
Cloud and Continuous Delivery

Martin Nally, IBM Fellow and VP

A Personal Story

I have made major changes in my professional life
I want to share with you
What I saw happening
What I did
What I learned
Why I think it might matter to you too

Major Change Coming

There are periods of relative stability (e.g.
mainframe, client/server, web 1.0/2.0) and times
of major dislocation
In periods of stability, we use technology to work

better, faster.
In major dislocations, we completely change how

we work
I think we are headed for a major dislocation

My personal crisis

From mastery to mystery
Conferences
University faculties

Retire or respond?

I resigned my CTO position
I set out to figure out this new world
What is really going on?
Why is it going on?
What will be the consequences?

What I saw: technology change

 Java, C#

WebSphere App
Server

DB2, Oracle

WebSphere NT
XML

Python, Ruby, PHP, Perl,
Javascript, Scala, Lua, …

UWSGi, (G)Unicorn, Mod-
WSGI, Mongrel, Passenger,
node.js

MongoDB, Cassandra,
HBase, CouchDB,
ZooKeeper, …

HA/Proxy, memcached
 JSON, RDF

What I saw: leadership change

IBM, Oracle,
Microsoft, HP, …

Amazon, Google, Netflix,
Etsy, Facebook, …,
dozens of others,
especially “born on the
web” companies

What I did

Learned a lot of new technology
Implemented a lot of smaller applications
No IBM/vendor technology (“know your enemy”)
Cloud native, Multi-tenant, Continuous deployment,

Secure, mobile front-ends and “single-page apps”,
linked data integration, …

Hope to build something significant to deploy
Work in progress

What I learned

Fundamental change in development process
Primary driver is speed-to-business-value
Dramatic reduction in cycle times
Cycle ends with measured value, not delivery

Secondary drivers
Scaling
Cost

Not considered
Investment protection/stability

Facebook

https://www.facebook.com/video/video.php?v=1
0100259101684977
“Every work day Facebook is safely updated with

hundreds of changes including bug fixes, new
features, and product improvements.”

Etsy

“The premier destination for hand-made goods,
vintage items, and craft supplies”
http://www.slideshare.net/beamrider9/continuo

us-deployment-at-etsy-a-tale-of-two-approaches
Deploy Stats: 2012
Deployed to production 6, 419 times
On average 535 per month, 25/day
Additional 3851 config-only deploys
196 different people deployed to production

• “Engineers deploy the site”.
• “also Designers, Product Folk, Upper Management, … ”

How is this done?

No separation between development and
production
Abandoning the concept of a release
Total automation of test, deployment and

management
Incrementally enable changes and instantly revert

them

It does not stop at delivery

http://www.infoq.com/presentations/etsy-
deploy
In the old days, development responsibility

stopped at delivery to operations
Continuous delivery/deployment extend the cycle

to production
Final step extends to measurement of business

result

Example: How MongoDB supports speed

Acquisition
Nothing to do

 Installation/deployment
“apt-get install mongodb-10gen”

Configuration
None for simple configurations, declarative/command-driven for

advanced cases

Programming
Extremely simple, flexible, easy-to-use API (c.f. JDBC/RDBMS)

 Evolution
Nothing to do on schema change

Operations
Backup procedures etc. must be implemented, or …
MongoLab, MongoHQ – database as a service

Generalization: Focus on speed

 Acquisition
Instant, but not necessarily free

 Installation/deployment
Simple script commands used for initial deployment and cloud

automation scripts
 Configuration

As little a possible, declarative/command-driven where necessary
 Programming

Extremely simple, flexible, easy-to-use API s
• encourage API competition, not standardization

 Evolution
Initial setup is only one step. Incremental change must be extremely easy.

Creating value fast is all about accelerating change.
 Operations

Must be cloud elastic scalable
Must be hostable

Example 2: Language

Python, Javascript, JSON versus Java, XML
Programming in dynamic languages is quicker

• Not everyone agrees

JSON aligns with programming languages constructs
(reduces impedance)
Many competing APIs for the same function

• Only the most effective survive
• Be ready to switch

Who is this for?

Started with “born on the web companies”
Getting traction now with “systems of

engagement” – front-office - in enterprises
Lower risk, higher reward. Often create value by

composition of existing capability.

Not yet having much impact on “systems of
record” - back-office systems
Too much at stake?

Safety-critical? Regulated? Constrained by
physical or chemical processes?
I don’t know yet

What should you do?

Start exploratory projects like mine
Be prepared to retrain your organization
Selection and Acquisition of software
Programming
Deployment
Operations
Your organization and processes

Be prepared to change your values
Speed-to-value, not caution
Delivery of measured value, not function or code
Innovation and competition, not standardization

Where to focus

Automation
Cloud deployment
Test

Some Relevant IBM technologies
Softlayers/Smart Cloud
Evolutions of IBM middleware for cloud
Evolutions of IBM management software for cloud
DevOps products
Test automation products

Relevant Sessions

Be grateful you are working in such an
exciting industry and times
Thank You

