and

management
Incrementally enable changes and instantly revert

them

It does not stop at delivery

http://www.infoq.com/presentations/etsy-
deploy
In the old days, development responsibility

stopped at delivery to operations
Continuous delivery/deployment extend the cycle

to production
Final step extends to measurement of business

result

Example: How MongoDB supports speed

Acquisition
Nothing to do

 Installation/deployment
“apt-get install mongodb-10gen”

Configuration
None for simple configurations, declarative/command-driven for

advanced cases

Programming
Extremely simple, flexible, easy-to-use API (c.f. JDBC/RDBMS)

 Evolution
Nothing to do on schema change

Operations
Backup procedures etc. must be implemented, or …
MongoLab, MongoHQ – database as a service

Generalization: Focus on speed

 Acquisition
Instant, but not necessarily free

 Installation/deployment
Simple script commands used for initial deployment and cloud

automation scripts
 Configuration

As little a possible, declarative/command-driven where necessary
 Programming

Extremely simple, flexible, easy-to-use API s
• encourage API competition, not standardization

 Evolution
Initial setup is only one step. Incremental change must be extremely easy.

Creating value fast is all about accelerating change.
 Operations

Must be cloud elastic scalable
Must be hostable

Example 2: Language

Python, Javascript, JSON versus Java, XML
Programming in dynamic languages is quicker

• Not everyone agrees

JSON aligns with programming languages constructs
(reduces impedance)
Many competing APIs for the same function

• Only the most effective survive
• Be ready to switch

Who is this for?

Started with “born on the web companies”
Getting traction now with “systems of

engagement” – front-office - in enterprises
Lower risk, higher reward. Often create value by

composition of existing capability.

Not yet having much impact on “systems of
record” - back-office systems
Too much at stake?

Safety-critical? Regulated? Constrained by
physical or chemical processes?
I don’t know yet

What should you do?

Start exploratory projects like mine
Be prepared to retrain your organization
Selection and Acquisition of software
Programming
Deployment
Operations
Your organization and processes

Be prepared to change your values
Speed-to-value, not caution
Delivery of measured value, not function or code
Innovation and competition, not standardization

Where to focus

Automation
Cloud deployment
Test

Some Relevant IBM technologies
Softlayers/Smart Cloud
Evolutions of IBM middleware for cloud
Evolutions of IBM management software for cloud
DevOps products
Test automation products

Relevant Sessions

Be grateful you are working in such an
exciting industry and times
Thank You

