

ibm.com/redbooks

IBM WebSphere Portal V5
A Guide for PortletGuide for Portlet
Application Development

Juan R. Rodriguez
Serena Chan

Belen Gonzalez
George Kroner

Monica Parlangelo
Sandro Schwedler

Andre Venancio

Learn about Portal Toolkit and portlet
application development

Actions, messaging, Credential
Vault, cooperative portlets

Access Web Services
from portlet applications

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

IBM WebSphere Portal V5
A Guide for Portlet Application Development

January 2004

International Technical Support Organization

SG24-6076-00

© Copyright International Business Machines Corporation 2004. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (January 2004)

This edition applies to version 5 of IBM WebSphere Portal, WebSphere Studio Site Developer
and WebSphere Portal Toolkit.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xi.

Contents

Notices . xi
Trademarks . xii

Preface . xiii
The team that wrote this redbook. xiii
Become a published author . xv
Comments welcome. xvi

Chapter 1. Overview . 1
1.1 Portal evolution . 2

1.1.1 The generations of portal technology . 3
1.2 Overview . 4

1.2.1 What is a portal? . 5
1.2.2 Enablement for portals . 5
1.2.3 The WebSphere Portal framework . 7
1.2.4 WebSphere Portal architecture . 10
1.2.5 WebSphere Portal tooling . 18

1.3 WebSphere Portal . 19
1.3.1 Portal concepts . 19
1.3.2 Portlets . 22
1.3.3 Portlet modes . 25
1.3.4 Portlet states . 26
1.3.5 Portlets and the model-view-controller (MVC) design pattern. 26
1.3.6 WebSphere Portal runtime: the portlet container 27
1.3.7 Portlet life cycle . 27
1.3.8 Portlet events and messaging. 29
1.3.9 Page aggregation . 32

1.4 Highlights in WebSphere Portal V5 . 37
1.4.1 Portal install. 37
1.4.2 General infrastructure . 38
1.4.3 Event broker . 39
1.4.4 Member subsystem. 39
1.4.5 Authentication . 39
1.4.6 Authorization . 40
1.4.7 URL generation, processing and mappings 41
1.4.8 Search. 42
1.4.9 Content management . 43
1.4.10 Content publishing . 44
© Copyright IBM Corp. 2004. All rights reserved. iii

1.4.11 Transcoding . 45
1.4.12 Struts Portlet Framework . 45
1.4.13 User interface . 45
1.4.14 Cooperative portlets (Click-To-Action) . 46
1.4.15 Portal Toolkit . 47

1.5 Portlet solution patterns. 48

Chapter 2. Portlet API . 53
2.1 What is a portlet? . 54
2.2 Basic portlet terms. 54
2.3 MVC architecture. 55

2.3.1 Standard MVC architecture. 56
2.3.2 Portlet MVC architecture . 57
2.3.3 Portlet MVC sample . 58

2.4 Servlets versus portlets . 59
2.5 What is a portlet application? . 61
2.6 Portlet deployment . 61

2.6.1 web.xml . 64
2.6.2 portlet.xml . 67
2.6.3 Parameter summary . 76
2.6.4 Descriptors relationship (web.xml and portlet.xml) 76
2.6.5 UID guidelines. 77
2.6.6 Building a war file . 78

2.7 Portlet life cycle . 80
2.8 Portlet API . 82

2.8.1 Hierarchy. 82
2.9 Core portlet objects . 83

2.9.1 Portlet . 83
2.9.2 PortletAdapter . 83
2.9.3 PortletRequest . 84
2.9.4 PortletResponse . 85
2.9.5 PortletSession object . 86
2.9.6 Client . 87
2.9.7 PortletConfig object. 88
2.9.8 PortletContext object. 88
2.9.9 PortletSettings object . 89
2.9.10 PortletApplicationSettings object. 90
2.9.11 PortletData object . 91
2.9.12 PortletLog object . 92
2.9.13 PortletException . 93
2.9.14 UnavailableException . 93
2.9.15 PortletWindow object . 93
2.9.16 User object . 94
iv IBM WebSphere Portal Toolkit V5

2.9.17 PortletURI . 94
2.10 Listeners . 95

2.10.1 PortletTitleListener . 95
2.10.2 PortletPageListener. 95
2.10.3 PortletSessionListener . 97
2.10.4 WindowListener. 97
2.10.5 PortletSettingsAttributeListener. 98
2.10.6 PortletApplicationSettingsAttributesListener 98

2.11 Action event handling . 98
2.12 Core event objects . 99

2.12.1 ActionListener . 99
2.12.2 ActionEvent . 99
2.12.3 PortletURI . 100
2.12.4 ModeModifier . 101

2.13 Portlet messaging . 102
2.13.1 MessageListener. 102
2.13.2 MessageEvent . 103
2.13.3 DefaultPortletMessage . 103
2.13.4 PortletMessage . 104

2.14 PropertyListener interface . 105
2.15 EventPhaseListener interface . 106
2.16 Attribute storage summary . 107
2.17 Portlet services . 108

2.17.1 ContentAccessService . 109
2.17.2 Custom services . 109

2.18 Credential Vault. 113
2.19 Core Credential Vault objects . 114

2.19.1 Vault . 114
2.19.2 Segment . 114
2.19.3 Slot . 115
2.19.4 Credential . 115

2.20 Portlet JSPs. 118
2.20.1 Portlet tag library . 118

2.21 Resources . 124

Chapter 3. Portal Toolkit . 125
3.1 Hardware and software requirements . 126
3.2 Portal Toolkit installation . 128
3.3 Development environment . 128
3.4 Portlet application wizard . 129
3.5 Developing portlet applications . 136

3.5.1 Portlet application contents . 137
3.5.2 Generated classes . 138
 Contents v

3.6 Portlet.xml descriptor. 140
3.7 Deploying portlets . 146
3.8 Adding portlets to applications . 149
3.9 Examples. 150

Chapter 4. A first portlet application . 153
4.1 Sample scenario . 154

4.1.1 Creating a portlet project. 154
4.1.2 Configuring the Test Environment. 163
4.1.3 Running the portlet application . 166
4.1.4 Updating the portlet project . 171
4.1.5 Adding a JavaBean to your portlet project 174

Chapter 5. Action event handling . 181
5.1 Action event. 182
5.2 Window events . 184
5.3 Simple action String support . 186
5.4 Sample scenario . 186

5.4.1 Scenario overview. 187
5.4.2 Creating the ActionEvent portlet . 189
5.4.3 Run the ActionEvent portlet application . 209

Chapter 6. Portlet debugging . 213
6.1 Overview . 214
6.2 Sample scenario . 214

6.2.1 Fixing compile errors. 214
6.2.2 Debugging a portlet application. 216

Chapter 7. Portlet messaging. 225
7.1 Portlet messaging . 226
7.2 MessageListener . 226
7.3 MessageEvent. 227
7.4 DefaultPortletMessage . 227
7.5 PortletMessage . 228
7.6 Sample scenario . 231

7.6.1 Description . 231
7.6.2 Sending a message . 233
7.6.3 Creating the target portlet . 236
7.6.4 Running the portlet application . 242

7.7 Broadcasting messages . 245

Chapter 8. National Language Support (NLS) . 249
8.1 Resource bundles . 250

8.1.1 Creating resource bundles in WebSphere Studio 252
vi IBM WebSphere Portal Toolkit V5

8.1.2 Translating resource bundles . 254
8.1.3 Accessing resource bundles in portlets. 256
8.1.4 Accessing resource bundles in JSPs . 257

8.2 Translating whole resources . 258
8.3 NLS administration . 260

8.3.1 Portlet NLS administration . 260
8.3.2 Portal NLS administration . 263
8.3.3 Setting NLS titles. 263
8.3.4 Adjusting Portal resource bundles . 264

8.4 Working with characters . 265
8.5 NLS best practices . 265
8.6 Sample scenario: NLS bundles . 266

8.6.1 NLS bundles . 268
8.6.2 Accessing NLS bundles from JSPs. 272
8.6.3 Running the NLS scenario . 275
8.6.4 Accessing NLS bundles in Java portlets . 281

8.7 Sample scenario: translating whole resources . 283

Chapter 9. Accessing Web Services . 291
9.1 Overview . 292
9.2 A simple Web Service project . 293

9.2.1 A sample Web Service . 298
9.3 Creating a Web Services client portlet . 308
9.4 Run the WSClientPortlet application . 314

Chapter 10. Using the Credential Vault . 319
10.1 Overview . 320
10.2 Importing a protected servlet application. 325
10.3 Using active credentials . 330

10.3.1 Updating the generated portlet . 335
10.3.2 Running the portlet . 338

10.4 Using passive credentials . 341

Chapter 11. Accessing back-end JDBC databases 343
11.1 Creating a database connection . 344

11.1.1 Creating a new connection . 344
11.1.2 Importing to a folder . 346
11.1.3 Creating an SQL statement. 347
11.1.4 Generating Java classes. 347
11.1.5 Running the SQL statement . 351

11.2 Sample scenario . 353
11.2.1 Overview . 353
11.2.2 Creating HRPortlet . 355
11.2.3 Importing the WAR file . 359
 Contents vii

11.2.4 Reviewing the portlet code . 361
11.2.5 Running the HRPortlet application . 366

Chapter 12. Cooperative portlets . 371
12.1 Overview . 372

12.1.1 The WebSphere Portal property broker . 373
12.1.2 Programming model . 373
12.1.3 Registering and publishing properties. 375

12.2 Sample scenario . 376
12.2.1 Development workstation . 376
12.2.2 Description . 377
12.2.3 Source cooperative portlet . 380
12.2.4 Target cooperative portlet . 390
12.2.5 Running the cooperative portlets . 405

12.3 Hints and tips. 409

Chapter 13. Advanced cooperative portlets . 413
13.1 Publishing properties programmatically . 414
13.2 Portlet event handling. 415
13.3 Broadcasting source data . 417
13.4 Wiring tool . 418
13.5 Sample scenario . 419

13.5.1 Declarative source cooperative portlet . 419
13.5.2 Enabling the portlet for target C2A programmatic. 422
13.5.3 Running the cooperative portlets . 435
13.5.4 Wire portlets . 440
13.5.5 Enabling HRPortlet for programmatic source C2A 440
13.5.6 Running the programmatic source portlet 445

Chapter 14. Struts portlets . 447
14.1 Overview . 448

14.1.1 The Struts portlet framework. 449
14.2 Developing Struts Web applications . 450
14.3 Migrating Struts Web applications. 456

Chapter 15. Portlet preview . 463
15.1 Overview . 464

15.1.1 Portlet Preview buttons available in the toolbar 465
15.2 Sample scenario . 467

15.2.1 Defining the Portlet Preview preference . 467
15.2.2 Previewing the portlet . 470

Chapter 16. Remote Server Attach . 477
16.1 Overview . 478
viii IBM WebSphere Portal Toolkit V5

16.2 Preparing Portal for Remote Server Attach. 479
16.3 Remote Server Attach configuration . 484
16.4 Installing a portlet in Remote Portal . 486
16.5 Running the portlet . 496

Appendix A. Portlet development platform sample installation 501
Prerequisites . 502

Installing a loopback adapter . 502
WebSphere Studio Site Developer (WSSD) V5.0 . 506

WebSphere Studio Site Developer - WSSD Fix Pack 1 510
WebSphere Studio Site Developer - WebSphere Application Server Fix Pack

1 . 516
WebSphere Studio Site Developer - WebSphere Application Server Interim

Fixes . 518
WebSphere Portal Toolkit V5.0 . 524

Toolkit installation . 524
Configuring Studio Site Developer and the Portal Toolkit 527
Configuration and preparation of the workstation. 533

Installing the Cloudscape sample database . 533

Appendix B. Automatically redeploying portlets 535
Description . 536

Appendix C. Additional material . 543
Locating the Web material . 543
Using the Web material . 544

System requirements for downloading the Web material 544
How to use the Web material . 544

Related publications . 545
IBM Redbooks . 545
Other publications . 545
Online resources . 545
How to get IBM Redbooks . 546
Help from IBM . 546

Index . 547
 Contents ix

x IBM WebSphere Portal Toolkit V5

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2004. All rights reserved. xi

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
Eserver®
Redbooks (logo) ™
ibm.com®
AIX 5L™
AIX®
ClearCase®
Cloudscape™
CrossWorlds®

CICS®
Domino®
Dynamic Workplaces™
DB2®
DPI®
Informix®
IBM®
IMS™
Lotus Notes®

Lotus®
Notes®
Redbooks™
SecureWay®
Tivoli®
WebSphere®
XDE™

The following terms are trademarks of other companies:

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.
xii IBM WebSphere Portal Toolkit V5

Preface

This IBM Redbook helps you design, develop and implement portlet applications
using the IBM WebSphere® Studio Site Developer and the Portal Toolkit V5. The
information provided in this redbook targets Business-to-Employee (B2E)
enterprise applications, but most of the scenarios presented apply to
Business-to-Consumer (B2C) applications as well. In this redbook, you will find
step-by-step examples and scenarios showing ways to integrate your enterprise
applications into an IBM WebSphere Portal environment using the WebSphere
Portal APIs provided by the Portal Toolkit to develop portlets as well as extend
your portlet capabilities to use other advanced functions such as cooperative
portlets, national language support, action events, portlet messaging, Credential
Vault, Web Services and portlet debugging capabilities.

Elements of the portlet API are described and sample code is provided. The
scenarios included in this redbook can be used to learn about portlet
programming and as a basis to develop your own portlet applications. You will
also find numerous scenarios describing recommended ways to develop portlets
and portlet applications using the APIs provided by the IBM WebSphere Portal
Toolkit. The sample scenarios in this redbook have been developed using the
WebSphere Studio Site Developer but they can also be developed using the
WebSphere Studio Application Developer.

A basic knowledge of Java™ technologies such as servlets, JavaBeans, EJBs,
JavaServer Pages (JSPs), as well as XML applications and the terminology used
in Web publishing, is assumed.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

Juan R. Rodriguez is a Consultant at the IBM ITSO Center,
Raleigh. He received his Master of Science degree in
Computer Science from Iowa State University. He writes
extensively and teaches IBM classes worldwide on such topics
as networking, Web technologies, and information security.
Before joining the IBM ITSO, he worked at the IBM laboratory
in the Research Triangle Park (North Carolina, USA) as a
designer and developer of networking products
© Copyright IBM Corp. 2004. All rights reserved. xiii

Serena Chan is an Advisory IT Specialist in the Portal and
Content Management Practice with IBM Global Services in
Toronto, Canada. She has in-depth industry experience in
investment banking and has extensive Enterprise portal
design and architecture experience in various products
including IBM WebSphere Portal. Serena holds her Honors
Degree in Bachelor of Commerce (H.BCom.) from the
University of Toronto and is pursing her Master of Science in
Computer Information Technology (M.Sc.) at Regis University.

Belen Gonzalez is an IT Specialist in IBM Global Services in
IBM Spain. She holds a degree in Computer Science
Engineering from Universidad Autonoma of Madrid. She has
participated in e-business projects such as the Sydney
Olympic Games. Her areas of expertise include J2EE
application development with WebSphere Application Server
and WebSphere Studio Application Developer. She has
worked in e-commerce projects and now focuses on
WebSphere Portal and WebSphere Studio Portal Toolkit.

George Kroner is a Co-op IT Specialist at the IBM ITSO
Center in Raleigh, North Carolina. He is currently pursuing a
Bachelor of Science degree in Information Sciences and
Technology at Pennylvania State University. His interests
include Web applications, pervasive computing, intelligent
interfaces, and business process refinement.

Monica Parlangelo is an Advisory IT Specialist with the
WebSphere Software Platform (Software Group) in IBM Brazil.
She has four years of experience with WebSphere products
developing solutions with e-Commerce and Portal solutions.
She holds a Bachelor's Degree in Systems Analysis from the
Universidade Paulista (UNIP) in Brazil and a post-graduate
degree from Faculdade de Informática e Administração
Paulista (FIAP), Sao Paulo Brazil on enterprise solutions using
distributed object technologies with Java.

Sandro Schwedler is an IT Specialist at the WebSphere
Innovation Center in IBM Germany. He has been working for
IBM since 1998 and was involved in teaching and consulting
different WebSphere Studio products such as Application
Developer and IBM Rational XDE™. His areas of expertise
include middleware, XML, Portlet and Java 2 Enterprise
Edition (J2EE) development. He holds a degree in Information
Technology from the Berufsakademie Stuttgart, Germany.
xiv IBM WebSphere Portal Toolkit V5

Andre Venancio is an Advisory IT Specialist with the
WebSphere Software Platform (Software Group) in IBM Brazil.
He has four years of experience with WebSphere products
developing solutions with Host Integration, Edge Server and
Portal solutions. He holds a Bachelor's Degree in Mathematics
from the Fundação Santo André in Brazil and a post-graduate
degree from Faculdade de Informática e Administração
Paulista (FIAP), Sao Paulo Brazil on enterprise solutions using
distributed object technologies with Java.

Thanks to the following people for their contributions to this project:

Cecilia Bardy
International Technical Support Organization, Raleigh Center

Amber Roy-Chowdhury, Marshall Lamb
IBM Research Triangle Park, North Carolina, USA

Shawn Van Raay
Perficient, Inc, Hamilton, Ontario, Canada

Guillermo Villavicencio
Avatar e-Business Solutions, Lima, Peru

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html
 Preface xv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM® Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195
xvi IBM WebSphere Portal Toolkit V5

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Overview

WebSphere Portal provides a flexible framework based on open standards with
the capability to integrate with the best of breed solution. IBM is one of the few
vendors to provide an end-to-end portal solution in the solution space.

This chapter provides an overview of the WebSphere Portal technology, IBM’s
portal tooling, and its use in developing integrated portal applications. A
high-level overview of the WebSphere Portal concepts integral to development is
presented here.

In this chapter, we explore:

� The evolution of portals

� Fundamental Portal concepts and definitions

� Portal development patterns

1

© Copyright IBM Corp. 2004. All rights reserved. 1

1.1 Portal evolution
As J2EE technology has evolved, much emphasis has been placed on the
challenges of building enterprise applications and bringing those applications to
the Web. At the core of the challenges currently being faced by Web developers
is the integration of disparate user content into a seamless Web application and
well-designed user interface. Portal technology provides a framework to build
such applications for the Web.

If we take a step back in time to the original PC days when each application took
up the entire screen and used all the computer’s resources, the advent of
Windows® from Microsoft® revolutionized the way we interacted with our
desktop. A user no longer had to close one application to interact with another.
Each application’s content was aggregated to the desktop. This same evolution
is taking place on the Web with portal technology.

Taking a shorter step back in time to the advent of the Web, initially interaction
with the Web involved entering a single URL to access a single Web site much
like the single application model of the early PCs. As the Web quickly evolved, so
did the associated browser technology such as applets and browser plug-ins for
technologies like Java. Unfortunately, these technologies never standardized
and made the job of the Web developer very difficult when trying to provide
cross-browser implementations. In parallel with these technologies, the desire
grew for dynamic content on the Web and drove the development of Web servers
into application servers that could serve dynamic content and technologies such
as JSPs.

Support for portals evolved from this application server evolution along with the
need to render multiple streams of dynamic content. The early portals fall in the
category of roll your own. These are proprietary and specific to each
implementation. As these portals grew, so did tooling and frameworks to support
the building of new portals. The main job of a portal is to aggregate content and
functionality. Portal servers provide:

� A server to aggregate content

� A scalable infrastructure

� A framework to build portal components and extensions

Additionally, most portals require personalization and customization.
Personalization enables the portal to deliver user-specific information targeting a
user based on their unique information. Customization allows the user to
organize the look and feel of the portal to suit their individual needs and tastes.
2 IBM WebSphere Portal Toolkit V5

WebSphere Portal provides a framework for addressing all these issues along
with an open flexible infrastructure for creating many types or portals accessible
from a wide variety of devices.

1.1.1 The generations of portal technology
Portals have gone through an evolution process of their own.

First generation portals
The first portals, known as first generation portals, were focused on providing
static Web content, Web documents and live feeds. They were mostly an
aggregation of content. In a corporate environment, they had a similar objective,
providing a single interface to corporate information distributed throughout the
enterprise. They typically contained information such as company news,
employee contact information, company policy documents and other key Web
links.

Second generation portals
Second generation portals are first generation portals with added features such
as personalized, customized content and a search capability but are often a
manual roll-your-own process.

Third generation portals
Third generation portals focus on specific information and applications.
Integration has been added at the data level. These portals incorporate the
notion of providing services along with the first generation idea of providing
content. Another key feature of third generation portals is collaboration.

Collaboration portals provide the ability for teams to work in a virtual office. They
provide content management services, the mining and organization of related
information, along with collaborative services that allow users to chat, e-mail,
share calendars and define user communities. Collaborative portals are typically
internal corporate portal installations.

Fourth generation portals
Fourth generation portals are intended to address full-function e-business
(Figure 1-1 on page 4). This involves integration with legacy applications at the
component level. Enterprise portals have evolved from the provision of traditional
employee self -service such as the HR policy to providing employees a complete
set of comprehensive tools to enhance their productivity.

They take portals beyond the corporate boundaries for use by employees,
suppliers and customers. They also provide access from multiple types of
 Chapter 1. Overview 3

devices to address the diverse user communities in need of services. They offer
the richest set of content and application choice via a single user interface to a
diverse community including browsers and pervasive devices.They also provide
automated personalization via based on business rules. The key to their further
evolution is their open framework for common services.

IBM WebSphere Portal is a fourth generation portal providing organizations with
a portal framework that connects a wide range of enterprise content and
applications. It provides a high degree of integration technologies based on the
J2EE platform. Its extensible architecture provides a scalable framework
allowing adaptation to the changing needs of business.

Figure 1-1 e-business needs

1.2 Overview
The primary purpose of implementing an Enterprise portal is to enable a working
environment that integrates people, their work, personal activities and supporting
processes and technology. Investment in portal technology will remain high
amidst economic adjustments. The reason for the sustained growth is that

Discussion Groups/
Chat Rooms

Knowledge
Management

Virtual Project Teams

Job Information &
Opportunities

Corporate
Communications

Portal

User

HR & Finance Applications

Cross-Functional Integration
of Transactions & Information

IT Support

Real-Time
Collaboration &
Feedback

Competetive
Intelligence

Learning & Development

Personal Information

Strategic Business Teams

Corporate Yellow Pages

Corporate Programs

Enterprise
4 IBM WebSphere Portal Toolkit V5

enterprise portals deliver immediate tangible cost savings, enhance productivity,
increase efficiency and generates revenue for the clients.

Most companies have developed their Business to Consumer (B2C), Business to
Business (B2B) and Business to Employee (B2E) strategies. A lot of times, the
challenge is to tie them together via a comprehensive strategy that is extendable
to employees, business partners and customers. Customers are often faced with
issues of integrating with legacy systems. Companies are often faced with the
decision of whether to build or to buy.

Portal solutions such as IBM WebSphere Portal are proven and shorten the
development time. Pre-built adapters and connectors are available so that
customers can leverage on the company's existing investment by integrating with
the existing legacy systems without re-inventing the wheel.

1.2.1 What is a portal?
Portals are the next-generation desktop, delivering e-business applications over
the Web to all kinds of client devices. Portals provide site users with a single
point of access to multiple types of information and applications. Regardless of
where the information resides or what format it is in, a portal aggregates all of the
information in a way that is pleasing and relevant to the user. A complete portal
solution should provide users with convenient access to everything they need to
get their tasks done.

1.2.2 Enablement for portals
A portal represents a comprehensive approach to delivering Web supported
tools and enabling services to employees, customers and business partners. A
portal enables services that should be available through Web-enabled devices,
on a 24x7 basis.

Authentication/authorization
Authentication provides different mechanisms that can be used to validate the
identity of all portal users. Authorization determines whether a user has the
necessary privilege to request a service.

Directory services
The Lightweight Directory Access Protocol (LDAP) infrastructure provides a
foundation for deploying comprehensive identity management and advanced
software architectures such as Web services.
 Chapter 1. Overview 5

Content management
Content management provides a way for the company to manage and leverage
the enterprise’s intellectual assets. Knowledge assets may include business
intelligence and competitive intelligence data.

Collaboration
Collaboration enables employees, customers and business partners to work
with, interact with, and develop or maintain content with others who share
activities or interests.

Search
The portal offers a search service that supports distributed, heterogeneous
searches across different data sources. Search and indexing allows users to
solve problems quickly, since users often need to make ad-hoc queries to gather
new information.

Personalization
Personalization provides the user the ability to establish preferences and
profiles. In addition, value-added services for users increase the stickiness of the
portal.

e-learning
A portal can provide just-in-time training and development of skills or expertise
for work. It allows the individual to select the time and place of learning activities
in their own time.

Internationalization
There is an increasing need for providing globalization. As business is getting
more global, workplaces are decentralized, often with thousands of individuals
working in shifting locations.

Pervasive computing
Portal provides access to applications and systems to mobile, remote users at
any time and any place. It provides personalized delivery of integrated content
through multiple channels: portal, wireless, kiosk, etc.

e-commerce
Most of the time, the return on investment (ROI) of implementing a portal may
accrue through direct savings in self-service as well as reduced transaction
costs. Integrating the portal with e-commerce applications can generate revenue
and add tangible value that contributes to enterprise competitiveness.
6 IBM WebSphere Portal Toolkit V5

Host integration
These capabilities provide a single point of entry to applications including legacy
systems. This allows processes and data from multiple applications through a
single workspace. Most of the time, companies have invested substantially in the
legacy systems and the investment can be leveraged.

Site usage
Site analytics provide comprehensive Web site analytics to improve the overall
effectiveness of Web initiatives and campaigns and to ensure a high quality,
high-availability, error-free Web experience for visitors and customers.

1.2.3 The WebSphere Portal framework
WebSphere Portal's extensible framework allows the end user to interact with
enterprise applications, people, content, and processes. They can personalize
and organize their own view of the portal, manage their own profiles, and publish
and share documents. WebSphere Portal provides additional services (see
Figure 1-2 on page 8) such as Single Sign-On, security, directory services,
content management, personalization, search, collaboration, search and
taxonomy, support for mobile devices, accessibility support, internationalization,
e-learning, integration to applications, and site analytics. Clients can further
extend the portal solution to provide host integration and e-commerce.
 Chapter 1. Overview 7

Figure 1-2 Portal context diagram

IBM WebSphere Portal provides a single, secure, interactive point of access to
dynamic applications, information, people and processes to help build successful
Business to Business (B2B), Business to Employee (B2E) and Business to
Consumer (B2C) portals. WebSphere Portal:

� Consists of pre-integrated software which is customizable, extensible and
scalable

� Is built on the award-winning WebSphere Application Server 5 platform, using
J2EE standards to optimize performance

� Provides integrated Web services so you can quickly deploy portlets

Portal

Directory
Services

Authorization/
Authentication

Collaboration

Internationalization

Search

Content
Management

Personalization

Site Usage

Host Integration
Pervasive
Computing

E-Commerce
E-Learning
8 IBM WebSphere Portal Toolkit V5

� Gives users a content publishing and personalization interface that lets them
create and target portal content in one step

� Offers numerous portlets for e-mail, calendars, syndicated news, industry
applications and many other functions

� Provides award-winning collaborative technology within the portal, in addition
to making it available for portlets

WebSphere Portal is a framework that lets you plug in new features or
extensions called portlets. In the same way that a servlet is an application within
a Web server, a portlet is an application within WebSphere Portal. Developing
portlets is the most important task in providing a portal that functions as the
user’s window to information and tasks.

Portlets are an encapsulation of content and functionality. They are reusable
components that combine Web-based content, application functionality and
access to resources. Portlets are assembled into portal pages which, in turn,
make up a portal implementation. Portlets are similar to Windows applications in
that they present their contents in a window-like display on a portal page. Like a
Windows application, the portlet window has a title bar which contains controls,
allowing the users to expand (maximize) and shrink (minimize) the application.

Portlets function within the Portal framework where Windows applications
function in the Windows framework. From the portal user’s perspective, a portlet
is a window on a portal site which provides access to a specific service or
resource.

The portal also provides the runtime environment for the portlets that make up
the portal implementation. This runtime environment is the portlet container.

The portlet container, in the J2EE sense of a container, is responsible for
instantiating, invoking and destroying portlets. The portlet container provides the
life cycle infrastructure for the portlets. Portlets rely on their container to provide
the necessary infrastructure to support a portal environment. The portal
infrastructure provides the core sets of services required by the portlets,
including:

� Access to user profile information

� A framework for portlets to participate in events

� A framework to communicate with other portlets

� Access to remote content

� Access to credentials

� A framework for storing persistent data.
 Chapter 1. Overview 9

1.2.4 WebSphere Portal architecture
The WebSphere Portal platform is positioned to enhance the WebSphere family
of products, providing tooling for aggregating and personalizing Web-based
content and making that content available via multiple devices. WebSphere
Portal takes advantage of the strong platform provided by WebSphere
Applications Server.

WebSphere Portal finds its roots in Apache Jetspeed. Jetspeed is an Open
Source implementation of an Enterprise Information Portal, using Java and XML.
Jetspeed was created to deliver an Open Source Portal that individuals or
companies could use and contribute to in an Open (Source) manner.

Soon after creation, it became apparent that Jetspeed was going to become an
“engine” for Web applications. That, however, was far beyond the scope of the
original project. Around that time, there were many discussions on the mailing list
that spawned the Turbine project based on technology donated by Jon
Stevens/Clear Ink. Turbine is now the Web application framework that Jetspeed
shares with many other Web applications.

Typical topology
Building on the Jetspeed implementation, WebSphere Portal provides an
architecture for building and running portal applications. The overall WebSphere
Portal Architecture can be seen in Figure 1-5 on page 15. WebSphere Portal
provides services for Authentication and Authorization though the WebSphere
Member Services.

The core of WebSphere Portal architecture is composed of the Presentation
Services, the portal infrastructure, and the portal services.
10 IBM WebSphere Portal Toolkit V5

Figure 1-3 Distributed Portal system

Distributed solution
WebSphere Portal can run in a single, two, three, or n - tier environment. This,
combined with the delegation capabilities from WebSphere Portal, provides you
with a structured management in a distributed environment. WebSphere Portal
can be part of an open, architected, and extensible end-to-end geographically
distributed solution. The scalable solution incorporates redundancy with high
availability design and is proven for a geographically distributed infrastructure.
Additional optional components in the Portal Server architecture include a load
balancer (WebSphere Edge Server - Network Dispatcher), integration to
intrusion detection, and translation (WebSphere Translation Server) within the
Demilitarized Zone (DMZ).

Secure demilitarized zone configuration
As shown in Figure 1-4 on page 14 depicted a sample architecture of deploying
portal in a multi-tier Demilitarized Zone (DMZ) configuration with high availability.
This configuration can be used for an Internet/extranet portal solution.

Intranet
Clients

WAP
Gateway

Voice
Gateway

Internet Intranet

Outbound Proxy

Authorization
Server

Content
Providers

Web
Services

Authent./
Reverse
Proxy

Portal
Cluster

User
Registry

Portal
Database

Search
Server

Content
Management
Server

Backend
Systems

Public UDDI
Registry Corporate

UDDI

FirewallFirewall Firewall
 Chapter 1. Overview 11

SSL support
IBM WebSphere Portal supports SSL. SSL support for secure transactions is one
of the main reasons to use the IBM HTTP Server as part of your Web
development process. The SSL encryption system is used on servers to ensure
privacy when information is sent across the Internet. An SSL-enabled server
enables clients to verify a server's identity, and ensures that information
transmitted between client and server remains private.

Reverse proxy security server
As shown in this configuration, Tivoli® WebSEAL is used to shield the Web
server from unauthorized request for external facing users. This approach is
desirable when the Web server may contain sensitive data and direct access to it
is not desirable. WebSEAL is a Reverse Proxy Security Server (RPSS) that uses
Tivoli Access Manager (TAM) to perform coarse-grained access control to filter
out unauthorized requests before they reach the domain firewall. WebSEAL uses
Tivoli Access Manager (TAM) to perform access control as illustrated in the
diagram.

The reverse proxy acts as an authentication gateway node and sits between the
browser and the Web servers it protects. It actually acts as a stand-in for these
Web servers. The authentication gateway intercepts all requests to the protected
resources as well as the responses from the Web servers. To the browser
submitting requests, the authentication gateway appears to be the actual Web
server, to the Web server responding to requests, the authentication gateway
appears to be the client.

Load balancing
In this particular example of integrating with WebSEAL, you can configure
WebSphere Application Server to use the LDAP user registry, which can be
shared with WebSEAL and TAM. Replicated front end WebSEAL provides the
portal site with load balancing during periods of heavy traffics and fail over
capability. The load balancing mechanism is handled by a Network Dispatcher
such as an IBM WebSphere Edge Server. If the Network Dispatcher fails for
some reason, the standby Network Dispatcher will continue to provide access to
the portal. In our sample configuration, HTTP Servers and Portal Servers are
clustered to provide additional redundancy.

Directory service
The Directory and Security Services provide support for a directory of users
accessible through LDAP. These services are used for authentication and can
also control and verify the resource access privileges or permissions granted to
users. The Directory Server can be replicated to one or more replica LDAP
servers to provide redundancy. WebSphere Application Server uses LDAP to
perform authentication. The client ID and password are passed from WebSphere
Application Server to the LDAP server.
12 IBM WebSphere Portal Toolkit V5

Database service
The database server component is not accessed directly by portal users or
administrators. No application-specific tables are created. Database Server is
used by WebSphere Application Server, WebSphere Portal, TAM and Directory
Server to store the data they need for their operation. Replication can be turned
on on the database server which is used by the portal.

Intranet clients
In this configuration, it is optional to use a separate WebSEAL for the internal
users for better performance.

Open standards
IBM WebSphere Portal is based on open standards. IBM is leading efforts to
standardize the application programming interfaces between portals and other
applications. In particular, the Java Community Process (JCP) and the
Organization for the Advancement of Structured Information Standards (OASIS)
are working cooperatively to standardize the Java and XML technology needed
to link portals to disparate applications.

OASIS recently announced the formation of the Web Services for Remote
Portals (WSRP) Technical Committee. Chaired by IBM, the WSRP committee
has the charter to create an XML and Web services standard that will allow the
interoperability of visual, user-facing services with portals or other Web
applications.

Syndicated content
IBM WebSphere Portal provides a framework for pre-built, real-time news and
syndicated content portlets from third party vendors such as Financial Times,
Pinnacor, YellowBrix, Factiva (Dow Jones and Reuters Company), Moreover,
CoreMedia, divine, FatWire, Autonomy, ScreamingMedia, X-Fetch, Atomica,
Knowmadic and Quiver, just to name a few. The integration is pre-built and
seamless. End users and administrators can easily subscribe to the portlets and
customize the preference personally to enhance the user experience.

Companies are embracing syndication concepts and standards to automate the
publishing of electronic catalogs and other internal information, and to make this
information available to workers through enterprise portals.

A popular and useful format for syndicated news and entertainment content is
Rich Site Summary (RSS). Content can be published directly from the content
management system into Rich Site Summary and Open Content Syndication
(OCS) channels, where it can easily be displayed by the Portal Server's built-in
RSS portlet. This self-syndication concept defines a procedure for editing,
managing, and publishing your own sources of content.
 Chapter 1. Overview 13

Figure 1-4 High availability portal solution

Logical architecture
WebSphere Portal finds its roots in Apache Jetspeed. Jetspeed is an Open
Source implementation of an Enterprise Information Portal, using Java and XML.
Jetspeed was created to deliver an Open Source Portal that individuals or
companies could use and contribute to in an Open (Source) manner.

Soon after creation, it became apparent that Jetspeed was going to become an
“engine” for Web applications. That, however, was far beyond the scope of the
original project. Around that time, there were many discussions on the mailing list
that spawned the Turbine project based on technology donated by Jon
Stevens/Clear Ink. Turbine is now the Web Application framework that Jetspeed
shares with many other Web applications.

Building on the Jetspeed implementation, WebSphere Portal provides an
architecture for building and running portal applications. WebSphere Portal V5
provides a modular, easily extensible architecture. It is designed as a product
that can run stand-alone if required, but allows plugging in alternative
implementations for those components that may already be set in customer

Web
Server

Web
Server

Internet Production DMZ IntranetInternet DMZ

Network
Dispatcher

Network
Dispatcher

(Standby)

80/443
389/636

80/443

81/1443
389/63681/1443 80/443

389/636
81/1443

Lotus
Sametime

Uncontrolled
Zone

Controlled
Zone

Restricted
Zone

Trusted
Zone

DB
DB

WebSEAL/
TAM

IBM
HTTP
Server

Lotus
QuickPlace

PortalPortal
Portal
Server

WebSEAL/
TAM

Network
Dispatcher

Network
Dispatcher
(Standby)

BrowserBrowser

LDAPLDAP

WebSEAL/
TAM

WebSEAL/
TAM

Cluster

Cluster

Replicate

ReplicateFirewall FirewallFirewall

HeartbeatHeartbeat

Port closed
Port open
14 IBM WebSphere Portal Toolkit V5

environments. The main components of the WebSphere Portal V5 architecture
are shown in Figure 1-5. The core of WebSphere Portal architecture is
composed of the presentation services, the portal infrastructure, and the portal
services.

Figure 1-5 WebSphere Portal architecture

Presentation services
WebSphere Portal presentation services provide customized and personalized
pages for users though aggregation. Page content is aggregated from a variety
of sources via content and applications. The portal presentation framework
simplifies the development and maintenance of the portal by defining the page
structure independent the portlet definition. Portlets can be changed without
impact to the overall portal page structure.

Web Sphere Portal
Engine

Intranet
Intranet

Internet
Internet

Portlet A
PI (W

P4.1 + JSR
 168)

Aggregation
Modules

W
A

S
A

ut
he

nt
ic

at
io

n

Authorization Portlet Services

C
re

de
nt

ia
l V

au
lt

Se
ar

ch

Po
rta

l C
on

te
nt

A

cc
es

s

R
PW

S
�

W
SR

P

Local
Portlets
Local

App.Portlets
Content
Mgmt.

Portlets

Local
Portlets
Local

Portlets
Public
RPWS

Services

Global
UDDI

Directory

Corporate
UDDI

Directory

Local
Portlets
Local

Portlets
Corporate

RPWS
Services

Dynamic
Assembly

W
or

kf
lo

w
Fr

ag
m

en
ts

Pe
rs

on
al

iz
at

io
n

Fr
ag

m
en

ts

R
em

ot
e

Po
rta

l
Fr

ag
m

en
ts

 (f
ut

ur
e)

J2EE and WebSphere APIs
JC

A

C
on

ne
ct

or
s

En
te

rp
ris

e
Ja

va
B

ea
ns

Pe
rs

on
al

iz
at

io
n

R
ul

es

Local
Portlets
Local

Portlets
Corporate

Web
Services

Local
Portlets
Local

Portlets
Public
Web

Services

C
lic

k-
2-

A
ct

io
n

Portlet
Filters

C
lic

k-
2-

A
ct

io
n

Fi
lte

r

Tr
an

sc
od

in
g

Fi
lte

r

Tag
Libs

C
lic

k-
2-

A
ct

io
n

Ta
gs

Po
rt

le
t T

ag
s

Navigation
Portlets

WBI/Struts
Portlets

Local
Portlets
Local

Portlets
Portlet
Proxies

LDAP DB DB H
TM

L
W

M
L

C
H

TM
L

Vo
ic

eX
M

L

SO
A

P
SO

A
P

W
P

D
at

ab
as

e

Ti
vo

li
A

cc
es

s
M

an
ag

er
N

et
eg

rit
y

Si
te

m
in

de
r

Se
ar

ch
 T

ag
s

C
on

te
nt

 A
cc

es
s

Ta
gs

Ju
ru

, V
er

ity
,

A
ut

on
om

y.
 ..

..
iW

C
P,

 V
ig

ne
tte

,
In

te
rv

ow
en

, .
..

Ti
vo

li
A

cc
es

s
M

an
ag

er
,

W
P

D
at

as
t.

Pr
op

er
ty

B
ro

ke
r

Collab.
Portlets

Admin
Portlets

W
eb

Sp
he

re

W
or

kf
lo

w
W

eb
Sp

he
re

Pe

rs
on

al
iz

at
io

n

W
TP

Tr
an

sl
at

io
n

Fi
lte

r
Tr

an
sl

at
io

n
Se

rv
er

AXIS
Servlet
(SOAP)

Portal
Servlet
(HTTP)

U
R

L
M

ap
pe

r

Se
rv

le
t F

ilt
er

W
TP

C
ol

la
bo

ra
tio

n
&

A

w
ar

en
es

s

…

Sa
m

et
im

e
C

ha
t

Q
ui

ck
pl

ac
e,

 …

…

DB 2
Oracle
Cloudscape
SQL Server
Informix
…

Secure Way Directory
iPlanet Directory
Active Directory
…

WebSphere
Member
Manager

WebSphere
Portal Datastore

Portlet Invoker

…

…

Po
rt

al
 C

on
te

nt

A
cc

es
s

H
TT

P
Pr

ox
y

(e
.g

. E
dg

e
Se

rv
er

)

JM
S

W
or

kf
lo

w
 E

ng
in

e
(D

ra
go

nf
ly

)N
et

eg
rit

y
TA

I
TA

M
 T

A
I

H
TT

P
Se

rv
er

 C
ac

hi
ng

 P
lu

gi
n

R
ev

er
se

 P
ro

xy
 (

e.
g.

Ed
ge

Se
rv

er
)

B
ro

w
se

r C
ac

he

…

Object Caching

Ja
va

 M
ai

l

In
te

lli
ge

nt
 N

ot
ifi

-
ca

tio
n

(e
.g

. S
M

S)

…

Life
Cycle
Hooks

Li
fe

 C
yc

le

H
an

dl
er

s

C
ol

la
bo

ra
tio

n

 Chapter 1. Overview 15

The Portal engine
WebSphere Portal provides a pure Java engine whose main responsibility is to
aggregate content from different sources and serve the aggregated content to
multiple devices. The Portal engine also provides a framework that allows the
presentation layer of the portal to be decoupled from the portlet implementation
details. This allows the portlets to be maintained as discrete components.
Figure 1-6 shows the WebSphere Portal Engine Components.

Figure 1-6 WebSphere Portal engine

The Authentication Server is a third-party authentication proxy server that sits in
front of the Portal engine. Access to portlets is controlled by checking access
rights during page aggregation, page customization, and other access points.

The Portal Servlet is the main component of the Portal engine. The portal servlet
handles the requests made to the portal. The portal requests are handled in two
phases. The first phase allows portals to send event messages between
themselves. In the second phase, the appropriate Aggregation Module for the
requesting device renders the overall portal page by collecting information from
all the portlets on the page and adding standard decorations such as title bars,
edit buttons, etc.

Portlet container
Portal Services are components WebSphere Portal uses to extend the portal
functionality. Key functionality is provided with WebSphere Portal for
personalization, search, content management, site analysis, enterprise
application integration collaboration and Web services. Portlets can access these
services via their container.

Portal
Servlet

Aggregation
Modules

User Bean

LDAP
Directory

Relational
Database

Management
System

Portal
Registry

portlets

ser vices

Access ControlTrust
Association
interceptor

Authentication
Server

Portal Engine Full Page
View
16 IBM WebSphere Portal Toolkit V5

Portal infrastructure
The WebSphere Portal infrastructure is the framework that provides the internal
features of the portal. Functionality such as user and group management via self
registration, as well as portal administration, are provided by the Portal
infrastructure.

User and group management
The WebSphere Portal infrastructure provides facilities to allow user self
management along with enterprise integration with user directories such as
LDAP or database structures.

Security services
Since WebSphere Portal runs within the WebSphere Application Server platform,
it makes use of the standard Java Security APIs to provide authentication. The
WebSphere Portal is configured so that incoming requests pass through an
authentication component such as WebSphere Application Server, WebSEAL or
other proxy servers. A user’s authorization for a particular resource such as page
or a portlet is handled by the portal engine.

User Beans are provided to allow programmatic access to the User information
for use within portlets.

Page transformation
WebSphere Transcoding Technology is integrated with WebSphere Portal to
transform the portal markup produced by WebSphere Portal to markup for
additional devices such as mobile phones and PDAs.

Portal services
Portal services are built-in features the WebSphere Portal provides to extend and
enhance the full portal solution. These services are provided via the Portlet
container as seen in Figure 1-5 on page 15. Among the services are the
following:

� Personalization

The IBM WebSphere Personalization functionality enables advanced
personalization capabilities. Base customization, such as choosing which
portlets are desired on a page, is accomplished by the user via administration
functionality. Advanced personalization via rules engines, user preferences
and profiles is accomplished by the provided personalization services.

� Content management

WebSphere Portal provides services to facilitate connections to content
management sources. Built-in support is provided for several common
content types such a as Rich Site Summary (RSS), News Markup Language
 Chapter 1. Overview 17

(NewsML) and Open Content Syndication (OCS) along with most XML and
Web browser markup.

� Search

WebSphere Portal offers a simple search service. The Portal Search
capability enables search across distributed HTML and text data sources.
The search can crawl a Web site and is configured so as to force it to follow
several layers in a site or to extend beyond several links in a site.
Furthermore, IBM Extended Search and Enterprise Information Portal can be
fully incorporated into the portal environment. These search engines are
industrial-strength tools that provide federated searches across numerous
data sources.

� Site analysis

You can take advantage of the underlying WebSphere Application Server
technology and Site Analyzer to provide information about Web site visitor
trends, usage and content. This detailed information can then be used to
improve the overall effectiveness of the site.

� Collaboration

Collaboration services are provided by WebSphere Portal through a set of
pre-defined portlets. These portlets allow for team-room function, chat,
e-mail, calendering and many other collaborative technologies.

� Web Services

WebSphere Portal provides services for exposing and integrating portlets as
remote portlets hosted on another portal platform via Web Services
technology. The entire process of packaging and responding to a SOAP
request is hidden from the developer and the administrator.

1.2.5 WebSphere Portal tooling
WebSphere Portal and WebSphere Portal Toolkit, along with their prerequisite
products, provide the basic tooling for developing and deploying portals and their
associated portlets.

WebSphere Portal
WebSphere Portal contains built-in support for portlet deployment, configuration,
administration and communication between portlets.

WebSphere Portal provides the framework for building and deploying portals and
the portal components, portlets. Portlet content is aggregated by the WebSphere
Portal to provide the desired portal implementation.
18 IBM WebSphere Portal Toolkit V5

WebSphere Portal makes use of the WebSphere Application Server technology
to provide a portal platform.

WebSphere Portal Toolkit
The WebSphere Portal Toolkit is provided with WebSphere Portal and provides
an environment for developing portal using WebSphere Portal. The WebSphere
Portal Toolkit is a plug-in for WebSphere Studio Application Developer (WSAD)
or WebSphere Studio Site Developer (WSSD) which adds the portal
development environment.

The WebSphere Portal Toolkit provides the ability to quickly create complete,
MVC-compliant portlet applications. It also provides intuitive editors for working
with the deployment descriptors required by your portlet applications.
Furthermore, it allows you to dynamically debug your portlet applications.

The WebSphere Portal Toolkit is explored in detail in Chapter 3, “Portal Toolkit”
on page 125.

1.3 WebSphere Portal
WebSphere Portal takes the advantage of the WebSphere Application Server,
making use of its J2EE services. WebSphere Portal itself installs as an
Enterprise application in WebSphere Application Server.

1.3.1 Portal concepts
The following are some definitions and descriptions of Portal concepts.

Portlet
A portlet is an application that displays page content.

Portlet application
Portlet applications are collections of related portlets and resources that are
packaged together. All portlets packaged together share the same context which
contains all resources such as images, properties files and classes. Important
also is the fact that portlets within a portlet application can exchange messages.

Page
A portal page displays content. A page can contain one or more portlets. For
example, a World Market page might contain two portlets that displays stock
tickers for popular stock exchanges and a third portlet that displays the current
 Chapter 1. Overview 19

exchange rates for world currencies. To view a page in the portal, you select its
page.

Layout
The page layout defines the number of content areas within the page and the
portlets displayed within each content area. In many cases, the portal
administrator defines the page layout. The administrator can permit specified
users or user groups to change the page layout to reflect individual preferences.
If you have authority to change a page, use the configure icon (wrench icon) to
alter the page layout.

Roles
Each portal page is subdivided into one or more content areas. Each content
area can contain one or more portlets. The portal administrator or a user who has
authority to manage a page can control whether others who have authority to edit
the page can move, edit or delete the content areas and the portlets on the page.
Portal V5 permission is role based. A role is a set of permissions. Roles can be
assigned (or mapped) to individual principals granting those principals the
corresponding permissions. If you have authority to make changes to a portal
page, use the Resource Permissions page in Access under Administration to set
the permissions for the page. By default, there are seven roles and they are as
follows:

� Administrators are allowed to have unrestricted access on all portal
resources

� Security Administrators are allowed to grant access on a resource

� Delegators are allowed to grant access to other principals

� Managers are allowed to create, edit, and delete shared resources

� Editors are allowed to create and edit shared resources

� Privileged Users are allowed to create private resources

� Users are allowed to view portal resources

Comparison of V4.x permission vs. V5.x roles
Permissions that a principal (a user or group) had in WebSphere Portal V4.x are
mapped to the appropriate roles in WebSphere Portal V5.0. The following table
illustrates this role mapping.

Note: WebSphere Portal V4.x uses the concept of Place for grouping pages.
In WebSphere Portal V5, the concept of Place does not exist. Places are
treated as top-level pages in WebSphere Portal V5.
20 IBM WebSphere Portal Toolkit V5

Table 1-1 Role mapping

Themes
Themes represent the overall look and feel of the portal, including colors, images
and fonts. There are several default themes provided with the standard
installation of WebSphere Portal. Each page in the portal may have a different
theme associated with it, thereby creating the appearance of virtual portals. Use
the Themes and Skins under Portal User Interface to manage themes.

V4.x Permissions V5.0 Roles

View User

Edit Privileged User

Manage Manager

Delegate Security Administrator

View + Edit Privileged User

View + Manage Manager

View + Delegate Security Administrator + User

Edit + Manage Manager

Edit + Delegate Security Administrator + Privileged User
(Migration option: Security Administrator +
Editor)

Manage + Delegate Administrator

View + Edit + Manage Manager

View + Edit + Delegate Security Administrator + Privileged User
(Migration option: Security Administrator +
Editor)

View + Manage + Delegate Administrator

View + Edit + Manage + Delegate Administrator

Create No longer necessary. In WebSphere
Portal V5.0, principals with the
Administrator, Manager, Editor, or
Privileged User roles on a resource are
automatically allowed to create new
resources underneath that resource in the
resource hierarchy.
 Chapter 1. Overview 21

Skins
The term skin refers to the visual appearance of the area surrounding an
individual portlet. Each portlet can have its own skin. The skins that are available
for use with a portlet are defined by the portal theme that is associated with the
place. The portal administrator or the designer determines the theme for places
and the available skins for the theme. The administrator can permit specified
users to change the skins to reflect individual preferences. If you have authority
to make changes to a portal page, use the Themes and Skins under Portal User
Interface to manage themes.

1.3.2 Portlets
The base building blocks of a Portal are the portlets. Portlets are complete
applications following the Model-View-Controller design pattern. Portlets are
developed, deployed, managed and displayed independent of all other portlets.

Portlets may have multiple states and View modes along with event and
messaging capabilities. Based on the J2EE container model, portlets run inside
the Portlet Container of WebSphere Portal analogous to the way servlets run
inside the Servlet Container of WebSphere Application Server. Portlets are a
special subclass of HTTPServlet that includes properties and functionality that
allows them to run inside the Portlet Container. Though portlets actually run as
servlets under the WebSphere Application Server, they cannot send redirects or
errors to the browser directly, forward requests or write arbitrary markup to the
output stream. All communication back to the end user from a portlet is done via
the aggregation modules.

To understand the portlet model used by WebSphere Portal, let us take a step
back and examine the Flyweight pattern. This pattern is used by WebSphere
Portal as the design pattern for the portlet model.

The Flyweight pattern
The Flyweight pattern was originally presented by the GofF or Gang of Four
(Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides) in E.Gamma,
et al., Elements of Reusable Object-Oriented Software, Addison Wesley, 1995.

Flyweight is a structural pattern used to support a large number of small objects
efficiently. Several instances of an object may share some properties. Flyweight
factors these common properties into a single object, thus saving considerable
space and time otherwise consumed by the creation and maintenance of
duplicate instances. Key to the Flyweight Design Pattern is the fact that the
objects share some information. It is then possible to greatly reduce the
overhead problem and make the presence of so many objects possible.
22 IBM WebSphere Portal Toolkit V5

The flyweight object is a shared object that can be used in multiple contexts at
the same time; the object functions independently in each context.

The state shared by the objects falls into two categories, intrinsic and extrinsic.

Intrinsic state State stored in the object and independent of object’s
context. Thus the information is sharable across the
objects. The more stateless and intrinsic information
shared between objects in the flyweight, the better. This
allows for greater savings in memory, since less context
information needs to be passed around.

Extrinsic state State that depends on a single request varies with the
objects context and therefore cannot be shared. This
information must be stateless and determined by context,
having no stored values, but values that can be calculated
on the spot. Client Objects are responsible for passing the
extrinsic state to the object when the object needs it.

This separation into extrinsic and intrinsic information allows great numbers of
similar objects to exist, differing only in the context in which they exist.

The different components involved in the Flyweight Pattern are the Flyweight, the
ConcreteFlyweight, the UnsharedConcreteFlyweight, the FlyweightFactory and
the Client.

� The Flyweight: the shared object with intrinsic state. The flyweight declares
an interface through which flyweights can receive and act on intrinsic data.

� ConcreteFlyweight: implements the flyweight interface and adds storage for
the intrinsic state.

� UnsharedConcreteFlyweight: the flyweight interface enables sharing but does
not enforce it. Not all flyweights are shared. It is common for
UnsharedConcreteFlyweight objects to have ConcreteFlyweight objects as
children at some level in the hierarchy.

� FlyweightFactory: serves to dispense particular flyweights that are requested.
When a Flyweight with certain properties is requested, it checks to see if one
already exists, and if so, returns that flyweight. If the requested flyweight does
not exist, it creates the requisite flyweight, stores and returns it.

� Client: when creating an object, a client must assign a flyweight to it, so it
asks the FlyweightFactory for a particular flyweight, receives that flyweight,
and creates a reference to it in the object it is creating.

The parameterization of portlets is based on the flyweight pattern, the Portlet
Container being the Flyweight Factory.
 Chapter 1. Overview 23

Portlets
Portlets are invoked by the portlet container. Every portlet has to inherit from the
abstract org.apache.jetspeed.portlet.Portlet class, either by deriving directly from
it, or by using one of the abstract portlet implementations.

A portlet is a small Java program that runs within a portlet container. Portlets
receive and respond to requests from the portlet container. There is only ever
one portlet object instance per portlet configuration in the Web deployment
descriptor. There may be many PortletSettings objects parameterizing the same
portlet object according to the Flyweight pattern, provided on a per-request
basis.

When the portal administrator deploys a new portlet or copies an existing one,
PortletSettings are created. A Portlet parameterized by its PortletSettings is
referred to as a concrete portlet. The settings of concrete portlets may change at
runtime since administrators modify the portlet settings by using the configuration
mode of the portlet. The PortletSettings initially contain the elements defined in
the deployment descriptor and are changeable by the portlet administrator.

Figure 1-7 Portlet parameterization objects

Additionally, users can have personal views of concrete portlets. Therefore, the
transient PortletSession and persistent concrete PortletData carries vital
information for the portlet to create a personalized user experience.

When a portlet is added to a page, PortletData is created to parameterize the
portlet. The PortletData can only be accessed by the portlet itself, for example
when changing a list of desired stocks to watch in a stock portlet. A concrete
portlet in conjunction with portlet data creates a Concrete Portlet Instance.
PortletData scope depends on the scope of the page. If the administrator places
the portlet on a page, the portlet data contains data stored for the group of users

Portlet Settings

PortletData

PortletSession

Portlet Deployed

Portlet Placed on a
page

Portlet Accessed by
a user

Persistent Data

Transient Data
24 IBM WebSphere Portal Toolkit V5

associated with the page. If a user puts the portlet on the page, the portlet data
contains data for that user. For more information on the portlet data object, refer
to Chapter 2, “Portlet API” on page 53.

Finally, when the user initially accesses a portlet, a PortletSession is created.
The portlet session stores transient data associated with an individual use of the
portlet. The concrete portlet instance parameterized by the PortletSession is
referred to as the User Portlet Instance.

Figure 1-8 The portlet parameterization

1.3.3 Portlet modes
Portlet modes are a facet of the Portal display model. Modes allow the portlet to
display a different “face” depending on its usage. There are four modes:

View Initial face of the portlet when created. The portlet
normally functions with this face.

Help If the portlet supports the help mode, a help page will be
displayed for the user.

Edit This mode allows the user to configure the portlet for their
personal use, for example, specifying a city for a localized
weather forecast.

Portlet
Portlet Settings

PortletData

PortletSession

Portlet
Portlet Settings

PortletData

PortletSession

Portlet
Portlet Settings

PortletData

Portlet
Portlet Settings

PortletData

Portlet
Portlet Settings

Portlet

Portlet
Portlet Settings

Portlet Settings

PortletData

PortletSession

Concrete Portlet

Concrete Portlet
Instance

User Portlet
Instance
 Chapter 1. Overview 25

Configure If provided, this mode displays a face that allows the
portal administrator to configure the portlet for a group of
users or a single user.

1.3.4 Portlet states
Portlet states determine how the portlet is displayed in the portal. The state of the
portlet is stored in the PortletWindow.State object and can be queried for
optimizing processing based on state. The three states of a portlet are:

Normal The portlet is displayed in its initial state as defined when
it was installed.

Maximized The portlet view is maximized and takes over the entire
body of the portal replacing all the other portal views.

Minimized Only the portlet title bar is visible inside the portlet page.

1.3.5 Portlets and the model-view-controller (MVC) design pattern
Because portlets must be capable of supporting multiple views for multiple
devices, the key design pattern used for portlets is the model-view-controller
(MVC) design pattern. This design pattern contains three entities:

� The model, the data source to be retrieved for the portlet

Model data for a portlet is typically retrieved from an external data source and
loaded into Java display beans, or arrives formatted in an XML document.

� The view or views, the output mechanism used to display the data of the
portlet

Display views are typically implemented as either JSPs, more typically used
when the data model is implemented in Java beans, or XSLT style sheets
when the incoming data is formatted in an XML document.

� The controller, which joins the selected view to the data and conducts the
operation of the portlet.

The controller selects the view for display based on the target device or
browser, and then passes the data model to the view. The view extracts the
specific display data, formats the data for the browser and renders its output
to the browser as part of the portal aggregation of portlet outputs.
26 IBM WebSphere Portal Toolkit V5

For portlet development, the MVC pattern has the following characteristics:

� The portlet is only responsible for calling the right controller, depending on the
markup supported by the client.

� Connectors are responsible for accessing content sources. Typically, there is
one connector per content source type, for example, one connector for POP3
access and one for file-based cache.

� Models represent the content as retrieved through the connector. A model is
independent of the presentation.

� Controllers can be used to provide markup-specific content (HTML, cHTML,
or WML).

In the MVC structure, there is a distinct separation of data from presentation
along with a controller component for managing the interaction between the data
(model) and the presentation or view. The controller knows the environment in
which the application is invoked, gathers information from the data object to be
displayed, and then applies the appropriate view to render the data using the
markup language appropriate for the current device.

A comprehensive discussion of the MVC pattern and how it is applied to portlets
is provided in Chapter 2, “Portlet API” on page 53. See 2.3, “MVC architecture”
on page 55 for details.

1.3.6 WebSphere Portal runtime: the portlet container
WebSphere Portal is a J2EE application based on the servlet technology. In fact,
portlets inherit from HTTP Servlet in the Java hierarchy, providing the servlet
functionality. The WebSphere Portal portlet container is not, however, a
standalone container as is the servlet container. The portlet container is a thin
layer implemented on top of the servlet container designed to reuse the
functionality provided by the servlet container.

The Portlet API provides the standard interfaces for accessing the services
provided by the portlet container. The Portlet API is explored in detail in
Chapter 2, “Portlet API” on page 53. As previously mentioned, the Portlet
Container is implemented on top of the servlet container and thus the Portal API
is similar to the servlet API.

1.3.7 Portlet life cycle
Much like the Servlet Container, the Portlet Container manages the portlet life
cycle along with providing services to the portlets running in the container.
 Chapter 1. Overview 27

The portlet container loads and instantiates the portlet class. This can happen
during startup of the portal server or later, but no later then when the first request
to the portlet has to be serviced. Also, if a portlet is taken out of service
temporarily, for example while administrating it, the portlet container may finish
the life cycle before taking the portlet out of service. When the administration is
done, the portlet will be newly initialized.

During the portlet life cycle, the portlet container invokes the following methods
on the Portlet class (subclass of a the Portlet Adapter class) on behalf of user
requests as seen in Figure 1-9.

� init()
� initConcrete()
� login()
� service()

– doView()
– doEdit()
– doHelp()
– doConfigure()

� logout()
� destroyConcrete()
� destroy()

Figure 1-9 Portlet life cycle

The portlet container calls the following methods of the abstract portlet during the
portlet's life cycle:

User login Portlet login()

Po
rt

le
t

Po
rt

al

Portlet Initailized Portlet init() ;
 initConcrete()

User page request
PortletPageListener beginPage();
Portlet service();endService();
PortletPageListener endPage()

Portlet markup returnedPortal page returned

User logout Portlet logout()

Portal terminated Portlet destroy();
destroyConcrete()

Po
rt

le
t C

on
ta

in
er
28 IBM WebSphere Portal Toolkit V5

� init()

The portlet is constructed after portal initialization and initialized with the init()
method. The portal always instantiates only a single instance of the portlet,
and this instance is shared among all users, exactly the same way a servlet is
shared among all users of an application server.

� initConcrete()

After constructing the portlet and before the portlet is accessed for the first
time, the portlet is initialized with the PortletSettings. This is known as the
concrete portlet.

� service()

The portal calls the service() method when the portlet is required to render its
content. During the life cycle of the portlet, the service() method is typically
called many times. For each portlet on the page, the service() method is not
called in a guaranteed order and may even be called in a different order for
each request.

� destroyConcrete()

The concrete portlet is taken out of service with the destroyConcrete()
method. This can happen when an administrator deletes a concrete portlet
during runtime on the portal server.

� destroy()

When the portal is terminating, portlets are taken out of service, then
destroyed with the destroy() method. Finally, the portlet is garbage collected
and finalized.

1.3.8 Portlet events and messaging
Many portals today display static content in independent windows. The ability for
portlets to interact within a portal is key to giving a portal a “live” feeling. In “live”
portals, quite often the user is presented with one portlet on a page that presents
a choice of data, a list of stocks for example, and choosing from the list causes
another portlet to be updated with the details of the choice. This type of list-detail
processing via multiple portlets is done with portlet events and messaging. This
same type of process could be accomplished using a single portlet but consider
the example of a stock list, stock details and news associated with the stock.
Giving the user this function via three portlets allows the user to customize the
portal experience by choosing which information about the chosen stock is
displayed by simply adding the associated portlet to the page.

In portlet messaging, one portlet typically detects a condition and formats a
message as a result of that condition, then sends the message to the receiver.
The receiving portlet receives the message from the event handler and
 Chapter 1. Overview 29

processes the message as you would expect. Portlets can both send and receive
messages.

Portlets communicate using portlet actions and portlet messages. For example,
an account portlet creates a portlet action and encodes it into the URL that is
rendered for displaying transactions. When the link is clicked, the action listener
is called, which then sends a portlet message to send the necessary data to the
transaction detail portlet.

There are some basic rules to portlet messaging:

� Portlets in different applications can only communicate through default portlet
message objects. Default portlet message objects can only carry strings.

� In order for portlets to communicate through custom messages, they must be
part of the same portlet application. WebSphere Portal uses a unique class
loader for each portlet application to provide security between applications.
The message is typically a custom Java object unique to the application.
Since messaging portlets must share this message object, they must share
the same class loader and therefore they must be part of the same portlet
application.

� For performance reasons, portlets that communicate through messaging
must reside on the same page. Since only one page is displayed at a time,
there is little need to send messages to portlets not currently displayed.

Portlet events contain information about an event to which a portlet might need to
respond. For example, when a user clicks a link or button, this generates an
action event. To receive notification of the event, the portlet must have the
appropriate event listener implemented within the portlet class.

Action events: generated when an HTTP request is received by the portlet
container that is associated with an action, such as when the user clicks a link.

Message events: generated when another portlet within the portlet application
sends a message.

Window events: generated when the user changes the state of the portlet
window.

The portlet container delivers all events to the respective event listeners (and
therefore the portlets) before generating any content to be returned to the portal
page. Should a listener, while processing the event, find that another event
needs to be generated, that event will be queued by the portlet container and
delivered at a time point determined by the portlet container. It is only guaranteed
that it will be delivered and that this will happen before the content generation
phase. There is no guarantee for event ordering.
30 IBM WebSphere Portal Toolkit V5

Once the content generation phase has started, no further events will be
delivered. For example, messages cannot be sent from within the service,
doView or other content generation methods. Attempts to send a message
during the content generation phase will result in an org.apache.jetspeed.
portlet.AccessDeniedException.

The event listener is implemented directly in the portlet class. The listener can
access the PortletRequest.

It is important to understand the underlying event handling and message
processing to ensure delivery of all send messages. The portal event handling
and message processing sees four steps executed in the following order.

1. Processing all action events

The user makes a request of the portal, the portal receives the request and
decodes the action URI sent by the client and propagates an action event to
the appropriate portlet. The receiving portlet’s action listener is called to
process an action event. An appropriate time to send messages to other
portlets is during the processing of the action event.

2. Processing all message events

If a message is sent to a portlet, the portlet’s message listener is called to
process the message. Since portlets can send multiple messages and send
messages as a result of receiving a message, this process continues until
there are no more messaging events pending. Cyclical messaging is
prevented by the WebSphere Portal architecture.

3. Processing all window events

Sizing operations such as maximize, minimize and restore, along with the
portlet’s ability to request a specific size, causes multiple window events to be
sent to all portlets affected by the sizing activity. This processing of window
events continues until there are no more window events pending.

4. Portlet rendering process

Upon completing the event processing in the order specified above, the portal
aggregator begins calling each container on the page being displayed,
causing its contents to be rendered. The rendering process is explored in
detail in 1.3.9, “Page aggregation” on page 32. When aggregation is
complete, the page is returned to the user.
 Chapter 1. Overview 31

1.3.9 Page aggregation
Portals allow users to choose sets of portlets they would like to work with and
provides a framework for displaying those portlets in a consistent fashion.

A defined set of applications, which should be presented in a common
environment are referred to as a page.

Page aggregation is the process that collects information about the user’s
choices, the device being used and the selected portlets, then takes that
information and combines it to create a display that is appropriate for the device.

The aggregation process involves three basic steps:

� Collecting user information
� Selecting the active applications
� Aggregating the output

Once the active page is determined, the layout of this page is used to aggregate
the content of the defined applications, arrange the output and integrate
everything into a complete page. Basic Portal Page Layout can be seen in
Figure 1-10 on page 34.

Rendering of page components is done using JSPs, images, style sheets, and
other resources. These resources are located in the file system in a path-naming
convention that the portal server uses to locate the correct resources for the
client. WebSphere Portal provides dynamic aggregation of pages from page
descriptors held in the portal database.

Important: It is important to note that events are not processed in the last step
of the process, page rendering. If a message is sent by a portlet during
rendering, the message will not be delivered or processed. This is a result of
the fact that the event queue is help in the portlet request and at the time of
rendering, the portlet request is no longer available. Therefore, if portlet
interaction is desired, portlet messages must be sent during the first three
steps of the event and aggregation process.
32 IBM WebSphere Portal Toolkit V5

Collecting user information
During the collection of user information, the following information is collected:

User The user is authenticated at login and the user
identification is available throughout the session.

Client The user’s device is determined by information contained
in the request header. Once determined, this information
is also stored in the session.

Markup The markup is associated with the device category. There
are currently three markups defined, HTML, cHTML and
WML. New markup scan be added via the Markup
Manager Portlet.

Markup version The version for the supported markup. For example, ie5
for the Internet Explorer family of browsers, ns for the
Netscape family of browsers.

Language The portal determines the language to be displayed via
the following algorithm.

If the user is logged in, the portal user interface is
displayed in the preferred language of the user.

If no preferred language is set, the portal UI is displayed
in the language set by the client browser if available.

If no browser language is available, the portal UI is
displayed in the default language set for the portal.

Portlets not supporting any of the above scenarios display
their UI in the portlet’s default language.

Page The access control list determines which pages and
labels a user has access to.

Theme The name of the active theme is taken from the currently
active page.

Screen Depending on the interactions of the user with the portal,
different screens are presented. The screen holds the
output of the portlets on a page.

Selecting the active applications
During this phase of aggregation, the portal determines the active applications or
portlets to be displayed. When the portal receives a request, it determines the
active place and the active page for the current user. Aggregation then continues
with the rendering of the page.
 Chapter 1. Overview 33

Aggregating the output
Once the active page is determined, the portal uses the layout of the page to
aggregate the content of the defined applications, to place the output and build
the complete page. A page contains components such as row or column
containers that contain other components or portlets. Figure 1-10 shows the
layout of a portal page.

Figure 1-10 Portal page layout

A portal page is made up of the following elements.

Portal window The content inside the displayed window. It is made up of
the banner and the portal page.

Banner The top area of the window that holds the company
information, the greeting, a page selection box, tabs to
select the current page in the page group being displayed
and some additional controls for interacting with the portal
such as logging in, logging out and help.

Screen Hold the output of the portlets on the currently selected
page. The layout is determined by its row and column
containers.

Node Node is a level of hierarchy in the portal. Nodes include
pages, labels, or URLs, and are used to navigate the
portal structure. The portal has a tree structure that is
used to organize the portal into branch nodes, which
belong to other nodes that are higher in the tree. The
single highest node in the portal is called the content root.
Nodes are represented and accessed from the portal
navigation menu.

Page Page is a type of node that provides portal content, similar
to a page on any Web site. However, portal pages display
34 IBM WebSphere Portal Toolkit V5

content in the form of portlets, which are arranged on the
page by row and column containers. Each page displays
content that has been customized for the portal user.

Label Label is a type of node that has a name and is used to
hold other nodes.

URL URL is a type of node that can open locations within the
portal or external Web sites.

Container A container is an area on a page that contains content. A
container can be structured as a row, column, or cell in a
table. That is, when you are arranging content on the
page, the content can be placed in a container that spans
the width of the page (row) or the height of a page
(column).

Row A container inside a page that allows portlets to be
arranged in a horizontal format.

Column A container inside a page that allows portlets to be
arranged in a vertical format.

Control The frame around the portlet is constructed by the frame.
It builds the bar above the portlet output including buttons
to control the state and view of the portlet.

Portlet A portlet is a type of application that can be accessed
through a small box or window in a portal page. Portlets
provide access to specific services or information, for
example, a calendar or news feed.

Themes and skins
Window and component layouts can be controlled by themes and skins. Themes
refer to the window templates. Themes represent the look and feel of the portal,
including background colors, images and fonts, and is also used to render to
portal banner. Skins refer to the component templates. It defines the border,
margins, and title bar of the portlets on a page. Skins use the theme name to
select the graphics that match the theme colors.

Templates
Aggregation uses the concept of templates to perform window, screen and
component layout. When a corresponding part needs to be rendered, a template
loader will load the requested template. If the requested template cannot be
found, the default template will be used. A template consists of the template
class that controls the rendering, the localization and the launch of the template
JSP. The template JSP performs the actual rendering. There are three types of
templates:
 Chapter 1. Overview 35

� Window templates

The Window template is responsible for the layout of the parts of the banner
area and the placement of the screen. You can change, for example, the
navigation tab location via the window template.

� Screen templates

The Screen template is responsible for the layout and the content of the
screen, the portion of the portal page containing the output of the portlets.

� Component templates

Component templates are responsible for rendering the component itself and
for starting the rendering of its children components. The children of container
components (row and column) may be other containers or controls. The child
of a control will always be a single portlet.

Page aggregation processing
The rendering process is a domino process starting with the root container. The
root container triggers the rendering of all the child components in the page
hierarchy as seen in Figure 1-11 on page 37.

Rendering the screen triggers the aggregation of a page and its portlets. The
pageRender tag in the screen starts the rendering process. If no portlet is
maximized, then the pageRender tag calls the RootContainer.

The Root Container holds all the containers and controls for this page. The
pageRender tag tells the Root Container to invoke the rendering of all its
children. Since the Root Container is used only as a starting point for the
aggregation, it does not render itself and therefore is not visible on the screen.

Each child of the Root Container invokes its template which is responsible for
rendering all the content of its child. If the child contains further child components
the componentLoop and componentRender tags execute the rendering of all
these components one at a time.

Each component invokes its own template which in turn invokes more
components until the leaf of each branch is reached. Thus, control moves
between component classes and their respective JSPs. Each component writes
its content to the servlet output stream.

When a control is reached, it invokes the rendering of the portlet, which adds its
output to the output stream via its rendering. When the entire tree has been
traversed, the output stream is closed and the output is sent back to the
requesting client.
36 IBM WebSphere Portal Toolkit V5

Figure 1-11 Page aggregation

1.4 Highlights in WebSphere Portal V5
In this section, we present general information about Portal V5.

1.4.1 Portal install
While WebSphere 4.x has an install procedure that tried to address all needs and
adapt virtually all portal settings to the specific customer environment which
resulted in a complex install procedure that required systems administrators to
know and specify many things at install time, WebSphere Portal 5.0 has a
redesigned install that follows a more modular approach, consisting of the
following steps:

1. Installation - This step lays down the required files and only asks for some
basic configuration settings. By default, the portal installation installs
WebSphere Application Server 5.0.1 EE and the Cloudscape™ database,
plus the portal software on top of those. Alternatively, the install can be done
on a preexisting installation of WebSphere Application Server 5.0.1 EE
optionally using a preexisting database (for example Cloudscape, DB2®,

<Page Render Tag/> Root Row
Container

Column
Container

Column
Container

Control

Page
Descriptor

Control

Control

Control

Portlet

RowContainer.jsp ColumnContainer.jsp Control.jsp

Portlet

Portlet

Portlet

Portlet
Rendering

Customizable Aggregation Objects
 Chapter 1. Overview 37

Oracle, SQL Server, Informix®). Installation of the portal is quick and simple,
using common defaults.

2. Configuration - This step allows tailoring a portal installation fit the specific
customer environment by running configuration scripts to change the
database being used by the portal, switch from using the WMM database as a
user registry to using one of the supported LDAP directories, enabling use of
a proxy for access of remote content through the portal, etc.

1.4.2 General infrastructure

Support for WebSphere Application Server V5 Enterprise
WebSphere Portal 5.0 runs on WebSphere Application Server 5.01 Enterprise to
take advantage of better performance and scalability.

Property Broker incorporating C2A and Cooperative Portlet

Data sharing
The Property Broker is intended to support brokering of properties between
independently developed portlets. It is intended to support the collaborative
requirements of both the Click-to-Action and Dynamic Workplaces™ features.
The main runtime pieces are as follows:

� A property broker service (an instance of PortletService), which provides
public and private APIs for using or implementing the property brokering
function.

� A property match broker, which maintains a repository of property matching
rules and carries out matches as required.

� Portlets which use the public APIs on the property broker service to enable
the sharing of properties and inform it of changes in shared properties.
Portlets may use the existing action mechanism for receiving notification of
changes to shared properties, or may implement a new property provider
interface, through which such notifications are delivered.

� A property broker portlet filter (an instance of PortletFilter), which filters all
calls to portlets.

� The portlet container, which invokes callbacks on the portlets to indicate the
start and end of the event processing phase, and which provides an API to
the portlet service to invoke selected methods on portlets.

Enabling for Communities
WebSphere Portal 5.0 through its WebSphere Member Manager Component
provides support for Communities as special groups with additional
meta-information.
38 IBM WebSphere Portal Toolkit V5

1.4.3 Event broker
WebSphere Portal 5.0 has a portal event broker to which portal components can
fire typed events which the broker dispatched to the listeners previously
registered for those events. The portal event broker is used to deliver portal
internal events across portal components as well as for producing events for
event listeners for BEI and site analyzer integration.

Figure 1-12 Event broker

1.4.4 Member subsystem
WebSphere Portal Server 5.0 uses WebSphere Member Manager instead of
WMS.

WebSphere Member Manager can access user information in different types of
repositories using WMM Repository Adapters which implement the WMM
Member Repository Interface. WMM provides repository adapters for LDAP user
profile repositories and the WMM Database user profile repository (supporting
the same set of databases as WebSphere Portal). It is also possible to connect
custom repositories by implementing a custom profile repository adapter, for
example, in service projects.

1.4.5 Authentication

J2EE Security
The authentication function in WebSphere Portal Server 5.x uses the J2EE
Security calls to authenticate users instead of the SSO Authenticator calls that
had been used in WebSphere Portal 4.x.

Deprecating old SSO functionality
In WebSphere Portal Server 5.x, the old JAAS-based SSO functionality allowing
portlets to take user ID and password from the JAAS Subject for the special case
 Chapter 1. Overview 39

that no authentication proxy is used is no longer supported. Instead, portlets
have to use the Credential Vault that also works in the general case.

1.4.6 Authorization

Enhancing access control for roles and inheritance
WebSphere Portal uses a role-based approach to manage user authorization for
accessing portal resources such as portlets and pages. Access control
administration can be performed using corresponding portlets within the running
portal or via the XMLAccess scripting interface.

Portal access control (PAC) is the single access control decision point within the
portal. It controls access to all sensitive portal resources, like for example pages
and portlets. PAC is used by various components including the customizer, the
different aggregation modules, and the SOAP RPI router that allows for remote
invocation of portlets. All these components will allow actions on particular portal
resources only if these actions are allowed by PAC.

PAC directly supports access control configuration of hierarchical resource
topologies through the concept of permission inheritance. This concept reduces
the administration overhead for an administrator when controlling access to a
large number of portal resources. Inherited permissions are automatically
assembled into roles that can be assigned to individual users and user groups,
granting them access to whole sets of logically related portal resources. The
"user-to-role-assignments" can be managed within the portal or within external
authorization systems (for example Tivoli Access Manager).

To allow for pluggable implementations, the authorization component defines a
Service Provider Interface (SPI). WebSphere Portal Server 5.x has a built-in
authorization component implementation that plugs into the SPI so that it can be
replaced by other implementations easily.

The summarized access control facilities provided by PAC include:

� Instance-level access control for the complete set of portal resources

� Granting/revoking of permissions based on roles

� Support for predefined action sets for convenient creation of roles based on
the intrinsic portal resource topology

� Flexible blocking of permission inheritance on a per resource/per action set
basis

� Notion of Private Resources to reduce the number of defined roles within the
portal for high volume personalized resources
40 IBM WebSphere Portal Toolkit V5

� Delegated administration concept supporting an unlimited number of
delegation levels

� Leveraging a sophisticated caching infrastructure for high performance
access control decisions

� SPI plug-point for external access control components like, for example, Tivoli
Access Manager

� First alignment towards upcoming JSR 115 based authorization facilities that
will be provided by WebSphere in the future

1.4.7 URL generation, processing and mappings
WebSphere Portal 5.0 has mechanisms for generating URLs to be embedded in
portal or portlet markup and for analyzing the URLs in incoming requests to
determine what actions to process and what to display.

Canonical Portal URLs
WebSphere Portal 5.0 supports a canonical URL format that consists of the
server name plus one or more GUIDs or Unique Names of URL addressable
resources within the portal such as places, pages, and portlet instances.

User-friendly Portal URLs
In addition to canonical URLs, WebSphere Portal 5 can support arbitrary
user-friendly URLs defined by administrators explicitly for selected portal
resources. To define user-friendly URLs, the portal administrator defines URL
contexts organized as trees which have context names as their nodes. The
user-friendly URLs result from traversals from the root to a leaf of such a tree.

URL mappings
To translate user-friendly URLs (which in general have an arbitrary structure and
do not contain GUIDS or unique names that can be understood by the portal's
URL processing) into canonical portal URLs (which contain the correct GUIDs or
unique names for portal resources), URL mappings are required.

WebSphere Portal allows administrators to define URL mappings for the parts of
URL spaces for which they have the appropriate access rights in two ways: They
select a node in the URL spaces and may map it to a URL addressable portal
resources they start by selecting a URL addressable portal resource and then
selecting the node(s) in the user-friendly URL space which should map to the
resource.

Administrators may only define URL mappings for those friendly URL contexts
for which they have been granted the appropriate access rights.
 Chapter 1. Overview 41

1.4.8 Search
WebSphere Portal 5.0 introduces major improvements in its search functionality,
adding categorization, summarization and support of more than 225 document
formats through document filters.

Document Categories and Summaries
WebSphere Portal Server 5.0 provides function for automatic categorization of
documents as well as automatic generation of document summaries.

Eureka! categorizer
The Eureka! categorizer is a high-accuracy system for categorizing text
documents, including those from highly heterogeneous sources such as the
Web. Currently, it is used by ibm.com® to categorize IBM's Web pages with 80%
accuracy (relative to humans categorizing to the same taxonomy) and 80%
coverage. The system consists of two major components, a taxonomy creation
system and a categorizer. It is the use of the categorization system which
produces the high accuracy of Eureka!

The Eureka! categorizer and associated data can be viewed as a black box that
accepts text in either HTML, XML, or flat text, and outputs a list of one or more
categories into which the text has been categorized, and a score for each.
Optionally, it may also detect the presence of one or more phrases or terms that
are then mapped to a specific category. The categorizer is available in multiple
languages; however, each language requires a separate invocation of the
categorizer.

The categorizer requires that the calling application fetch the text to be
categorized and handle the resulting output of categories from the categorizer. In
a multilingual application, it may also be necessary for the calling application to
determine the language of the text in order to dispatch it to the appropriate
categorizer. The categorizer will operate as a server within the UIM Architecture
framework.

The Eureka! data consists of a language-specific dictionary of words (stemmed
words in English); a language-specific hierarchy of categories; and a set of
definitions for each category. The category definitions are produced by the
Eureka! "back-end" system, which will remain at HAW. However, the Eureka!
system currently consists only of categories in the following areas: computers
(excluding computer science), financial markets, and telecommunications.
Additional effort is included in the scope of work to expand this set of category
definitions to other areas
42 IBM WebSphere Portal Toolkit V5

Summarizer
The Summarizer is configurable to run in three client-selectable modes:

� For certain types of news articles, it will return the initial 255 characters of the
text document.

� For documents which have certain narrative quality, it will return N
(client-settable) most salient sentences. Additionally, the computation of
salience can be made sensitive to a query or to a user profile, presented as a
parameter to Summarizer, thus enabling query-biased and profile-biased
summaries.

� For applications where it makes sense to define/assume a "domain" and
where a domain dictionary/glossary is provided, it will 'highlight' occurrences
of domain-specific terms in documents. This mode may also produce
"keyword summaries" which list important domain terms in the documents.

Document filter technology
WebSphere Portal 5.x integrates the Outside-In document filters from Stellent.
This technology allows the portal to search over 225 document types.

Web crawler
The system is a collection of crawlers, folders, index and filters and build in
categorizers/summarizers, which allow the user to build a fixed taxonomy
documents (either Web pages or manually uploaded) via a rule-based
categorizer or the Eureka! categorizer.

1.4.9 Content management

Portal Document Manager
Portal Document Manager (PDM) is a portlet application which provides a
simple, real-time document viewing and contribution solution for Portal users. It
is built according to the WebSphere Portal 5.0 portlet style and architecture
guidelines and uses the new WPCP Portal Content Management (PCM) API to
provide the necessary folder, document and user management functions needed
for the PDM solution. PDM will be shipped in all versions of WebSphere Portal
V5.0 (including Express). One of PDM's major usability objectives is to provide a
simple interface, one that can be used without training, often referred to as a
"walk up and use" interface. PDM's target audience includes business
professionals, and content contributors who demand a nontechnical interface.
 Chapter 1. Overview 43

This release of PDM provides the following functions:

� Document Management: Navigate a hierarchy of documents organized into
user-defined folders; Authorized users can add, view, modify and delete
folders and documents.

� Access Control: Portal users/user groups used for access control; assign
access control rights for folders and documents using Portal access control
interface.

� Search: PDM documents and folders are searchable using Portal search
engine.

� Workflow Process: Using built-in workflow, assign approvers for workflow
process during PDM configuration. Approvers must approve new and
changed documents before they are made public. Work items show up in the
Tasks folder.

� Subscription: Allows subscription to documents and folders. Subscription
folder shows subscribed documents.

� Integration with On-Demand Client (ODC) components: ODC editors
(RichTextEditor, Presentation Editor and Spreadsheet Editor) can be used to
edit PDM documents. ODC Mailbox portlet can save attachments as PDM
documents or attach PDM documents to e-mail. ODC document conversion
services are used when needed to change PDM document formats.

� Versioning: The user can create new versions of documents. The user can
view and retrieve document versions. PDM provides built-in versioning
support but can be configured to support CVS, IBM CM, and ClearCase®.

1.4.10 Content publishing
WebSphere Portal content publishing (WPCP) provides a Web content
management solution that gives nontechnical users greater control over content
published to portals and other Web sites. Users benefit from the combined power
of having one place to manage content for their Portal environment or other Web
sites and an easy-to-use Web interface. This interface puts content management
back into the hands of nontechnical business users and provides them with tools
such as personalization rules, templates, workflow, and versioning, that make the
content creation process simple, yet controlled. WPCP decreases Web
maintenance and administration costs, increases sales and profits by deploying
timely and personalized content, and improves efficiency by getting all content
produced in an enterprise to the Web.
44 IBM WebSphere Portal Toolkit V5

1.4.11 Transcoding
Transcoding technology was incorporated into WebSphere Portal 4.1. As
transcoding technology serves different market through various IBM offerings,
including WebSphere Portal, number of markup language transformation were
not enabled in WebSphere Portal.

Starting with WebSphere Portal V5, plug-ins for WML and cHTML markup
transformation are enabled. WebSphere Transcoding Publisher will be bundled
as part of the portal server core install package. This will alleviate the need to
have a separate installation for WebSphere Transcoding Publisher and Portal.

The aim is to simplify the installation process and reducing the chance of an error
during installation of portal and later during migration. In an effort to do this, now
transcoding is installed inside the portal directory; this includes moving
transcoding classes to the shared app directory. Configuration steps are also
simplified by pre-configuring portal property files with transcoding information.

1.4.12 Struts Portlet Framework
Struts is a very popular framework for Web applications using a
mode-view-controller design pattern. The Struts framework can be used to
effectively design Web applications and support development teams of different
sizes and organization.

For WebSphere Portal 4.2, the Struts Portlet Framework was updated to include
the Struts 1.1 Beta 3 release and support for Tiles and File upload was added.

The Struts Portlet Framework in the WebSphere Portal 4.2 implementation is
closely tied to Portal Core API, so changes there will effect the Struts Portlet
framework and require changes to function in the WebSphere Portal version 5
product. There are also WebSphere Application Server V5 dependencies that
need to be addressed. The new functions that end users will see again are
supported for newer releases of Struts.

1.4.13 User interface
WebSphere Portal V5 implemented a new containment model.The functions of
the containment model can be grouped into two parts: information supply and
administration.

The next two sections deal with these aspects, a further section explains the
structure of the containment model.
 Chapter 1. Overview 45

Information supply
The containment model provides the information needed to perform tasks such
as content aggregation or building navigation to browse the aggregated content.
The information supplied can be dependent on a specific user; it would be a
user-specific view on the containment model.

Administration
The information in the containment model must be changeable, of course. This
can only be done via the Command API. The commands can manipulate
information on the content, navigation, derivation and any other information
stored in the containment model. Elements can be managed via PAC to enable
the permission concept of the portal, this means each element of the
containment model is a resource which can be protected in regards to what
action can be performed on it for a specific user.

The administration of the containment model allows you to:

� Add and delete root nodes

� Add, move, reorder and delete child nodes of a node

� Modify a node, including:

– Changing associated information

– Implicitly or explicitly deriving a content node (a page)

1.4.14 Cooperative portlets (Click-To-Action)
One of the most significant advantages of the Portlet architecture is the portlets’
ability to communicate with one another to create dynamic, interactive
applications. Portlets can use messages to share information, notify each other
of a user’s actions or simply help better manage screen real estate.

Messages can be sent to all portlets on a page, to a specific named portlet or to
all portlets in a single portlet application.

User-Driven Process Integration extensions to C2A
Enhancements to C2A which would contribute to the realization of the
User-Driven Process Integration (UDPI) idea would be remembering the user
choice for each step (so that only that choice is presented or automatically
executed during subsequent interactions), supporting cross-page data transfer,
so that the next step in the task is automatically surfaced to the user, supporting
the notion of "sticky notes" which the user can attach to chosen sources (as
reminders in a partially completed process of what he intends to do next), etc.
46 IBM WebSphere Portal Toolkit V5

Also, a user with special privileges should be able to save his choices (which in
effect will define a particular process connecting a set of diverse applications) for
import and use by other users or all users in a group or organization.

Property wiring tool
The wiring tool may be invoked as part of editing a page. It provides the
capability to view sharable properties on each portlet instance and create wirings
between them. It also provides the capability to view the existing set of wiring
rules for the current page.

In order to obtain information about the sharable properties, the tool invokes
listProperties on the property broker. In order to obtain information about the
existing rules, it invokes getMatchRules on the PropertyBrokerServiceInternal
interface. This allows the user to pairwise choose compatible properties on two
portlet instances and wire them up, or to specify that type-based matching be
used for a specified property on a portlet.

After the user has created the matching rules using this tool, the tool will invoke
setMatchRules on the PropertyBrokerServiceInternal interface. The property
broker service will store the rules persistently and cause the property match
broker to update its in-memory data structures to add the new rules.

The Portlet Wiring Tool is not provided with the WebSphere Portal V5 product
package but it can be downloaded from the Portlet Catalog at
http://www.ibm.com/websphere/portal/portlet/catalog and search for IBM
Portlet Wiring Tool V5.0. The Navigation code is 1WP10004E. This portlet should
be placed on a page called Wires under the Page Customizer.

1.4.15 Portal Toolkit
The Portal Toolkit for WebSphere Portal is an add-on component that installs into
WebSphere Studio Site Developer and adds portlet development and debug
functionality. The toolkit includes two primary components and a set of example
portlets which demonstrate portlet programming techniques.

The Portlet Wizard components allows a developer to begin development of a
new portlet application. The developer specifies the portlet application name,
portlet name, Java class name for the portlet, and the markups to be supported
by the portlet. The wizard then generates a skeleton portlet application as a
project in WebSphere Studio Site Developer. This project includes a Java source
file that represents the portlet controller, a Java class that implements a Java
bean to transfer display data from the controller class to the display JSPs, and
sample display JSPs for all supported portlet modes and display markups. The
project also includes properly completed web.xml and portlet.xml documents.
 Chapter 1. Overview 47

http://www.ibm.com/websphere/portal/portlet/catalog

The Portlet Application debug components allow the developer to source debug
a portlet. The developer defines a server instance for local debug, with
WebSphere Portal running inside WebSphere Studio Site Developer, remote
debug, with WebSphere Portal running on a remote instance of WebSphere
Application Server, and remote attach, which allows the developer to debug a
portal within a full portal production runtime stack.

The toolkit also includes interactive, dialog driven editors for the portlet.xml and
web.xml documents. As the developer changes Java files or JSPs, these
resources are automatically recompiled and validated.

A portlet application project may be packaged as a standard portal WAR file and
exported to a portal server at any time.

In Portal Toolkit V5.0, the following enhancements are included:

� WebSphere Portal 5.0 Currency / Portlet API support

� Updated portlet wizard

� Additional portlet examples

1.5 Portlet solution patterns
Enterprise Resource Planning (ERP) and Customer Relationship Management
(CRM) systems are excellent candidates for portlets because efficient,
personalized access to these functions provide measurable returns on your
portal investment. WebSphere Portal includes portlets that help you access a
variety of ERP and CRM systems.

Enterprise Applications running on a back-end or host system are another group
of candidates for portlets, especially when the portal addresses the
business-to-employee pattern and you want to provide a common working
environment to your users, whatever application and system they may need for
their work.

There are many ways to perform application integration in a Web environment.
Not all of them are based on portlets and amongst the portlet-based solutions,
several different architectural approaches can be applied. Depending on
technical circumstances, the given time frame and the goals of the integration,
typically, different approaches may be combined in one portal solution.

We try to list some of the patterns you might think of. One way we can
differentiate is shrink-wrapped versus roll-your-own.
48 IBM WebSphere Portal Toolkit V5

Customizable portlets from a vendor

In this pattern, a portlet is provided which can be installed in Portlet Server and,
after a configuration effort, the system or application in question can be accessed
through the portal. Often, such a portlet is delivered by the vendor of the system
that should be accessed. Both the Host On-Demand portlet and the Host
Publisher portlet we use in the following examples are of this type.

Custom developed portlets

This pattern comes into play when either no vendor offers a portlet for the
requested application, or the requested level of functionality, usability,
accessibility or security is not met by the existing portlets. Another reason might
be that you want to combine information or functionality of multiple applications
seamlessly into one portlet.

Most probably, this integration will include using the Java Connector Architecture
(JCA). JCA is a standard architecture for integrating J2EE applications with
Enterprise Information Systems that are not relational databases. Each of these
systems provides native APIs for identifying a function to call, specifying its input
data, and processing its output data. The goal of the JCA is to achieve an
independent API for coding these functions.

JCA also defines a standard Service Provider Interface (SPI) for integrating the
transaction, security and connection management facilities of an application
server with those of a transactional resource manager. Thus, JCA is a
standards-based approach to managing connections, transactions, and secure
access to enterprise application systems. IBM’s JCA connectors provide access
to systems such as SAP, People Soft, CICS®, and IMS™. Leveraging its
CrossWorlds® acquisition, IBM will also develop and integrate JCA connectors
to many other systems.

Another way to look at portlets for application integration is from a topology point
of view.

Client to remote application

In this pattern, for example used by IBM Host On-Demand, the portlet is just a
bootstrap to allow the client to get in touch with the requested system or
application, and Portal Server is the framework for the user interface. This
implies that normally, an applet is involved which makes a direct network
connection to a remote system.
 Chapter 1. Overview 49

Figure 1-13 Portal Solutions - client to remote application

Portlet to remote application

This is the topology most likely used if you write your own application integration
portlet. Access to the requested application or information is gained through
standardized interfaces such as JCA connectors, JDBC and JMS, or by using a
proprietary API provided by the application that is to be integrated (for example
SAP Business Connector).
50 IBM WebSphere Portal Toolkit V5

Figure 1-14 Portal Solutions - portlet to remote application

Portlet to Web application

In this pattern, most of the work is done in a Web application. Also, if you write a
Web application using the JCA or EJB and create a portlet interface to it, you
follow this pattern. The enterprise application integration does not stop here at
integrating with ERP and CRM systems.

Figure 1-15 Portal Solutions - Portlet to Web application
 Chapter 1. Overview 51

52 IBM WebSphere Portal Toolkit V5

Chapter 2. Portlet API

This chapter provides details on the Portlet life cycle, Portlet API and deployment
concerns.The goal of this chapter is to provide you with the ability not only to
design and build dynamic portlet applications, but also to recognize opportunities
to portalize existing applications and services.

At the end of this chapter, you should be able to work with the Portlet API to
design and build new portlet applications. You will have the requisite skills to
deploy new applications as well as existing portalized applications. The
WebSphere Studio Application Developer environment is covered in Chapter 3,
“Portal Toolkit” on page 125 and as such will not be discussed here. In this
chapter, all development and deployment information will be development
environment independent.

2

© Copyright IBM Corp. 2004. All rights reserved. 53

2.1 What is a portlet?
A portlet is a server side application that runs in the context of the WebSphere
Portal Server. It inherits from the javax.servlet.http.HttpServlet class and as such
is treated as a servlet by the application server. The portlet is executed inside a
Web container managed by the application server. In the Portlet API, this
container is referred to as the Portlet container.

Note: It is not possible to directly execute the portlet functionality by addressing
the portlet via http.

Though a portlet may provide dual functionality as both a servlet and a portlet, it
is certainly best practice to keep these controller functions separate. A portlet is
visible on a portal page as a single small window, of which each portal page may
have many. The portlet is the content inside the window, not the window itself.
The window is defined by the selected skin.

2.2 Basic portlet terms
In order to fully understand some of the introductory topics, it is necessary to
define a few of the most basic terms used when discussing portlets.

Portlet window
This is the window that surrounds the portlet, including the title bar and any
border images.

State
This is the current state of the portlet window. Valid states are Normal, Minimized
and Maximized.

Mode
This defines the current condition of the portlet. The modes that are available for
any particular user depend on the permissions for that user, the device used to
access the portlet and the configuration and implementation of the portlet.

Note: All portlets support the default mode, View.
54 IBM WebSphere Portal Toolkit V5

The following portlet modes are supported:

� View. When a user is simply viewing the portlet, likely with other portlets on
the page, it is in View mode.

� Edit. When the user selects the Edit button to change some configuration
information, the portlet is in Edit mode. Users only have access to the Edit
mode if they have been granted edit access by the administrator.

� Configure. The Configure mode is conceptually similar to Edit mode in that it
is used to adjust the configuration of the portlet. However, only users with
manage permissions on a portlet have access to the Configure mode. In
practice, the average user may have edit permissions on a portlet to change
certain personal settings such as user IDs and passwords. Typically, only
administrators would have manage permissions on a portlet in order to adjust
non-user specific settings such as server names, etc. The actual
implementation of the Edit and Configure modes, however, is entirely up to
the portlet developer.

� Help. The Help mode is used to present help information.

2.3 MVC architecture
To help you understand the role of a portlet and prepare you for effective and
well-designed portlet development, a review of the model-view-control (MVC)
architecture is necessary. This section will briefly review the MVC Model 2
architecture.

In the simplest of forms, the MVC model 2 architecture is illustrated as in
Figure 2-1 on page 56.
 Chapter 2. Portlet API 55

Figure 2-1 Simple MVC architecture

2.3.1 Standard MVC architecture
The Model View Control architecture is concerned with separation of
responsibilities. The objective, no matter how it is applied or to what type of
application, is to segregate a system into components. Each component should
be small, identifiable, self-contained and reusable. These components are
identified by the role they play in the system. Each role in that system may have
several classes working in conjunction to achieve the goal of that role. This
section will cover the three roles of MVC: Model, View and Control.

Though the MVC architecture was originally applied to Swing applications, it has
gained popularity and widespread acceptance throughout the servlet community.
This section is technology-independent, but will use the servlet technology to
demonstrate the application of MVC.

Model
This component is responsible for encapsulating all the business logic required
by the system. It must be independent of the other components in the system. To
achieve this objective, it must be able to retrieve the data required to complete
the business rules data by itself or accept very generic receive parameters.
Furthermore, it must be able to return the results in a generic form that any
potential View component could use. In a typical servlet environment, the Model
is represented by one or more Java beans, EJBs or other Java classes.

JSP

Bean

Servlet

Control

View

ModelClient
56 IBM WebSphere Portal Toolkit V5

View
This component is responsible for creating a presentation resource for the
results of the Model component. Like all MVC components, the View must be
independent of the other components in the system. Its success or failure must
not depend on the success or failure of the Model component. In practice,
several different View components may be developed in order to create a
dynamic, complete and possibly multi-purpose application. In a typical servlet
environment, the View is created using Java Server Pages.

Control
At the heart of the MVC architecture is the Controller component. Each client
request of the system is routed through the Controller class. Its responsibility is
threefold. First, it should evaluate the validity of the request, including the user’s
state and any parameter information passed as part of the request. The
Controller then decides which Model component has the requisite functionality to
satisfy the business requirements of the request. Once the Model component
has completed its work, the Controller is responsible for deciding on the
appropriate View component to present the results back to the client. If either one
of the Model or View components fails, the Controller is responsible for either
attempting to satisfy the request in another fashion or deciding on an appropriate
View component capable of presenting an error message. In a typical servlet
environment, the servlet itself plays the role of the Controller.

2.3.2 Portlet MVC architecture
The MVC architecture can be applied as a design pattern to any system needing
to achieve separation of responsibilities. In fact, you will see as you continue
through this redbook that the Portal Server itself is architected this way.
Furthermore, several of the benefits of the portlet architecture are available to
you only if you employ a good MVC design.

Model
The Model in a portlet application is not necessarily different from the Model in
any other Java server side application.The Model represents business logic and
should not be concerned with the Controller or the View. The Controller could be
a servlet, portlet, or a simple Java class. The View could be a JSP or even simple
HTML. In theory, then, provided that existing applications employ solid MVC
practices, porting the functionality WebSphere Portal should not require any
changes to the logic. However, in practice, there are always applications that lack
this foresight. The rich API covered later in this chapter will arm you with the tools
to tackle this situation. Implementing a rigid commitment to the MVC architecture
now will conserve an enormous amount of effort in later migrations or
maintenance duties.
 Chapter 2. Portlet API 57

View
Like the servlet MVC implementation, the View is traditionally implemented using
JSPs or simple HTML. However, because the HTML the View returns will be
aggregated, it must not contain page-level tags and must be very mindful of the
environment in which it is executing. Furthermore, the Portlet API provides tag
libraries which aid in creating dynamic view resources for the portlet
environment.

Control
The Controller is responsible for determining the requested mode, executing an
appropriate Model and selecting the correct View. The portlet class itself acts as
the Controller. Instead of determining the request method as in servlets, portlets
need to determine the mode the user has requested. In a normal presentation,
where a page is built with several portlets on it, the mode is View. The user, with
appropriate permissions, may click the Edit button in order to perform some edit
functionality. In this case, the mode is Edit. WebSphere Portal also supports Help
and Configure modes.

2.3.3 Portlet MVC sample
In the simplest of portlet applications, the MVC architecture would be applied as
in Figure 2-2. Note that Figure 2-2 does not reflect the architecture of the Portal
Server, simply the portlets executed by the server in any given single request.

Figure 2-2 Simple Portlet MVC architecture

JSP

Bean

Portlet

JSP

Bean

Portlet

JSP

Bean

Portlet

req
ues

t

Client

WebSphere
Portal

Aggregated
JSP

response
58 IBM WebSphere Portal Toolkit V5

2.4 Servlets versus portlets
Those coming from a servlet background will find many similarities when first
working with portlets. This section will address some of the more important
conceptual differences between servlets and portlets. When designing your
portlet applications, the most important factor to initially consider is that unlike
servlets, portlets are only a small piece of a large presentation.

Servlets have the luxury of knowing they will be the only presentation resource
returned to the client at any given time. Portlets, on the other hand, must
understand that the presentation resource they return will be aggregated into a
larger resource returned to the client. As a result, they are forced to consider
constraints such as screen real estate, portlet interactivity, and events as well as
overall performance.

Real estate
Portlets can access a variety of information through the API to help it understand
its current condition in the portal. The PortletState informs the portlet if the user
has requested the portlet to be minimized, maximized or restored (normal). A
portlet should attempt to tailor the content it returns in accordance with the
requested state.

For example, if the user has maximized the portlet window, the content returned
should adequately fill the portal page. However, if the user has requested that the
portlet be minimized, there is no need to return any content. It is important to
remember that although the portlet is simply deciding not to return content, it is
still executed and any business logic encapsulated in the model will still be
performed. It is not possible to dynamically change the state of the portlet except
during event handling.

Page aggregation
Although a servlet may be a single piece of a much larger Web application, at
any given point in time only a single servlet is fulfilling a user’s request. This
provides a great deal of predictability in that as the master controller, it can
guarantee what is executed and returned to the client. This is not true of portlets.
Each portal page is potentially the aggregation of several portlets.

Furthermore, when a servlet executes and returns content to the user, it can be
sure that the content it returns will not be affected by any other servlet in the
system. This is not true of portlets. A portlet has the ability to write markup to the
top of the page even though its normal content is placed inside a cell in a table.
This provides a mechanism to include JavaScript functionality the portlet may
need. Be aware, however, that as one portlet has that ability, so do all. As such,
you must properly encode variable names and functions.
 Chapter 2. Portlet API 59

This functionality must be used with care as there is no inherent mechanism for
one portlet to control the presence or absence of another portlet on a page, and
as such it cannot reasonably predict what other page-level code may be present.

Inter-portlet communication
Servlets have the ability to share data through a variety of scopes but since they
are executed serially by the client, they cannot interact with each other during a
single request. Because portlets are pieces of a larger portal, they have the
ability to communicate with other portlets and to be affected by other portlets in a
single request. This inter-portlet communication provides a way to create a
dynamic portlet application crossing multiple portlets on the same page.

For example, one portlet can inform other portlets in the same portlet application
or the same page that a user has performed some action. The listening portlets
can then alter their presentation, perform alternative logic or otherwise change
their behavior.

Event handling
In the servlet architecture, events are represented via HTTP methods. For
example, when a user submits a form, the doPost method is called. The portlet
event model, however, closely mirrors the traditional Java event model in that
portlets implement appropriate interfaces and are notified by the Portal Server
when these events are fired. For example, when a user clicks button, an action
event is generated and sent to the registered listener. The Portlet API also
provides WindowEvents and MessageEvents.

Security
Servlets execute in a neutral environment and are inherently responsible for
validating the user’s authenticity and/or authority to make a specific request. This
is traditionally a function of the controller role. A portlet, on the other hand,
operates only in the context of the portal server and cannot be called directly.

The Portal Server is responsible for authentication and authorizing all user
access. Therefore, portlets can be reasonably assured that authentication and
authorization has been performed prior to their execution. They may however
perform some authorization in order to tailor content to a specific user or role.
Where in servlets, authentication is a daily concern of developers, it is an option
for portlet developers.
60 IBM WebSphere Portal Toolkit V5

2.5 What is a portlet application?
A portlet application is a group of logically associated portlets. At a minimum, a
portlet application defines a single portlet, such as in weather portlet application.
In practice, the application may contain several portlets such as the
exchange2000 portlet application which contains five portlets as illustrated in
Figure 2-3.

Portlets defined in the same application may share configuration parameters set
in the deployment descriptor or by the administrator at runtime. They also have
the ability to communicate with each other with custom messages.

Portlet Applications are defined in the deployment descriptors at development
time and cannot be created dynamically by the administrator. From an
administrative perspective, portlet applications allow repetitive administrative
tasks to be completed on a group of portlets instead of on individual portlets.

From a development perspective, portlet applications allow developers to provide
for deployment all the portlets needed to achieve a business requirement and to
ensure, at a minimum, that all these components are installed into the Portal
Server.

Figure 2-3 A Portlet application with multiple portlets

2.6 Portlet deployment
When a portlet is installed into the portal server, the deployment information is
contained in two deployment descriptors. The Web.xml deployment descriptor is
 Chapter 2. Portlet API 61

used by the WebSphere Application Server to register the portlets being
deployed. The application server is not aware of the portlet hierarchy and is
simply installing a Web application containing servlets. The portlet.xml
deployment descriptor is used by the portal server to retrieve parameters and to
set the initial configuration.

When the portlet application is deployed, it is deployed as a Web archive (war),
not an enterprise application (ear). When the war file is deployed, the portal
server actually creates an associated ear folder in the
WebSphere\AppServer\installedApps directory. The new ear folder will contain
the original name of the war file with _WPS_PA_191.ear appended to the end of
the name of the war file. The last number indicates the order in which the portlet
application was installed.

The war file that was deployed is placed into the ear file with a META-INF folder.
This folder contains the application.xml deployment descriptor, the
ibm-application-ext.xmi and the Manifest.MF files. All these files are generated
by the portal server when the application is installed.

Abstract and concrete portlet applications
The portlet.xml deployment descriptor is used by the portal server to identify the
abstract and concrete portlet applications you wish to deploy. An abstract portlet
application contains one or more abstract portlets. A concrete portlet application
contains one or more concrete portlets. The abstract application is used as a
foundation for concrete applications. The combination of an abstract application
and configuration parameters creates a concrete application. Each portlet.xml
may only define a single abstract portlet application. However, any number of
concrete applications may be defined based on the single abstract application.

The concrete applications are the applications presented in the portal server
administration. They are the actual applications available to the users. This
allows the same application to be deployed repeatedly with different
parameterization, effectively creating multiple applications.
62 IBM WebSphere Portal Toolkit V5

Figure 2-4 Abstract and Concrete relationship in a single portlet.xml

Certain configuration parameters are set at the abstract level while others are set
at the concrete level. As expected, parameters set at the abstract level affect
each concrete application. The parameters and configuration information unique
to each concrete application are represented in a PortletApplicationSettings
object. Parameter and configuration information unique to each portlet are
represented in the PortletSettings object. When the portlet is actually placed on a
page, it is parameterized by a PortletData object.

When a user logs on and accesses a portlet, it is associated with a session
object. This sequence is represented in Figure 2-5 on page 64.

abstract portlet
application

abstract
portlet 1

concrete portlet application 1

concrete portlet application 2

concrete
portlet 1 concrete

portlet 2

concrete
portlet 2 concrete

portlet 3abstract
portlet 3

abstract
portlet 2
 Chapter 2. Portlet API 63

Figure 2-5 Portlet parameterization

2.6.1 web.xml
The web.xml defines the Web application being deployed. This section will detail
the required elements of the web.xml when deploying a portlet application. For
details on all of the elements of the web.xml deployment descriptor, refer to
http://java.sun.com/j2ee/tutorial. Example 2-1 provides an example
web.xml document. To keep this section simple, the deployment descriptors will
define only a single portlet in the application.

Example 2-1 Simplest web.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.2//EN" "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">
<web-app id="WebApp">

<display-name>HelloWorld</display-name>
<context-param>

<param-name>webmaster</param-name>
<param-value>the webmaster</param-value>

</context-param>
<servlet id="Servlet_1">

<servlet-name>HelloWorldPortlet</servlet-name>
<servlet-class>

com.ibm.itso.ral.portlets.HelloWorldPortlet

portlet

concrete
portlet

concrete
portlet

concrete
portlet
instance

concrete
portlet
instance

concrete
portlet
instance

concrete
portlet
instance

user
portlet
instance

user
portlet
instance

PortletSettings

PortletSettings

Portle
tData PortletData

PortletSession

PortletSession
64 IBM WebSphere Portal Toolkit V5

http://java.sun.com/j2ee/tutorial

</servlet-class>
<init-param>

<param-name> init_param1 </param-name>
<param-value> An initialization parameter </param-value>

</init-param>
</servlet>
<servlet-mapping>

<servlet-name>HelloWorldPortlet</servlet-name>
<url-pattern>/HelloWorldPortlet/*</url-pattern>

</servlet-mapping>
</web-app>

DOCTYPE required

This will be the same for each and every web.xml deployed. This tag defines
the DTD that is to be used when this document is parsed. Only one is
allowed.

web-app required

This is the top-level tag wrapping the entity of the web.xml. Only one is
allowed.

– id required

This attribute identifies the web-app in the application server but is not
seen in the portal environment.

display-name required

Though this name is never seen in the portal environment, it will be seen in
the WebSphere Administrator’s console Event Message screen when the
Web module is loaded. Only one is allowed.

context-param optional

This element provides an opportunity to set context parameters that will be
shared by all portlets deployed via this Web application. Every portlet
subsequently based on this web.xml will share access to the context
parameters via the PortletContext object. There is no limit on the number of
context parameters that may be set. These parameters cannot be changed at
runtime by the administrator. For more information on parameters see
“Parameter summary” on page 76.

param-name required

This indicates the name of the parameter. This name is used in code to
retrieve the parameter value. For a summary on the various parameters set in
the deployment descriptors, see “Parameter summary” on page 76.
 Chapter 2. Portlet API 65

param-value required

The String value held by the parameter.

servlet required

This tag wraps the definition of the servlet class. There must be one or more
of these tags.

– id required

This provides an identifier for the defined servlet. This id will be used in the
portlet.xml to refer to the defined class. The id must be unique within the
Web application only.

servlet-name required

This name is not used by the portlet environment.

servlet-class required

The full class name must be provided. This class must be accessible either in
the deployed war, via the application server library or through the classpath.

init-param optional

This element provides an opportunity to set parameters that will be shared by
all portlets based on this servlet. These parameters are available in code
through the PortletConfig object. There is no limit on the number of init
parameters that may be set. These parameters cannot be changed at runtime
by the administrator. For a summary on the various parameters set in the
deployment descriptors, see “Parameter summary” on page 76.

param-name required

Indicates the name of the parameter. This name is used in code to retrieve
the parameter value.

param-value required

The value held by the parameter.

servlet-mapping required

Though this element is not used by the portal environment it is a required
element of the web-app element and therefore must be included.

servlet-name required

This is required and must be the same as the servlet name defined in the
servlet element.
66 IBM WebSphere Portal Toolkit V5

url-pattern required

This tag is required and may not be empty. The URL pattern is not used in the
portal environment.

There are numerous other elements in traditional web.xml but they are not
required in the portal environment.

2.6.2 portlet.xml
The portlet.xml elements are defined by the portlet_1.1.dtd which can be found in
the WebSphere\PortalServer\app\wps.ear\wps.war\dtd directory. Figure 2-2
displays a simple portlet.xml.

Example 2-2 portlet.xml deployment descriptor

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE portlet-app-def PUBLIC "-//IBM//DTD Portlet Application 1.1//EN"
"portlet_1.1.dtd">
<portlet-app-def>
 <portlet-app uid="DCE:d798f9c6c:1" major-version="2" minor-version="1">
 <portlet-app-name>HelloWorld application</portlet-app-name>
 <portlet id="HWPortlet_1" href="WEB-INF/web.xml#Servlet_1"

major-version="3" minor-version="2">
 <portlet-name>HelloWorld portlet</portlet-name>
 <cache>
 <expires>30</expires>
 <shared>yes</shared>
 </cache>
 <allows>
 <maximized/>
 <minimized/>
 </allows>
 <supports>
 <markup name="html">
 <view output="fragment"/>
 <configure/>
 <edit/>
 <help output="document"/>
 </markup>
 <markup name="wml">
 <view/>
 </markup>
 </supports>
 </portlet>
 </portlet-app>
 <concrete-portlet-app uid="DCE:d798f9c6c:1.1">
 <portlet-app-name>HelloWorld application</portlet-app-name>
 <context-param>
 Chapter 2. Portlet API 67

 <param-name>context_param1</param-name>
 <param-value>A context parameter</param-value>
 </context-param>
 <concrete-portlet href="#HWPortlet_1">
 <portlet-name>HelloWorld portlet</portlet-name>
 <default-locale>en</default-locale>
 <language locale="en">
 <title>HelloWorld</title>
 <title-short>Hello</title-short>
 <description>A simple hello world portlet.</description>
 <keywords>Hello World simple</keywords>
 </language>
 <language locale="it">
 <title>ciao mondo</title>
 <title-short>ciao</title-short>
 <description>Un portlet semplice del mondo di ciao.

 </description>
 <keywords>Ciao mondo semplice.</keywords>
 </language>
 <language locale="es">
 <title>hola mundo</title>
 </language>
 <config-param>
 <param-name>config_param1</param-name>
 <param-value>A configuration parameter</param-value>
 </config-param>
 </concrete-portlet>
 </concrete-portlet-app>
</portlet-app-def>

DOCTYPE required

This will be the same for each and every portlet.xml deployed. This tag
defines the DTD that is to be used when this document is parsed. Only one is
allowed.

portlet-app-def required

This is the top-level tag which encapsulates all abstract and concrete portlet
application definitions. It is required and not more than one is allowed.

portlet-app required

This tag is used to define the abstract portlet application. This abstract
application will be used as a basis for the concrete portlet applications defined
later in the descriptor. Only one portlet-app tag is allowed per portlet.xml and
only one portlet.xml is allowed per war file. Therefore, each war file may only
deploy a single abstract portlet application.
68 IBM WebSphere Portal Toolkit V5

– uid required

This ID uniquely identifies this abstract application in the portal server.
This ID must unique throughout the entire portal environment. For
guidelines on ensuring the ID is unique, refer to “UID guidelines” on
page 77. This ID will be used if the portlet application is updated. Once the
ID is determined, it should not be changed between iterations. Doing so
will cause updates to fail. The ID may contain any combination of letters
and characters to maximum length of 255.

– major-version optional

An optional tag only used by administrators to track releases; it is not used
in the portal. It must be a number and only one is allowed. If this attribute
is not supplied, the major-version will always be 0. If this attribute is
supplied, the minor-version must also be included or the default value of 0
will be assumed.

– minor-version optional

An optional tag only used by the administrators to track releases and not
used in the portal. Must be a number and only one is allowed. If this
attribute is not supplied, the minor version will be 0. If this attribute is
supplied, the major-version must also be included or the default value of 0
will be assumed.

portlet-app-name required

Only one is allowed. Since only concrete portlet applications are visible in the
portal, this name is visible in the portal environment when the full information
for the portal application is requested on the Manage Portlet Applications
portlet. This name need not be unique.

portlet required

One or more of these tags is required. This tag defines the abstract portlets
contained in the abstract portlet application. Each portlet tag maps to a single
servlet defined in the web.xml. There is a one-to-one relationship between the
servlets defined in the web.xml and the abstract portlets defined in the
portlet.xml. You may not map two abstract portlets to the same servlet.
Therefore, if there are two servlets defined in the web.xml, there will be two
abstract portlets defined in the portlet.xml

– id required

This ID must be unique within the abstract portlet application only. This ID
will be used by the concrete portlets to create a link to the abstract
definition. It may be any combination of letters and numbers to a maximum
of 64 characters.
 Chapter 2. Portlet API 69

– href required

This tag creates the link between the abstract portlet and the servlet
defined in the web.xml. The link is formatted as in Example 2-3 where
Servlet_1 is the ID defined in the <servlet id> tag of the web.xml.

Example 2-3 href syntax

href="WEB-INF/web.xml#Servlet_1"

– major-version optional

An optional tag only used by the administrators to track releases. Not used
in the portal. Must be a number and only one is allowed. If this attribute is
supplied, the minor-version must also be included or the default value of 0
will be assumed.

– minor-version optional

An optional tag only used by the administrators to track releases. Not used
in the portal. Must be a number and only one is allowed. If this attribute is
supplied, the major-version must also be included or the default value of 0
will be assumed.

portlet-name required

Defines the name of the abstract portlet. This name will only be seen in the
show info screen of the Manage Portlet Application portlet, not during normal
portlet administration or execution. Must be unique within the abstract portlet
application only.

cache optional

This tag indicates the type and level of caching this portlet will perform. If this
tag is included, it must contain the expires and shared elements. If the cache
element is not included, the default values for expires and shared are 0 and
no respectively.

expires required

Indicates in seconds the when the cached content should be considered
expired.

– 0 indicates the content immediately expires and should always be
refreshed

– -1 indicates the content does not expire.The content will not be refreshed
once the portlet is initialized.

– Any other value measures the cache in seconds.
70 IBM WebSphere Portal Toolkit V5

shared required

Indicates if the content is to shared among all users or if a cache must be
maintained for each user. Use the NO option carefully as a large cache will
result. Valid values are yes or no.

allows required

This tag indicates the portlet states that are supported by this portlet. The
normal state is assumed and may not be unsupported. The other valid values
are:

– maximized optional

When selected, the portlet will take ownership of the portal screen and
other portlets will not be able to return content for inclusion in the portal
page. Each portlet on the page will state have the opportunity to execute
any listeners it implements, such as PortletPageListener. However, the
service method, and by extension doView method of the other portlets will
not be executed.

– minimized optional

When selected, the portlet will be displayed as a title bar only. Any
listeners implemented by the portlet will be executed but the portlet’s
service, and by extension doView method will not.

– detached, moving, resizing, closed optional

Though these are valid values according to the DTD, they have no
corresponding support in the portal server. As such, including or omitting
them will have no effect at this point.

supports required

This element indicate which markup languages this portlet can render its
content. It is required and at least one markup may be supported.

markup required

This tag provides a definition for a single markup that this portlet will support.
Each markup that is to be supported is defined in a markup element.

– name required

This attribute identifies the name of the markup defined in this element.
Valid strings are html, wml, chtml. If custom markups have been defined,
they too would be valid.

view required

Indicates that at a minimum, this portlet supports View mode. This is required
for all markup types.
 Chapter 2. Portlet API 71

– output optional

This attribute indicates the type of output the portal server should expect
from this portlet. Valid values are document and fragment

• Document: Not used in V4.1.2

• Fragment: All HTML portlets should use this value.

configure optional

Indicates this portlet supports the Configure mode. As with the View mode, it
may specify as output fragment or document. This tag has no effect on
non-html markup types. The developer is required to implement configure
support by including a doConfigure method in the portlet. This tag simply
instructs the portal server to include the appropriate link on the portlet title bar.

edit optional

Indicates this portlet supports the Edit mode. As with the View mode, it may
specify as output fragment or document. This tag has no effect on non-html
markup types. The developer is required to implement edit support by
including a doEdit method in the portlet. This tag simply instructs the portal
server to include the appropriate link on the portlet title bar.

help optional

Indicates this portlet supports the Help mode. As with the View mode, it may
specify as output fragment or document. This tag has no effect on non-html
markup types. The developer is required to implement help support by
including a doHelp method in the portlet. This tag simply instructs the portal
server to include the appropriate link on the portlet title bar.

concrete-portlet-app required

This element defines the concrete portlet application to be deployed into the
portal server. One or more of these elements are required. This concrete
application is based upon the abstract portlet application defined earlier in the
portlet.xml. A concrete portlet application is not required to contain all of the
portlets defined in the abstract application. However, it may not define more
portlets than the abstract application. Each concrete portlet contained in the
concrete application maps to one and only one abstract portlet. An abstract
portlet may not be mapped twice in the same concrete application.

– uid required

This uid must be unique throughout the entire portal environment. Refer to
2.6.5, “UID guidelines” on page 77 for more information on ensuring UIDs
are unique. This UID will be used by the portal server when the portlet is
updated or deleted. If the ID changes between iterations, the original
concrete application will not be update. Instead, a new concrete
72 IBM WebSphere Portal Toolkit V5

application will be installed, resulting in multiple concrete applications.
Generally, once the ID has been determined, it should not be changed.
The ID may contain any combination of letters and characters to a
maximum length of 255.

portlet-app-name required

This is the application name that will be used in the portal server. When the
war file is deployed, each of the concrete applications will be listed. This is the
name that will appear in that list. This name need not be unique in the
portlet.xml or the portal server. However, deploying more than one concrete
portlet application with the same name may cause some administrative
confusion. If two or more applications are deployed with the exact same
name, only one will be initially active. The other application must be manually
activated. In practice, when there is a one-to-one relationship between the
abstract and concrete portlet applications, the application names are often the
same. This name may contain any combination of letters and numbers to a
maximum length of 255 and only one is allowed per concrete application.

context-param optional

This element provides an opportunity to set parameters that will be shared by
all concrete portlets defined in the concrete portlet application. These
parameters are available in code through the PortletApplicationSettings
object. There is no limit on the number of context parameters that may be set.
Be aware that these parameters may be changed at runtime by the
administrator via the Manage Portlet Applications portlet. For a summary on
the various parameters set in the deployment descriptors, see 2.6.3,
“Parameter summary” on page 76.

param-name required

Indicates the name of the parameter. This name will be seen by the
administrator if they decide to work with these parameters at runtime. This is
also the name used in code to retrieve the parameter value. The name has a
maximum length of 255.

param-value required

The value intended to be held by the parameter. This value can be changed
at runtime by the administrator. The maximum length of the parameter value
is 1048576.

concrete-portlet required

This element wraps the definition of the concrete portlet being deployed in
this concrete application. Any number of concrete portlets may be deployed,
 Chapter 2. Portlet API 73

up to the number of abstract portlets defined in the abstract portlet
application.

– href required

This attribute creates a link between the concrete portlet and the abstract
portlet. The syntax dictates that the portlet id defined in the abstract
application be prefixed with a # symbol as illustrated in Example 2-4.

Example 2-4 Concrete portlet href

<concrete-portlet href="#HWPortlet_1">

portlet-name required

This tag indicates the administrative name of the portlet. This name is not the
title of the portlet and will not be seen by the average end user. This name
need not be unique in the portlet.xml or the portal server. However, take care
to properly name your portlets to prevent confusion. If two or more portlets
are deployed in the same portlet.xml with the exact same name, only one will
be initially active. The name may be any combination of characters to a
maximum length of 255.

default-locale required

This element indicates which language is the default language for this
concrete portlet alone. This setting will not override the user’s preferred locale
or locale settings provided by the client browser. If the client’s locale cannot
be determined, this value is used. Also, if the portlet does not support the
locale requested by the user, this default locale is used instead. The value
must be a recognized country code including, if appropriate, any variants.
This value cannot be changed at runtime by the administrator.

language required

At least one language block must be included. Though not required, it is a
best practice to ensure that at a minimum, the default locale is implemented
in a language block. In practice, a language block should be provided for
each language this portlet intends to support. ideally this includes all ten
group 1 languages. Only the languages defined in the portlet.xml will be
available. Though the strings can be changed, there is no mechanism to add
new languages at runtime.

– locale required

This attribute indicates the locale being defined by this language block.
The value must a recognized country code, including any applicable
variants.
74 IBM WebSphere Portal Toolkit V5

title required

This tag specifies the language specific title of this portlet. This title will be
seen in the title bar of the portlet at runtime.This value may be changed at
runtime by the administrator. The maximum length of the title is 255
characters.

title-short optional

This tag specifies the language specific short title of the portlet. The
maximum length of the short title is 128.

description optional

This description is used in several places in the portal. For example, in the
Edit Layout and Content portlet, the description will display in a hover box
over the portlet. The maximum length for the description is 1024
characters.

keywords optional

This tag specifies the language specific keywords of the portlet. The
maximum length of the keywords is 1024 characters.

config-param optional

This element allows parameters to be passed to the concrete portlet.
Unlike context and servlet-config parameters, these parameters are not
shared between portlets. Any number of portlet-config parameters may be
supplied. The values can be changed at runtime by the administrator via
the Manage Portlets portlet. These parameters are accessed in code via
the PortletSettings object. For a summary on the various parameters set in
the deployment descriptors, see “Parameter summary” on page 76.

param-name required

Indicates the name of the parameter. This name will be seen by the
administrator if they decide to work with these parameters. This is also the
name used in code to retrieve the parameter value. The name has a
maximum length of 255.

param-value required

The value intended to be held by the parameter. This value can be
changed at runtime by the administrator. The maximum length of the
parameter value is 1048576.
 Chapter 2. Portlet API 75

2.6.3 Parameter summary
There are four types of parameters that can be specified in the deployment
descriptors.

2.6.4 Descriptors relationship (web.xml and portlet.xml)
The relationship between servlets, abstract portlets and concrete portlets is best
described in Figure 2-6 on page 77. Note that some required elements have
been omitted for clarity.

Parameter
Name

Location Visibility Programmatic
Access

Runtime
Accessibility

Context-
Param

web.xml - web
app definition

Every portlet deployed
in the .war

PortletContext.get
InitParameter()

Read-only

Init-Param web.xml -
servlet
definition

Each portlet based on
the particular servlet

PortletConfig.getI
nitParameter()
Portlet.getInitPara
meter()

Read-only

Context-
Param

portlet.xml
concrete app
definition

All portlets defined in a
single concrete app

PortletApplication
Settings.
getAttribute()

Read/Write

Config-
Param

portlet-xml
concrete
portlet
definition

Individual Concrete
portlets

PortletSettings.get
Attribute()

Read/Write
76 IBM WebSphere Portal Toolkit V5

Figure 2-6 web.xml and portlet.xml relationship

2.6.5 UID guidelines
When determining the UID for either concrete or abstract portlet applications
there are several steps to follow to ensure the ID is guaranteed to be unique
throughout the entire portal environment. It is recommended that your
organization develop style guidelines to ensure uniqueness in your environment.

<web-app id="WebApp">
<display-name>SimplePortlet</display-name>
<servlet id="Servlet_1">

<servlet-name>Portlet</servlet-name>
<servlet-class>com.yourco.portlets.Portlet</servlet-class>

</servlet>
<servlet id="Servlet_2">

<servlet-name>AnotherPortlet</servlet-name>
<servlet-class>com.yourco.portlets.AnotherPortlet</servlet-class>

</servlet>
<servlet-mapping> ... </servlet-mapping>
<servlet-mapping> ... </servlet-mapping>

</web-app>

<portlet-app-def>
 <portlet-app uid="DCE:4604:1">
 <portlet-app-name>SimplePortlet application</portlet-app-name>
 <portlet id="Simple_Portlet_1" href="WEB-INF/web.xml#Servlet_1">
 <portlet-name>SimplePortlet portlet</portlet-name>
 </portlet>
 <portlet id="Another_Portlet_1" href="WEB-INF/web.xml#Servlet_2">
 <portlet-name>New Portlet</portlet-name>
 </portlet-app>
 <concrete-portlet-app uid="DCE:4604:1.1">
 <portlet-app-name>Simple Portlet application</portlet-app-name>
 <concrete-portlet href="#Simple_Portlet_1">
 <portlet-name>SimplePortlet portlet</portlet-name>
 </concrete-portlet>
 </concrete-portlet-app>
 <concrete-portlet-app uid="DCE:4604:1.2">
 <portlet-app-name>Second Simple Portlet Application</portlet-app-name>
 <concrete-portlet href="#Another_Portlet_1">
 <portlet-name>Another Simple portlet</portlet-name>
 </concrete-portlet>
 </concrete-portlet-app>
</portlet-app-def>
 Chapter 2. Portlet API 77

� Include the portlet's namespace in the UID, using the same format that is
used for Java packages

� Add some portlet application specific description

� Add some arbitrary characters to guarantee uniqueness within the
namespace, for example: com.ibm.wps.samplet.mail.4969

� Add postfixes for the corresponding concrete portlet applications, for
example: com.ibm.wps.samplet.mail.4969

2.6.6 Building a war file
All the elements of the portlet need to be deployed in a Web archive (.war) file.
This file can be created with any zip creation tool, the jar command line utility or
the export utility of the WebSphere Studio Application Developer tool. The
WebSphere Studio Application Developer environment will be covered in detail in
Chapter 3, “Portal Toolkit” on page 125. Each war file should contain elements
listed in Figure 2-7.

Figure 2-7 Basic WAR contents

The source folder is optional and you may choose what source to include for
distribution.

The webApplication folder is optional and may be used to contain the WEB-INF
folder. Alternatively, the WEB-INF folder can be placed directly under the root
without modification.

Generally, it will also contain a JSP folder to hold all JSPs used throughout the
entire portlet application. The JSP folder will organize the contained JSPs in
folders representing the markup and languages they are intended to support. For
example, if a portlet supported HTML, WML and cHTML and provided limited
78 IBM WebSphere Portal Toolkit V5

National Language support for HTML requests, the JSP folder would be
organized as in Figure 2-8.

Figure 2-8 WAR structure for a portlet with NLS and multi-device support

The WEB-INF folder must contain at a minimum the two required deployment
descriptors. The web.xml and portlet.xml must be placed directly under the
WEB-INF folder.

The classes that make up the portlet application must be stored in one of two
locations. Those classes that have been packaged into jar files should be stored
in the lib directory. Classes that are not packaged in a jar file are stored in the
classes folder with the complete package structure. Both approaches are
illustrated in Figure 2-9.

Figure 2-9 Storing classes in the WEB-INF folder

Once the contents have been organized correctly, you can use the jar command
line utility to create the war file. There is no compression requirement for the war
file so you may choose to compress the file or not without affecting deployment.
For a complete discussion regarding the jar utility, refer to:

http://java.sun.com/docs/books/tutorial/jar/basics/index.html
 Chapter 2. Portlet API 79

http://java.sun.com/docs/books/tutorial/jar/basics/index.html

2.7 Portlet life cycle
This section will explain the portlet life cyle and when certain objects become
available. For a complete discussion of the portlet object, refer to 2.9.1, “Portlet”
on page 83. The basic life cyle of each portlet is displayed in Figure 2-10.
Though the login and logout methods are part of SessionListener interface, they
are covered here since they are usually included in normal portlet
implementations. Other listeners are covered in 2.10, “Listeners” on page 95.

Figure 2-10 Basic portlet lifecyle

init(PortletConfig config)
This method is called by the portlet container on the abstract portlet when the
portlet is first loaded. As with servlets, portlets are loaded when they are first
requested. Any subsequent calls to the portlet will not execute this method.
Generally, initialization that is applicable to every concrete portlet based on this
abstract portlet is placed in this method. If you choose to override this method, at
a minimum it should make a call to its parent via super.init(portletConfig). At
this point in the portlet life cycle, no portlet-specific storage objects are available.
This includes PortletSession, PortletData, PortletApplicationSettings and
PortletSettings.

init

initConcrete

login*

service

logout*

destroyConcrete

destroy
80 IBM WebSphere Portal Toolkit V5

initConcrete(PortletSettings settings)
This method is called by the portlet container on the concrete portlet. The
initialization code performed in this method is not shared by other concrete
portlets even though they may be based upon the same abstract portlet. It is in
this method that the PortletSettings object is first available. The PortletSettings
encapsulates the concrete portlet configuration parameter information. From the
PortletSettings object, the PortletApplicationSettings object is available. The
PortletApplicationSettings object encapsulates concrete portlet application
context parameters. In this method, no user-specific objects are yet available.

login(PortletRequest request)
If the concrete portlet has been placed on a page that requires authorization, the
login method is called by the portlet container to associate a user with the portlet.
It is at this point that the PortletData object is first available. The PortletSession is
created by the container for the registered user at this point and is available in
this method via the request object. If the request for the portlet is made by an
anonymous user, this method is not called. If this method is not called, a default
session object can still be created with no user association, though it may be of
little practical use. This method is actually defined in the PortletSessionListener
interface which is implemented by the abstract class Portlet. Since your custom
portlets will extend from Portlet, it is included in this discussion even though other
oft-used listeners are not.

service(PortletRequest request, PortletResponse response)
This method is called on each and every request of the portlet. After the portlet
has been added to a page and initially accessed by a user, this is the only
method that will be called by the portlet container on subsequent requests.
Generally, this method will delegate the request to the appropriate do method to
render content. At this point, all portlets and, if applicable, user-specific objects
are available.

logout(PortletSession session)
Only when a user specifically selects the Log Off button on the portal is this
method called. This method provides you with the opportunity to manage any
user-specific information once the user has logged out and to clean up
user-related resources. If the user removes the portlet from their page, the logout
method is not called until the user actually logs out of the portal, even though
they no longer are accessing the portlet. When the portlet is taken out of service
by the Portal server or the administrator, this method will not be called. The
PortletSettings object is still available in this method, although the PortletRequest
is not. This method is actually defined in the PortletSessionListener interface
which is implemented by the abstract class Portlet. Since your custom portlets
 Chapter 2. Portlet API 81

will extend from Portlet, it is included in this discussion even though other
oft-used listeners are not.

destroyConcrete(PortletSettings settings)
This method is called when the concrete portlet is taken out of service either
because of the portal server stopping or the application being uninstalled from
the portal server. The portlet container will call each running concrete portlet in
the application individually when the application is deleted. In this method, the
PortletSettings object is passed in as a parameter and cannot be retrieved from
the normal getPortletSettings method.

destroy(PortletConfig config)
The portlet container executes this method on the abstract portlet when the
portlet is taken out of service. Since it is executed on the abstract portlet and not
the concrete portlets, it is executed only once. This method provides an
opportunity to execute clean-up code on each and every concrete portlet in the
application derived from this abstract portlet.

2.8 Portlet API
Portlets are descendents of HttpServlets and as such inherit much of the basic
functionality from that class. However, as illustrated in 2.4, “Servlets versus
portlets” on page 59, there are some key differences. This section will introduce
many of the key objects in the portlet API. This section is not intended to replace
the javadoc and therefore will discuss the primary function of certain objects and
some of their key methods. The complete javadoc for the portlet API can be
found in the \WebSphere\PortalServer\app\wps.ear\wps.war\doc\Javadoc\WPS
directory. For the most up-to-date API information, refer to:

www7b.software.ibm.com/wsdd/zones/portal/

2.8.1 Hierarchy
The abstract class Portlet descends from the HttpServlet interface as illustrated
in Figure 2-11 on page 83. Note that the package structure indicates the portlet
belongs to the org.apache.jetspeed.portlet package. It is important to understand
that the WebSphere Portal API and the Jetspeed API are not the same, or even
compatible at this time.
82 IBM WebSphere Portal Toolkit V5

Figure 2-11 Portlet hierarchy

2.9 Core portlet objects
This section will cover many of the objects you will use in day-to-day portlet
development.

2.9.1 Portlet
The abstract class Portlet defines the abstract methods that comprise the base
functionality of each portlet. All life cycle methods such as init, service and
destroy are defined in this class.

For convenience, these abstract methods have been implemented in the
PortletAdapter class. The PortletAdapter implements the service method with the
basic functionality to determine the type of request and delegate the request to
the appropriate do method. As such, it also defines the doView, doConfigure,
doHelp and doEdit methods. Most portlet development will extend from the
PortletAdapter class.

2.9.2 PortletAdapter
This class is provided as a default implementation of the Portlet class. It is
recommended that your portlet classed extend from this abstract class rather
than from the Portlet class. The adapter only provides implementations of the
portlet-specific methods. It does not provide an implementation for the doXXX
methods of the servlet parent (for example, doPost, doGet, etc.). In addition to
the methods of the Portlet class, this class defines several additional methods.
 Chapter 2. Portlet API 83

The methods getVariable, setVariable and removeVariable provide access to the
variables you can set on the concrete portlet. It is important to remember that
these variables are at the concrete level and therefore will not be shared with
other concrete portlets even though they may be based upon the same abstract
portlet. These variables are available only in code and are not presented in portal
administration, nor are they configurable in the portlet.xml deployment descriptor.
Example 2-5 illustrates the usage of these methods.

Example 2-5 Setting and Accessing the concrete portlet variable

setVariable("var", “Some Value”);
String var = (String) getVariable("var");

2.9.3 PortletRequest
The PortletRequest interface inherits from the HttpServletRequest and
ServletRequest interfaces. It represents the user’s request and like
ServletRequest, encapsulates information about the user and the client. An
implementation of PortletRequest is passed to the service method and
subsequently to the delegated do methods (doView, doEdit and so on). In
addition to client and user information, the PortletRequest object can be used as
a short term bucket for storing information, such as JavaBeans. JSPs then have
access to the information stored in the PortletRequest to create dynamic
presentations. Some of the more frequently used methods of this object are
listed below. Example 2-6 on page 85 illustrates some common usage of the
PortletRequest object.

� getAttribute/setAttribute/removeAttribute

These methods allow you to store data in a short term bucket. The
PortletRequest is portlet-specific and therefore data stored in this object is not
available to other portlets. The storage is only valid during the single request.
All objects placed in this scope should be serializable.

� getParameter

This method provides access to the parameters passed as part of the
HttpServletRequest. There is no need to distinguish whether the parameter is
passed via an HTTP get or post method. This method is often used in
event-handling.

� getCookies

This method provides access to the cookies stored by the current domain on
the client’s machine. An array of cookie objects is returned and the portlet is
responsible for iterating through the collection.
84 IBM WebSphere Portal Toolkit V5

� getHeader

This method provides access to the headers supplied by the client. Some of
the more common headers you may want to access include accept,
accept-encoding and cache-control.

� getLocale

This method returns the preferred locale for the user. The Portal Server
determines the locale by first retrieving the user’s preferred language set
during registration. If the preferred language is not set, the locale is retrieved
from the accept-language header supplied by the client.

� getPreviousMode

This method is intended to return the previous mode visited by the user. In
WebSphere Portal V4.1.2, this method always returns null. Look for updates
to this functionality in future releases.

Example 2-6 Working with the PortletRequest

request.setAttribute("uri", uri);
String fNmame = request.getParameter("f_name");
java.util.Locale locale = request.getLocale();

2.9.4 PortletResponse
The PortletResponse interface extends from the HttpServletResponse and
ServletResponse interfaces. This object encapsulates the response sent to the
Portal Server for aggregation. Unlike the ServletResponse, the response is sent
to the Portal Server, not the client machine directly. Therefore, attempting to
influence the overall request, such as setting a status code, will have no effect.
Some of the most commonly used methods of this object are listed below:

� getWriter

This method returns a java.io.PrintWriter object that can be used to return
markup to the Portal Server. The content returned by the PrintWriter is
aggregated into the entire portal page. While it is possible to use a PrintWriter
as well as include a JSP, it is generally considered bad practice to do so.

� encodeNamespace

This method takes a String and attaches the name of the portlet application
as a prefix. For example, the value “variable_one” when encoded would be
returned as “PC_175_variable_one”. Any variables that will become part of the
aggregated portal page should be encoded. JavaScript functions and
variables are good examples of values that should be encoded to prevent
name collisions.
 Chapter 2. Portlet API 85

� addCookie

This method allows you to add a cookie to the ultimate HTTP response that is
sent by the Portal Server to the client. In order to ensure the name of cookie is
unique throughout the portal, it is recommended that you use the
encodeNameSpace method.

� addHeader/setHeader/containsHeader

This method provides access to the headers sent back to the client via the
portal server.

� encodeURL

This method will append the passed string to the complete URL of the Portal
Server. For example, the string “example.gif” becomes
“http://www.yourco.com/wps/WPS_PA_351/example.gif” when passed to the
encodeURL method.

� createURI/createReturnURI

These methods will create URI object that contains a URL pointing the portlet
in particular mode. For more information see 2.9.17, “PortletURI” on page 94.

Example 2-7 Working with the PortletResponse

java.io.PrintWriter out = response.getWriter();
out.println("Hello World");
PortletURI uri = response.createURI();
String functionName = response.encodeNamespace("myFunction");

2.9.5 PortletSession object
The PortletSession object extends from HttpSession and serves much the same
purpose. The PortletSession is intended to represent an ongoing conversation
between the client and the portlet. To this end, the PortletSession can be used to
store information needed between requests. The PortletSession is intended to
store data between requests, not between portlets. As such, data stored in the
session by one portlet is not accessible by another. The PortletSession is
retrieved from the request object as illustrated in Example 2-8. Since a
PortletSession object is created when a user logs in, there is no need to create
one. However, the getPortletSession(boolean) can be used to create a session
for an anonymous user.

Example 2-8 Retrieving a PortletSession

PortletSession session = request.getPortletSession();
86 IBM WebSphere Portal Toolkit V5

The most important methods of the PortletSession are
getAttribute/setAttribute/removeAttribute: these methods allow you to store,
retrieve and delete objects in the PortletSession. Objects stored in the
PortletSession must be serializable.

2.9.6 Client
The Client interface represents the device making the request, not the user. The
Client object can be retrieved from the PortletRequest object as illustrated in
Example 2-9. Figure 2-12 illustrates the result of most of the methods of the
client object when requested via Internet Explorer and a Nokia WAP emulator.

Example 2-9 Working with the client object

Client client = request.getClient();
out.print("<P>Manufacturer: " + client.getManufacturer() + "
");
out.print("MarkupName:" + client.getMarkupName() + "
");
out.print("MimeType " + client.getMimeType() + "
");
out.print("Model: " + client.getModel() + "
");
out.print("UserAgent: " + client.getUserAgent() + "
");
out.print("Version: " + client.getVersion() + "</P>");

Generally, the client object is used to determine the markup language to which
the device is mapped. Based on that information, device-specific markup can be
generated.

Figure 2-12 Client Information displayed on various clients
 Chapter 2. Portlet API 87

2.9.7 PortletConfig object
The PortletConfig object represents the abstract portlet. Therefore, any
information contained in the PortletConfig is shared by all concrete portlets
deployed based on the same abstract portlet. This object can be used to access
the initialization parameters set in the web.xml deployment descriptor’s servlet
definition. Unlike other parameters, these are read-only and cannot be altered
dynamically. This object can also be used to determine which modes and states
are supported. Furthermore, this object provides access to the PortletContext
object. The PortletConfig is retrieved via the getPortletConfig method of the
PortletAdapter class or the getConfig method of the AbstractPortlet class. There
are some useful methods available in this object. They are listed below and
illustrated in Example 2-10.

� supports

This method can accept a PortletWindow.State object or a Portlet.Mode
object and return a boolean indicating whether or not the state or mode is
supported by the portlet.

� getContext

This method will return a PortletContext object. For more information on the
PortletContexr, refer to 2.9.8, “PortletContext object” on page 88.

Example 2-10 Working with PortletConfig

boolean maxSup = getPortletConfig().supports(PortletWindow.State.MAXIMIZED);
boolean minSup = getPortletConfig().supports(PortletWindow.State.MINIMIZED);
boolean viewSup = getPortletConfig().supports(Portlet.Mode.VIEW,

request.getClient());
boolean editSup = getPortletConfig().supports(Portlet.Mode.EDIT,

request.getClient());
boolean configureSup = getPortletConfig().supports(Portlet.Mode.CONFIGURE,

request.getClient());
boolean helpSup = getPortletConfig().supports(Portlet.Mode.HELP,

request.getClient());
PortletContext context = getPortletConfig().getContext();

2.9.8 PortletContext object
The PortletContext provides a mechanism for the portlet to access the services
of the portlet container in which it is running. For example, the Context provides
access to the PortletLog, servlet context parameters as well as any services
hosted by the portal such as Credentials Vault, PersistentConnection and
possibly other custom services. The parameters accessed by the PortletContext
are the context parameters set in the web.xml. These parameters are common to
88 IBM WebSphere Portal Toolkit V5

all portlets deployed in the same web.xml, regardless of their organization into
various portlet applications. The PortletContext object is retrieved from the
PortletConfig object as illustrated in Example 2-11.

Example 2-11 Accessing Context Parameters via the PortletContext

PortletContext context = getPortletConfig().getContext();
String webmaster = context.getInitParameter("webmaster");

The PortletContext can also be used to store attributes that will be shared by all
portlets deployed via the same web.xml regardless of concrete portlet
application. These attributes are not distributed in a clustered environment.

� include

This is the most commonly used method of the PortletContext object. In a
well-designed MVC architecture, the portlet executes one or more business
objects to satisfy the logic of the request. Once the logic has completed, the
include method generally calls a JSP to produce the output. Unlike Servlets,
there is no ability to forward to a JSP. Example 2-12 illustrates this approach.

� getContainerInfo

This method indicates the Portal Server version the portlet is executing. It
only indicates the major version, not the minor one. In WebSphere Portal
Server V4.1.2, this method returns the String ‘IBM WebSphere Portal
Server/4.1’.

� getText

This method provides access to Resource Bundles to use in providing
National Language Support (NLS). For more information on NLS, see
Chapter 8., “National Language Support (NLS)” on page 249.

Example 2-12 Including a JSP

public void doView(PortletRequest request, PortletResponse response)
throws PortletException, IOException {

//Business logic completed
 getPortletConfig().getContext().include("/jsp/View.jsp",

request, response);
}

2.9.9 PortletSettings object
This object is best thought of as wrapping the information defined in the
<concrete-portlet> section of the portlet.xml deployment descriptor. The
 Chapter 2. Portlet API 89

PortletSettings object encapsulates the configuration information of the concrete
portlet instance. The parameter information is retrieved from the portlet.xml but
can be modified at runtime while the portlet is in Configure mode. Therefore, the
PortletSettings object can be used as a storage for attributes to be shared by all
the concrete portlet instances. When attributes are adjusted or added, be sure to
call the store method to persist the new values. The administrator can add new
parameters and alter existing parameter values via the Manage Portlets portlet in
Administration place. The PortletSettings object also provides access to
configuration information such as the title of the concrete portlet and the default
locale. This object can be retrieved from the PortletRequest object or is passed
as a parameter to the initConcrete and destroyConcrete methods of the portlet.
The main methods are:

� getAttribute/setAttribute/removeAttribute: these methods provide access
to attributes.

� getTitle: this returns a string indicating the title of the portlet for the current
client and the specified locale. Note that this method returns the active title,
not necessarily the title specified in the deployment descriptor. If the
administrator has changed the title at runtime for example, that value is
returned.

� getDefaultLocale: this method returns a Locale object specifying the default
locale as determined by the portlet.xml.

� getPortletApplicationSettings: this method will return the
PortletApplicationSettings object discussed in 2.9.10,
“PortletApplicationSettings object” on page 90.

Example 2-13 Working with PortletSettings

String title = request.getPortletSettings().getTitle(
request.getLocale(),
request.getClient()));

java.util.Locale locale = request.getPortletSettings().getDefaultLocale());
PortletApplicationSettings portletAppSettings =

request.getPortletSettings().getApplicationSettings();
String attribute = request.getSettings().getAttribute(“attName”);

//Only available in doConfigure:
request.getSettings().setAttribute("attribute", "Some Value");
request.getSettings().store();

2.9.10 PortletApplicationSettings object
This object is best thought of as wrapping the information defined in the
<concrete-portlet-app> section of the portlet.xml deployment descriptor. It is used
90 IBM WebSphere Portal Toolkit V5

to encapsulate the information pertaining to all concrete portlets\ deployed as
part of the same concrete portlet application. The context parameters defined in
the concrete portlet application section of the portlet.xml are available through
this object’s getAttribute method. These parameters can be adjusted and new
ones added only while a portlet is in configure mode.

� getAttribute/setAttribute/removeAttribute: these methods provide access
to attributes of the concrete portlet application.

Example 2-14 Working with PortletApplicationSettings

PortletApplicationSettings portletAppSettings =
request.getPortletSettings().getApplicationSettings();

String attribute = portletAppSettings.getAttribute("attribute"):

//Only available in doConfigure:
portletAppSettings.setAttribute("attribute", "Some Value");
portletAppSettings.store();

2.9.11 PortletData object
The PortletData object represents a ConcretePortlet instance on a users page. It
provides a quick, secure and effective method of attribute persistence with no
JDBC code required. The PortletData is not dependent on the life cycle of the
portlet. The PortletData is user-specific. However, when a user first accesses a
portlet utilizing the PortletData object, the PortletData is not unique. In fact, until
the user sets some value in the PortletData, they continue to use a shared Data.
This PortletData is shared with the administrative user who first place the portlet
on the page. All values stored in the PortletData must be serializable. Since a
null object is not serializable, be sure to test the validity of your object prior to
setting them into the PortletData object.

For example, the HelloWorld portlet uses PortletData to persist the greeting
String and the moniker the user wishes to be addressed by. The Administrator
installs this portlet, grants edit permissions to the All Authenticated Users group
and places it on the Welcome page. The Administrator chooses to edit the portlet
and enters “hello there” as the greeting String and “admin” as the moniker.
When user JohnSmith logs into the portal page and opens the welcome page, he
sees the name admin and the greeting “hello there”. The administrator decides
to change the greeting to “Greetings”. Since JohnSmith has not edited the
PortletData, he continues to share the PortletData and sees the changes the
admin has made. JohnSmith chooses to edit the PortletData to use his name
instead of admin. Once he edits the PortletData, he has his own PortletData
object. Changes he makes will be seen by no one else. Furthermore, he will no
longer see any changes to the PortletData made by the administrator.
 Chapter 2. Portlet API 91

Example 2-15 Working with PortletData

PortletData data = request.getData();
String greeting = (String) data.getAttribute("greeting");
String moniker = (String) data.getAttribute("moniker");

//Only available in doEdit or possibly actionPerformed:
PortletData data = request.getData();
data.setAttribute("greeting", greeting);
data.setAttribute("moniker", moniker);

2.9.12 PortletLog object
This allows you to quickly write error messages or other information to the log
files. All messages are written to the same file location regardless of the level
currently enabled. The log file is named wps_<time-stamp>.log where the
<time-stamp> is formatted as YYYY.MM.DD-HH.MM.SS. For example:
wps_2002.10.14-12.32.41.log. The time stamp reflects the time the log file was
created, typically when the server was first started. The log file is stored in
<WPS-ROOT>\log. To change the location of the directory, uncomment the
baseGroup.FileHandler.fileName attribute in jLog.properties and enter the new
location. If the directory does not exist, it will be created for you.

There are four levels of severity when writing to the log: info, debug, warn and
error. By default, error and warn are enabled. Debug and info levels are enabled
for your portlets by enabling the PortletTraceLogger in the EnableTracing portlet
in the Portal Administration. Since there is an associated expense with logging,
the API provides a mechanism to determine if a logging level is currently enabled
prior to writing the message. Example 2-16 illustrates this approach. Finally, if
you pass an exception to a particular write method such as error or debug, the
portlet container will print out the stack trace to the log file.

Example 2-16 Simple Logging

PortletLog log = getPortletConfig().getContext().getLog();
if (log.isDebugEnabled())log.debug("debug enabled:" + someMsg);
if (log.isWarnEnabled()) log.warn("warn enabled:" + someMsg);
if (log.isInfoEnabled()) log.info("info enabled:" + someMsg);
if (log.isErrorEnabled())log.error("error enabled:" + someMsg);

If the portlet you are writing extends PortletAdapter, a convenience method has
been provided for you as illustrated in Example 2-17 on page 93.
92 IBM WebSphere Portal Toolkit V5

Example 2-17 Accessing the PortletLog in PortletAdapter

PortletLog log = getPortletLog();

2.9.13 PortletException
The Portlet Exception inherits from the ServletException and is used as the basis
for most exceptions thrown in the Portal environment, including
UnavailableException

2.9.14 UnavailableException
This exception is thrown if the portlet fails to initialize. Generally, your portlets will
include an init method which calls the super.init. Since this call may produce an
UnavailableException, the functionality is provided to evaluate what to do if the
initialization fails.

� getUnavailableSeconds: this method returns an int (integer) indicating how
long this portlet is unavailable for.

� isPermament: this method returns a boolean indicating this portlet is no
permanently unavailable.

The length of time the portlet is unavailable is determined when the exception is
first created.

� UnavailableException(String msg): this constructor indicates the portlet is
permanently unavailable.

� UnavailableException(String msg, int time): this constructor will reflect the
length of time for which this portlet is unavailable.

2.9.15 PortletWindow object
This object represents the window surrounding the portlet only. Generally, this
class is useful when determining the real state a portlet has to work with.
Example 2-18 on page 94 illustrates this approach. Minimized, Normal and
Maximized are defined as constants in the PortletWindow.State class.
 Chapter 2. Portlet API 93

Example 2-18 Determining portlet window state

PortletWindow.State state = request.getWindow().getWindowState();
if (state.equals(PortletWindow.State.NORMAL)){
 getPortletConfig().getContext().include("/jsp/View.jsp", req, resp);
} else if (state.equals(PortletWindow.State.MAXIMIZED)){

getPortletConfig().getContext().include("/jsp/MaxView.jsp", req, resp);
} else {

//Window is minimized, no need to generate content.
}

2.9.16 User object
The User object represents the authenticated user and is retrieved from the
PortletRequest object. The API provides predicable getters and setters for the
most common attributes of the user such as GivenName, FamilyName and
UserID. This class provides access to both Basic and Extended attributes of the
user. Basic attributes are those stored in the LDAP directory as part of the
schema used throughout the portal. Extended attributes are those attributes
stored in the Portal Server database. Example 2-19 illustrates accessing both
basic and extended attributes.

Example 2-19 Working with User attributes

User user = request.getUser();
String familyName = user.getFamilyName();
String favoriteColor = user.getAttribute(“favColor”);
String phoneNumber = user.getAttribute(“phoneNumber”);

The getID returns as a String the complete DN of the user. For example,
wpsadmin in a typical SecureWay® environment would return uid=wpsadmin,
cn=users,dc=<domain>,dc>=<com> ‘‘

There are two User interfaces defined in the Portlet API. The
org.apache.jetspeed.portlet.User class represents the logged in user and is the
User object you will use day-to-day. The com.ibm.wps.puma.beans.User
interface is an EJB and is not used to access individual user information

2.9.17 PortletURI
The PortletURI is used in organizing navigation through the portal as a user
moves from mode to mode in a portlet. When a user is on a normal page (for
example when the portlets are presented in View mode), the page is an
aggregation of all the portlets. In order for any one portlet to be able to navigate
94 IBM WebSphere Portal Toolkit V5

back to that aggregated state, the PortletURI can store the URL. The PortletURI
is then placed in a bucket such as the request or session object. For more
information on the PortletURI object, see 2.12.3, “PortletURI” on page 100.

2.10 Listeners
The event model of the Portal API is very similar to the traditional Java event
model. However, there are two main points of distinction. First, there is no need
to register listeners. When a portlet in installed, the Portal Server determines the
listeners it implements and registers them on behalf of the portlet. Secondly,
since the registration is taken care of by the Portal Server, it is not possible to
specify which portlets a particular portlet wishes to register for. Therefore,
portlets implementing listeners need to carefully plan for unsollicited and
unexpected events.

There are several listeners defined in the Portal API. The ActionListener is
covered in the Event handling section and the MessageListener is covered in the
Messaging section.

2.10.1 PortletTitleListener
This listener allows you to dynamically set the title of the portlet. This listener
requires the single method as shown in Example 2-20. This interface is
particularly useful when tailoring the title to certain modes or devices. To return a
title, simply use a PrintWriter object or include a JSP using the PortletContext
object. While the second approach allows you to create a more dynamic title
including images and so forth, you must remain mindful of the limited space in
the title bar.

Example 2-20 PortletTitleListener example

public void doTitle(PortletRequest request, PortletResponse response)
throws PortletException, IOException {

PrintWriter out = response.getWriter();
String title = getPortletSettings().getTitle(

request.getLocale(), request.getClient());
out.print(title + "(" + request.getMode() + ")");

}

2.10.2 PortletPageListener
This interface provides the opportunity to add content to the top and bottom of
the aggregated page. Example 2-21 on page 96 illustrates a simple
 Chapter 2. Portlet API 95

implementation of the PortletPageListener interface. It is important to note that
content returned from the beginPage method is not placed at the top of the page
but rather at the top of the aggregated content as displayed in Figure 2-13.

Example 2-21 PortletPageListener implementation

public class AgendaPortlet extends PortletAdapter implements
PortletPageListener {
........

public void beginPage(PortletRequest request, PortletResponse response)
throws PortletException, IOException {

PrintWriter out = response.getWriter();
out.println("This page contains my agenda.");

}

public void endPage(PortletRequest request, PortletResponse response)
throws PortletException, IOException {

PrintWriter out = response.getWriter();
out.println("End of my agenda.");

}
}

The resulting page including the top and bottom messages is illustrated in
Figure 2-13.

Figure 2-13 beginPage and endPage placements

The beginPage is a convenient method when you need to include Javascript
functions needed by your portlet. However. be very conscious of any content you
96 IBM WebSphere Portal Toolkit V5

decide to display in the beginPage method as it may adversely affect the overall
aggregation of the page. Furthermore, because the page is aggregated, be sure
that any functions or global variables you declare have properly encoded the
namespace of the portlet to ensure there are no naming collisions. Use the
response.encodeNamespace to do this.

2.10.3 PortletSessionListener
This interface requests the Portal Server to notify the portlet if an authenticated
user has accessed the portlet. This interface is already implemented by the
PortletAdapter class which is traditionally the parent of most custom portlets.
This interface defines the two methods shown in Example 2-22. Figure 2-10 on
page 80 illustrates where in the life cycle of the portlet these methods are called.
The functionality of the login and logout methods is detailed in 2.7, “Portlet life
cycle” on page 80.

Example 2-22 PortletSessionListener methods

public void login(PortletRequest request) throws PortletException{ ... }
public void logout(PortletSession session) throws PortletException{ ... }

2.10.4 WindowListener

This interface will notify the portlet that the user has changed the window state.
Presently, there are only three supported window states, despite the javadoc.
NORMAL, MAXIMIZED and MINIMIZED states are supported. The portlet is
notified of these three states through windowMaximized, windowMinimized, and
windowRestored, respectively. Though only three states are currently supported,
the WindowListener defines methods for windowClosing, windowOpening,
windowDetached and windowClosed. This methods are never called. However,
in order to implement this interface, all methods must be implemented even
though several will contain empty bodies.

Restriction: The Home.jsp can choose to cancel calls to the
PortletPageListener via the <wps:pageRender includeBeginPage="no"
includeEndPage="no"> tag. In this case, your beginPage and endPage
methods will not be called.

Note: The WindowEvent interface is deprecated; you should use the
PortletWindow.getWindowState() method instead. It is included here for
information and as a reference for portlets developed using previous releases.
 Chapter 2. Portlet API 97

Example 2-23 Implementing the WindowListener

public void windowMaximized(WindowEvent arg0) throws PortletException {
// Some action can be performed

}
public void windowMinimized(WindowEvent arg0) throws PortletException {

// Some action can be performed
}
public void windowRestored(WindowEvent arg0) throws PortletException {

// Some action can be performed
}
public void windowClosing(WindowEvent arg0) throws PortletException { }
public void windowClosed(WindowEvent arg0) throws PortletException { }
public void windowDetached(WindowEvent arg0) throws PortletException { }

2.10.5 PortletSettingsAttributeListener
The PortletSettings object encapsulates the concrete portlet defined in the
portlet.xml. Part of that definition includes configuration parameters that may be
declared at deployment time. These parameters can be altered and new ones
can be added at runtime. The PortletSettingsAttributeListener notifies your
portlet if the configuration parameters are changed at runtime.

2.10.6 PortletApplicationSettingsAttributesListener
Similar to the PortletSettingsAttributeListener, this listener provides notification
when the context parameters of the concrete application have changed, been
added or removed.

2.11 Action event handling
The event model in WebSphere Portal is very similar to the traditional Java event
model. When a portlet wishes to be notified that a user has performed an action,
it simply implements the ActionListener correctly and the portal server will take
care of calling the appropriate method when the event is generated. Unlike in the
traditional Java event model, only the portlet generating the event may listen for
that event. That is, there will always only be a single listener for any particular
ActionEvent. In order to notify other portlets of an event, the listening portlet may

Note: You will need to make sure you implement the interface
org.apache.jetspeed.portlet.event.WindowListener and not the AWT
counterpart since some development environments will offer both.
98 IBM WebSphere Portal Toolkit V5

choose to send messages. For more information on sending messages, see
2.13, “Portlet messaging” on page 102.

When the Portal server services a request, it acts in two distinct phases. The first
phase is the event processing phase. All events, including WindowEvents,
ActionEvents and MessageEvents are generated, delivered and processed in
this phase. Once this phase is complete, the content generation phase begins.
Once content generation has begun, no events can be generated. Attempting to
generate events during the content generation phase, for example doView,
doEdit, etc., will cause an exception.

2.12 Core event objects
This section will cover the objects you will need to work with when managing
event handling in action events.

2.12.1 ActionListener
The org.apache.jetspeed.portlet.event.ActionListener interface defines a single
method to be implemented as illustrated in Example 2-24.

Example 2-24 ActionListener Interface

org.apache.jetspeed.portlet.event.ActionListener
public void actionPerformed(org.apache.jetspeed.portlet.event.ActionEvent

event) throws PortletException;

2.12.2 ActionEvent
An implementation of the org.apache.jetspeed.portlet.event.ActionEvent
interface is passed to the actionPerformed method by the PortalServer when a
PortletURI with an action is executed. The ActionEvent object provides access to
the PortletRequest and the action.

Note: The DefaultPortletAction class and the PortletAction interfaces are
deprecated in this release and you should use the Simple Action string instead,
as illustrated in Example 2-25.

Example 2-25 Working with the ActionEvent

public void actionPerformed(ActionEvent event) throws PortletException {
PortletRequest request = event.getRequest();
String action = event.getActionString();
 Chapter 2. Portlet API 99

2.12.3 PortletURI
The portletURI represents a URL that can be used to navigate between modes.
The PortletURI can be used to navigate to a previous mode, such as from Edit to
View, or to navigate back to the same mode, such as a multi-part form in View or
Edit. There is no ability to create a PortletURI object pointing to a mode not yet
visited by the user.

PortletRequest.createURI returns a portletURI object pointing to the portlet in its
current mode. For example, if the portletURI is created in the doView mode, the
URL points to the portlet in View. The createReturnURI method returns a
PortletURI object pointing to the last mode the portlet was in. This mode is
commonly used in the doEdit method when the URI needs to point back to the
View mode. The edit.jsp would use the PortletURI to bring the user back to the
View mode when they have completed the edit or configure process.

In order for a portlet to be notified of an event, such as the user clicking a button,
the portletURI must contain an associated PortletAction. Typical PortletURI
construction and usage is shown in Example 2-26.

In this release of the Portlet API, the process of adding actions to PortletURI
objects has been simplified. The addAction(PortletAction) method has been
deprecated and replaced with addAction(String). Since the vast majority of work
with PortletActions involves no more than setting a name, this new
implementation is much more convenient.

Developers are advised to use simple action string instead. For details, see
Chapter 5, “Action event handling” on page 181.

Since the DefaultPortletAction class and the PortletAction interfaces are
deprecated in this release, we show the use of the Simple Action string instead,
as illustrated in Example 2-26.

Example 2-26 Working with PortletURI

PortletURI uri = response.createReturnURI();
uri.addAction("save");
request.setAttribute("uri", uri.toString());

It is possible to add parameters to the PortletURI object. Parameters added to
the PortletURI via code or through a form are accessed the same way via the

Note: Deprecated classes and interfaces are still supported in the current
release but are not recommended for use because they might not be
supported in future releases.
100 IBM WebSphere Portal Toolkit V5

portlet request object. This provides a mechanism to pass default values or to
pass parameters not displayed in the form. Example 2-27 displays the code for
adding a parameter. Be aware that parameters set via the PortletURI are not
passed in the traditional HTML syntax.

Note: The DefaultPortletAction class and the PortletAction interfaces are
deprecated in this release and you should use the Simple Action string instead,
as illustrated in Example 2-27.

Example 2-27 Add URI

public void doView(PortletRequest request, PortletResponse response) throws
PortletException, IOException {

PortletURI viewURI = response.createReturnURI();
viewURI.addAction("save");
viewURI.addParameter("Param1", "Param1Value");
request.setAttribute("viewURI", viewURI.toString());
getPortletConfig().getContext().include("/jsp/View.jsp", request,

response);
}

2.12.4 ModeModifier
When a PortletURI is created, it points to a portlet in particular mode. When that
PortletURI is executed and it contains a PortletAction, it will notify the appropriate
listener. If, in the actionPerformed method, you need to redirect the user to a
mode other the one specified, the request.setModeModifier method can be used
to redirect the user to another mode. The ModeModifier can only be set during
event processing. Calling this method in doView or doEdit, etc., will have no
effect. There are three possible modes the user can be redirected to:

� REQUESTED This ModeModifier will navigate the user to whatever mode
was originally set by the PortletURI. Essentially, this is the default. If the
ModeModifier is changed, it cannot be changed back to REQUESTED.

� CURRENT This ModeModifier will keep the user in the current mode. For
example, if the user tries to save some information and the actionPerformed
determines it is incorrect, setting ModeModifier to CURRENT will return them
to the Edit screen.

� PREVIOUS This ModeModifier will return the user to the mode the user was
in prior to the CURRENT regardless of previous ModeModification.
Therefore, setting ModeModifier to CURRENT in one event process will not
make that mode PREVIOUS in the next event process.
 Chapter 2. Portlet API 101

2.13 Portlet messaging
One of the most significant advantages of the Portlet architecture is the portlets’
ability to communicate with each other to create dynamic, interactive
applications. Portlets can use messages to share information, notify each other
of a user’s actions or simply help better manage screen real estate.

Messages can be sent to all portlets on page, a specific named portlet or to all
portlets in a single portlet application. To send a message to all portlets on a
page, you must send an instance of the DefaultPortletMessage.

In order to make full use of the potential, you need to adequately architect the
entire portlet application anticipating inter-portlet communication. Attempting to
implement effective and meaningful message after significant portlet
development will cause some difficulty and may require the entire application to
be overhauled. This is true for several reasons. For example, access to certain
storage objects, such as PortletData, is limited to certain modes. Therefore, if the
initial design of an application makes significant use of the PortletData object,
implementing messaging later to share configuration information would require a
considerable effort. Furthermore, in order to reduce or eliminate code, action
event and message event functionality can be combined into a common method.
However, to achieve this, it is necessary to consider the information passed via
the action or message objects.

To help you understand where messaging may fit into your applications, it is
important to become familiar with some of the common uses of portlet
messaging. This section will present two examples demonstrating common
usage of portlet messaging. The first example illustrates how one portlet can use
messaging to control the navigation of another portlet. The second example will
demonstrate how a portlet can notify other portlets when a user has altered their
configuration information via the Edit mode.

First, however, you must become familiar with the core objects used in the
messaging architecture.

2.13.1 MessageListener
The MessageListener interface must be implemented by the portlets you want
the portal server to send messages to. The interface defines the single method
listed in Example 2-28 on page 103. Since the portlet may be notified by more
than one other portlet and therefore may receive different types of messages, it
should validate the type of message received prior to working with the object.
This is illustrated in Example 2-28 on page 103.
102 IBM WebSphere Portal Toolkit V5

Example 2-28 Implementing the MessageListener interface

public void messageReceived(MessageEvent event) throws PortletException {
if (event.getMessage() instanceof DefaultPortletMessage) {

DefaultPortletMessage msg = (DefaultPortletMessage) event.getMessage();
String message = msg.getMessage();
//Do something based on the message

}
}

Be aware that when a portlet receives a message, it is not in Edit or Configure
mode and therefore faces certain restrictions. For instance, portlets do not have
write access to the PortletData object when they are not in Edit mode. Also, they
cannot adjust the attributes stored in the PortletSettings object unless they are in
Configure mode. Attempts to store attributes in these objects when not in the
appropriate mode result in an AccessDeniedException.

Therefore, when attempting to share configuration or settings information
between portlets, you need to choose your scope carefully or decide to persist to
an outside resource.

2.13.2 MessageEvent
This object is sent to registered MessageListeners by the portlet container when
a portlet executes the send method of the PortletContext object. There are two
important methods available in this object

� getMessage: returns the message object sent with this event. Since this
method returns a PortletMessage, the result must be casted to the
appropriate type as illustrated in Example 2-28.

� getRequest: this method returns the current PortletRequest. The request can
be used to access the PortletSession object or to store data to be used in the
doView method.

2.13.3 DefaultPortletMessage
This object implements the PortletMessage interface and provides the basic
functionality needed for sending string messages between portlets. If you
broadcast a DefaultPortletMessage to null, it will be sent to all portlets on the
page implementing the MessageListener interface. Example 2-29 on page 104
illustrates sending a simple broadcast message to all portlets on the same page
regardless of application affiliation.
 Chapter 2. Portlet API 103

Example 2-29 Broadcasting a message to all portlets on a page

PortletMessage msg = new DefaultPortletMessage(“Some Message”);
getPortletConfig().getContext().send(null, msg);

2.13.4 PortletMessage
This interface defines the message object that will be sent between portlets.
Since it is a flag interface, it does not define any methods to be implemented.
Therefore, you are free to create message objects that can store a wide variety
of information. Example 2-30 illustrates a simple custom message used to carry
an employee object.

Example 2-30 Creating a custom message

import org.apache.jetspeed.portlet.*;
import java.net.*;

public class EmployeeMessage implements PortletMessage {
private Employee emp;
public Employee getEmployee() { return emp; }
public void setEmployee(Employee employee) { this.emp = employee;}

}

If you simply need to send a string message between portlets, the
DefaultPortletMessage provides this basic functionality. It is not possible to send
a broadcast message using custom messages. Sending a custom message to
null will only send the message to portlets implementing the MessageListener
interface on the same page and deployed as part of the same portlet application.
This is illustrated in Example 2-31.

Example 2-31 Sending a custom message

public void actionPerformed(ActionEvent event) throws PortletException {
Employee employee = new Employee();
//Create an employee object with parameters from a form
EmployeeMessage msg= new EmployeeMessage();
msg.setEmployee(employee);
getPortletConfig().getContext().send(null, msg);

}

104 IBM WebSphere Portal Toolkit V5

2.14 PropertyListener interface
This interface is implemented for cooperative portlets using the programmatic
approach. This interface may optionally be implemented by portlets. It is an
alternate mechanism by which interested portlets may be notified of changed
properties.

Other options are to be notified through portlet actions (the actionPerformed
method of the ActionListener interface), or Struts actions. The PropertyListener
interface may be implemented by portlets that only wish to update their current
state based on property changes, rather than execute an action immediately. For
more information and a sample scenario of a portlet using this interface, see
Chapter 13, “Advanced cooperative portlets” on page 413.

Note: The PropertyListener interface requires that you implement the
setProperties method to be notified of property changes.

setProperties
Invoked by the Property Broker to deliver new property values which were
changed in the current event cycle of the current request. The Property Broker
may be notified of such changes when a portlet invokes the changedProperties
in the PropertyBrokerService interface (explicit notification), or when a portlet
action which has declared output parameters is invoked (implicit notification).

This method is only invoked during the event phase. Since multiple explicit or
implicit property change notifications may be made during an event cycle, one or
more setProperties calls may be invoked on a single portlet instance during a
single event cycle. The runtime may batch property values from multiple
changedProperties calls in a single setProperties call. All properties are
guaranteed to be delivered before the first endEventPhase call is delivered,
which marks the start of the render phase.

Source cooperative portlets report property changes may be made by using the
changedProperties method.

changedProperties method
This method publishes changes in properties and may be used during the
portlet's event phase only. This includes the beginEventPhase method of the
EventPhaseListener interface, the actionPerformed method of the ActionListener
interface, and the setProperties method of the PropertyListener interface.

All properties must have been registered earlier, implicitly or explicitly. A simpler
alternative to explicitly invoking this method is often applicable. For example,
declare output parameters for registered actions (either programmatically or via
an WSDL declaration). In this case, the action may bind the values of the output
 Chapter 2. Portlet API 105

parameters on invocation, and at runtime the values will be transferred as if the
changedProperties method had been explicitly invoked.

2.15 EventPhaseListener interface
This interface is mainly for programmatic cooperative portlets. It allows
developers to get control of the portlet before the portlet receives a notification of
a changed property. For more information and a sample scenario of a portlet
using this interface, see Chapter 13, “Advanced cooperative portlets” on
page 413.

This interface provides the following methods:

� beginEventPhase(): at any point during the event phase, a portlet may
explicitly publish the value of an output property to the property broker by
invoking the changedProperties() method. This is an alternative to the
declaration of output parameters for actions and binding the output parameter
values to the request or session when the action is invoked. This may happen
in the callback method associated with the start of the event phase
(beginEventPhase()), in the invocation of the setProperties() method, or in the
portlet action method invocation.

Such publish calls are dealt with by the property broker in the same manner
as output parameters of actions: wires associated with output properties are
examined and the property values propagated using the information in the
target end of the wire. To register properties, you will use the
beginEventPhase method of EventPhaseListener, because only during the
event phase is it possible to register and unregister properties.

� endEventPhase(): the property broker guarantees the completion of all
property value notifications to target portlets by the end of the event phase,
whether through portlet actions or through the special setProperties() method.
The end of the event phase is indicated by the invocation of the
endEventPhase() method.

During the render phase of each request cycle, source portlets can write
visual controls representing source data to their output stream. The end user
interacts with the visual control in the response to trigger one or more actions
on other portlets on the page. During the event phase of the subsequent
request, the action is invoked on the corresponding target portlet or portlets.
106 IBM WebSphere Portal Toolkit V5

2.16 Attribute storage summary
There are many objects in the portal environment for storing attributes. In order
to help you choose the right object for the right situation, refer to the following
chart.

Object Scope Attribute
Type

Programmatic
Access

Best Practice

PortletRequest Limited to request
between the portal
server and the portlet

object getAttribute()
setAttribute()
removeAttribute()

Use a short term bucket
for communication
between portlet and JSP
(ex: Portlet URI)

PortletSession Limited to
subsequent requests
by the same user on
the same concrete
portlet instance

object getAttribute()
setAttribute()
removeAttribute()

Use as an open line of
communication between
requests. (for example
Shopping cart)

PortletSettings Shared by all
instances of the
concrete portlet.
Editable only in
configure mode.

String getAttribute()
setAttribute()
removeAttribute()

Use only for
configuration
information that is
applicable to all
instances (for example
user ID)

PortletApplication
Settings

Shared by all
concrete portlet
instances deployed
in the same concrete
application.Editable
only in configure
mode.

String getAttribute()
setAttribute()
removeAttribute()

Use only for
configuration
information that is
applicable to all
concrete portlet
instances in the same
application (for example
server name)

PortletData Persistently available
to a single concrete
portlet instance.

object
(serializa
ble)

getAttribute()
setAttribute()
removeAttribute()

Use for information that
needs life beyond a
session (for example
portlet preferences)

PortletURI One request through
to the
actionPerformed
method

String addParameter() Use to provide default
parameter values in
case the user does not
enter a value in a form
 Chapter 2. Portlet API 107

2.17 Portlet services
A PortalService is a discoverable extension to the Portal functionality. A portlet
can query the container for a specific service and use that service without ever
knowing the implementation or concerning itself with its life cycle management.
Their life cycle is managed by the portal and as such does not have container
restrictions placed on portlets. Example 2-26 illustrates accessing a service in a
portlet.

Example 2-32 Accessing a service

ContentAccessService service = (ContentAccessService)
getPortletConfig().getContext().getService(ContentAccessService.class);

PortletMessage Only available to
registered message
listeners in the event
processing phase

Object Since each
custom portlet
message can be
implemented
uniquely, access is
not pre-defined

Use to adequately
capture all the
information necessary
to complete the
message. There is no
predictably regarding
order of execution for
listeners so do depend
on this.

PortletConfig Same config object is
available to every
concrete portlet
instance derived
from the same
abstract portlet

String getInitParameter() This vale can only be set
during development or
deployment. Since its
scope is very broad, use
carefully.

DefaultPortlet
Action

Available as long as
the PortletURI it is
attached to is
available.

object setParameter()
getParameters()

It is not recommended
to store objects such as
PortletResponse etc.
Use sparingly.

PortletAdapter Available to all
instances of the
concrete portlet.
Value is not unique
between users.

object getVariable()
setVariable()

Use this object to store
attributes that are not
unique to any one user,
and can be lost if the
server shuts down

Object Scope Attribute
Type

Programmatic
Access

Best Practice
108 IBM WebSphere Portal Toolkit V5

The default installation of WebSphere Portal Server ships with the
ContentAccessService. Other services could be implemented by various vendors
or by yourself as seen in 2.17.2, “Custom services” on page 109. WebSphere
Portal Server also supplies the CredentialsVaultService, which is discussed in
detail in 2.18, “Credential Vault” on page 113.

2.17.1 ContentAccessService
The ContentAccessService provides a convenient mechanism for accessing
content outside the Portal Server. Whereas the PortletContext include method is
limited to content relative to the Portlet Application, the ContentAccessService
has no such limitations. Example 2-33 illustrates simple usage of the
ContentAccessService. There are two important methods defined in this service:

� include(String url, PorltetRequest request, PortletResponse response)

This method will write the results of the URL to the response unfiltered. There
is no opportunity to remove undesirable or malformed HTML. There is no
URL rewriting whatsoever so relative links, such as images, will not be
displayed properly. Use this method only when the URL can be trusted to
return reliable content.

� getURL(String url, PortletRequest request, PortletResponse response)

This method returns a java.net.URL object. This object can then be used to
open a URLConnection, access an inputStream or access the host, port and
other important information. This method provides the opportunity to filter the
content prior to including it in the response.

Example 2-33 Using the ContentAccessService

public void doView(PortletRequest request, PortletResponse response) throws
PortletException, IOException {

ContentAccessService cas = (ContentAccessService)
getPortletConfig().
getContext().
getService(ContentAccessService.class);

cas.include(“http://www.ibm.com”, request, response);
}

2.17.2 Custom services
The Portlet API allows you to create your own services that you can install into
the portal server. The main benefits of services are twofold. First, they execute
outside of the Portlet Containers. Secondly, the are not tied to any given portlet
and therefore their life cycle is not dependent on individual portlets. This means
 Chapter 2. Portlet API 109

that once the service has been initialized, it is available to all portlets with no
further initialization cost. Likewise, the destruction cost is not absorbed by any
single portlet.

To create your own service, there are four steps. Some of these steps are
optional. This section will use a custom MailService as an example. This
example allows a portlet to locate the MailService, send an e-mail and verify that
it was in fact sent. The actual implementation of the JavaMail API is not included
for clarity.

1. Define the service

First, you must define an interface that defines the functionality this service
will provide. The custom service interface must extend PortletService. The
PortletService interface is a flag interface and therefore does not define any
methods.

Example 2-34 Defining the Service Interface.

package com.yourco.services.mailservice;

import org.apache.jetspeed.portlet.service.*;

public interface MailService extends PortletService {

public boolean sendEMail(String address, String subject, String message);

}

2. Implement the service

The Service interface then needs to be implemented. The implementation
class must implement the custom service interface you defined as well as the
PortletServiceProvide interface. The PortletServiceProvide defines the init
and destroy methods that must be implemented. The init method may be
called by the factory when the implementation class is first created. In
practice, while your custom factories may choose not to utilize this method,
the default factories do. The init method is an appropriate location to load
initialization parameters, establish connection pools, etc. Initialization
parameters are discussed in step 4. The destroy method is an appropriate
location to release any resources or perform any other common clean-up
code.
110 IBM WebSphere Portal Toolkit V5

Example 2-35 Implementing the custom service

package com.yourco.services.mailservice.impl;

import org.apache.jetspeed.portlet.service.*;
import org.apache.jetspeed.portlet.service.spi.*;
import com.yourco.services.mailservice.MailService;

public class MailServiceImpl implements PortletServiceProvider, MailService {

private String server_name;

public void init(PortletServiceConfig config)

throws PortletServiceUnavailableException {
//Set Mail Server name based on inititialization parameters
server_name = config.getInitParameter(“SERVER_NAME”);

}

public void destroy() {
//No resources to destroy

}

public boolean sendEMail(String address, String subject, String message) {
//Send mail using JavaMail API
return true;

}
}

3. Create the service factory

This step is optional when creating custom services. The factory is used by
the PortletContext object to retrieve an instance of the service. Two default
factories are provided with Portlet API. PortletServiceDefaultFactory will
always return a new instance of the service. PortletServiceCacheFactory will
always return the same instance of the service. Both of these factories call
the init method of the service they are instantiating. Generally, either of the
two default factories will provide the functionality you need when creating
custom services. However, to ensure this example is complete, Example 2-36
illustrates a custom factory for the MailService service.

Example 2-36 Creating a custom factory

package com.yourco.services.mailservice.factory;

import java.util.*;
import javax.servlet.ServletConfig;
import org.apache.jetspeed.portlet.service.*;
import org.apache.jetspeed.portlet.service. spi.*;
import org.apache.jetspeed.portletcontainer.service.*;
 Chapter 2. Portlet API 111

import com.yourco.services.mailservice.impl.MailServiceImpl;

public class MailServiceFactory implements PortletServiceFactory{

private PortletServiceProvider psp = null;

public PortletService createPortletService(Class service, Properties props,
ServletConfig config) throws PortletServiceUnavailableException {

if (psp != null) {
return psp;

} else {
psp = new MailServiceImpl();
psp.init(new PortletServiceConfigImpl(service, props, config));
return psp;

}
}

}

4. Register the service

Once the service interface has been defined, the implementation class
created and the factory decided upon, the classes should be packaged into a
jar file. This jar should be placed in the <WAS-ROOT>lib\app directory. If you
have decided to use one of the default factories, they are already in this
directory in the wps.jar file.

Once the files have been deployed, the service must be registered. Open the
PortletService.properties file in the <WP-ROOT>\app\wps.ear\
wps.war\WEB-INF\conf directory. It is recommended that you make a backup
of this file prior to modifying it. The service and its factory must be registered
as illustrated in Example 2-37. The first mapping indicates that when a
service is requested, the specified implementation class should be returned.
The second mapping indicates which factory should be used to create this
service when requested. This mapping should specify your custom factory,
org.apache.jetspeed.portletcontainer.service.PortletServiceCacheFactory or
org.apache.jetspeed.portletcontainer.service.PortletServiceDefaultFactory.

Example 2-37 Registering the service in PortletServices.properties

com.yourco.services.mailservice.MailService =
com.yourco.services.mailservice.impl.MailServiceImpl

com.yourco.services.mailservice.impl.MailServiceImpl.factory =
com.yourco.services.mailservice.factory.MailServiceFactory
112 IBM WebSphere Portal Toolkit V5

Initialization parameters are also supplied in the PortletService.properties file
as illustrated in Example 2-38. Accessing these parameters is illustrated in
Example 2-35 on page 111.

Example 2-38 Setting Unit parameters in PortletService.properties

com.yourco.services.mailservice.impl.MailServiceImpl.SERVER_NAME =
“SERVER_NAME”

5. Test the service

In order for the service to become available in the Portal, the Portal Server
must be restarted. Using the WebSphere Administrator’s Console, restart the
WebSphere Portal Application Server. Example 2-39 shows a simple portlet
making use of the MailService service.

Example 2-39 Using the MailService service

public void actionPerformed(ActionEvent event) throws PortletException {
PortletRequest request = event.getRequest();
String address = request.getParameter("address");
String subject = request.getParameter("subject");
String msg = request.getParameter("msg");
MailService mailService = (MailService)

getPortletConfig().getContext().getService(MailService.class);
String result = "" + mailService.sendEMail(address, subject, msg);
request.getPortletSession().setAttribute("EmailResult", result);

}

2.18 Credential Vault
WebSphere Portal can be configured to exist in a single sign-on environment
using a number of different approaches. If the various systems participating in
the SSO realm all authenticate to Domino®, WebSEAL can provide the SSO
functionality. Third-party authentication mechanisms such as Tivoli Access
Manager can also be used to create a unified environment for the user.

However, on the portlet level, there may be systems outside the current SSO
realm or applications that simply require an explicit login. To facilitate the storage,
retrieval and usage of the credentials necessary to access these back-end
systems, WebSphere Portal provides the Credentials Vault Service. This service
is based on the Portlet Service architecture discussed in 2.17, “Portlet services”
on page 108. The CredentialsVaultService allows you to easily and securely
 Chapter 2. Portlet API 113

persist user IDs and passwords without concerning yourself with database
access code.

Figure 2-14 Credential Vault objects

2.19 Core Credential Vault objects
There are several key objects used when working with or administering the
Credential Vault.

2.19.1 Vault
This is a persistent store where credentials are actually stored. WebSphere
Portal provides the default database vault. The Tivoli Access Manager lock box
could also be registered and used as a vault. You can create and register your
own custom vault implementations that may store credentials in some database,
in memory or even a simple file system.

2.19.2 Segment
A vault can be separated into segments to distinguish the access control portlets
have when working with the credentials stored in the vault. Portlets can retrieve

Default Vault (DB)

Segment A (admin) Segment C (user)Segment B (admin)

Slot (Admin)

Credential
(Passive)

Slot (System)

Credential
(Passive)

Slot (System)

Credential
(Active)

Slot (Shared)

Credential
(Active)

Credential Vault Service

Slot (Shared)

Credential
(Passive)

Slot (Private)

Credential
(Active)

Slot (Private)

Credential
(Active)

Slot (Private)

Credential
(Passive)
114 IBM WebSphere Portal Toolkit V5

credentials from any type of segment. A vault can only be segmented by the
administrator.

� Administrator Managed A segment flagged as Administrator Managed
prevents portlets from creating new slots in the segment.

� User Managed This type of segment allows a portlet to dynamically create
new slots and to place credentials in that slot. Only the default vault provided
by WebSphere portal provides user-managed segments.

2.19.3 Slot
A slot is “drawer” in a segment that actually contains the credential. A slot can
only contain a single credential. When retrieving credentials, a portlet searches
the vault for a slot based on the slot ID. This ID is usually persisted in the
PortletData object. The definition and implementation of slots is dependent on
the vault containing the slot. The default vault implementation provided by
WebSphere Portal provides four types of slots.

� System slot The credentials stored in this type of slot are available to all
users and portlets. This type may be used when a user ID/password is
company-specific and not unique for each employee.

� Administrative slot The credentials stored in this type of slot are applicable
to individual users but are associated with administrator-defined resources
such as Lotus® Notes®.

� Shared slot The credentials stored in this type of slot are available to all the
portlets of a specific user. This type may be used when several portlets will
access the same back-end system on behalf of the same user.

� Portlet Private slot The credentials stored in this type of slot are available to
the single portlet instance that stored it. The credential is not accessible from
any other portlet. This type may be used when the credentials are required
only by a single portlet and are not applicable to any other user.

2.19.4 Credential
This object actually contains the user ID/password pair. There are two base
types of credentials.

� Passive credential This type of credential simply persists the user
ID/password pair. When a portlet needs to access some back-end system
with credentials stored in a passive credential, it is required to retrieve the
user ID string and password character array from the credential and manually
construct the connection to the back end. Example 2-40 on page 116
illustrates using a passive credential.
 Chapter 2. Portlet API 115

Example 2-40 Accessing a Passive Credential

UserPasswordPassiveCredential cred =
(UserPasswordPassiveCredential) vault.getCredential(

slotID,
"UserPasswordPassive",
null,
request);

if (cred != null){
String pass = cred.getPassword().toString();
String userid = cred.getUserId();

}
// Use ID and password to connect to some back end

� Active credential This type of credential encapsulates the user ID/password
pair as well as the all the logic required to access the back-end system.
Portlets do not have access to the user ID or password persisted in the
credential. However, the credential provides connection methods and utilizes
the persisted user ID and password to establish the necessary connection.
Example 2-41 illustrates how an active credential never returns the user ID or
password but instead provides the requisite connection functionality.

Example 2-41 Accessing and using an Active Credential

JavaMailCredential credential =
(JavaMailCredential) vault.getCredential(

slotID,
"JavaMailCredential",
config,
request);

javax.mail.Session mailSession =
javax.mail.Session.getDefaultInstance(props, null);

if (credential != null){
mailSession = credential.getAuthenticatedSession(mailSession, host);
mailSession.getTransport().send(someMsg);

}

Since an active credential inherently provides more security, it is the preferred
type of credential.

WebSphere Portal ships with several predefined types of credentials.

� Active credentials

– HTTPBasicAuthCredential
– HTTPFormBasedAuthCredential
– JavaMailCredential
– LtpaTokenCredential
116 IBM WebSphere Portal Toolkit V5

– WebSealTokenCredential
– SiteMinderTokenCredential

� Passive credentials

– SimplePassiveCredential
– UserPasswordPassiveCredential
– JassSubjectPassiveCredential

Example 2-42 illustrates sample code that can be used to store credentials using
the Credential Vault Service provided by WebSphere Portal.

Example 2-42 Storing credentials

PortletContext context = getPortletConfig().getContext();
CredentialVaultService vault = (CredentialVaultService)

context.getService(CredentialVaultService.class);
ObjectID defaultSegmentId = vault.getDefaultUserVaultSegmentId();
Map descripMap = new HashMap();
descripMap.put("en", "A simple test slot");
CredentialSlotConfig slot = vault.createSlot(

"",
defaultSegmentId,
descripMap,
null,
CredentialVaultService.SECRET_TYPE_USERID_STRING_PASSWORD_STRING,
false,
true,
request);

request.setAttribute("Test_SlotID", slot.getSlotId());
int passLength = password.length();
char[] passChars = new char[passLength];
password.getChars(0, passLength, passChars, 0);
vault.setCredentialSecretUserPassword(

slot.getSlotId(),
userid,
passChars,
request);

CredentialVaultService methods
� getCredentialTypes Returns an Iterator of all Credential Types that are

registered in the Credential Type Registry.
 Chapter 2. Portlet API 117

2.20 Portlet JSPs
When designing your portlet applications, you will generally use the MVC Model
2 architecture discussed in 2.3.2, “Portlet MVC architecture” on page 57. For the
development of dynamic portlet JSPs, a rich tag library is provided with
WebSphere Portal Server. There are several custom tag libraries supplied with
WebSphere Portal Server depending on the installation type and what additional
components are installed.

� portlet.tld This tag library contains the tags used in day-to-day JSP
development when working with JSPs.

� c2a.tld This tag library contains the tags to be used in cooperative portlets
using the declarative approach. For details, see Chapter 12, “Cooperative
portlets” on page 371.

� engine.tld This tag library is intended to be used in the construction of
themes and skins.

� extend.tld This tag library is only supplied if the installation type is extend or
experience. These tags are not available with the enable installation.

� content.tld This tag is used in JSPs working with the PortletContent
Organizer.

� menu.tld This tag library provides access to Collaborative functionality in the
themes.

� person.tld This tag library provides access to Collaborative functionality inside
your portlets.

2.20.1 Portlet tag library
Like all tag libraries in the WebSphere Portal Server, the portlet.tld is located in
the <WP-ROOT>app\wps.ear\wps.war\WEB-INF\tld directory. Example 2-43
illustrates referencing the tag library at the beginning of a JSP.

Example 2-43 Referencing a tag library

<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>

This section will cover the tags available in the portlet.tld tag library and some of
their most common uses.

� init <portletAPI:init />

This tag must be called if you wish to access the PortletRequest,
PortletResponse or PortletConfig objects in the JSP. This tag simply initializes
three variables for you: portletRequest, portletResponse, and
118 IBM WebSphere Portal Toolkit V5

portletConfig. Attempting to access these variables without calling the
init tag will cause the page compilation of the JSP to fail. However, you still
have full access to the javax.servlet.http.HttpServlet objects via the normal
variable names.

� createReturnURI <portletAPI:ecreateReturnURI />

This tag returns a String pointing to the portlet in the previous mode. The
resulting URI could be used to create a Back button or to specify and an
action on a FORM. If you wish to add a PortletAction to the URI object in
order to notify any applicable listeners, you can include the URIAction tag in
the body of the createReturnURI tags. Example 2-44 illustrates this approach.

Example 2-44 Adding a PortletAction to the PortletURI

<portletAPI:createReturnURI >
<portletAPI:URIAction name="submit" />

</portletAPI:createReturnURI>

You can also add a parameter to the PortletURI object using a similar
approach to the one used with the PortletAction.

Example 2-45 Adding a Parameter to the PortletURI and the resulting URI

<portletAPI:createReturnURI >
<portletAPI:URIParameter name="fname" value="john" />

</portletAPI:createReturnURI>

Result:

/wps/myportal/.cmd/ActionDispatcher/_pagr/104/_pa.104/113/.md/-/.piid/188/.ciid
/223/.reqid/-1/PC_188_fname/john#223

� createURI <portletAPI:createURI />

This tag returns a String pointing to the portlet in the current mode. As with
the createReturnURI tag, PortletActions and parameters can be added to the
resulting URI. Though the documentation indicates that the state can be
controlled by passing a string attribute, this functionality is not implemented.

� URIAction <portletAPI:URIAction name=”sting”/>

This tag is only used when creating a PortletURI object. Example 2-44
illustrates the use of this tag. This tag requires that a name attribute be
specified.
 Chapter 2. Portlet API 119

� URIParameter <portletAPI:URIParamter name=“string” value=“string”/>

This tag is only used when creating a PortletURI object. Example 2-45 on
page 119 illustrates the use of this tag. This tag requires that name and value
attributes be specified.

� dataAttribute <portletAPI:dataAttribute name=“string” />

This tag will retrieve from the PortletData object the attribute specified by the
name attribute. If the attribute does not exist in the PortletData, nothing is
returned. When the dataAttribute tag is used in the body of the a dataLoop
tag, it does need to specify the name of the attribute.

Example 2-46 Retrieving a single PortletData attribute

Welcome <portletAPI:dataAttribute name = "pref.nick_name" /> to your page.

� dataLoop <portletAPI:dataLoop pattern="string">

 </portletAPI:dataLoop>

This tag provides a loop through all the attributes stored in the PortletData
object. Though by default, it will iterate through all attributes, it is possible to
specify a pattern to limit the attributes it locates. Omitting the pattern attribute
will return all attributes. Example 2-47 illustrates the usage of this tag. Notice
the loop simply iterates through the collection of attributes; it does not retrieve
the value. To retrieve a PortletData value, use the dataAttribute tag.

Example 2-47 Looping through the attributes in the PortletData object

<portletAPI:dataLoop pattern="pref.*">
<portletAPI:dataAttribute/>

</portletAPI:dataLoop>

Though using an asterisk in the pattern is helpful for readability and reliability,
the pattern attribute in fact does not need to use an asterisk at all. The tag will
attempt to find the value specified by the pattern attribute anywhere in the
name of the attribute. For example, if an attribute is stored in the PortletData
with the name “pref.greeting”, the code in Example 2-48 would successfully
locate the attribute. However, it is important to note that the pattern is
case-sensitive. Therefore, the pattern “name” would not locate the attribute
“Name”.

Example 2-48 Using the Pattern attribute

<portletAPI:dataLoop pattern="eet">

� settingsAttribute <portletAPI:settingAttribute name=”string” />
120 IBM WebSphere Portal Toolkit V5

This tag provides access to the parameters set in the <config-param> blocks
in the portlet.xml’s concrete portlet section. When the dataAttribute tag is
used in the body of the settingsLoop tag, it does need to specify the name of
the attribute.

Example 2-49 Accessing the PortletSettings attributes

For support contact <portletAPI:settingsAttribute name = "author" />

� settingsLoop <portletAPI:settingsLoop pattern="string">

 </portletAPI:settingsLoop>

If several configuration parameters have been set in the portlet.xml, they can
all be retrieved with this tag. The pattern tag is optional.

Example 2-50 Looping through the PortletSettings attributes

<portletAPI:settingsLoop pattern="info.">
 <portletAPI:settingsAttribute/>

</portletAPI:settingsLoop>

If you do not include the pattern attribute or enter an empty string, it will return
all attributes in the PortletSettings object. As with the dataLoop tag, the
settingsLoop tag will attempt to locate the specified pattern anywhere in the
attribute’s name. For example, if a <config-param> were set in the portlet.xml
with a name of “info.author”, the code in Example 2-51 would successfully
retrieve the attribute. However, it is important to note that the pattern is
case-sensitive. Therefore the pattern “author” would not locate the attribute
“Author”.

Example 2-51 Using pattern to locate an attribute

<portletAPI:settingsLoop pattern="thor">

� encodeNameSpace <portletAPI:encodeNamespace value="string" />

When including JavaScript functions or other variables that will be returned to
the aggregated portal page, it is important to ensure the values are unique in
order to avoid name collisions. This tag prefixes the namespace of the portlet
to the string it is passed. This tag should be used when creating the variable
and when accessing it. Example 2-52 on page 121 illustrates the usage and
result of this tag.

Example 2-52 Encoding the name space

<portletAPI:encodeNamespace value="function1" />
 Chapter 2. Portlet API 121

Result:

PC_189_function1

� encodeURI

This tag will prefix the full URL of the portal to the passed path value. For
example, if the image yourco.jpg is in the images folder directly under the root
of the deployed portlet application, the code shown in Example 2-53 would
successfully locate the image and create a fully qualified URL.

Example 2-53 Creating afully qualified URL

<img src= <portletAPI:encodeURI path="/images/yourco.jpg" /> >

Result

http://ka0kkhc.sg246897.com/wps/WPS_PA_206/images/yourco.jpg

� if <portletAPI:if attribute= "string">

</portletAPI:if>

This tag allows you test some of the more common conditions a portlet may
face. When the attribute evaluates to true, the body of the if tag is executed.
There are several attributes you can evaluate.

– mode

– state

– locale

– mime type

– markup

– capabilities

Though the infocenter indicates that a previous mode can be evaluated as
well, the previousMode attribute is not functional. You may choose to execute
several if statements individually as shown in Example 2-54 on page 122.

Example 2-54 Executing If tags individually

<portletAPI:if state = "Normal"> state is normal </portletAPI:if>
<portletAPI:if state = "Maximized"> state is maximized </portletAPI:if>
<portletAPI:if locale = "en"> Locale is english </portletAPI:if>
<portletAPI:if markup = "html"> Markup is html </portletAPI:if><
<portletAPI:if mimetype = "text/html"> mime type is text html
</portletAPI:if>

<portletAPI:if mode="view"> Mode is View </portletAPI:if >

122 IBM WebSphere Portal Toolkit V5

You can evaluate more than one condition on a single attribute. In this case, if
any of the conditions are true, that attribute will evaluate to true.
Example 2-55 illustrates this.

Example 2-55 Evaluating multiple conditions on a single attribute

<portletAPI:if state="Normal, Maximized" >

You may also evaluate multiple attributes in the same tag as illustrated in
Example 2-56. All conditions must evaluate to true for the if tag to return true.

Example 2-56 Evaluating multiple attributes

<portletAPI:if state="Normal" mode="view" locale="en">
Displaying the normal English view

</portletAPI:if>

� log <portletAPI:log text="string" level="string"/>

This tag will write the value passed to the log file located in the
<WP-ROOT>\log directory. The text attribute contains the string you wish to
write to the log file. The level attribute indicates which level this message
should be written under. This tag does not evaluate whether the requested
level is enabled before it attempts to write the message. For more information
on writing to the log, see 2.9.12, “PortletLog object” on page 92.
Example 2-57 illustrates the usage of this tag. The valid values for the level
attribute are error, warn, debug and info. If you omit the level tag, the default
level is error.

Example 2-57 Using the log tag

<portletAPI:log text="There was an error" level="warn"/>

� text <portletAPI:text key="sting" bundle="string">

This tag was used to provide access to key-value pairs in resource bundles.

� bidi <porteltAPI:bidi locale=”string” dir=”ltr | rtl” />

Note: The text tag has been deprecated in this release. You should now
use the fmt tag from the JSP Standard Tag Library (JSTL). For details, see
Chapter 8, “National Language Support (NLS)” on page 249.
 Chapter 2. Portlet API 123

This tag is used to support text for bidirectional languages. Bidirectional
languages are read from right to left or from bottom to top. The attributes are
not required. For example, if the request indicates that the client is Hebrew or
Arabic, it will execute the tag contents if dir is set to rtl.

2.21 Resources
� For the most up-to-date information on WebSphere Portal, refer to the Portal

zone at:

http://www7b.boulder.ibm.com/wsdd/zones/portal/

� For help via a news group, visit new.software.ibm.com and locate the
ibm.software.websphere.portal-server news group.

� For other Redbooks discussing installation and administration, refer to:

http://www.redbooks.ibm.com
124 IBM WebSphere Portal Toolkit V5

http://www7b.boulder.ibm.com/wsdd/zones/portal/
http://www.redbooks.ibm.com

Chapter 3. Portal Toolkit

This chapter provides an overview of the WebSphere Portal Toolkit V5. It
includes general information about requirements and the new function provided
in this release to create and deploy portlet application projects.

This chapter discusses the following topics:

� Portal Toolkit installation

� Portlet application wizard

� Developing portlet applications

� Deploying portlets

� Adding portlets to applications

� Examples

3

© Copyright IBM Corp. 2004. All rights reserved. 125

3.1 Hardware and software requirements
Portal Toolkit V5.0 can be installed on the following operating systems:

� Windows 2000 Server + Service Pack 3

� Windows XP Professional + Service Pack 1

Portal Toolkit 5.0 supports the following in the WebSphere Studio family:

� WebSphere Studio Enterprise Developer V5.01

� WebSphere Studio Application Developer Integration Edition V5.01

� WebSphere Studio Application Developer V5.01

� WebSphere Studio Site Developer V5.01

The following databases are supported by the WebSphere Portal V5.0:

� WebSphere Portal built-in database (Cloudscape)

� IBM DB2 Enterprise Edition V7.2 with Fix Pack 7 or Fix Pack 8

� IBM DB2 Enterprise Server Edition V8.1

� Oracle V8.1.7 or V9.2

Note: The hardware and software requirements depend on the configuration of
the development environment.

Local debug configuration
The hardware and software requirements for a full portlet development
environment in a single machine are shown in Table 3-1.

Table 3-1 Development workstation with local debug:

Note: Local debugging on WebSphere Portal V4.2 is also supported.

Components Requirement

Hard disk space 1 GB plus storage for portlet development
projects

Memory 768 MB minimum, 1 GB recommended

Operating system Windows 2000 with Service Pack 3 or
Windows XP Professional with Service
Pack 1

Software Portal Toolkit V5.0
WebSphere Studio V5.01
WebSphere Portal V5.0
126 IBM WebSphere Portal Toolkit V5

To debug a personalized portlet application, the WebSphere Studio type must be
either WebSphere Studio Enterprise Developer or WebSphere Studio
Application Developer.

Remote debug configuration
The hardware and software requirements for remote test and debugging are
shown in Table 3-2 and Table 3-3 on page 139.

Table 3-2 Development machine using remote server attach

Table 3-3 Remote server

Note: You can also set up the remote server attach for WebSphere Portal V4.2
running on a remote machine.

Components Requirement

Hard disk space 2 GB plus storage for portlet development
projects

Memory 768 MB minimum, 1 GB recommended

Operating system Windows 2000 with Service Pack 3 or
Windows XP Professional with Service
Pack 1

Software Portal Toolkit V5.0 WebSphere Studio
V5.01

Components Requirement

Hard disk space 1.5 GB plus storage for portlets

Memory 768 MB minimum, 1 GB recommended

Operating system Windows 2000 with Service Pack 3

Software WebSphere Portal V5.0, including all
prerequisite software
 Chapter 3. Portal Toolkit 127

3.2 Portal Toolkit installation
IBM Portal Toolkit V5.0 provides the capabilities to create, test, debug and deploy
individual portlets and Web content. Portal Toolkit is implemented as a plug-in to
IBM WebSphere Studio Workbench. The Portal Toolkit provides the following:

� Portlet project development wizards, editing and debugging capabilities.

� Portal projects, in which you can publish your portlet application onto your
target WebSphere Portal server machine. Your portlet will appear on the
debug page of your Portal Server. Both remote and local test environment are
supported in this release.

� Portlet application samples for enterprise applications.

The Portal Toolkit installation step-by-step procedure is described in Appendix A,
“Portlet development platform sample installation” on page 501.

3.3 Development environment
Portal Toolkit V5.0 allows you to set up a portlet development environment when
installed as a plug-in in WebSphere Studio.

Development environment configurations
For WebSphere Portal V5, you can set up your development environment to
support testing and debugging portlets on the local development machine or on a
remote server.

� Local debug configuration: for debugging portlets on the local development
machine, you must use the WebSphere Portal Test Environment configuration.
In this environment, you can run and debug your portlets without having to
manually deploy them to the server. During the installation of Portal Toolkit,
the portal server is installed to the WebSphere Test Environment of
WebSphere Studio.

� Remote debug configuration: for debugging portlets on a remote server, you
must use the WebSphere Portal Remote Server Attach configuration.

Note: Portal Toolkit can be downloaded from the following Web site:

http://www.ibm.com/websphere/portal/toolkit
128 IBM WebSphere Portal Toolkit V5

http://www.ibm.com/websphere/portal/toolkit

3.4 Portlet application wizard
In this section, you will see how to build a portlet application project with the
wizard and then test it in the Test Environment. Portlets are WAR (Web Archive)
files so they need to be tested in a server.

Follow these steps to create a portlet application project:

1. Start WebSphere Studio Site Developer by clicking Start -> Programs -> IBM
WebSphere Studio -> Site Developer 5.0.

2. In the pop-up window, enter the Site Developer workspace directory. The
workspace directory is the place where the projects and servers are stored.
You can create different workspace directories for different projects.

Figure 3-1 Workspace directory

3. Once WebSphere Studio has started, switch to the Portlet Perspective by
clicking Window -> Open Perspective -> Other and selecting the Portlet
perspective.

4. To start the Portlet Application wizard, from the menu bar select File -> New
-> Portlet Application Project. The wizard can also be started by selecting
File -> New -> Other and then Portlet Development on the left side and
Portlet Application Project on the right side.

When the wizard starts, you will be presented with the window shown in
Figure 3-2 on page 130.
 Chapter 3. Portal Toolkit 129

Figure 3-2 Portlet project wizard initial window

The fields in the first window are:

– Project Name: this value will determine the name of the project created by
this wizard. The value entered here will be used throughout the remainder
of the wizard as the default value for other parameters.

– Use default: this checkbox indicates that you would like the entire
contents of the application stored in the workspace. If you would like the
contents of the application stored somewhere else on the file system,
deselect this box.

– New project location: if you deselect the Use default check box, this
field is enabled and allows you to specify where the application will be
saved.

– Create an empty portlet: this option will create a portlet entry in the
portlet deployment description, but no portlet Java classes. If you choose
this option, you will need to add portlet code.
130 IBM WebSphere Portal Toolkit V5

– Create a basic portlet: this is the default option and will create a basic
portlet in the portlet application. The portlet will extend from PortletAdapter
and contain meaningful implementations of all four do methods. The
implementations will adhere to the MVC approach. A bean will also be
created for you to encapsulate your business logic. The resulting folder
structure will appear as in Figure 3-10 on page 137.

– Web Project features

5. When you select Finish in this window, a portlet application will be created
with the default values. By selecting Next, you can modify the default values
for the J2EE Settings Page, as illustrated in Figure 3-3.

Figure 3-3 J2EE Settings Page

The fields in this window are:

– Enterprise Application project: although the Portal Server does not
recognize EAR files, the portlet application in WebSphere Studio must be
contained in an Enterprise Application. When using the Portal Server
debugging environment, all portlet applications contained in an EAR file
are deployed together. You may choose an existing EAR file or enter a
 Chapter 3. Portal Toolkit 131

new one to be created. If you enter a new one then you can choose the
location where your application will be stored.

– Context Root: this value will be used in the application.xml and Web
settings files. It will not be the context root of the portlet application when
deployed. Since the EAR is not used to deploy the portlet application into
a full server, this value is only used when the EAR is published to debug
Portal Server connected to WebSphere Studio Application Developer.

– J2EE level: the portlet application designed for WebSphere Portal V5.0
should be compliant with J2EE level 1.3 specification.

6. If you click Next, you can select dependent JARs existing within the
Enterprise Application project selected in the second window.

Figure 3-4 Module dependencies window

7. By selecting Next again, you can see the general settings of the portlet.
132 IBM WebSphere Portal Toolkit V5

Figure 3-5 Portlet settings

The fields in this window are:

– Application name: this name is used in the portlet.xml to specify the
abstract application name. This value will never be seen by the
administrator of the portlet or the end user. Generally, there is no need to
change this value.

– Portlet name: this value is used to identify the abstract portlet. This name
will never been seen by the administrator or the end user. There is
typically no need to alter this value.

– Default locale: this value adds the default locale and the language block
to the portlet.xml.

– Portlet title: this will complete the language block with the title. The
description, short title and keyword elements are included in the language
block but left empty.

– Code generation options: this check box allows you to change the
default prefix names given to the Java package which will be created in
the Java Source folder and the class name of the default source created
by the wizard.
 Chapter 3. Portal Toolkit 133

8. The next window of the wizard allows you to define event handling options,
for example action event and message event handling. Checking the Add
action listener check box or add message listener check box will cause the
portlet code generated by the wizard to implement the ActionListener or
MessageListener interface, respectively. Form samples for those events are
also provided by the wizard.

Figure 3-6 Fifth screen of the Portlet application project wizard

9. In the next window of the wizard, you can add Credential Vault handling to the
portlet. For more information about the different options of Credential Vault,
see Chapter 10, “Using the Credential Vault” on page 319.
134 IBM WebSphere Portal Toolkit V5

Figure 3-7 Credential Vault window

10.This next window allows you to add more miscellaneous options of the portlet.
By default, the html markup and portlet View mode are created.

Figure 3-8 Miscellaneous options
 Chapter 3. Portal Toolkit 135

The fields in this window are:

– Additional markups: these check boxes indicate which markup
languages you intend to support. By selecting a value, a new folder will be
created under the JSP folder containing JSPs specifically for the markup.
A basic portlet specifying all three markups will produce the folder
structure shown in Figure 3-9.

– Additional modes: these check boxes allow you to enable fragment for
Help and Configure mode for the html markup. Two new JSPs files will be
created as you can see in Figure 3-9.

Figure 3-9 Supporting additional markups

11.Select Finish and the wizard will create the necessary folder structure,
classes, JSPs and deployment descriptors.

3.5 Developing portlet applications
The wizard will create a sample skeleton you can use as a foundation for your
portlet development. Figure 3-10 on page 137 shows the result of creating a
basic portlet application with the wizard.
136 IBM WebSphere Portal Toolkit V5

Figure 3-10 Folder structure and contents of a basic portlet application

3.5.1 Portlet application contents
The generated project contains the following folders and files by default:

� Java Source: this folder contains the Java files that make up the portlet
application. By default, the wizard assumes you will create a basic portlet
following an MVC approach and creates a simple Java bean for you.
Whatever package name was specified in the fourth screen of the wizard will
be created. If a simple class name was specified without a package, the
wizard will place the portlet in a package named portlet.

� Web Content: this folder contains everything needed to deploy the
application to the portal. Essentially, this folder will become the .war file. This
folder contains three sub folders:

� Package / jsp: this folder will contain all the JSPs used by the application to
create the content of the portlet. For each markup you choose to support, a
directory will be created containing JSPs for each mode a portlet may
support.

� META-INF: this folder contains the MANIFEST.MF file.
 Chapter 3. Portal Toolkit 137

� WEB-INF: this folder contains the compiled code and deployment descriptors
used by the Portal to install the application.

– classes: if your compiled portlet class files are not packaged into a jar file,
they are included in this directory. The complete package structure is
created in this folder.

– lib: this directory contains any jar files that your application makes use of
and which are not normally available in the portal environment via the
classpath. Also, if you have packaged your compiled portlets into a jar, the
jar file is placed in this directory.

– tld: this is included to allow JSPs to compile and recognize the custom
tags available in the portal environment. This folder and file are not
required at deployment time since the tld is installed with Portal. To make
maintenance easier and more reliable, you may choose to delete this file
upon deployment.

– ibm-web-bnd.xmi: this file is not used by the portal environment but is
included with all Web applications created in WebSphere Studio.

– ibm-web-ext.xmi: this file is not used by the portal environment but is
included with all Web applications created in WebSphere Studio.

– portlet.xml: this is the deployment descriptor required by the Portal server
to install the portlet application. It must be located under the WEB-INF
folder or installation will fail.

– web.xml: this deployment descriptor is required by the application server
to install the Web application. It must be located under the WEB-INF folder
or installation will fail.

� images: this folder is not created for you by the wizard. However, if the JSPs
you create use images, it is a good practice to place them in an images folder
under the Web Content directory and access them as demonstrated in
Example 3-1.

Example 3-1 Accessing images in JSPs

<IMG src='<%=response.encodeURL("/images/database.gif")%>' />

3.5.2 Generated classes
Selecting Basic portlet in the wizard will generate some classes for you,
depending on the number of modes your portlet supports.

� Portlet: this is a simple portlet extending from PortletAdapter and
implementing the four modes a portlet may support. Each method is very
138 IBM WebSphere Portal Toolkit V5

similar to the code in Example 3-2. Of course, each do method (doView,
doEdit, doHelp, doConfigure) will need to call (include) the appropriate JSP.

Example 3-2 Sample doView method

public void doView(PortletRequest request, PortletResponse response) throws
PortletException, IOException {

// Make a View mode bean
FirstPortletViewBean viewBean = new FirstPortletViewBean();
request.setAttribute(View_BEAN, viewBean);

// Save name in the View mode bean
viewBean.setPortletName("FirstPortlet");

// Invoke the JSP to render
getPortletConfig().getContext().include(View_JSP + getJspExtension(request),
request, response);

}

� PortletSessionBean: this simple JavaBean stores portlet instance data in a
portlet session. Example 3-3 demonstrates the code in the bean.

Example 3-3 Sample PortletSessionBean

public class FirstPortletPortletSessionBean {
private String formText = "";

public void setFormText(String formText) {
 this.formText = formText;
 }

public String getFormText() {
 return this.formText;
 }
}

� PortletViewBean: this simple JavaBean passes data from the portlet to a JSP
for markup rendering in View mode. If you have defined that your portlet will
support more modes then it will create PortletEditBean, PortletConfigBean
and PortletHelpBean to render their respective modes. Figure 3-4 on
page 140 demonstrates the code in the bean.
 Chapter 3. Portal Toolkit 139

Example 3-4 Sample PortletViewBean

public class FirstPortletPortletViewBean {

 private String formActionURI = null;

public void setFormActionURI(String formActionURI) {
 this.formActionURI = formActionURI;
 }

public String getFormActionURI() {
 return this.formActionURI;
 }
}

� PortletView.jsp: several JSPs are created for you by the wizard. They are
simple in functionality. They retrieve their respective bean from the request
object and print out the name property. Example 3-5 displays the code.
Initially, all JSPs have the same functionality, but different text.

Example 3-5 JSP code

<%@ page contentType="text/html" import="java.util.*, firstportlet.*"%>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>
<portletAPI:init/>

<DIV style="margin: 6px">

<H3 style="margin-bottom: 3px">Welcome!</H3>
This is a sample view mode page. You have to edit this page to customize
it for your own use.

The source file for this page is "/Web
Content/firstportlet/jsp/html/FirstPortletPortletView.jsp".

</DIV>

3.6 Portlet.xml descriptor
To facilitate creating, organizing and updating the portlet.xml deployment
descriptor, the Portal Toolkit provides an intuitive interface. This interface is
accessed by double-clicking the portlet.xml file. For details on the elements in
the portlet.xml deployment descriptor, see 2.6.2, “portlet.xml” on page 67. Since
the interface is rather intuitive, this section will only cover some of the more
important fields and points of concern.
140 IBM WebSphere Portal Toolkit V5

The interface allows you to select the contained components and work with a
window dedicated to that element. For example, Figure 3-11 demonstrates
working with the abstract portlet application.

The wizard will create unique IDs for the abstract and concrete applications.
These values are large and entirely unmemorable. Feel free to change the value
to something more meaningful but still unique. A best practice is to create the
application name from your organization name. See 2.6.5, “UID guidelines” on
page 77.

Figure 3-11 Working with the abstract portlet application

If you want to add more portlets for deployment, select the Add portlet button.
The resulting dialog, shown in Figure 3-12 on page 142, will allow you to add
portlets already defined in the associated web.xml. You cannot add portlets
already defined in the abstract application.
 Chapter 3. Portal Toolkit 141

Figure 3-12 Add portlet

Contained in the abstract application are the abstract portlets to be deployed in
this application. Figure 3-13 on page 143 shows the interface for working with the
abstract portlets.
142 IBM WebSphere Portal Toolkit V5

Figure 3-13 Working with abstract portlets

The support section allows you to add or remove predefined markup languages.
If you need to add custom markup languages, they must be manually entered
into the portlet.xml via the Source tab.

The configuration parameters (not shown in the figure will actually enter
servlet-init parameter definitions into the corresponding servlet in the web.xml.

Each portlet.xml may only define a single abstract portlet application. However,
since it may contain any number of concrete applications, you can choose to add
new concrete portlet applications based on the abstract application. If you click
 Chapter 3. Portal Toolkit 143

the New Concrete Portlet Application button, a new, empty application will be
created. Although the ID and so forth will be created for you, you must add
portlets.

The Concrete Portlet Application interface provides the opportunity to set the
context parameters of the application. The Concrete Portlet Applications window
is shown in Figure 3-14. You are also free to change the UID if you like, but keep
in mind that it must be unique throughout the entire portal environment.

Figure 3-14 Working with Concrete Portlet Applications

The final window allows you to work with the actual concrete portlets that will
eventually be seen by end users. This window allows you to set the title that will
be seen in the title bar of the portlet. You can choose to set the contents for
language blocks by selecting Add, choosing the locale and completing the title
field. You must define at least one locale. You may also choose to complete the
keywords, description and short title fields. Figure 3-15 on page 145 displays the
interface for this final window.

The configuration parameters can be set for the portlet using settings in the text
area.
144 IBM WebSphere Portal Toolkit V5

Figure 3-15 Working with concrete portlets

At any time, you can choose to manually edit the source file by selecting the
Source tab at the bottom of the interface. When you have finished working with
the portlet.xml, press CTRL-S to save the file.

Tip: When a file has unsaved changes, an asterisk will appear beside the
name in the Title tab. Be sure to check for unsaved changes in other
perspectives as well.
 Chapter 3. Portal Toolkit 145

3.7 Deploying portlets
Once you have created, edited and configured your portlet application, you must
deploy the portlet application. To deploy your portlet application in WebSphere
Studio Site Developer, you have to configure a server and server instance and
choose the option Run on Server.

Configuring a server and server instance
1. Select File -> New -> Other. Then select Server in the left frame and Server

and Server Configuration in the right. Click Next.

Figure 3-16 Create a New Server and Server Configuration.

2. In the Create a New Server and Server Configuration window, enter the
following values and click Next:

a. Server name: WebSphere Portal

b. Folder: Servers

c. For the Server type, select WebSphere Portal version 5.0 -> Test
Environment.
146 IBM WebSphere Portal Toolkit V5

Figure 3-17 Values for a New Server and Server Configuration

3. In the next window, enter the HTTP port number. Click Finish.

Figure 3-18 Default port number

A directory called Servers is created in the Server Configuration panel and a
directory called WebSphere Portal is created under Servers.
 Chapter 3. Portal Toolkit 147

Figure 3-19 Server Configuration panel

Running the application
To publish the portlet in the target server, the EAR containing the WAR must be
associated with the Server. In the Server Configuration panel, right-click the
server name created and select Add -> DefaultEAR as shown in Figure 3-20.

Figure 3-20 Associating EAR with a server

Once the project DefaultEAR has been added to the server configuration, you
can switch back to the portlet perspective and select the portlet application you
want to test. Right-click and from the context menu select Run On Server. The
project will be published and the server will be started.

Once the server has been published and started, an internal Web browser is
used to call the Portal. Notice that you do not need to install the portlet or place it
on a page. This is done for you, as shown in Figure 3-21 on page 149
148 IBM WebSphere Portal Toolkit V5

Figure 3-21 Deployed portlet

3.8 Adding portlets to applications
Normally, your application will need to contain more than one portlet. To add
more portlets, select the portlet application where you want to add the new
portlet, right-click and select New -> Other. You will see the window shown in
Figure 3-22 on page 150; select Portlet Development in the left panel and
Portlet in the right.
 Chapter 3. Portal Toolkit 149

Figure 3-22 Creating a new portlet

Select Next and you will begin to create a new portlet; the process is the same
as when you created a new portlet application project. Now you can see the new
portlet name and the options which have been added to the portlet.xml and
web.xml descriptor files.

3.9 Examples
WebSphere Studio Site Developer provides some examples of portlet
applications. In this section, we will explain how to add an example of
Click-to-Action to your workspace and deploy it.

Open WebSphere Studio Site Developer and select File -> New -> Other; in the
left panel, select Examples -> Portlet Applications and in the right panel select
Click-to-Action Shipping demo (Cooperative Portlets).
150 IBM WebSphere Portal Toolkit V5

Figure 3-23 Creating a Click-to-Action demo

Select Next and you will see the options to define the portlet project.

Figure 3-24 Defining the Portlet Project
 Chapter 3. Portal Toolkit 151

When you click Finish, the project will be created and added to your workspace.
If the repair server configuration window is prompted, click OK.

The new project has added to the J2EE navigator window. Notice the directory
structure, which is the same as we described in Figure 3-10 on page 137. Now
there is a new folder called nls which contains properties files to support different
languages. In the example, only english and default properties files have been
created.

If there are more projects in the application.xml file of the DefaultEAR, select the
Module tab and remove them, except for the Click-to-Action war file. Save the
file. Right-click the project and select Run on Server to test the application.

Note: If you experience an error publishing to the server, go to Server
Configuration and open the server by double-clicking. Click Yes in the window
where you are prompted to update the entries of the server configuration and
save the file.
152 IBM WebSphere Portal Toolkit V5

Chapter 4. A first portlet application

This chapter provides a sample scenario for creating and testing the simplest
example of a portlet project, the Hello World example. After running this portlet,
you will modify it using JSP expressions and a JavaBean and, lastly, verify your
changes. These activities will allow you to understand the techniques used to
develop portlet projects.

4

© Copyright IBM Corp. 2004. All rights reserved. 153

4.1 Sample scenario
In this sample scenario, you will complete the following tasks:

1. Create and run a portlet project using the basic portlet type to become familiar
with how portlets work

2. Modify the portlet to use JSP expressions and verify your changes

3. Add a JavaBean to your project and verify the changes

The development workstation has already been created for you and its
components can be seen in Figure 4-1.

Figure 4-1 Development workstation

4.1.1 Creating a portlet project
You will start by creating a portlet application using WebSphere Studio Site
Developer. This sample portlet is based on the Model-View-Controller (MVC)
design pattern. The MVC methodology allows efficient relationships between the
user interface and the underlying data model. The main components of this
design pattern are:

� Model - represents the logical structure of data in a software application

� View - represents all elements in the user interface

� Controller - represents the elements connecting the Model and View
elements

Figure 4-2 on page 155 illustrates the MVC portlet application. The portlet
application also includes a Configure.jsp, but it is not shown here.

WebSphere Studio Site
Developer V5.0
Portal toolkit V5.0 for
WSAD or WSSD
Sample portlets

WebSphere Test Environment
IBM WebSphere Application
Server V5 via Portal V5
Cloudscape V5.1 via Portal V5
IBM WebSphere Portal V5
(installed via Portal toolkit)

Development Runtime

Run on Server
154 IBM WebSphere Portal Toolkit V5

Note: In this initial project, the Edit mode will not be implemented and therefore
Edit.jsp is not required.

Figure 4-2 HelloWorld portlet application

You will start by creating a portlet application using WebSphere Studio Site
Developer. This sample portlet uses the basic portlet type.

In this section, you will create a portlet application and then test the application in
the WebSphere Studio Site Developer Test Environment. The sample portlet
HelloWorld displays a Hello World message and a message indicating the
portlet current mode. Portlet modes allow a portlet to display different content to
the user, depending on the task required by the portlet. The WebSphere Portal
API provides the modes View, Help, Edit and Configure.

Creating the portlet project
Execute the following steps to create the portlet application:

1. Open the IBM WebSphere Studio Site Developer by clicking Start ->
Programs -> IBM WebSphere Studio -> Site Developer 5.0.

Note: If prompted, click OK to use the default workspace directory.

2. Select File -> New -> Project.

Control

View

ModelClient
View.jsp
Edit.jsp
Help.jsp

HelloWorld
PortletViewBean

java

HelloWorldPortlet
java

set

getselect
 Chapter 4. A first portlet application 155

Figure 4-3 Creating a new project

3. Select Portlet Development from the left panel and Portlet Application
Project from the right panel. Then click Next.
156 IBM WebSphere Portal Toolkit V5

Figure 4-4 Selecting Portlet Application Project

4. In the Define the Portlet Project window, enter HelloWorld as the Project
Name. You will be creating a basic type portlet which extends PortletAdapter
in the Portlet API. Click Next to continue.
 Chapter 4. A first portlet application 157

Figure 4-5 Defining the portlet project

5. On the J2EE Settings Page, accept the default values. This will create a
portlet project compatible with WebSphere Portal V5. Click Next.
158 IBM WebSphere Portal Toolkit V5

Figure 4-6 Creating a portlet project for WebSphere Portal V5

6. Accept the default values on the Portlet Settings Page. Click Next.
 Chapter 4. A first portlet application 159

Figure 4-7 Portlet settings window

7. Deselect the Add form sample and Add actionlistener check boxes. The
Hello World example does not need these. You will learn more about the
action listener in Chapter 5, “Action event handling” on page 181. Click Next.

Figure 4-8 Event handling
160 IBM WebSphere Portal Toolkit V5

8. Accept the default values for the Single Sign-On (SSO) page. The Hello
World application will not use this feature. You will learn more about the
Credential Vault in Chapter 10, “Using the Credential Vault” on page 319.
Click Next.

Figure 4-9 Single Sign-On window

9. Select the check boxes to Add help mode and Add configure mode to your
portlet project (see Figure 4-10). We will show you how to navigate to these
modes in this exercise. Click Finish to generate your project.

Figure 4-10 Additional markup support and additional portlet modes

Note: Configure mode is for administrators only.
 Chapter 4. A first portlet application 161

10.You will now see the HelloWorld project listed in the J2EE Navigator panel.
This panel is located in the upper left hand of the WebSphere Studio Site
Developer workbench.

Figure 4-11 The Navigator panel

11.Expand the /Java Source/helloworld/ folder to view the Java files used in this
project. Do the same to the /Web Content/helloworld/jsp/html/ folder to view
the JSPs used to render the content of your project.
162 IBM WebSphere Portal Toolkit V5

Figure 4-12 Java and JSP files

4.1.2 Configuring the Test Environment
Initially, you will need to configure the WebSphere Portal V5.0 Test Environment.
If it is not already configured, follow these steps:

1. Click the Server Configuration tab.

Figure 4-13 Server Configuration tab

2. Right-click Servers, then click New, then Server and Server Configuration.
 Chapter 4. A first portlet application 163

Figure 4-14 Creating a new server and configuration

3. A new window will be displayed to allow you to configure the new server.
Enter Test Environment as the server name. Select Test Environment under
WebSphere Portal V5.0 as the server type. Click Next to continue.

Note: You must enter a server name to continue. Also, be sure to select Test
Environment.
164 IBM WebSphere Portal Toolkit V5

Figure 4-15 Server configuration settings

4. This will bring up a window to select the HTTP port number to be used by Site
Developer. Use port 9080. Click Finish to add the Test Environment.

Figure 4-16 HTTP port selection

5. The server has been successfully added and it can now be seen in the Server
Configuration tab.
 Chapter 4. A first portlet application 165

Figure 4-17 Test Environment has been added successfully

4.1.3 Running the portlet application
To run a project in the WebSphere Studio Site Developer Test Environment, you
will need to add the portlet project to the Test Environment.

1. Add your portlet project to the Test Environment:

a. Click the Server Configuration tab (on the navigator panel).

b. Expand the Servers tree.

c. Right-click WebSphere Portal V5.0 Test Environment (or Test
Environment).

d. Click Add -> DefaultEAR to add your project to the Test Environment.
166 IBM WebSphere Portal Toolkit V5

Figure 4-18 Adding a project to the Test Environment

2. Expand the Servers tree. You will see the HelloWorld project under the
DefaultEAR project in the Test Environment.

Figure 4-19 Project shown in the Servers tree

3. Now click the J2EE Navigator tab to see your project again. Right-click
HelloWorld. Then click Run on Server. This will load your project into the
Test Environment so that you can view it in the WebSphere Studio Site
 Chapter 4. A first portlet application 167

Developer Web browser. It may take a minute or two for this process to
complete.

Figure 4-20 Running the project in the Test Environment

4. You will now see your newly created portlet project running in the Web
browser.
168 IBM WebSphere Portal Toolkit V5

Figure 4-21 Viewing the portlet project

5. Click the wrench icon in the title bar of the HelloWorld portlet. This will take
you to the Configure mode of the portlet (administration).

Figure 4-22 Configure mode

6. Similarly, clicking the ? icon will take you to the Help mode. The Help mode
window will be quickly displayed as a pop-up window and you will not be able
to see it. However, you can open an external browser instance like Internet
Explorer and then point it to the same Portal URL.

Configure mode

Help
Mode
 Chapter 4. A first portlet application 169

a. In IE, enter http://localhost:9080/wps/portal.

b. Log on to the portal with user ID wpsadmin and password wpsadmin.

c. Click the ? icon to see the help page.

Figure 4-23 Portlet help mode page

7. Click the small white triangle highlighted to return to the View mode. See
Figure 4-22 on page 169.

8. Click the minimize button (-). This will change the state of your portlet to
minimized. When a portlet is minimized, the content of the portlet is not
rendered, and only the title bar is shown.

9. Now click the maximize icon (rectangle). This will set the state of your portlet
to maximized and the entire screen will be filled with one portlet.
170 IBM WebSphere Portal Toolkit V5

Figure 4-24 Maximized state

10.Now click the restore icon in the title bar as highlighted in Figure 4-24. This
will return your portlet to its normal viewing state.

Figure 4-25 Normal viewing state

4.1.4 Updating the portlet project
In this section, you will use JSP expressions to add content to the View mode of
your portlet.
 Chapter 4. A first portlet application 171

1. Double-click HelloWorldPortletView.jsp in the /Web
Content/helloworld/jsp/html/ directory of your portlet project to open it for
editing.

Note: Make sure you edit the JSP in the /html/ directory.

Figure 4-26 Editing the view JSP

2. You will see the code for this page in the integrated JSP editor.

Figure 4-27 HelloWorldPortletView.jsp code
172 IBM WebSphere Portal Toolkit V5

3. Modify the code according to the following example. Add the text shown in
bold.

Example 4-1 HelloWorldPortletView.jsp

...
<DIV style="margin: 6px">

<H3 style="margin-bottom: 3px">Welcome!</H3>
This is a sample view mode page. You have to edit this page to customize
it for your own use.

The source file for this page is "/Web
Content/helloworld/jsp/html/HelloWorldPortletView.jsp".

Current time: <%=new java.util.Date() %>

Hostname: <%= request.getRemoteHost()%>

</DIV>

4. Save all your changes. For example click File -> Save All.

5. Right-click the HelloWorld project in the navigator panel and click Run on
Server to view your changes.

Figure 4-28 Running the updated project on the server

6. You will see your changes in the integrated Web browser.
 Chapter 4. A first portlet application 173

Figure 4-29 Viewing your updated portlet results

4.1.5 Adding a JavaBean to your portlet project
Another way to store information to be accessed and displayed by the View
mode JSP is to use a JavaBean. In this exercise, you will add a JavaBean to
your project and use it to display information when it is run. JavaBeans are a
special type of Java class that contain the business logic of the application. They
are used to temporarily store and process data and access back-end resources
such as databases.

1. The Java files used to invoke the JSPs to render content are located in the
/Java Source/helloworld/ folder of your portlet project.
174 IBM WebSphere Portal Toolkit V5

Figure 4-30 /Java Source/helloworld directory

2. To add a JavaBean, you will add a class to this project. There is an
easy-to-use wizard in WebSphere Studio Site Developer for doing this. To
start the wizard, right-click the /Java Source/helloworld/ folder and click
New -> Class.

Figure 4-31 Adding a new class to your project
 Chapter 4. A first portlet application 175

3. Give this class the name HelloWorldPortletViewBean. Click Finish to add
this file to your project.

Figure 4-32 Adding a class wizard

4. The HelloWorldPortletViewBean.java file will now appear under the /Java
Source/helloworld/ folder.
176 IBM WebSphere Portal Toolkit V5

Figure 4-33 The newly added file is shown

5. Double-click the HelloWorldPortletViewBean.java file for editing. Modify its
code according to the following example. The addition of a set and get method
allows you to store and retrieve a value from this bean.

Example 4-2 HelloWorldPortletViewBean.java

public class HelloWorldPortletViewBean {

private String myName = "";

public void setMyName (String s){
myName = s;

}

public String getMyName (){
return myName;

}

}

6. Next, you will need to modify the HelloWorldPortlet.java file.You will add code
that will use the set information in the bean you just created. This code is
inserted in the doView() method of the HelloWorldPortlet.java file.
 Chapter 4. A first portlet application 177

Example 4-3 HelloWorldPortlet.java

public class HelloWorldPortlet extends PortletAdapter {

....

....
public void doView(PortletRequest request, PortletResponse response) throws
PortletException, IOException {

//Make a bean
HelloWorldPortletViewBean viewBean = new HelloWorldPortletViewBean();

//Set your name
viewBean.setMyName("John Doe");

//Save bean in request so the view jsp can read it
request.setAttribute("HelloWorldPortletViewBean", viewBean);

 // Invoke the JSP to render

getPortletConfig().getContext().include(VIEW_JSP+getJspExtension(request),
request,

response);
}

7. Now that the bean is created and the portlet can successfully store a value in
this bean, it is necessary to modify the code to the HelloWorldPortletView.jsp
file so that the value can be extracted from the bean and shown on the
screen. Double-click the HelloWorldPortletView.jsp file and make the
following changes. The useBean tag tells the JSP file that it will be accessing
values stored in a JavaBean.

Example 4-4 HelloWorldPortletView.jsp

<jsp:useBean id="HelloWorldPortletViewBean"
class="helloworld.HelloWorldPortletViewBean" scope="request" />

<%@ page contentType="text/html" import="java.util.*, helloworld.*"%>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>

<portletAPI:init/>

<DIV style="margin: 6px">

<H3 style="margin-bottom: 3px">Welcome!</H3>
This is a sample view mode page. You have to edit this page to customize
it for your own use.

The source file for this page is "/Web
Content/helloworld/jsp/html/HelloWorldPortletView.jsp".
178 IBM WebSphere Portal Toolkit V5

Current time: <%=new java.util.Date() %>

Hostname: <%= request.getRemoteHost()%>

Updated by <%=HelloWorldPortletViewBean.getMyName()%>

</DIV>

8. Save all your changes. For example, click File -> Save All.

9. Again, right-click the HelloWorld project in the Navigator panel and click Run
on Server.

You will now see the changes you made to your project when the portal loads
in the Web Broswer.

Figure 4-34 Viewing the changes made to your portlet
 Chapter 4. A first portlet application 179

180 IBM WebSphere Portal Toolkit V5

Chapter 5. Action event handling

This chapter covers the ActionListener interface and the objects you will need to
work with when managing event handling. To receive these events, an event
listener must be implemented in the portlet class. In addition, the required
method, actionPerformed, must be added to process the action event.

5

© Copyright IBM Corp. 2004. All rights reserved. 181

5.1 Action event
When a portlet wishes to be notified that a user has performed an action, it has to
implement the ActionListener interface and a portlet action. Only the portlet
generating the event may listen for that event. There will always be only a single
listener for any particular action event. In order to notify other portlets of an
event, the listening portlet may choose to send messages. For portlet messaging
details, see Chapter 7, “Portlet messaging” on page 225.

A portlet has two phases of processing and rendering sequences. The first phase
is the action processing phase. All events are generated, delivered and
processed in this phase. Once this phase is complete, the service phase begins,
in which portlets’ outputs are rendered. Once this phase has begun, no events
can be generated without causing an exception. The service method is also
called when a portal page is refreshed.

The objects you will need to work with when managing event handling in action
events are described below.

ActionListener
The org.apache.jetspeed.portlet.event.ActionListener interface defines a single
method to be implemented as illustrated in Example 5-1.

Example 5-1 Implementing ActionListener interface

org.apache.jetspeed.portlet.event.ActionListener
public void actionPerformed(org.apache.jetspeed.portlet.event.ActionEvent
event) throws PortletException;

ActionEvent
An ActionEvent is sent by the portlet container when an HTTP request is
received that is associated with a portlet action.

The getActionString() method returns the action string that this event carries.
Simple portlet actions use a single string as portlet action which can be executed
multiple times and does not require a session.

Note: The getAction() method returns the action that this action event carries
but it is deprecated in favor of a getActionString() method.
182 IBM WebSphere Portal Toolkit V5

Example 5-2 Working with the ActionEvent.

public void actionPerformed(ActionEvent event) throws PortletException {
String actionString = event.getActionString();
PortletRequest request = event.getRequest();

}

PortletURI
The PortletURI represents a URL that can be used to create navigation between
modes. The PortletURI can be used to navigate to a previous mode, such as
from Edit to View, or to navigate back to the same mode, such as for a multi-part
form in View or Edit. There is no ability to create a PortletURI object pointing to a
mode not yet visited by the user.

PortletResponse.createURI returns a portletURI object pointing to the portlet in
its current mode. For example, if the portletURI is created in the doView mode,
the URL points to the portlet in View. The createReturnURI method returns a
PortletURI object pointing to the last mode the portlet was in. This mode is
commonly used in the doEdit method when the URI needs to point back to the
View mode. The edit.jsp would use the PortletURI to bring the user back to the
View mode when the edit or configure process has been completed.

In order for a portlet to be notified of an event, such as the user clicking a button,
the portletURI must contain an associated PortletAction. Typical PortletURI
construction and usage is shown in Example 5-3.

Example 5-3 Working with PortletURI

PortletURI uri = response.createReturnURI();
uri.addAction(“save”);
request.setAttribute("uri", uri.toString());

It is possible to add parameters to the PortletURI object. Parameters added to
the PortletURI via code or through a form are accessed in the same way via the
portlet request object. This provides a mechanism to pass default values or to
pass parameters not displayed in the form. Example 5-4 displays the code for
adding a parameter. Be aware that parameters set via the PortletURI are not
passed in the traditional HTML syntax. Example 5-4 shows how parameters are
added to the URI.
 Chapter 5. Action event handling 183

Example 5-4 Adding a parameter to the PortletURi

public void doView(PortletRequest request, PortletResponse response) throws
PortletException, IOException {

PortletURI viewURI = response.createReturnURI();
viewURI.addAction(“save”);
viewURI.addParameter("Param1", "Param1Value");
request.setAttribute("viewURI", viewURI.toString());
getPortletConfig().getContext().include("/jsp/View.jsp", request,

response);
}

Portlet.ModeModifier
When a PortletURI is created, it points to a portlet in a particular mode. When
that PortletURI is executed and if it contains a PortletAction, it will notify the
appropriate listener. If, in the actionPerformed method, you need to redirect the
user to a mode other than the one specified, the request.setModeModifier
method can be used to redirect the user to another mode. The ModeModifier can
only be set during event processing. Calling this method in doView or doEdit will
have no effect. There are three possible modes to which the user can be
redirected.

� REQUESTED: this ModeModifier will navigate the user to whatever mode
was originally set by the PortletURI. Essentially, this is the default. If the
ModeModified is changed, it cannot be changed back to REQUESTED.

� CURRENT: this ModeModifier will keep the user in the current mode. For
example, if the user tries to save some information and the actionPerformed
determines it is incorrect, setting ModeModifer to CURRENT will return the user
to the edit screen.

� PREVIOUS: this ModeModifier will return the user to the mode the user was
in prior to CURRENT regardless of previous ModeModification. Therefore,
setting ModeModifer to CURRENT in one event process will not make that mode
PREVIOUS in the next event process.

5.2 Window events
Window events are sent by the portlet container when a user modifies the
window’s state by clicking control buttons such as the maximize or minimize
buttons. To receive window events, you have to implement the WindowListener
interface at the portlet class.

Note: The WindowEvent interface is deprecated; use
PortletWindow.getWindowState() instead.
184 IBM WebSphere Portal Toolkit V5

In the next example, the doView() method checks whether the window is
maximized to set a parameter that the JSP page uses to display more
information about each entry of the agenda.

Example 5-5 Get the window state.

public void doView(PortletRequest request, PortletResponse response)
throws PortletException, IOException {

PortletWindow.State state = request.getWindow().getWindowState();
if (state == PortletWindow.State.MAXIMIZED)

request.setAttribute("detail", "1");
else

request.setAttribute("detail", "0");
.......

The JSP checks detail attribute and displays information depending on its value.
Figure 5-1 and Figure 5-2 show the results depending on the window state.

Figure 5-1 Information shown when the window is not maximized
 Chapter 5. Action event handling 185

Figure 5-2 Information shows when the window is maximized

5.3 Simple action String support
Simple portlet actions are not available in the Portlet API prior to V4.2. To check if
a simple action String is supported, you can use getMajorVersion() and
getMinorVersion() methods of the PortletContext, which return, respectively, the
major and minor version of the Portlet API that the portlet container supports.
The sample code is shown in Example 5-6.

Example 5-6 Check PortletAPI version

if ((getPortletConfig().getContext().getMajorVersion() <= 1) &&
(getPortletConfig().getContext().getMinorVersion() <= 1)) {

// simple actions not supported
} else {

// simmple actions supported
}

5.4 Sample scenario
The sample scenario illustrates the process of creating a sample portlet project
that handles action events. You will create, deploy and run this portlet
application. These exercises will allow you to understand the techniques used to
develop portlets that process action events.
186 IBM WebSphere Portal Toolkit V5

The development workstation is illustrated in Figure 5-3.

Figure 5-3 Development workstation

5.4.1 Scenario overview
Portlet events contain information about an event to which a portlet might need to
respond; to receive these events, an event listener must be implemented in the
portlet class. Three types of events are found in the Portlet API: ActionEvents,
MessageEvents and WindowEvents.

There are also two additional events, PortletSettingsAttributeEvent and
PortletApplicationSettingsAttributeEvent, which are used for notifications about
changes to the attributes of the portlet settings of a concrete portlet or concrete
portlet application.

In this scenario, you will create a sample portlet based on a Basic portlet type
using the Portlet Wizard; you will then add code to support ActionEvent handling.
To send an ActionEvent, you must associate a PortletAction with the http
request. The PortletAction is normally linked with URLs or buttons in HTML form,
providing a way to the portlet programmer to implement different processing
actions for different user selections. The sample scenario is illustrated in
Figure 5-4 .

WebSphere Studio Site
Developer V5.0
Portal toolkit V5.0 for
WSAD or WSSD
Sample portlets

WebSphere Test Environment
IBM WebSphere Application
Server V5 via Portal V5
Cloudscape V5.1 via Portal V5
IBM WebSphere Portal V5
(installed via Portal toolkit)

Development Runtime

Run on Server
 Chapter 5. Action event handling 187

Figure 5-4 Event handling scenario

The sequence flow for this scenario is as follows:

1. Initially, the doView method is executed.

2. A JSP is called to render an initial screen. A message is obtained from the
request object.

3. The Portlet View mode screen is shown in the browser window.

4. The user clicks Edit to go into Edit mode.

5. The Edit mode screen is displayed (the doEdit method is executed).

6. The user selects the desired action button (red or blue).

7. The actionPerformed method is executed to process the action. A resulting
message is stored in the request object.

8. The doView method is executed to complete the cycle and a message is
obtained from the request object.

Action
Performed

View
Mode

Edit
Mode

doView

Portal

Browser

Action Red
Action Blue

Bean

view.jsp

1

2

3

5

6

7
8

doEdit

4

edit.jsp

ActionPortlet
188 IBM WebSphere Portal Toolkit V5

5.4.2 Creating the ActionEvent portlet
In this section, you create a Basic type portlet application with the name
ActionEvent. The portlet application will be published and executed in the test
environment.

1. If WebSphere Studio Site Developer is not running, click Start -> Programs
-> IBM WebSphere Studio -> Site Developer 5.0.

2. Select File -> New -> Project.

Figure 5-5 Starting creation of Portlet project

3. Select Portlet development -> Portlet application project. Click Next.
 Chapter 5. Action event handling 189

Figure 5-6 Selection of Portlet application project

4. The Portlet wizard will load. Enter ActionEvent as the project name. Then
click Next.
190 IBM WebSphere Portal Toolkit V5

Figure 5-7 Defining the portlet project

5. You will be adding this project to the existing DefaultEAR project. Accept the
default and click Next.
 Chapter 5. Action event handling 191

Figure 5-8 J2EE settings page

6. There are no module dependencies for this project. Click Next.

Figure 5-9 Module dependencies
192 IBM WebSphere Portal Toolkit V5

7. Review and accept the default portlet settings. Click Next.

Figure 5-10 Portlet settings

8. Deselect the option for adding a form sample. In this project, you will create
your own form. However, make sure that Add action listener remains
checked. Click Next.
 Chapter 5. Action event handling 193

Figure 5-11 Event handling

9. This portlet project does not use the Credential Vault. Leave this option
unchecked and click Next.

Figure 5-12 Single Sign-On
194 IBM WebSphere Portal Toolkit V5

10.Leave the markup and mode options unchecked. This project will not require
them. Click Finish to generate your project.

Figure 5-13 Modes and markups

11.Since you are adding an additional portlet project to the DefaultEAR project,
you will receive a dialog informing you of this. Click OK.

Figure 5-14 Server configuration dialog

12.In the Portlet.xml file that is now open on your screen, expand the Portlet
Application tree and select actionevent.ActionEventPortlet.

13.Scroll down to the markups category and click the drop-down menu to enable
fragment editing for the HTML markup.

14.Click File -> Save Portlet.xml to save the changes you made to this file.
 Chapter 5. Action event handling 195

Figure 5-15 Editing portlet.xml

15.Now that the new project has been successfully added, you will want to
remove the HelloWorld project so it is not deployed when you test this project
later on in this exercise. To do this:

a. Open the application.xml in the /DefaultEAR/META INF/ folder by
double-clicking it.
196 IBM WebSphere Portal Toolkit V5

Figure 5-16 Application.xml

b. Select Module.

c. Remove all WAR modules except for this project called ActionEvent.

Figure 5-17 Removing WAR modules

d. Click File -> Save All.

e. If you receive the Repair Server Configuration dialog box, click OK.
 Chapter 5. Action event handling 197

Figure 5-18 Configuration change dialog

16.The first step is to add a JavaServer Page (JSP) to your project. Right-click
ActionEvent, then click Web Content -> actionevent -> html.

17.Click New -> JSP File.

Figure 5-19 Adding a JSP

18.The Add JSP Wizard will run. On the first screen, enter
ActionEventPortletEdit.jsp for the file name. Make sure that the Create as
JSP Fragment option is checked. Click Next.
198 IBM WebSphere Portal Toolkit V5

Figure 5-20 New JSP File Wizard

19.In the window that pops up, click the Add Tag Library button.

Figure 5-21 Add Tag Library window
 Chapter 5. Action event handling 199

20.Check the /WEB-INF/tld/portlet.tld tag library, then enter portletAPI as the
Prefix. Click OK.

Figure 5-22 Selecting a tag library to add

21.Verify that the tag library has been added to the project. It should be listed in
this window. Click Next to continue.
200 IBM WebSphere Portal Toolkit V5

Figure 5-23 Tag libraries

22.On the next screen of the New JSP File wizard, make sure that Generate a
Page Directive is unchecked; it is not needed. Click Next to continue to the
last screen of the wizard.
 Chapter 5. Action event handling 201

Figure 5-24 Page directive information

23.On the last screen of the wizard, accept the defaults and click Finish.
202 IBM WebSphere Portal Toolkit V5

Figure 5-25 Encoding and content type

24.The ActionEventPortletEdit.jsp will now open on your screen. You will now
edit this JSP and add two buttons for the user to click, corresponding to the
two actions that they will be able to select when they run this portlet.

Example 5-7 ActionEventPortletEdit.jsp (Edit mode)

<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>
<%@ page import="actionevent.*" %>

<TABLE class="Portlet" border="0">
 <TR>
 <TD>Please select an action:
 <FORM method='POST' action="<portletAPI:createReturnURI>
 <portletAPI:URIAction

name='<%=ActionEventPortlet.ACTION_RED%>'/>
 </portletAPI:createReturnURI>">
 <TABLE class="Portlet" border="0">
 <TR>
 <TD><INPUT type='submit' name='redButton' value='Red Action'></TD>
 Chapter 5. Action event handling 203

 </TR>
 </TABLE>
 </FORM>

 <FORM method='POST' action="<portletAPI:createReturnURI>
 <portletAPI:URIAction

name='<%=ActionEventPortlet.ACTION_BLUE%>'/>
 </portletAPI:createReturnURI>">
 <TABLE class="Portlet" border="0">
 <TR>
 <TD><INPUT type='submit' name='blueButton' value='Blue Action'></TD>
 </TR>
 </TABLE>
 </FORM>
 </TD>
 </TR>
</TABLE>

25.After making these updates, you will notice that the Tasks area of your screen
indicates two errors. You will also see two small red Xs to the left of the JSP
code. This is because the action values have not been defined at this time;
they will be defined at a later time. For now, click File -> Save
ActionEventPortletEdit.jsp and exit this file.

Figure 5-26 Editing ActionEventPortletEdit.jsp

26.Next, you will make changes to the ActionEventPortletView.jsp file. Open it by
double-clicking the file which is located in the /Web
Content/actionevent/jsp/html/ folder. Make the changes highlighted in the
following example.
204 IBM WebSphere Portal Toolkit V5

Example 5-8 ActionEventPortletView.jsp (View mode)

<%@ page contentType="text/html" import="java.util.*, actionevent.*"%>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>
<portletAPI:init/>

<DIV style="margin: 6px">

<H3 style="margin-bottom: 3px">Welcome!</H3>
This is a sample view mode page. You have to edit this page to customize
it for your own use.

The source file for this page is "/Web
Content/actionevent/jsp/html/ActionEventPortletView.jsp".

<% if (request.getAttribute("value") == null) { %>

No action performed, select your action in Edit Mode
<% } else { %>

<%= request.getAttribute("value") %> ...was selected !
<% } %>

</DIV>

27.Click File -> Save ActionEventPortletView.jsp to save your changes.

28.Next, you will make the changes to ActionEventPortlet.java. Open this file for
editing by navigating to the /Java Source/actionevent/ folder and
double-clicking it.
 Chapter 5. Action event handling 205

Figure 5-27 ActionEventPortlet.java

29.Several changes need to be made to ActionEventPortlet.java. Refer to the
following examples to make these:

a. First, you will add the variables ACTION_RED and ACTION_BLUE to hold the
values for each of the two possible user actions.

Example 5-9 ActionEventPortlet.java

...
public static final String VIEW_JSP =
"/actionevent/jsp/ActionEventPortletView.";

// Add strings corresponding to the actions
public static final String ACTION_RED = "ACTION.RED";
public static final String ACTION_BLUE = "ACTION.BLUE";
...

b. Next, you will edit the doView method to send content to the JSP to
render.

Example 5-10 ActionEventPortlet.java

...
public void doView(PortletRequest request, PortletResponse response) throws

PortletException,
IOException {
206 IBM WebSphere Portal Toolkit V5

// Create an instance of portlet data to store values
PortletData portData = request.getData();

// Extract value in portlet data into variable
String value = (String) portData.getAttribute("value");

// Store the extracted value in the request
request.setAttribute("value", value);

 // Invoke the JSP to render

getPortletConfig().getContext().include(VIEW_JSP+getJspExtension(request),
request, response);

}
...

c. Next, you will edit the actionPerformed method to process the action.

Example 5-11 ActionEventPortlet.java

...
public void actionPerformed(ActionEvent event) throws PortletException {

if(getPortletLog().isDebugEnabled())
getPortletLog().debug("ActionListener - actionPerformed called");

// ActionEvent handler
String actionString = event.getActionString();

// Add action string handler here

if(actionString.equalsIgnoreCase(ACTION_RED)){

// Create the string of HTML to be rendered
String value = "Action RED";

// Create a portlet request
PortletRequest request = event.getRequest();

// Create an instance of portlet data to store values
PortletData portData = request.getData();

try{
// Save value into portlet data
portData.setAttribute("value", value);
portData.store();

}
catch (AccessDeniedException ade){
}catch (IOException ioe){}

}

 Chapter 5. Action event handling 207

if(actionString.equalsIgnoreCase(ACTION_BLUE)){

// Create the string of HTML to be rendered
String value = "Action BLUE";

// Create a portlet request
PortletRequest request = event.getRequest();

// Create an instance of portlet data to store values
PortletData portData = request.getData();

try{
// Save value into portlet data
portData.setAttribute("value", value);
portData.store();

}
catch (AccessDeniedException ade){
}catch (IOException ioe){}

}
}

...

d. Finally, you will add a doEdit method that will invoke the
ActionEventPortletEdit.jsp when the user enters Edit mode. You can add
this method wherever you like, as long as it is within the
ActionEventPortlet class and not in any other method.

Example 5-12 ActionEventPortlet.java

...
// doEdit method called when user enters edit mode
public void doEdit(PortletRequest request, PortletResponse response) throws

PortletException,
IOException{

// Invoke the JSP to render
getPortletConfig().getContext().include("/actionevent/jsp/ActionEventPortle
tEdit."+getJspExtension(request), request, response);

}
...

30.Click File -> Save All. Right-click the ActionEvent project in the navigator
panel and click Run Validation. This should clean up the unresolved values
in edit JSP.
208 IBM WebSphere Portal Toolkit V5

Figure 5-28 Run validation

5.4.3 Run the ActionEvent portlet application
1. Because you have created a new portlet project, you will need to restart the

test environment to pick up these changes.

a. Click the Servers tab at the bottom of your screen.

b. Right-click WebSphere Portal v5.0 Test Environment or Test
Environment.

c. Click Restart.

Figure 5-29 Restarting the server

2. It is now time to run your project on the server. Right-click the ActionEvent
project in the navigator panel and click Run on Server using the test
environment.
 Chapter 5. Action event handling 209

Figure 5-30 Run on Server

3. If prompted, click Finish in the Server Selection window to use the test
environment to run your project.

Figure 5-31 Server selection window
210 IBM WebSphere Portal Toolkit V5

4. The portlet will display in the WebSphere Studio Site Developer integrated
Web browser. Notice that the message No action performed, select your
action in Edit Mode is displayed.

Figure 5-32 Portlet running in View mode

5. Click the icon highlighted in Figure 5-32 to enter the Edit mode. Once in Edit
mode, click the Red Action button.

Figure 5-33 Edit mode

6. You are returned to View mode and the result of your action is displayed.
 Chapter 5. Action event handling 211

Figure 5-34 View mode showing Red action

7. Return to Edit mode and select the Blue Action button.

Figure 5-35 View mode showing Blue action
212 IBM WebSphere Portal Toolkit V5

Chapter 6. Portlet debugging

WebSphere Studio provides a powerful debugger for suspending launches,
stepping through your code, and examining the contents of variables. This
chapter gives you a brief introduction to the techniques used to debug portlets
and discusses how to detect error during compile and runtime.

By the end of the chapter, you will be able to.

� Understand the value of debugging for portlet development.

� Fix compile errors using WebSphere Studio Toolkit.

� Set breakpoint and debug portlets in the Portlet perspective.

6

© Copyright IBM Corp. 2004. All rights reserved. 213

6.1 Overview
For software development, we can distinguish two different kinds of errors:

� Compile errors appear during compile and are thrown by the Java compiler. A
typical example for this type of error is an improperly typed method or class
name. This type of error can be found very easily because the compiler
checks the code and presents a meaningful message.

� There are also runtime errors, which cannot be found by the compiler; thus
they appear only during runtime. An example might be a loop stepping
through an array with a size smaller than the loop variable. These kinds of
errors are typically fixed using a debugger.

This chapter describes how to fix both types of errors using the validator and
debugger tooling in WebSphere Studio.

6.2 Sample scenario
This section provides a sample scenario to illustrate how to debug portlets using
the debug functions provided by WebSphere Studio Site Developer. You will use
the portlet used in Chapter 5, “Action event handling” on page 181 as a base for
this scenario. These activities will allow you to understand the techniques used to
debug portlets.

6.2.1 Fixing compile errors
In this section, an example is provided to illustrate the use of the Java validator to
validate Java code. An invalid character will be entered in the Java code to
introduce an error and illustrate the correction process.

Note: WebSphere Studio provides different validators for different types of
project resources, for example XML, HTML or Java files. In general, a validator is
a process which validates a certain resource when you save it. After the
validation process is finished, it displays the results of the validation in the Task
view. To customize the validation settings, select Properties from the project
context menu. In the Validation page, you can disable all or only certain
validators.

To create a compile error, proceed as follows:

1. In the J2EE Navigator, select ActionEvent -> Java Source -> actionevent
-> ActionEventPortlet.java as shown in Figure 6-1 on page 215.
Double-click the Java file; it will open in the editor in the upper right-hand
portion of the screen. If the file is already opened, scroll to the top.
214 IBM WebSphere Portal Toolkit V5

Figure 6-1 Double-click ActionEventPortlet.java to open

2. In the editor window, you should see a declarative statement:

public class ActionEventPortlet extends PortletAdapter implements
ActionListener

3. Place the letter x at the beginning of this statement to create an error. See
Figure 6-2.

Figure 6-2 Incorrect public class declaration

4. Press Ctrl-S to save this file.

5. The compilation process fails due to the error you introduced. In the Tasks
view in the lower right-hand portion of the screen, an error message appears,
as shown in Figure 6-3 on page 216.
 Chapter 6. Portlet debugging 215

Figure 6-3 Result of saving an incorrect Java file

6. Double-click the red error icon in the Tasks window. The problem area in the
code will be highlighted.

Tip: If you cannot see the whole error message in the Task view because of
its length, move over the red error symbol to the left of the Java editor. A small
help window appears with the whole error message.

7. Remove the letter x before public to return the code to its original condition.
Press Crtl-S. The code will be validated again, and the error message will
disappear from the Task view.

8. Close the editor by clicking the X on the ActionPortlet.java tab.

6.2.2 Debugging a portlet application
When developing portlets, you often have to detect programming errors. One of
the exciting features in WebSphere Studio is the integrated debugger for
detecting errors during runtime. In this sample scenario, you will set a breakpoint,
start WebSphere Portal in Debug mode and modify the value of a variable.

1. In the J2EE Navigator view, expand the ActionEvent project in the navigation
panel.
216 IBM WebSphere Portal Toolkit V5

Figure 6-4 Select ActionEventPortlet.java to open it

2. Browse to the /Java Source/actionevent/ folder and double-click
ActionEventPortlet.java to edit it.

3. The editor will open in the upper right-hand corner of the screen.

4. In this portlet class, there are five methods:

– init

– doView

– actionPerformed

– doEdit

– getJspExtension

5. In the actionPerfomed method, you will set a breakpoint by placing the cursor
on the setAttribute statement (this is the if clause that checks for
ACTION_RED). Right-click the context bar to the left of the code, then select
Add Breakpoint from the context menu as shown in Figure 6-5 on page 218.
 Chapter 6. Portlet debugging 217

Figure 6-5 Adding a breakpoint

Note: It is not necessary to highlight the entire line.

6. After setting the breakpoint, you should see a dot of two possible colors in the
context bar. If the breakpoint is blue, it is unverified, meaning that the
containing class has not yet been loaded by the Java VM.

If the breakpoint is green, it is verified, meaning that the containing class has
been loaded by the Java VM, indicating that the breakpoint has been set.

Note: This is the statement where the actionPerformed method has identified
the action and set an attribute (setAttribute) in the request object; the attribute
is to be rendered later in View mode.

7. To test this portlet, the Test Environment must be running in Debug mode.
Click Servers. If the Test Environment is started, right-click and select Stop
and wait until you see the message indicating that WebSphere Portal has
stopped.

8. Once the Test Environment is stopped, right-click ActionEvent from the
Navigator panel, then select Debug on server.
218 IBM WebSphere Portal Toolkit V5

Figure 6-6 Start the server in debug mode

9. WebSphere Studio will change to the debug perspective. It will look as shown
in Figure 6-7 on page 220.

Note: Starting WebSphere Portal in debug mode will take a few minutes.
 Chapter 6. Portlet debugging 219

Figure 6-7 Debug perspective of Portal running the ActionEvent portlet

10.When the Step-by-Step Debug window appears, select Skip and Disable
step-by-step mode, since you have already set a breakpoint, as shown in
Figure 6-8 on page 221. Click OK and wait for execution of the portlet; the
portlet will take extra time to execute in Debug mode.

Debug perspective

Portlet perspective
220 IBM WebSphere Portal Toolkit V5

Figure 6-8 Disable the step-by-step mode

11.The portlet will run in the built-in browser shown in the middle left panel (in the
Debug perspective) or the upper right panel (in the Portal perspective).

12.Now click Edit mode to select an action.

13.Select the Red Action button; remember that the breakpoint has been set in
this action path (actionPerformed method).

14.The action (Red Action) will now execute up to the breakpoint you have
previously set. When the breakpoint is reached, the Java editor displays the
code and the statement with the breakpoint is highlighted.

Figure 6-9 Debugger stops execution at the breakpoint
 Chapter 6. Portlet debugging 221

15.Place the cursor in the context bar where the breakpoint is located and
right-click to select Remove Breakpoint from the context menu. Take a
moment to examine the code before proceeding.

16.From the Debug perspective, select the Variables view.

17.Locate the variable value with a value of Action <FONT
color=\"#ff0000\">RED.

18.Select the value variable, then right-click it and select Change Variable
Value from the context menu.

Figure 6-10 Changing the variable value in the Variables view

19.Enter Action GREEN as the new value.
Press Enter.

20.Select the Debug view in the upper left. Click the Resume icon (green
triangle on the left side of the toolbar icons).
222 IBM WebSphere Portal Toolkit V5

Figure 6-11 Click the Resume icon to resume the execution of the portlet

21.The portlet application will continue its execution. Select the Web Browser
tab from the display toolbar in the middle left panel of the screen. The result of
the action will be displayed. Note that the action displayed in View mode is
now Action GREEN ...was selected ! (and not Action RED ...was selected
! as originally shown).

Figure 6-12 The ActionEvent portlet after changing a variable during debugging

Note: If you start another action in Edit mode, there will be no changes since the
breakpoint was cleared and no other changes have been made at this time.

GREEN
 Chapter 6. Portlet debugging 223

224 IBM WebSphere Portal Toolkit V5

Chapter 7. Portlet messaging

This chapter describes what portlet messaging is and the objects you will need to
work with when messaging between portlets.

� MessageListener

� MessageEvent

� DefaultPortletMessage

� PortletMessage

7

© Copyright IBM Corp. 2004. All rights reserved. 225

7.1 Portlet messaging
One of the most significant advantages of the Portlet architecture is the portlets’
ability to communicate with each other to create dynamic, interactive
applications. Portlets can use messages to share information, notify each other
of a user’s actions or simply help better manage screen real estate.

Messages can be sent to all portlets on a page, to a specific, named portlet or to
all portlets in a single portlet application. To send a message to all portlets on a
page, you must send an instance of the DefaultPortletMessage.

In order to make full use of this potential, you need to adequately architect the
entire portlet application, anticipating inter-portlet communication. Attempting to
implement effective and meaningful message after significant portlet
development will cause some difficulty and may require the entire application to
be overhauled. This is true for several reasons. For example, access to certain
storage objects, such as PortletData, is limited to certain modes. Therefore, if the
initial design of an application makes significant use of the PorltetData object,
implementing messaging later to share configuration information would require a
considerable effort. Furthermore, in order to reduce or eliminate code, action
event and message event functionality can be combined into a common method.
However, to achieve this, it is necessary to consider the information passed via
the action or message objects.

First, you must become familiar with the core objects used in the messaging
architecture.

7.2 MessageListener
The org.apache.jetspeed.portlet.event.MessageListener interface must be
implemented by the portlets you want the portal server to send messages to. The
interface defines the single method listed in Example 7-1 on page 227. Since the
portlet may be notified by more than one other portlet and therefore may receive
different types of messages, it should validate the type of message received prior
to working with the object. This is illustrated in Example 7-1 on page 227.
226 IBM WebSphere Portal Toolkit V5

Example 7-1 Implementing the MessageListener interface

public void messageReceived(MessageEvent event) throws PortletException {

 PortletMessage msg = event.getMessage();

 if(msg instanceof DefaultPortletMessage) {
 String messageText = ((DefaultPortletMessage)msg).getMessage();
 // Add DefaultPortletMessage handler here

 }

}

Be aware that when a portlet receives a message, it is not in Edit or Configure
mode and therefore faces certain restrictions. For instance, portlets do not have
write access to the PortletData object when they are not in Edit mode. Also, they
cannot adjust the attributes stored in the PortletSettings object unless they are in
configure mode. Attempts to store attributes in these object when not in the
appropriate mode result in an AccessDeniedException.

Therefore, when attempting to share configuration or settings information
between portlets, you need to choose your scope carefully or decide to persist to
an outside resource.

7.3 MessageEvent
This object is sent to registered MessageListeners by the portlet container when
a portlet executes the send method of the PortletContex object. There are two
important methods available in this object

� getMessage: returns the message object sent with this event. Since this
method returns a PortletMessage, the result must be cast to the appropriate
type as illustrated in Example 7-1.

� getRequest: returns the current PortletRequest. The request can be used to
access the PortletSession object or to store data to be used in the doView
method.

7.4 DefaultPortletMessage
This object implements the PortletMessage interface and provides the basic
functionality needed for sending string messages between portlets on the same
page regardless of the portlet application.
 Chapter 7. Portlet messaging 227

If you broadcast a DefaultPortletMessage to null, it will be sent to all portlets on
the page implementing the MessageListener interface. Example 7-2 illustrates
sending a simple broadcast message to all portlets on the same page regardless
of application affiliation.

Example 7-2 Broadcasting a message to all portlets on a page

PortletMessage msg = new DefaultPortletMessage(“Some Message”);
getPortletConfig().getContext().send(null, msg);

If you specify the portlet name, the message will be sent to all portlets and all
their instances on the same page. The portlets with that name receive the
message if they have implemented the appropriate listener. If the source and
target portlet have the same name, the message will not be sent to avoid cyclic
calls.

Example 7-3 Sending a message to a given portlet name on a page

PortletMessage msg = new DefaultPortletMessage(“Some Message”);
getPortletConfig().getContext().send(“Portlet name”, msg);

7.5 PortletMessage
This interface defines the message object that will be sent between portlets
inside the same portlet application on the same page. Since it is a flag interface,
it does not define any methods to be implemented. Therefore, you are free to
create message objects that can store a wide variety of information. Example 7-4
illustrates a simple custom message used to carry a detail information about an
entry of an agenda.

Example 7-4 Creating a custom message

import org.apache.jetspeed.portlet.*;
public class AgendaMessage implements PortletMessage {

private AgendaBean entry;

public AgendaBean getAgendaEntry() {
return entry;

Note: Since portlet messaging can be accomplished across portlets in
different applications, this is the recommended way to implement portlet
messaging.
228 IBM WebSphere Portal Toolkit V5

}
public void setAgendaEntry(AgendaBean newEntry) {

this.entry = newEntry;
}

}

If you simply need to send a string message between portlets, the
DefaultPortletMessage provides this basic functionality. It is not possible to send
a broadcast message using custom messages. Sending a custom message to
null will only send the message to portlets implementing the MessageListener
interface on the same page and deployed as part of the same portlet application.
This is illustrated in Example 7-5; a message is sent with the information of an
entry selected in other portlet in the same application.

Example 7-5 Sending a custom message

public void actionPerformed(ActionEvent event) throws PortletException {
if(getPortletLog().isDebugEnabled())

getPortletLog().debug("ActionListener - actionPerformed called");
// ActionEvent handler
String actionString = event.getActionString();
// Add action string handler here
PortletRequest request = event.getRequest();
if (actionString != null && actionString.equals(ACTION_DETAILS)) {

String opc = request.getParameter("option");
int elem = Integer.valueOf(opc).intValue();
Vector list = getSessionAgenda(request);
AgendaBean entry = (AgendaBean)list.elementAt(elem);
//send a message with this object
AgendaMessage msg = new AgendaMessage();
msg.setAgendaEntry(entry);
getPortletConfig().getContext().send(null, msg);

}
.....

If a portlet wants to receive this message, it has to implement the
messageListener interface.

Example 7-6 Receiving a custom message

public void messageReceived(MessageEvent event) throws PortletException {
 // MessageEvent handler
 PortletMessage msg = event.getMessage();
 // Add PortletMessage handler here
 if(msg instanceof AgendaMessage) {
 AgendaBean detailEntry = ((AgendaMessage)msg).getAgendaEntry();
 // Add DefaultPortletMessage handler here
 PortletRequest request = event.getRequest();
 Chapter 7. Portlet messaging 229

 request.setAttribute("detailEntry", detailEntry);
 }
 else {
 // Add general PortletMessage handler here
 }
}

Now you can see all the entries in one portlet and detailed information about an
entry you selected previously in the other portlet. Figure 7-1 shows the result
after selecting the third entry of the agenda.

Figure 7-1 Receiving a custom message with an entry of the agenda
230 IBM WebSphere Portal Toolkit V5

7.6 Sample scenario
Message events are a way for portlets to communicate with each other. This is
accomplished through the familiar event-listener model. Portlets that need to
listen for message events must implement a MessageListener interface, and
portlets that need to send message events do so within the handling of their own
Action Events, as you will see in this sample scenario. Message events can be
sent to named portlets or broadcast to all portlets on the same page. All events
are handled within the page’s event-processing phase, after which comes the
content generation phase.

For this sample scenario, the action event sample portlet application (see
Chapter 5, “Action event handling” on page 181) will be modified to include
message events so that you will see an example of how these can work together
within portlet applications.

7.6.1 Description
In this scenario, you will enhance the ActionEvent portlet application to send
messages to a new message receiver portlet as illustrated in Figure 7-2 on
page 232.
 Chapter 7. Portlet messaging 231

Figure 7-2 Message Event handling scenario

Figure 7-2 shows the flow for this scenario, as follows:

1. The actionPerformed() method in the ActionEventPortlet.java portlet will be
extended to send a broadcast message event (DefaultPortletMessage) upon
arrival of action events.

2. The MessageReceiver portlet, which will implement the MessageListener
interface, receives the message in the new messageReceived method.

3. The received message is saved in the PortletRequest object.

4. The Portal invokes the doView method which in turn invokes the JSP (select).

5. The JSP retrieves the message from the request object and displays the
message.

This scenario will be implemented using a broadcast style of message event
rather than point-to-point messaging. In addition, the DefaultPortletMessage
object will be used.

action
Performed

view
mode

edit
mode

doView

Portal

Browser

Action Red
Action Blue

Bean

JSP

1

JSP

doView

view
mode

message
Received

Request
object

MessageReceiver.javaActionEventPortlet.java

2

3

4

5

set

get
232 IBM WebSphere Portal Toolkit V5

7.6.2 Sending a message
In this section, you will update ActionEventPortlet.java to send out a broadcast
message from within its actionPerformed method. The message will be
broadcast to all portlets implementing the MessageListener interface and using
the DefaultPortletMessage object. Follow these steps:

1. If Studio is not running, start the IBM WebSphere Studio Site Developer by
clicking Start -> Programs -> IBM WebSphere Studio -> Site Developer
5.0.

2. If the Test Environment is still running in Debug mode, stop the server by
invoking Servers (make sure you switch to the portlet perspective), right-click
Test Environment (started in Debug mode) and click Stop.

3. Next, you will update the actionPerformed() method to instantiate a
DefaultPortletMessage object (the parameter value contains the message to
be included in the object) and send the message (the parameter null
indicates that this is a broadcast message). Add the highlighted code to the
actionPerformed method in ActionEventPortlet.java (located in the /Java
Source/actionevent/ folder) as illustrated in Example 7-7.

Example 7-7 Modifying implementation of actionPerformed() method

...
public void actionPerformed(ActionEvent event) throws PortletException {

if(getPortletLog().isDebugEnabled())
getPortletLog().debug("ActionListener - actionPerformed called");

// ActionEvent handler
String actionString = event.getActionString();

// Add action string handler here

if(actionString.equalsIgnoreCase(ACTION_RED)){

// Create the string of HTML to be rendered
String value = "Action RED";

// Create a portlet request
PortletRequest request = event.getRequest();

// Create an instance of portlet data to store values

Note: While the DefaultPortletMessage object allows you to send messages
to portlets in different applications, you can only send a String type message.
 Chapter 7. Portlet messaging 233

PortletData portData = request.getData();

try{
// Save value into portlet data
portData.setAttribute("value", value);
portData.store();

}
catch (AccessDeniedException ade){
}catch (IOException ioe){}

// Send a portlet message
PortletMessage message = new DefaultPortletMessage(value);
try{

this.getPortletConfig().getContext().send(null,message);
}catch (AccessDeniedException e){}

}

if(actionString.equalsIgnoreCase(ACTION_BLUE)){

// Create the string of HTML to be rendered
String value = "Action BLUE";

// Create a portlet request
PortletRequest request = event.getRequest();

// Create an instance of portlet data to store values
PortletData portData = request.getData();

try{
// Save value into portlet data
portData.setAttribute("value", value);
portData.store();

}
catch (AccessDeniedException ade){
}catch (IOException ioe){}

// Send a portlet message
PortletMessage message = new DefaultPortletMessage(value);
try{

this.getPortletConfig().getContext().send(null,message);
}catch (AccessDeniedException e){}

}
}
...

4. Save and close the ActionEventPortlet.java file.
234 IBM WebSphere Portal Toolkit V5

5. Next, you will slightly update the ActionEventPortletView.jsp page to notify
that you are now sending a message. Double-click the
ActionEventPortletView.jsp under the /Web
Content/actionevent/jsp/html/ directory.

Note: Make sure ActionEventPortletView.jsp is in the html directory.

Figure 7-3 Edit tView.jsp

6. Insert the text highlighted in Example 7-8.

Example 7-8 Adding the code to broadcast PortletMessage

<%@ page contentType="text/html" import="java.util.*, actionevent.*"%>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>

<portletAPI:init/>

<DIV style="margin: 6px">

<H3 style="margin-bottom: 3px">Welcome!</H3>
This is a sample view mode page. You have to edit this page to customize
it for your own use.

The source file for this page is "/Web
Content/actionevent/jsp/html/ActionEventPortletView.jsp".

<% if (request.getAttribute("value") == null) { %>

No action performed, select your action in Edit Mode
 Chapter 7. Portlet messaging 235

<% } else { %>
<%= request.getAttribute("value") %> ...was selected ! and this

information was broadcasted as a message.
<% } %>

</DIV>

7. Save and close the ActionEventPortletView.jsp file.

Note: At this point, you have implemented all the required logic in
ActionEventPortlet to be able to send a broadcast message from within its
actionPerformed() method.

7.6.3 Creating the target portlet
In this section, you will use a wizard to create the target portlet to receive the
message sent by ActionEventPortlet.java.

1. Click File -> New -> Other.

2. Select Portlet Development from the left column and Portlet from the right.
Click Next to continue.

Figure 7-4 Add a portlet wizard
236 IBM WebSphere Portal Toolkit V5

3. If required, select the ActionEvent project.

4. Examine and accept the default values. The wizard will add a basic portlet to
the ActionEvent project.

Figure 7-5 Adding a portlet

5. Click Next.

6. In the next window, change the portlet settings information to be relevant to
the portlet you are adding. Enter the following information:

a. Application name: MessageReceiver application

b. Portlet name: MessageReceiver portlet

c. Portlet title: MessageReceiver portlet

d. Check the Change code generation options box to enter the following
information:

i. Package prefix: messagereceiver

Important: Use lowercase for this prefix to follow naming conventions.

ii. Class prefix: MessageReceiver
 Chapter 7. Portlet messaging 237

Figure 7-6 Portlet settings

7. Click Next.

8. Uncheck the Add form sample and the Add action listener boxes. Check
the Add message listener box to add the messageReceived method. Click
Next.

Figure 7-7 Adding a message listener
238 IBM WebSphere Portal Toolkit V5

9. Do not check the Add credential vault handling box (not required in this
sample scenario). Click Next.

Figure 7-8 Credential vault handling is not required

10.Leave the options for markups and modes unchecked. Click Finish to add the
portlet to your project.

Figure 7-9 Markups and modes

11.You will now see the new portlet files in the Navigator panel.
 Chapter 7. Portlet messaging 239

Figure 7-10 Navigator panel

12.Open the MessageReceiver.java file located in the /Java
Source/messagereceiver/ folder by double-clicking it.

13.Add the following highlighted code to this file to receive the broadcast Portlet
Message in the messageReceived() method.

Note: The messageReceived () method implements the logic to receive the
PortletMessage. In this example, you only need to check for messages of
type DefaultPortletMessage, which is the type of message sent by
ActionEventPortlet. Then the message is extracted via the getMessage()
method, and you set the text of this message into a portlet request as an
attribute with name MyMessage.
240 IBM WebSphere Portal Toolkit V5

Example 7-9 MessageReceiver.java

...
public void messageReceived(MessageEvent event) throws PortletException {

 if(getPortletLog().isDebugEnabled())
 getPortletLog().debug("MessageListener - messageReceived called");
 // MessageEvent handler
 PortletMessage msg = event.getMessage();
 // Add PortletMessage handler here
 if(msg instanceof DefaultPortletMessage) {
 String messageText = ((DefaultPortletMessage)msg).getMessage();
 // Add DefaultPortletMessage handler here
 PortletRequest request = event.getRequest();

 request.setAttribute("MyMessage", messageText);
 }
 else {
 // Add general PortletMessage handler here
 }
}

...

14.When you are done, save the file and exit.

15.Now that you can receive the message, you will need to modify the
MessageReceiverView.jsp to display the message to the user. To edit this file,
open the /Web Content/messagereceiver/jsp/html/ folder and double-click the
file.

Note: The Java code inside the scriptlet checks the value of the portlet
request attribute MyMessage. If null, no message has been received yet, and
it displays that it is ready to receive a message. If not null, the message is
displayed with HTML markup. Make the following changes.

Example 7-10 MessageReceiverView.jsp file (message receiver portlet)

<%@ page contentType="text/html" import="java.util.*, messagereceiver.*"%>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>
<portletAPI:init/>

<DIV style="margin: 6px">

<H3 style="margin-bottom: 3px">Welcome!</H3>
This is a sample view mode page. You have to edit this page to customize
it for your own use.

The source file for this page is "/Web
Content/messagereceiver/jsp/html/MessageReceiverView.jsp".

<% if (request.getAttribute("MyMessage") == null) { %>
 Chapter 7. Portlet messaging 241

Ready to receive message...
<% } else { %>

Received a message:
<%= request.getAttribute("MyMessage") %>

<% } %>

</DIV>

16.When you are done, save the file and exit.

You have now implemented the code to receive and display a broadcast
portlet message to the user.

7.6.4 Running the portlet application
In this section, you will run the portlet application you have developed to send a
message from the message sender portlet (ActionEventPortlet.java) to the
message receiver portlet (MessageReceiver.java). Follow these steps:

1. Right-click the ActionEvent project and choose Run on Server. The project
will be published and then started.

Note: You will see that the internal Web browser brings up the two portlets on
your screen, as shown in Figure 7-11. Notice that the ActionEvent portlet
indicates that no action has been performed and the MessageReceiver portlet
indicates that it is ready to receive a message.

Figure 7-11 Running the messaging project in the Portal Server Test Environment
242 IBM WebSphere Portal Toolkit V5

2. Choose the Edit mode of ActionPortlet as indicated with the arrow in
Figure 7-11 on page 242. Click the Red Action button. This will both (a)
create an action that you will see the action in ActionPortlet, and (b) broadcast
a message which will be sent and shown in MessageReceiver.

Figure 7-12 Creating an action and broadcasting the message

3. You will see the value shown in both the ActionEvent portlet and the
MessageReceiver portlet.

Note: In summary, you have seen how the portlet API implements message
events which can be useful for passing data between portlets that need to be
notified of other portlet’s actions and events. This is a very useful feature of
the API when building portlet applications that contain multiple portlets.
 Chapter 7. Portlet messaging 243

Figure 7-13 Red action and Red message broadcast

4. You can enter Edit mode again and select the Blue Action button. The
results will again be displayed accordingly.

Figure 7-14 Blue action and message broadcast
244 IBM WebSphere Portal Toolkit V5

7.7 Broadcasting messages
In this section, we show how to send a broadcast message to all portlets on a
page that have implemented the MessageListener interface. For example follow
these steps:

1. Create a new portlet application project:

a. Select File -> New -> Portlet Application Project.

b. Enter Message as the project name and in the event handling page, check
only the option Add message listener.

c. Click Finish.

d. The new project has been added to DefaultEAR project; to be sure, open
the application.xml file located in /DefaultEAR/META-INF/ folder. The
Module tab should include the ActionEvent.war and Message.war. If there
are more applications, remove them.

2. Open the MessagePortlet.java file located in the /Java Source/message/
folder and modify the messageReceived() method to receive the broadcasted
message. You only need to check for a message of type
DefaultPortletMessage, which is the type of message sent by
ActionEventPortlet. Once the message is extracted, it will set the text of this
message as an attribute into the portlet request.

Example 7-11 MessagePortlet.java

public void messageReceived(MessageEvent event) throws PortletException {
 if(getPortletLog().isDebugEnabled())
 getPortletLog().debug("MessageListener - messageReceived called");
 // MessageEvent handler
 PortletMessage msg = event.getMessage();
 // Add PortletMessage handler here
 if(msg instanceof DefaultPortletMessage) {
 String messageText = ((DefaultPortletMessage)msg).getMessage();
 // Add DefaultPortletMessage handler here
 PortletRequest request = event.getRequest();
 request.setAttribute("message", messageText);
 }
 else {
 // Add general PortletMessage handler here
 }
}

3. . Modify the MessagePortletView.jsp to display the message to the user.
 Chapter 7. Portlet messaging 245

Example 7-12 MessagePortletView.jsp

.....
<H3 style="margin-bottom: 3px">New application.</H3>

<% if (request.getAttribute("message") == null) { %>

No message has been received from another portlet application.
<% } else { %>

Message received: <%= (String)request.getAttribute("message") %>
<% } %>
.....

4. Because you have added a new application, you have to restart the server.
Restart the server and then right-click the ActionEvent project or Message
project and choose Run on Server to test the application.

5. You will see that the internal Web browser brings up the tree portlets on your
screen, as shown in Figure 7-15.

Figure 7-15 Before sending a broadcast message to all portlets

6. Go to the Edit mode of the ActionEvent portlet and click the Red action
button; now both portlets (the portlet in the same application of
246 IBM WebSphere Portal Toolkit V5

ActionEventPortlet and the portlet in the other application) display the
message.

Figure 7-16 After sending a broadcast message

Sending a message to a portlet in a different application
Now modify the actionPerformed() method of ActionEventPortlet.java class to
send a message to a specific portlet in a different application project.

1. Open the ActionEventPortlet.java file located in the /Java Source/actionevent/
folder of ActionEvent project. In the actionPerformed() method, when the
action received is ACTION_RED, send the message only to the portlet called
Message portlet.
 Chapter 7. Portlet messaging 247

Example 7-13 actionPerformed() method - ActionEventPortlet.java

if(actionString.equalsIgnoreCase(ACTION_RED)){
.......
// Send a portlet message
PortletMessage message = new DefaultPortletMessage(value);
try{
this.getPortletConfig().getContext().send("Message portlet",message);
}catch (AccessDeniedException e){}

.....

2. Save the change and run the application. Now it is not necessary to restart
the server; you only have to close the browser and run the project. Go to the
Edit mode of the ActionEvent portlet and click the Red action button; now
only the portlet called Message portlet receives the message.

Figure 7-17 After sending a message to a specific portlet
248 IBM WebSphere Portal Toolkit V5

Chapter 8. National Language Support
(NLS)

In order to make a portal accessible and attractive to a wider audience, it is
necessary to provide the portal and its components in multiple languages. At a
minimum, you should consider supporting the group 1 languages listed on
Table 8-1 on page 251.

The WebSphere Portal architecture makes it easy and efficient to provide an
NLS enabled portal. The enablement can be performed during development,
deployment or runtime with the proper design decisions up front.

This chapter will guide you through several approaches to NLS enablement.

� Using resource bundles

� Translating whole resources

� NLS administration

� Working with characters

� NLS best practices

8

© Copyright IBM Corp. 2004. All rights reserved. 249

8.1 Resource bundles
A resource bundle is a simple text file that contains key-value pairs. The key is
used by a Java class to retrieve a locale-specific value. To provide support for a
new locale, you need only create a new resource bundle with the same key
names and translated values.

Example 8-1 demonstrates a base resource bundle. Example 8-2 demonstrates
the resource bundle translated for Spanish. Notice the key names do not change,
only the value is translated.

Example 8-1 NLSExample.properties resource bundle

welcome = hello
goodbye = goodbye
message = This is the NLSExample portlet

Example 8-2 NLSExample_es.properties resource bundle

welcome = hola
goodbye = adiós
message = éste es el portlet NLSExample

The file name of the resource bundle is very important. The file must of type
properties. All translated copies of the default resource bundle must include the
locale in their title. This is illustrated in Figure 8-1.

Figure 8-1 Translated resource bundles

The name is important because the Portal will locate the appropriate bundle for
you based on the locale you provide. You need only provide the base name of
250 IBM WebSphere Portal Toolkit V5

the bundle and it will append the appropriate locale. The Group 1 locales are
listed in Table 8-1.

Table 8-1 Group 1 languages

Locale Code Language

ar Arabic

cs Czech

da Danish

de German

el Greek

en English

ru Russian

sv Swedish

es Spanish

tr Turkish

fi Finnish

fr French

zh Simplified Chinese

zh_TW Traditional Chinese

hu Hungarian

it Italian

iw Hebrew

ja Japanese

ko Korean

nl Dutch

no Norwegian

pl Polish

pt Portuguese

pt_BR Brazilian Portuguese
 Chapter 8. National Language Support (NLS) 251

8.1.1 Creating resource bundles in WebSphere Studio
The resource bundles need to be created in the Java Source directory as
illustrated in Figure 8-1 on page 250. Though not required, as a matter of good
practice, you should place the files in a dedicated directory such as nls. To create
a new resource bundle in WebSphere Studio, open the navigator view in the
portlet perspective. Locate the Java Source directory of the portlet you are
enabling and right-click. From the context menu, select New -> Other.

Figure 8-2 Creating new folder.

Select Simple in the left panel and Folder in the right panel and click Next.
252 IBM WebSphere Portal Toolkit V5

Figure 8-3 Creating nls folder

Enter the name of the new folder, typically nls as shown in Figure 8-4.

Figure 8-4 Creating the nls folder in WebSphere Studio Application Developer

In the nls folder, you need to create the default properties files. Select the nls
folder and right-click. From the context menu, select New -> Other -> Simple ->
 Chapter 8. National Language Support (NLS) 253

File. Be sure the correct directory is selected and enter the name of the default
properties file as illustrated in Figure 8-5. Do not include any language codes in
the name, or include any spaces in the name of the resource bundle.

When you are done, double-click the properties file in the navigator to open the
simple text editor. Using the text editor, define your keys and the default values,
such as those shown in Figure 8-1 on page 250. Use CTRL-S to save the file.

Figure 8-5 Creating the default properties bundle

8.1.2 Translating resource bundles
Once you have defined your default resource bundle with all the keys that will be
used by the portlets and JSPs in your application, you must provide translations.
It is possible to use the copy functionality in WebSphere Studio. However, there
are several reasons you may choose not to. It is a cumbersome process in that

Tip: If you create your nls folder directly in the Java Source subdirectory,
WebSphere Studio Site Developer deletes this folder when it rebuilds the
project.
254 IBM WebSphere Portal Toolkit V5

simple CTRL-C commands are not recognized when copying whole files. Also,
renaming requires a selection from the context menu. While these may seem
trivial issues, when creating dozens of resources bundles, they can be
frustrating.

Instead, you may find it easier to work directly with the source files on the file
system. Locate the directory containing the current workspace. You can obtain
this path by right-clicking the portlet application and selecting Properties from
the context menu. The Info option will display the file system location of the
application. This is illustrated in Figure 8-6.

Figure 8-6 Locating the application on the file system

Open the directory containing the application and use the normal system
copy/paste and rename functionality to create the new resource bundles. Each
new bundle should have a unique locale appended. In practice, you may at
development time only have the default and English properties files. This same
approach can later be used to import translated files received from an outside
source.

Once you have created the bundles you want, you need to make them available
in the WebSphere Studio environment. To do this, simply select the nls folder,
right-click and select Refresh as shown in Figure 8-7 on page 256.
 Chapter 8. National Language Support (NLS) 255

Figure 8-7 Loading resource bundles into WebSphere Studio Site Developer

When you are done, the folder should appear as in Example 8-1 on page 250,
depending of course on the number of languages you choose to support.

8.1.3 Accessing resource bundles in portlets
If you are printing out content directly from the portlet, you can use the portlet API
to access the resource bundles quite easily. Most of your development will
adhere to a good MVC approach; you can use this approach for setting the title,
predefining parameters in a PortletURI or if you are providing some content via
the beginPage or endPage methods.

The resource bundle is accessed via the PortletContext object’s getText method
as displayed in Example 8-3.

Example 8-3 getText API

PortletContext.getText("Bundle Base Name", "Key", Locale)

� Bundle Base Name: the first parameter indicates the base name of the
resource bundle. The name includes the path relative to the classes directory
as shown in Example 8-4 on page 257. The name does not specify the locale
suffix or the properties file type. If the base file name cannot be found, or the
key is not present in the properties file, a PortletException will be thrown.
256 IBM WebSphere Portal Toolkit V5

� Key: this parameter maps to a key value in the properties file. If the key is not
found, a PortletException is thrown.

� Locale: this is used by the Portal to create the complete resource bundle
name. You are free to use any locale you like but to ensure the user’s locale is
returned, the code in Example 8-4 works well. The getLocale method returns
the preferred locale for the user. The Portal Server determines the locale by
first retrieving the user’s preferred language set during registration. If the
preferred language is not set, the locale is retrieved from the accept-language
header supplied by the client.

Example 8-4 Accessing resource bundles via the API

getPortletConfig().getContext().getText("nls.NLSExample", "welcome",
request.getLocale());

8.1.4 Accessing resource bundles in JSPs
When you employ a well designed MVC approach to your portlet development,
the vast majority of NLS enablement work will need to take place in the view
space. This section will guide you through providing locale-specific strings in a
JSP. Section 8.2, “Translating whole resources” on page 258 will guide you
through providing a unique JSP for each locale you choose to support.

To access resource bundles in JSP, you need to include the JSP Standard Tag
Library. Right-click in your portlet application, select Properties and then Web. In
Available Web project features, check the JSP Standard Tag Library and click
OK. Your JSP files can access resource bundles in two ways, as shown in the
following examples.

Example 8-5 Accessing resource bundles in a portlet JSP

<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt" %>
<fmt:setBundle basename="nls.NLSExample"/>
<fmt:message key="message"/>

Example 8-6 Accessing resource bundles in a portlet JSP

<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt" %>
<fmt:bundle basename="nls.NLSExample">
<fmt:message key="message"/>
</fmt:bundle>

As with specifying bundles in portlet code, the bundle name here must include
the package name relative to the classes directory.
 Chapter 8. National Language Support (NLS) 257

If the key cannot be located in the properties file, you will see the key written
between question marks.

Figure 8-8 Key not found in a properties file

8.2 Translating whole resources
If the entirety of your JSP requires translation, you may find programmatically
accessing resource bundles impractical. In practice, you will find that help JSPs,
for example, contain little or no code and as such can be completely translated
without incurring the runtime expense of NLS enablement.

WebSphere Portal facilitates this approach by allowing you to organize
translated files in a predictable directory structure. Portal will then take
responsibility for locating the correct file at runtime. This facility is also available
for multiple markup support. Your directory structure should reflect Figure 8-9 on
page 259.
258 IBM WebSphere Portal Toolkit V5

Figure 8-9 NLS directory structure

Each locale you support must have its own folder and contain whatever fully
translated resources you want the portal to serve. If the portal cannot find the
requested resource in the appropriate directory, it will attempt to locate the
default by searching one level higher. If no default resource is located up the
directory tree, an exception is thrown.

To retrieve the translated resource, simply use the include method of the
PortletContext object. Do not specify the NLS directory structure. This code is
illustrated in Example 8-9. You should notice that there is in fact nothing unique
about calling a translated JSP and calling the simple JSPs. All the work is done
by the portal.

Example 8-7 Including translated JSP files

getPortletConfig().getContext().include("/messagereceiver/jsp/MessageReceiverVi
ew.jsp", request, response);
 Chapter 8. National Language Support (NLS) 259

8.3 NLS administration
Certain aspects of NLS enablement can be configured via the Administration
windowin WebSphere Portal. While this section will guide you through these
features, bear in mind that the administration does not replace the developer’s
responsibility for designing and incorporating NLS enablement.

8.3.1 Portlet NLS administration
The Manage Portlets page allows you to set locale-specific titles for portlets. You
cannot add support for new locales. Only locales specified by the portlet.xml
deployment descriptor can be adjusted. Furthermore, you cannot change the
default locale specified by the portlet.xml. To access the titles, log in as the
administrator and navigate to the Manage Portlets page in the Administration
window, as illustrated in Figure 8-10.

Figure 8-10 Working with portlets

Locate the portlet you want to work with and select the Modify parameters link.
By default, the resulting window, shown in Figure 8-11 on page 261, will only
display the Group 1 languages indicated for support by the portlet.xml. To add
new languages in the administration space, you need to add that language to the
file language.properties and to the language table in the Web Member Services
database if you use the Member Subsystem. Then you have to insert resource
bundles, with an appropriate name, in the directory located at
/wp_root/shared/nls. The directory where you have to store the JSP will depend
on how the portal locates your JSP for rendering its content.
260 IBM WebSphere Portal Toolkit V5

Figure 8-11 Supported languages of the selected portlet

To change the title specified by the portlet.xml, select the portlet’s associated
radio button and select the Set title for selected locale link as shown in
Figure 8-11. Enter the new title in the resulting window shown in Figure 8-12.

Figure 8-12 Setting the locale-specific title

You may have noticed that only the title can be adjusted via the Administration
window.

Again, it is important to stress that by default, the administrator will only be able
to set the title for Group 1 locales explicitly specified in the portlet.xml. To add
support for a locale in the portlet.xml in WebSphere Studio, open the portlet.xml
editor and select the concrete portlet you wish to work with. This is illustrated in
Figure 8-13 on page 262.
 Chapter 8. National Language Support (NLS) 261

Figure 8-13 Adding locale support to a concrete portlet

To add a new locale, select the Add button in the locale section as shown in
Figure 8-13. In the resulting dialog, you can select the locale from the drop-down
list or enter the country code if you know it. This is illustrated in Figure 8-14. If the
locale you choose is already defined in the portlet.xml, you will be prevented from
adding it again.

Figure 8-14 Specifying a new locale

All portlets must have a default language specified in the deployment description,
otherwise the portlet cannot be installed.
262 IBM WebSphere Portal Toolkit V5

8.3.2 Portal NLS administration
While it is the developer’s responsibility to carefully consider the NLS support
portlet applications will bring, the administrator is responsible for ensuring the
Portal itself properly supports multiple languages.

Some of the basic settings for NLS enablement include setting page, theme and
skin names properly, configuring or maintaining property files and incorporating
support for new languages.

8.3.3 Setting NLS titles
To set locale-specific titles for a page, navigate to Administration -> Portal
User Interface -> Manage Pages, then locate your page and click the Edit Page
Properties icon. Display the advanced options as illustrated in Example 8-15.

Figure 8-15 Editing page properties
 Chapter 8. National Language Support (NLS) 263

In the resulting window, select the Edit icon of the language for which you want
to set a title and/or description. Enter the new title and/or description and select
OK.

Figure 8-16 Using unicode values

Now you will see the new title and description in the list.

If you need to enter characters that you cannot generate with your keyboard,
such as Japanese characters, written accents, etc., you will need to discover the
unicode values and enter them using entity references as illustrated in
Figure 8-16. The four character unicode values can be found at
http://www.unicode.org/charts. The entity reference syntax is � where
0000 represents the unicode character you want to display. If you have access to
the interpreted unicode character, you can copy and paste it in the text field as
well.\

8.3.4 Adjusting Portal resource bundles
There are several resource bundles that are used by the portal server to present
locale-specific messages. Be aware that changes to a property file are not
recognized until the portal is restarted. All the properties files listed below can be
found in /wp_root/shared/app/nls.

� button.properties

� commonAdmin.properties

� problem.properties

� field.properties

� engine.properties

� CSRes.properties (not available in Enable)
264 IBM WebSphere Portal Toolkit V5

� titlebar.properties

� registration.properties

� LocaleNames.properties

� pbruntime.properties

� virtual_principals.properties

8.4 Working with characters
Typically, it will not be the developer’s responsibility to provide the translations
necessary to provide NLS enablement. Once your base resource bundles and/or
static files have been created, the translation process should be completed by a
language expert. However, during development, you may need to include some
characters that cannot be created by the typical English keyboard. To include
these characters, make use of the unicode mappings. Refer to
http://www.unicode.org for the current character mappings.

Example 8-8 Using unicode in NLSExample_es.properties resource bundle

welcome = hola
goodbye = adi\u00F3s
message = \u00E9ste es el portlet NLSExample

8.5 NLS best practices
� Make the decision to use the API or translated resources early. This decision

will play a large role in the design and development of your View components.

� Do not commit entirely to one approach. For example, it may make sense to
translate your View JSPs at runtime and have your Help JSPs fully translated
since they are simple text.

� Plan for NLS enablement from the beginning. Though you may not have
access to the translated values during development, building the default
resource bundle as you iterate through the development will make future NLS
enablement much easier and virtually painless.

� Be conscious of character-locale ratios. If you are developing in English, be
aware that translations into other languages such as German or Spanish may
require more screen real estate. A number of API facilities are available for
you to determine the current locale.
 Chapter 8. National Language Support (NLS) 265

� Do not rely on an administration implementation of NLS. The NLS
enablement facility for portlets is limited and there is no guarantee or check
system. To implement dynamic NLS titles, consider implementing the
PortletTitleListener interface and generating the title content via JSP or HTML
files.

� Leave translations to language experts. With proper design, planning and
construction of your portlet applications, there should be little to no effort
involved in incorporating support for new languages.

8.6 Sample scenario: NLS bundles
In this sample scenario, NLS bundles will be created to support multiple
languages. Once you have done this using WebSphere Studio, the JSP that
delivers markup content in View mode for portlet MessageReceiver will be
enhanced to access the NLS bundles.

The Portlet Messaging application sample scenario from Chapter 7, “Portlet
messaging” on page 225 will be used as a base application to add NLS support.
The scenario is illustrated in Figure 8-17 on page 267.
266 IBM WebSphere Portal Toolkit V5

Figure 8-17 National Language Support (NLS) scenario

The resource bundle is accessed via the PortletContext object’s getText method
and you will need to provide the following:

� Bundle Base Name: the first parameter indicates the base name of the
resource bundle. The name includes the path relative to the classes directory.
The name does not specify the locale suffix or the properties file type. If the
base file name cannot be found, or the key is not present in the properties file,
a PortletException is thrown.

� Key: this parameter maps to a key value in the properties file. If the key is not
found, a PortletException is thrown.

In addition, the locale is used by the Portal to select the proper language bundle.
However, you cannot set this value when invoking NLS bundles from JSPs.

action
Performed

view
mode

edit
mode

doView

Portal

Browser
Action Red
Action Blue

Bean

JSP

view
mode

receive
Message

Request
object

MessageReceiver.javaActionEventPortlet.java

set

get JSP with
NLS

bundle
access

doView

NLS bundles

English
Spanish
Portuguese
 Chapter 8. National Language Support (NLS) 267

8.6.1 NLS bundles
In this section, you will use the sample scenario from Chapter 7, “Portlet
messaging” on page 225. The portlet application will be enhanced to support
NLS. Follow these steps:

1. If needed, start the IBM WebSphere Studio Site Developer. Click Start ->
Programs -> IBM WebSphere Studio -> Site Developer 5.0.

2. You will create a new folder with the name nls to store the resource bundles.
The following resource bundles will be imported into this folder:

– NLSLab.properties (default)

– NLSLab_en.properties (English)

– NLSLab_es.properties (Spanish)

– NLSLab_pt_BR.properties (Brazilian Portuguese)

3. Select your ActionEvent/Java Source folder.

Figure 8-18 Select Java source to create an nls folder

4. Select File -> New -> Folder.
268 IBM WebSphere Portal Toolkit V5

Figure 8-19 Select a new folder

5. Enter nls for the Folder name field then click Finish.
 Chapter 8. National Language Support (NLS) 269

Figure 8-20 Enter a name for the new folder (nls)

6. Your directory structure should now look as shown in Figure 8-21.

Figure 8-21 New nls folder
270 IBM WebSphere Portal Toolkit V5

7. Select the new ActionEvent/Java Source/nls folder.

8. Click File -> Import.

9. Select File System and click Next. Browse to C:\LabFiles\NLSLab\Bundles.

Note: The sample scenario included in this chapter requires that you
download the sample code available as additional materials. See Appendix C,
“Additional material” on page 543.

10.Select all four properties files and click Finish to import.

Figure 8-22 Importing the bundles

11.View the files in the nls folder by double-clicking them. Notice how they are
structured.

Example 8-9 NLSLab.properties (default)

readystatus=Ready to receive message
receivedstatus=Received a message
viewmode=Operating in View mode
redColor=RED
blueColor=BLUE
 Chapter 8. National Language Support (NLS) 271

Example 8-10 NLSLab_en.properties (English)

readystatus=Ready to receive message
receivedstatus=Received a message
viewmode=Operating in View mode
redColor=RED
blueColor=BLUE

Example 8-11 NLSLab_es.properties (Spanish)

readystatus=Listo para recibir mensaje
receivedstatus=Mensaje recibido
viewmode=Operando en modo de visualizacion
redColor=ROJO
blueColor=AZUL

Example 8-12 NLSLab_pt_BR.properties (Brazilian Portuguese)

readystatus=Pronto para receber mensagem
receivedstatus=Mensagem recebida
viewmode=Operando em modo de Visualização
redColor=VERMELHA
blueColor=AZUL

8.6.2 Accessing NLS bundles from JSPs
In this section, you will update the JSP MessageReceiverView.jsp to display NLS
content based on the locale value (English, Spanish or Brazilian Portuguese). In
general, modifications to the JSPs are necessary to allow them to display
language-specific content. Follow these steps:

1. First you have to include the JSP standard tag library in your project as
follows:

a. Right-click the ActionEvent project.

b. Select Properties.

c. Select the Web option from the list and in the available Web project
features.

d. Check the Include the JSP Standard Tag library box.

e. Click OK.
272 IBM WebSphere Portal Toolkit V5

Figure 8-23 Include JSP Standard Tag Library

2. Open the MessageReceiverView.jsp file in WebSphere Studio Site Developer.
This file is located in the /Web Content/messagereceiver/jsp/html/ directory.
 Chapter 8. National Language Support (NLS) 273

Figure 8-24 MessageReceiverView.jsp

3. In this JSP, you have the following text with static information:

– Ready to receive message

– Received a message

4. Add logic to display messages in the proper language. Updates to this JSP
are highlighted in bold in Example 8-13.

Example 8-13 MessageReceiverView.jsp supporting NLS with bundles

<%@ page contentType="text/html" import="java.util.*, messagereceiver.*"%>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>
<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt" %>
<portletAPI:init/>

<DIV style="margin: 6px">

<H3 style="margin-bottom: 3px">Welcome!</H3>
This is a sample view mode page. You have to edit this page to customize
it for your own use.

The source file for this page is "/Web
Content/messagereceiver/jsp/html/MessageReceiverView.jsp".

<fmt:setBundle basename="nls.NLSLab"/>

274 IBM WebSphere Portal Toolkit V5

<% if (request.getAttribute("MyMessage") == null) { %>
<fmt:message key="readystatus"/> ...

<% } else { %>
<fmt:message key="receivedstatus"/>:
<%= request.getAttribute("MyMessage") %>

<% } %>

</DIV>

5. Select File -> Save All to save all your changes to the project.

8.6.3 Running the NLS scenario
In this section, you will run the portlet application messaging scenario now
enabled for NLS.

1. Stop the Test Environment server so that next time, the new properties files
will be used.

2. Right-click ActionEvent and select Run on Server.

Figure 8-25 Running the NLS project

3. The message receiver portlet will now display its markup using NLS.
 Chapter 8. National Language Support (NLS) 275

Figure 8-26 ActionEvent Portlet with no preferred language selected

4. Select a new locale value by clicking the Edit my profile icon to select a
preferred language, as shown in Figure 8-27.

Figure 8-27 Edit my profile icon

For example, select Brazilian Portuguese as the preferred language for the
wpsadmin user (default user for portlet development environment). It may be
necessary to enter a first and last name before you can continue. Enter wps
for both if this happens.
276 IBM WebSphere Portal Toolkit V5

Figure 8-28 User profile

5. Click Continue. You will need to click Continue again to confirm your change
and view the information displayed in the MessageReceiver portlet in
Brazilian Portuguese.

Note: You should also notice that when the language locale changes, the text
of the WebSphere Portal menu at the top of the page also changes.
 Chapter 8. National Language Support (NLS) 277

Figure 8-29 ActionEvent Portlet in View mode after action selected

6. Edit the user profile again and try Spanish as the new locale.
278 IBM WebSphere Portal Toolkit V5

Figure 8-30 Selecting Spanish

The content you specified will display in Spanish.

Figure 8-31 Content in Spanish
 Chapter 8. National Language Support (NLS) 279

7. Edit the user profile again and try French (Frances in Spanish) as the new
locale.

Figure 8-32 Selecting French as the language

8. Since French has not been enabled, Portal will use the default bundle. Your
message will display in English (as is specified in the default bundle), but the
WebSphere Portal menu at the top will display in French.

Figure 8-33 In French
280 IBM WebSphere Portal Toolkit V5

9. To change your language back to English before you exit, click Edit my
profile and select English (Anglais in French) as your language.

Figure 8-34 Back to English

8.6.4 Accessing NLS bundles in Java portlets
In this section, you will update the ActionEventPortlet.java file to display NLS
content based on the locale value (English, Spanish or Brazilian Portuguese).
You also need to add the new key-value pairs in the associated property file.

1. Open the file ActionEventPortlet.java for editing by double-clicking it. Next,
you will update the code to display the color in the preferred language
selected by the user. The resource bundle is accessed via the PortletContext
object’s getText() method. This method receives three parameters:

a. Base name of the resource bundle, including the path relative to the
classes directory and without the locale suffix or the properties file type.

b. Key specified in the properties file.

c. Locale.

2. Make the following highlighted updates in the actionPerformed() method.

Example 8-14 ActionEventPortlet.java

......
import java.io.IOException;
import java.util.Locale;

......
 Chapter 8. National Language Support (NLS) 281

public void actionPerformed(ActionEvent event) throws PortletException {
if(getPortletLog().isDebugEnabled())

getPortletLog().debug("ActionListener - actionPerformed called");
// ActionEvent handler
String actionString = event.getActionString();

//get the preferred locale for the user
Locale loc = event.getRequest().getLocale();

// Add action string handler here
if (actionString.equalsIgnoreCase(ACTION_RED)) {

//access the resource bundle via the PortletContext object's getText
method

String red = getPortletConfig().getContext().getText("nls.NLSLab",
"redColor", loc);

//create the string of HTML to be rendered
String value = "Action " + red + "";

//create a portlet request
PortletRequest request = event.getRequest();
........................

if (actionString.equalsIgnoreCase(ACTION_BLUE)) {
//access the resource bundle via the PortletContext object's getText

method
String blue = getPortletConfig().getContext().getText("nls.NLSLab",

"blueColor", loc);

//create the string of HTML to be rendered
String value = "Action " + blue + "";

//create a portlet request
PortletRequest request = event.getRequest();

.......

3. Open the resource bundles located in the Java Source/nls folder and make
sure the following key-value pairs required for this scenario have been
included in the properties files.

Example 8-15 NLSLab.properties (default)

redColor=RED
blueColor=BLUE
282 IBM WebSphere Portal Toolkit V5

Example 8-16 NLSLab_en.properties (English)

redColor=RED
blueColor=BLUE

Example 8-17 NLSLab_es.properties (Spanish)

redColor=ROJO
blueColor=AZUL

Example 8-18 NLSLab_pt_BR.properties (Brazilian Portuguese)

redColor=VERMELHA
blueColor=AZUL

4. Select File -> Save All to save all your changes to the project.

5. Close the browser.

6. Click Run on Server to test your changes.

7. Click Edit my profile to change the preferred languages and execute the
application again to check that portlets display the word BLUE or RED in the
language you have selected.

Note: For simplicity, not all text in this sample scenario has been enabled for
NLS.

8.7 Sample scenario: translating whole resources
Another way to accomplish internationalization is by translating and maintaining
separate JSPs within a predictable directory structure. The Portal will take
responsability for locating the correct file at runtime, depending on the preferred
language selected by the user.
 Chapter 8. National Language Support (NLS) 283

Figure 8-35 Sample scenario

1. Open the Web Content/messagereceiver/jsp/html/MessageReceiverView.jsp
page to delete fmt tags and return to static information. Your code should look
as shown in Example 8-19.

Example 8-19 MessageReceiverView.jsp

<%@ page contentType="text/html" import="java.util.*, messagereceiver.*"%>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>
<portletAPI:init/>

<DIV style="margin: 6px">

<H3 style="margin-bottom: 3px">Welcome!</H3>
This is a sample view mode page. You have to edit this page to customize
it for your own use.

The source file for this page is "/Web
Content/messagereceiver/jsp/html/MessageReceiverView.jsp".

<% if (request.getAttribute("MyMessage") == null) { %>

Ready to receive message ...
<% } else { %>

action
Performed

view
mode

edit
mode

doView

Portal

Browser
Action Red
Action Blue

Bean

JSP

view
mode

receive
Message

Request
object

MessageReceiver.javaActionEventPortlet.java

set

get
JSP
(en)

doView

html

English
Spanish
Portuguese

JSP
(es)

JSP
(pt)
284 IBM WebSphere Portal Toolkit V5

Received a message:
<%= request.getAttribute("MyMessage") %>

<% } %>

</DIV>

2. Select your Web Content/messagereceiver/jsp/html folder, right-click it and
select New -> Folder. Type en for the Folder name field and click Finish.

3. Right-click
Web Content/messagereceiver/jsp/html/MessageReceiverView.jsp and
select Copy.

Figure 8-36 Copy a JSP page

4. Now select the Web Content/messagereceiver/jsp/html/en folder,
right-click it and select Paste.
 Chapter 8. National Language Support (NLS) 285

Figure 8-37 Paste a JSP page

5. Open the page Web
Content/messagereceiver/jsp/html/en/MessageReceiverView.jsp to update
the text indicating the location of the source file page. This is not required but
it is recommended for clarity.
286 IBM WebSphere Portal Toolkit V5

Example 8-20 MessageReceiverView.jsp (English)

<%@ page contentType="text/html" import="java.util.*, messagereceiver.*"%>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>
<portletAPI:init/>

<DIV style="margin: 6px">

<H3 style="margin-bottom: 3px">Welcome!</H3>
This is a sample view mode page. You have to edit this page to customize
it for your own use.

The source file for this page is "/Web
Content/messagereceiver/jsp/html/en/MessageReceiverView.jsp".

<% if (request.getAttribute("MyMessage") == null) { %>

Ready to receive message ...
<% } else { %>

Received a message:
<%= request.getAttribute("MyMessage") %>

<% } %>

</DIV>

6. Optionally, repeat the steps to create the folders and JSPs for other
languages such as Spanish (es) and Brazilian Portuguese (pt_BR). Your
directory structure should be as illustrated in Figure 8-38 on page 288.
 Chapter 8. National Language Support (NLS) 287

Figure 8-38 Directory structure

7. Modify the JSP pages to display a message in the proper language. Also
change the directory of the source file pages. For example, create a folder
with a JSP for Spanish (es).

Example 8-21 MessageReceiverView.jsp (Spanish)

<%@ page contentType="text/html" import="java.util.*, messagereceiver.*"%>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>
<portletAPI:init/>

<DIV style="margin: 6px">

<H3 style="margin-bottom: 3px">Welcome!</H3>
This is a sample view mode page. You have to edit this page to customize
it for your own use.

The source file for this page is "/Web
Content/messagereceiver/jsp/html/es/MessageReceiverView.jsp".

<% if (request.getAttribute("MyMessage") == null) { %>

Listo para recibir mensajes ...
<% } else { %>

Mensaje recibido:
288 IBM WebSphere Portal Toolkit V5

<%= request.getAttribute("MyMessage") %>
<% } %>

</DIV>

Example 8-22 MessageReceiverView.jsp (Br Portuguese)

<%@ page contentType="text/html" import="java.util.*, messagereceiver.*"%>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>
<portletAPI:init/>

<DIV style="margin: 6px">

<H3 style="margin-bottom: 3px">Welcome!</H3>
This is a sample view mode page. You have to edit this page to customize
it for your own use.

The source file for this page is "/Web
Content/messagereceiver/jsp/html/pt_BR/MessageReceiverView.jsp".

<% if (request.getAttribute("MyMessage") == null) { %>

Pronto para receber mensagem ...
<% } else { %>

Mensagem recebida:
<%= request.getAttribute("MyMessage") %>

<% } %>

</DIV>

8. Run the scenario (click Run on Server) and verify your results in multiple
languages.

9. Change the locale in the user profile as before and try other supported
languages.
 Chapter 8. National Language Support (NLS) 289

290 IBM WebSphere Portal Toolkit V5

Chapter 9. Accessing Web Services

This chapter provides an overview and a sample scenario for creating a sample
portlet project that will work as a Web Service client to interact with a Web
Service. The Web Service client portlet is created using the wizard provided by
the Portal Toolkit. The sample scenario in this chapter will allow you to
understand the techniques used to develop portlets that retrieve information
using Web Services.

9

Note: The sample scenario included in this chapter requires that Web
Services be available. You can download the sample code available as
additional materials. See Appendix C, “Additional material” on page 543.
© Copyright IBM Corp. 2004. All rights reserved. 291

9.1 Overview
In this section, we show the most important steps required to develop a Web
Service client portlet accessing a local or remote Web Service. In most cases,
the following tasks will be executed:

1. Develop a sample Web Service from a JavaBean. This Web Service will be
used to test and run the Web Service client portlet. The following tasks are
required:

a. Create a sample Web project and import an existing JavaBean class.

b. Using the available wizards in WebSphere Studio Site Developer,
transform this JavaBean into a Web Service so it can be accessed from
portlet applications.

2. Using the wizards provided by WebSphere Studio Site Developer, create a
Web Services client portlet project to access the sample Web Service.

The scenario illustrated in Figure 9-1 shows how portlet applications can be
easily integrated with existent Web Services without the need to write extra code.

Figure 9-1 Web Services client portlet scenario

The development workstation used to create the sample application is illustrated
in Figure 9-2 on page 293.

WebSphere Studio
Site Developer

WebSphere Test
Environment with

Portal

Web Service
Client
Portlet

WebSphere Test
Environment

Express

Prime
Generator

Web Service

Operational System

SOAP
&

HTTP
292 IBM WebSphere Portal Toolkit V5

Figure 9-2 Development workstation

9.2 A simple Web Service project
The project will be created using the Web Project wizard. In this section, you
create a Web project with the name PrimesWebService. You will import a
JavaBean that generates prime numbers into this project. The Web project will
also be published and executed in a WebSphere Test Environment Express.

1. If not already running, start the IBM WebSphere Studio Site Developer; click
Start -> Programs -> IBM WebSphere Studio -> Site Developer 5.0.

2. Select File -> New -> Other.

Figure 9-3 New project creation

WebSphere Studio Site
Developer V5.0
Portal toolkit V5.0 for
WSAD or WSSD
Sample portlets

WebSphere Test Environment
IBM WebSphere Application
Server V5 via Portal V5
Cloudscape V5.1 via Portal V5
IBM WebSphere Portal V5
(installed via Portal toolkit)

Development Runtime

Run on Server
 Chapter 9. Accessing Web Services 293

3. Select Web -> Web Project and click Next.

Figure 9-4 Selection of Web Project

4. Enter PrimesWebService for the Project name. Click Next.
294 IBM WebSphere Portal Toolkit V5

Figure 9-5 New Project wizard

5. Select New for the Enterprise application project and enter
PrimesWebServiceEAR (was DefaultEAR) in the New project name field. Click
Finish.
 Chapter 9. Accessing Web Services 295

Figure 9-6 New Project wizard

6. A class file is provided for this sample scenario (Prime.java); follow these
steps to import the Java file:

a. Import the file by selecting File -> Import, select File system and click
Next.
296 IBM WebSphere Portal Toolkit V5

Figure 9-7 Importing a file

b. In the Import File system window, enter the following information:

i. Directory: browse to C:\LabFiles\WebServicesClient\Java Source,
then select Primes.java.

Note: You can also download the sample code available as additional
materials. See Appendix C, “Additional material” on page 543.

ii. For the destination, browse to the folder: PrimesWebService/Java
Source. Click Finish.
 Chapter 9. Accessing Web Services 297

Figure 9-8 Importing the provided Java file

9.2.1 A sample Web Service
In this section of the sample scenario, you will review the Primes.java code. For
example, to view the source code to Primes.java, double-click the file name. This
file is located in the /Java Source/ folder.

� The only important method for you in this code is the getPrime() method. This
method receive a number of digits and returns a prime number with the
specified length of digits.

� When executing this method, try generating prime numbers of 20 or fewer
digits to avoid long computations. A short version of the prime number
generator is shown in Example 9-1.

Example 9-1 Primes.java - getPrime() method

import java.math.BigInteger;
import java.util.Vector;
298 IBM WebSphere Portal Toolkit V5

public class Primes {

private static final BigInteger ZERO = new BigInteger("0");
private static final BigInteger ONE = new BigInteger("1");
private static final BigInteger TWO = new BigInteger("2");
private String prime = "";

......

......

......

public static String getPrime(int numDigits) {

BigInteger start = random(numDigits);
start = nextPrime(start);

return start.toString();
}

}

Creating a Web Service
In this section, you create a Web Service in the PrimesWebService project that
you just created. You will use the wizards provided by WebSphere Studio Site
Developer to do this. Once created, the Web Service will be published and
invoked to be executed in a WebSphere Test Environment.

1. Select File -> New -> Other.

Figure 9-9 Starting creation of Portlet project
 Chapter 9. Accessing Web Services 299

2. Select Web Services -> Web Service.

Figure 9-10 Selection of Web Service

3. Click Next.

4. Enter the following information in the Web Services window:

a. Web Service type: Java bean Web Service.

b. Check the box Generate a proxy.

c. Client proxy type: Java proxy.

d. Check the box Test the generate proxy.

Click Next.
300 IBM WebSphere Portal Toolkit V5

Figure 9-11 New Project wizard

5. In Web Service Deployment Settings, examine and accept default values.
Click Next.
 Chapter 9. Accessing Web Services 301

Figure 9-12 Web Service Deployment Settings

6. In the Web Service Java Bean Selection window, click Browse Files.

7. Select the Primes.java class. Click OK.

Figure 9-13 Primes.java selection

8. Click Next to generate the Web Service.

9. In the Web Service Bean Identity, examine and accept the default values.
Click Next.
302 IBM WebSphere Portal Toolkit V5

Figure 9-14 Web Service Java Bean Identity

10.In the Web Service Java Bean Methods:

a. Select the getPrime(int) method.

b. Deselect other methods as shown in Figure 9-15 on page 304.

c. Click Next.
 Chapter 9. Accessing Web Services 303

Figure 9-15 Web Service Java Bean Methods

11.In the Web Service Bind Proxy Generation window, accept the defaults and
click Next to generate the proxy.
304 IBM WebSphere Portal Toolkit V5

Figure 9-16 Web Service Binding Proxy Generation

12.I In the Web Service Test window, make sure you select the Run test on
Server option. Click Next.
 Chapter 9. Accessing Web Services 305

Figure 9-17 Web Service Test

13.In the Web Server Publication window, accept the defaults and click Finish to
publish the Web Service.
306 IBM WebSphere Portal Toolkit V5

Figure 9-18 Web Service Publication

14.You will be presented with the available methods in the built-in browser. It is a
Web test client interface to access and verify that the Web Service is running
as expected.

15.Click the method getPrime(int).

Figure 9-19 Available methods
 Chapter 9. Accessing Web Services 307

16.Enter the number of digits you want the prime number to be. Do not try long
numbers. It will be time consuming.

Figure 9-20 Accessing a Web Service to generate prime numbers

17.Every time you invoke this Web Service to generate a prime number, you will
probably get a different result.

9.3 Creating a Web Services client portlet
In this section of the sample scenario, you will create a Web Services client
portlet to access the prime number generator Web Service.

1. Select File -> New -> Project.
308 IBM WebSphere Portal Toolkit V5

Figure 9-21 Creating a new project

2. Select Portlet Development from the left panel and Web Service Client
Portlet Project from the right panel. Then click Next.
 Chapter 9. Accessing Web Services 309

Figure 9-22 Selecting Web Service Client Portlet Project

3. In the Define the Portlet Project window, enter WSClientPortlet as the
Project Name.

4. Select New for the Enterprise application project.

5. Enter WSClientPortletEAR for the new project name.

6. Click Next to continue.
310 IBM WebSphere Portal Toolkit V5

Figure 9-23 Defining the portlet project

7. In the Web Service Portlet Parameters window, click Browse.
 Chapter 9. Accessing Web Services 311

Figure 9-24 Web Service Portlet Parameters

8. Select PrimesService.wsdl. Click OK.
312 IBM WebSphere Portal Toolkit V5

Figure 9-25 Selecting PrimesService.wsdl

9. Click Finish.
 Chapter 9. Accessing Web Services 313

Figure 9-26 Web Service portlet properties

9.4 Run the WSClientPortlet application
In this section, you will run the Web Services client (WSClientPortlet) to access
the prime number generator Web Service. Execute the following steps:

1. Run the WSClientPortlet portlet application by right-clicking WSClientPortlet
in the Navigator panel and selecting Run on Server.
314 IBM WebSphere Portal Toolkit V5

Figure 9-27 Running WSClientPortlet

2. Select the option to Create a new server.
 Chapter 9. Accessing Web Services 315

Figure 9-28 Server selection

3. Click Finish (Figure 9-28) and wait a few minutes for the server. The portlet
will run and will be seen in the built-in browser. Click the method
getPrime(int) to access the Web Service and generate a prime number.
316 IBM WebSphere Portal Toolkit V5

Figure 9-29 Available methods

4. Enter a number of digits, for example 20, and click Invoke.

Figure 9-30 Invoking Web Services
 Chapter 9. Accessing Web Services 317

Figure 9-31 Results from the Web Service
318 IBM WebSphere Portal Toolkit V5

Chapter 10. Using the Credential Vault

This chapter provides an overview and a sample scenario for creating a sample
portlet application that uses Credential Vault to log in and interact with back-end
systems. You will create, deploy and run portlet applications. The sample
scenario will allow you to understand the techniques used to develop portlets
using the Credential Vault provided by IBM WebSphere Portal.

The development workstation for the sample scenario included in this chapter is
illustrated in Figure 10-1.

Figure 10-1 Development workstation

10

WebSphere Studio Site
Developer V5.0
Portal toolkit V5.0 for
WSAD or WSSD
Sample portlets

WebSphere Test Environment
IBM WebSphere Application
Server V5 via Portal V5
Cloudscape V5.1 via Portal V5
IBM WebSphere Portal V5
(installed via Portal toolkit)

Development Runtime

Run on Server
© Copyright IBM Corp. 2004. All rights reserved. 319

10.1 Overview
When integrating different back-end systems, portlets often need to provide
some type of authentication to access these back-end systems. WebSphere
Portal provides the use of a Credential Vault to store and retrieve user
credentials. By using Credential Vault portlets, you can provide a single sign-on
experience to the user.

After reading this chapter, you will be able to:

� Understand the value of Credential Vault for portlet development

� Identify the different components of Credential Vault

� Build portlet applications using Credential Vault technology and active and
passive objects

Portlets running on WebSphere Portal may need to access remote applications
that require some form of authentication by using appropriate credentials. In this
section, we provide an overview of the Credential Vault components.

Credentials
Examples of credentials are user IDs and passwords, SSL client certificates and
private keys. In order to provide a single sign-on user experience, portlets should
not ask the user for the credentials of individual applications each time the user
starts a new portal session. Instead, they must be able to store and retrieve user
credentials for their particular associated application and use those credentials to
log in on behalf of the user. The Portal back-end secure access is illustrated in
Figure 10-2 on page 321.
320 IBM WebSphere Portal Toolkit V5

Figure 10-2 Credential Vault in action

The Credential Vault provides this functionality and portlets can use it through the
Credential Vault Portlet Service.

Components of the Credential Vault organization
The organization of Credential Vault in WebSphere Portal consists of vault
segments and credential slots. Figure 10-3 on page 322 shows an overview of
these components.

Vault segments
The Credential Vault is partitioned into segments and a vault segment contains
one or more credential slots.

There are two different types of vault segments:

� Administrator-managed segments: in this type of vault segment, the creation
of new slots is restricted to the portlet administrator.

� User-managed segments: in this type of vault segment, portlets can also
create new slots on behalf of the user.

Note: Setting and retrieving credentials can be performed by portlets for both
types of vault segments.
 Chapter 10. Using the Credential Vault 321

Vault implementations are the actual locations where the credentials are stored.
This can be for example the default database of WebSphere Portal or the Tivoli
Access Manager lock box.

Credential slots
As mentioned previously, every vault segment contains one or more credential
slots. Slots are “drawers” where portlets store and retrieve a user’s credentials.
Each slot holds one credential and links to a resource in a vault implementation.
There are four different types of slots:

� A system slot stores system credentials where the actual secret is shared
among all users and portlets.

� An administrative slot allows each user to store a secret for an
administrator-defined resource (for example, Lotus Notes).

� A shared slot stores user credentials that are shared among the user's
portlets.

� A portlet private slot stores user credentials that are not shared among
portlets.

Note: In the sample scenario included in this chapter, only private slots will be
used.

Figure 10-3 Credential Vault organization

Vault
Implementations

Internal External

Vault Segment U
(User-Managed)

Slot A Slot B

Vault Segment A1
(Admin-Managed)

Slot C

Vault Segment A2
(Admin-Managed)

Slot X Slot Y
322 IBM WebSphere Portal Toolkit V5

Credentials objects
WebSphere Portal differentiates between passive and active credential objects:

� Passive credential objects are containers for the credential’s secret.
Portlets that use passive credentials need to extract the secret out of the
credential and do all the authentication communication with the back-end
resource. The following passive credential support is provided with
WebSphere Portal:

– UserPasswordPassive, which stores secrets in the form of user
ID/password pairs

– SimplePassive, which stores secrets in the form of serializable Java
objects

– JaasSubjectPassive (Java Authentication and Authorization Service),
which stores secrets in form of javax.security.auth.Subject objects

Currently, the vault service in WebSphere Portal only supports
UserPasswordPassive.

� Active credential objects hide the credential's secret from the portlet; there
is no way of extracting it out of the credential. In return, active credential
objects offer business methods that take care of all the authentication. The
following active credential support is provided with WebSphere Portal:

– HttpBasicAuth

– HttpFormBasedAuth

– JavaMail

– LtpaToken

– SiteMinderToken

– WebSealToken

Note: When using active credentials, portlets never get in touch with the
credential secrets and thus there is no risk a portlet could violate any security
rules such as, for example, storing the secret on the portlet session. While there
might not always be an appropriate active credential class available, this is the
preferred type of credential objects to use.

Sample scenario
In this sample scenario, you will create a sample portlet based on a Basic portlet
type using the Portlet Wizard. You will also use this wizard to enable Credential
Vault to interact with back-end resources.
 Chapter 10. Using the Credential Vault 323

In this scenario, the protected back-end resource is a servlet and requires a user
ID and password credentials to log in to the Web application (servlet). The servlet
application has been secured with HTTP Basic Authentication.

The sample scenario illustrates the following:

� How the Credential Vault with active credentials is used

� How the Credential Vault with passive credentials is used

� How to store credentials

� How to retrieve credentials

� How to log in to the Web application

� How to retrieve the Web application content in the portlet's View mode

In the first part of this scenario, active credentials are used to access a secure
Web application using HTTP Basic Authentication, as shown in Figure 10-4.

Figure 10-4 Credential Vault sample scenario

protected backend
resource

Servlet

action
Performed

view
mode

edit
mode

doView

Portal

Browser

Submit
userid
password

4

2

3 5

6

78

Credentials
userid

password

HTTP

HTTP Basic
Authentication

initConcrete
create Vault

Service

1

portlet
324 IBM WebSphere Portal Toolkit V5

The sequence flow for this scenario is as follows:

1. The initConcrete method is used to initialize the Credential Vault Service.

2. Portal invokes the portlet doView method. Since initially, no credentials have
been stored, a message is written indicating that a user ID and password
must be entered in Edit mode.

3. In the portlet View mode, a message is shown directing the user to use the
Edit mode to enter credentials.

4. The user clicks Edit to go into Edit mode.

5. The Edit mode screen is displayed, that is, the doEdit method is executed and
a JSP displays a form to enter credentials and submit the action.

6. The user enters a user ID and password and selects Submit.

7. The actionPerformed method is executed to process the action. It creates a
slot and stores the user ID/password information.

8. The doView method is executed to complete the cycle. The following tasks
are executed in this mode:

a. An HttpBasicAuth active credential object is retrieved from the credential
service. Because authentication is done in this object, we never get in
touch with the real credentials.

b. The authorization header is set in the request HTTP header.

c. The connection to the back-end resource (protected servlet in this
scenario) is invoked.

d. The user is authenticated and the servlet executes.

e. The received content is rendered in View mode.

10.2 Importing a protected servlet application
In this section, you will import a previously created Treasure servlet. This servlet
will be the back-end secure resource you will access using Credential Vault. The
servlet displays a simple image and is only accessible via HTTP basic
authentication.

The Treasure servlet application is in
c:\LabFiles\CredentialVault\SecureServlet\CredentialVault_TreasureWeb.war.

Note: The sample scenario included in this chapter requires that you download
the sample code available as additional materials. See Appendix C, “Additional
material” on page 543.
 Chapter 10. Using the Credential Vault 325

Follow these steps to import the secure servlet:

1. If required, start WebSphere Studio Site Developer.

2. Switch to the Web perspective.

3. From the main menu, select File -> Import....

4. Select WAR file and click Next.

Figure 10-5 Importing a WAR file

5. Browse to the location of the TreasureWeb.war file in
c:\LabFiles\CredentialVault\SecureServlet\CredentialVault_TreasureWeb.war.

Note: The sample scenario included in this chapter requires that you
download the sample code available as additional materials. See Appendix C,
“Additional material” on page 543.

6. Enter a new Web project name of TreasureWeb and a new enterprise project
name of TreasureEAR.
326 IBM WebSphere Portal Toolkit V5

Figure 10-6 Import the Treasure WAR file

7. Click Finish to import the application (secure servlet WAR file).

After importing the WAR file, a new Web and enterprise project exist in your
project. Now you can test the servlet to check that it is running properly.

To test the servlet, proceed as follows:

1. In the J2EE Navigator view, expand the TreasureWeb/Java Source/treasure
package.

2. Right-click TreasurePage.java and select Run on server... from the context
menu.
 Chapter 10. Using the Credential Vault 327

3. Click OK to create a new server using Test Environment and wait for a few
minutes until the portal starts for e-business and the servlet is executed.

Note: If you are not prompted to create a new server, you can always create a
new server as follows:

a. In the Server Selection dialog, click Advanced....

b. In the Advanced Server Selection dialog, check Create a New Server and
select WebSphere Version 5.0 Test Environment as the server type.
Click Finish. This is illustrated in Figure 10-7.

Note: Because you are only using the Web container of the application
server, you can also select a WebSphere Version 5.0 Express Test
Environment if it is available.

Figure 10-7 Select a WebSphere V5.0 Test Environment to run the servlet

4. The internal Web browser opens. Because this servlet is secured, you have
to enter a user name and password. Enter user1 as the user name and
password1 as the password.
328 IBM WebSphere Portal Toolkit V5

Figure 10-8 Basic authentication

5. Click OK. Now the browser should show the treasure servlet. See
Figure 10-9.

Figure 10-9 Running the secured servlet

6. From the Servers view on the bottom of WebSphere Studio, select the
WebSphere V5 Test Environment server and click the red Stop button to
stop the server.
 Chapter 10. Using the Credential Vault 329

10.3 Using active credentials
After importing and testing the protected servlet, you will build a portlet
application accessing the Treasure servlet and using active credential
objects.The portlet will be created based on the Basic portlet type and will
demonstrate the use of credentials. Once the project is created, you will run it in
the WebSphere Portal Test Environment to view it.

Creating the Credential Vault portlet application
To create the new portlet project, follow these steps:

1. Switch to the Portlet perspective (Window -> Open Perspective).

2. Select File -> New -> Other.

Figure 10-10 Invoking New Project wizard

3. Select Portlet development -> Portlet application project. Click Next.
330 IBM WebSphere Portal Toolkit V5

Figure 10-11 Creating a new portlet application

4. In the Define the Portlet Project page, enter a project name of
CredVaultBasicAuth and click Next.
 Chapter 10. Using the Credential Vault 331

Figure 10-12 Define the Portlet Project

5. In the J2EE Settings Page, leave the defaults and click Next.

6. In Portlet Settings, accept all values. Click Next.

7. In Event Handling, uncheck Add form sample so that only Add action
listener is checked. Click Next.
332 IBM WebSphere Portal Toolkit V5

Figure 10-13 Event Handling page of New Portlet Application wizard

8. In the Single Sign-On page, check Add credential vault handling and enter
a slot name of TreasureCredentialSlot. Click Next.

Figure 10-14 Single Sign-On page of the new portlet application wizard
 Chapter 10. Using the Credential Vault 333

9. Since no additional markups and no additional modes will be supported in this
scenario, click Finish to generate the portlet. After a few minutes, the portlet
deployment descriptor of the new portlet application opens.

Reviewing the generated code
Before the portlet code is modified to access the secure portlet, let’s examine the
wizard generated code.

If you expand the credvaultbasicauth package in the Source folder of the new
project, you can see a CredVaultBasicAuthSecurityManager class in addition to
the portlet and bean classes. This class is responsible for initializing the
Credential Vault service and administering the credentials.

Figure 10-15 Reviewing CredVaultBasicAuthSecurityManager class

The following methods are provided in this class to handle Credential Vault
issues:

� The init method of this class initializes the vaultService data member.

� getCredential returns the user name and password by using a string buffer.

� setCredential sets the user name and password.

� getSlotId returns the ID of the slot. Depending on the type of slot, this method
uses PortletData or VaultService to get the ID.

� New slots are created in the createNewSlot method.
334 IBM WebSphere Portal Toolkit V5

� getPrincipalFromSubject retrieves the specified Principal from the provided
subject.

� isWritable checks whether the password can be saved.

The wizard has also created an input form for a user ID and password in the
CredVaultBasicAuthPortletEdit.jsp. As previously described, when clicking the
Save button, the actionPerformed() method in the portlet class is called. This
method retrieves the user ID and password from the form and uses the security
manager class to set the credentials.

The current version of the doView method retrieves the user credentials from the
security manager and displays them in the JSP. Because we want to include the
content of the secured Treasure servlet, we will replace this method in the next
section of this scenario.

10.3.1 Updating the generated portlet
Modify the portlet application as follows:

1. Open CredVaultBasicAuthPortletSecretManager from the credvaultbasicauth
package.

2. Using the Java editor, add the method shown in Example 10-1 to the class.
The method can be found in the c:\LabFiles\CredentialVault\Snippets folder.

Note: The sample scenario included in this chapter requires that you
download the sample code available as additional materials. See Appendix C,
“Additional material” on page 543.

You may want to use WordPad to edit getConnectionUsingActiveObject.java
and then copy and paste.

Note: The getConnectionUsingActiveObject method returns an http
connection.

Example 10-1 getConnectionUsingActiveObject method (active credentials)

public static HttpURLConnection getConnectionUsingActiveObject(
PortletRequest portletRequest,
CredVaultBasicAuthPortletSessionBean sessionBean,
String host, String port, String path) {
HttpURLConnection connection=null;
try {

URL urlSpec =
new URL("http://" + host + ":" + port + path);

String slotId = getSlotId(portletRequest, sessionBean, false);
if (slotId != null) {

HttpBasicAuthCredential credential =
(HttpBasicAuthCredential) vaultService.getCredential(
 Chapter 10. Using the Credential Vault 335

slotId,
"HttpBasicAuth",
new HashMap(),
portletRequest);

connection = credential.getAuthenticatedConnection(urlSpec);
}

} catch (Exception e) {
e.printStackTrace();

}
return connection;

}

3. Some code errors appear because the required import statements are
missing. To fix these errors, right-click the Java editor and select Source ->
Organize Imports.

4. In the Organize Imports dialog, choose

a. java.net.HttpURLConnection

b. select java.net.URL

Click Finish to close the Organize Imports dialog.

Figure 10-16 Importing missing import statements using Organize Imports tool

5. Save and close the Java file.

6. Open the class CredVaultBasicAuthPortlet from the credvaultbasicauth
package.

7. Replace the doView method so it looks as shown in Example 10-2 on
page 337. You may want to copy and paste from
c:\LabFiles\CredentialVault\Snippets\doView.java.

Note: The sample scenario included in this chapter requires that you
download the sample code available as additional materials. See Appendix C,
“Additional material” on page 543.
336 IBM WebSphere Portal Toolkit V5

Example 10-2 The doView method uses a Http connection from the SecretManager class

public void doView(PortletRequest request, PortletResponse response)
throws PortletException, IOException {
// Check if portlet session exists
CredVaultBasicAuthPortletSessionBean sessionBean =

getSessionBean(request);
if (sessionBean == null) {

response.getWriter().println("NO PORTLET SESSION YET");
return;

}
// get output stream to write the results
PrintWriter writer = response.getWriter();
// get the CredentialVault PortletService
PortletContext context = this.getPortletConfig().getContext();
try {

String host = request.getServerName();
//String host = request.getRemoteHost();
String port = String.valueOf(request.getServerPort());
String path = "/TreasureWeb/TreasurePage";
HttpURLConnection connection =

CredVaultBasicAuthPortletSecretManager.getConnectionUsingActiveObject(
request, sessionBean, host, port, path);

if (connection != null) {
connection.connect();
String responseMessage = connection.getResponseMessage();
int responseCode = connection.getResponseCode();
// Were we successful?
if (HttpURLConnection.HTTP_OK == responseCode) {

writer.println("<P>Successfully connected!</P>");
} else {

writer.println(
"<P>Unable to successfully connect to back end."

+ ", HTTP Response Code = " + responseCode
+ ", HTTP Response Message = \"" + responseMessage
+ "\"</P>");

}
BufferedReader br =

new BufferedReader(
new InputStreamReader(connection.getInputStream()));

String line;
while ((line = br.readLine()) != null)

writer.println(line + "\n");
} else {

writer.println(
"<h2>Credential not found. Please set it in the edit mode!

</h2>");
return;
 Chapter 10. Using the Credential Vault 337

}
} catch (IOException exc) {

writer.println(
"<h2>Single-sign-on error, login at back-end failed! </h2>");

return;
}

}

8. Organize the import statements as you did before.

9. Save and close the Java file.

Important: If you get a message indicating that
getConnectionUsingActiveObject() is undefined, try making a small modification
to the file and enabling the save option. Save the file again. This procedure
should resolve any pending undefined issues.

10.3.2 Running the portlet
In this section, you will run the portlet using active credentials to access the
back-end resource, a protected servlet in this case.

1. Close any open browser viewers.

2. Switch to the Portlet perspective.

3. In the Server Configuration view, right-click the Servers folder and choose
New -> Server and Server Configuration.

Figure 10-17 Creation of a new server

4. In the Server Selection dialog, choose a server of the WebSphere Portal V5.0
Test Environment and enter a server name of WPS 5.0. Click Finish to add the
new server.
338 IBM WebSphere Portal Toolkit V5

Figure 10-18 Create a new WebSphere Portal Test Environment

5. Add the Treasure servlet to the portal test environment, right-click the
WPS5.0 server and choose Add -> TreasureEAR.

Figure 10-19 Add Treasure servlet and CredVault portlet to portal test environment
 Chapter 10. Using the Credential Vault 339

6. Repeat the previous step to add the DefaultEAR to the portal Test
Environment. This will also add the CredVaultBasicAuth portlet to the server.

7. In the J2EE Navigator view select CredVaultBasicAuth, choose Run on
server and wait a few minutes for the Portal server to open for e-business.
This will start the server and will also open a browser displaying the portlet.

Figure 10-20 Selecting Run on Server... to test the portlet.

8. The portlet will execute the initConcrete method to initialize the Credential
Vault Service and the doView method. Since there are no credentials yet, a
message is displayed.

9. Switch to the Edit mode and enter the following information:

– User ID: user1

– Password: password1

10.Submit the action. This will generate an action that will be checked by the
actionPerformed method in the CredVaultBasicAuthPortlet class. The portlet
returns to View mode, showing the contents of the Treasure Servlet.

11.In the Servers view, stop the running portal server.
340 IBM WebSphere Portal Toolkit V5

Figure 10-21 The CredentialVault portlet in action

10.4 Using passive credentials
In the previous section, a portlet using an active credential object was built.
Although this is the preferred type of credential object, there are certain cases
where you have to use passive credential objects, for example when an
appropriate active credential class is not available.

In this sample scenario, the portlet will be changed to use a passive credential
object.

To modify the portlet application, proceed as follows:

1. Open the class CredVaultBasicAuthPortletSecretManager from the
credvaultbasicauth project.

2. In the Java editor, add the following method to the class.

Example 10-3 The getConnectionUsingPassiveObject method (passive credentials)

public static HttpURLConnection getConnectionUsingPassiveObject(
PortletRequest portletRequest,
CredVaultBasicAuthPortletSessionBean sessionBean,
String host, String port, String path) {
StringBuffer userid = new StringBuffer("");
StringBuffer password = new StringBuffer("");
HttpURLConnection connection = null;
try {
 Chapter 10. Using the Credential Vault 341

getCredential(portletRequest, sessionBean, userid, password);
if (!userid.toString().equals("")) {

String userAndPassword =
new String(userid.toString() + ":" + password.toString());

byte[] userAndPasswordBytes = userAndPassword.getBytes();
BASE64Encoder encoder = new BASE64Encoder();
String basicAuth =

new String(encoder.encode(userAndPasswordBytes));
basicAuth = "Basic " + basicAuth;
URL url = new URL("http://" + host + ":" + port + path);
connection = (HttpURLConnection) url.openConnection();
connection.setRequestProperty("authorization", basicAuth);

}
} catch (Exception e) {

e.printStackTrace();
}
return connection;

}

3. Organize the import statements as you did in the previous scenario.

4. Save and close the Java file.

5. Open the class CredVaultBasicAuthPortlet from the credvaultbasicauth
package.

In the doView method, change the line:

HttpURLConnection connection =
CredVaultBasicAuthPortletSecretManager.getConnectionUsingActiveObject(reque
st, sessionBean, host, port, path);

to

HttpURLConnection connection =
CredVaultBasicAuthPortletSecretManager.getConnectionUsingPassiveObject(requ
est, sessionBean, host, port, path);

6. Save and close the Java file.

7. Start the server and test the servlet as described in 10.3.2, “Running the
portlet” on page 338. Now the portlet runs exactly the same way as it did in
the previous section when it was using active credentials. This time, the
getConnectionUsingPassiveObject method has access to the credentials.

Note: Having access to credentials could be a security risk, so when possible,
use always active credential objects.
342 IBM WebSphere Portal Toolkit V5

Chapter 11. Accessing back-end JDBC
databases

In this chapter, we introduce the process of gaining access to back-end JDBC
databases from portlet applications. A simple portlet application project is
included to show how portlet applications access relational databases using the
JDBC interface.

This chapter discusses the following topics:

� How to create a connection using WebSphere Studio Site Developer

� An example to access a database from a portlet application

11
© Copyright IBM Corp. 2004. All rights reserved. 343

11.1 Creating a database connection
In this section, we describe the process of creating a database connection and
generating the Java classes similar to the classes used in the sample scenario
included in this chapter.

In section 11.2, “Sample scenario” on page 353, a portlet application project to
access a JDBC database is created from a WAR file; in this implementation, the
JDBC connection is already included. This section explains how to create the
database connection using the wizard provided by WebSphere Studio Site
Developer.

Once a portlet application project has been created (for example, we called this
project HRPortlet), open the data perspective by selecting Window -> Open
Perspective -> Data.

Figure 11-1 Open data perspective

11.1.1 Creating a new connection
In the DB Servers view, select New Connection from the context menu to create
a new connection. Enter the following values:

� Connection name: for example ConnHR

� Database: sample scenario uses WSSAMPLE

� User ID: sample scenario uses db2admin

� Password: sample scenario uses db2admin

� Database vendor type: Cloudscape, V5.0

� JDBC driver: Cloudscape Embedded JDBC driver
344 IBM WebSphere Portal Toolkit V5

� Database location: C:\LabFiles\Cloudscape\WSSAMPLE

Note: The sample scenario included in this chapter requires that you
download the sample code available as additional materials. See Appendix C,
“Additional material” on page 543.

� Class location: the directory where db2.jar file is located

Click Finish.

Figure 11-2 Create new connection

Note that we assume that the database has been created in your system. The
new database entry is added to the DB Servers view; you can expand it to see
the schemas and tables but no editor will open because this view cannot be used
for editing.
 Chapter 11. Accessing back-end JDBC databases 345

11.1.2 Importing to a folder
Now you have to import the tables to use them in the application. Select the
connection, right-click it and select Import to Folder.

Figure 11-3 Import the database into a project.

In the Import to Folder window, click Browse to select the portlet application
project where you want to gain access to the back-end system. Click Finish.

Figure 11-4 Import to folder

If you are prompted to create a databases folder, click Yes. Now, in the Data
Definition view, you can see the schemas and tables as in DB Servers view, but
in this view you can update schemas and tables definitions by double-clicking
346 IBM WebSphere Portal Toolkit V5

them. In the Navigator view, XML files have been created for the database
objects.

11.1.3 Creating an SQL statement
A simple SQL statement will be created. In the Data Definition view, select the
statement folder under the sample WSSAMPLE database, right-click and select
New -> Select Statement. Enter for example SQLUtility for the Statement Name
and click OK.

Figure 11-5 Create a new statement

When the statement has been created, the editor opens and you can select a
table to make a query, for example the Employee table. There are different ways
to create a SQL statement, with the wizard or just by writing your query using the
editor. For details, see for example the IBM Redbook WebSphere Studio
Application Developer V5 Programming Guide, SG24-6585.

11.1.4 Generating Java classes
In the code provided in 11.2, “Sample scenario” on page 353, the
SQLUtilities.java class provides methods that execute the SQL statement,
returns a DBSelect reference and returns an array of objects representing the
rows in the result set. To create this class, right-click the SQLUtility statement
and select Generate Java Bean.

Note: If you cannot see the statement folder, close the Data perspective and
open it again.
 Chapter 11. Accessing back-end JDBC databases 347

Figure 11-6 Generate Java Bean

In the first screen of the Generate Java Bean option, enter the following
information:

� Source Folder: enter the Java Source folder of your portlet application project.

� Package: utilities

� Name: SQLUtilities

Click Next.
348 IBM WebSphere Portal Toolkit V5

Figure 11-7 First screen of Generate Java Bean

In the next window, enter the following options:

� Use Driver Manager Connection:

– Driver name: com.ibm.db2j.jdbc.DB2jDriver

– URL: jdbc:db2j:C:\\LabFiles\\Cloudscape\\WSSAMPLE

Note: The sample scenario included in this chapter requires that you
download the sample code available as additional materials. See Appendix C,
“Additional material” on page 543.

� For the option How will user authentication be provided select By the
execute() method’s caller.

Click Next.
 Chapter 11. Accessing back-end JDBC databases 349

Figure 11-8 Second screen of Generate Java Bean

Figure 11-9 on page 351 shows the methods which will be created. Click Finish.
350 IBM WebSphere Portal Toolkit V5

Figure 11-9 Review the specification window

11.1.5 Running the SQL statement
In the Data Definition view, right-click the SQL statement and select Execute as
shown in Figure 11-10 on page 352.
 Chapter 11. Accessing back-end JDBC databases 351

Figure 11-10 Execute a SQL statement

The results appear in the DB Output view.

Figure 11-11 Results of the execution
352 IBM WebSphere Portal Toolkit V5

11.2 Sample scenario
This section provides a sample scenario for creating a sample portlet project that
uses the JDBC interface to interact with relational database back end systems.
You will create, deploy and run this portlet application. This sample scenario will
allow you understand the techniques used to develop portlets that retrieve
information from databases using JDBC.

The development workstation has already been created for you and its
components can be seen in Figure 11-12.

Figure 11-12 Development workstation

11.2.1 Overview
In this section, you will review and understand the sample scenario. You will
create a sample portlet based on a Basic portlet type. You will then import the
code to use JDBC to interact with databases. In this sample scenario, it is
assumed that the database has already been created and populated.

This example shows how the JDBC interface is used to read information from a
Cloudscape sample table. In your portlet Edit mode, you will provide the
information needed to establish a connection with the database in order to
retrieve the content in View mode. The sample scenario is illustrated in
Figure 11-13 on page 354.

WebSphere Studio Site
Developer V5.0
Portal toolkit V5.0 for
WSAD or WSSD
Sample portlets

WebSphere Test Environment
IBM WebSphere Application
Server V5 via Portal V5
Cloudscape V5.1 via Portal V5
IBM WebSphere Portal V5
(installed via Portal toolkit)

Development Runtime

Run on Server
 Chapter 11. Accessing back-end JDBC databases 353

Figure 11-13 JDBC scenario

The sequence flow for this sample scenario is as follows:

1. Initially, the doView method is executed.

2. A JSP is invoked in View mode to render the initial screen containing a
welcome message telling the user to enter the database inquiry values in Edit
mode.

3. The user clicks Edit to go into Edit mode.

4. The Edit mode method executes and invokes a JSP (include).

5. The JSP renders the form.

6. The user enters the database name, user ID, password and SQL statement.

Note: A user ID and password have not been implemented for this version of
Cloudscape, therefore any user ID and password can be used.

7. The user submits the request (post) to the previous mode (View mode). An
action event is generated.

8. The actionPerformed() method executes and the following processes take
place:

a. The database, user ID, password, and SQL statement are extracted and
sent to the JDBCPortletResults Bean.

doView

Portal

Database
user ID
password
SQL statement

Database
Utilities

1

JDBCPortlet.java

doEdit

Browser

view
mode

edit
mode

32 6

4

7

JSP5

8

Bean

WSSAMPLE

JDBC

Database
wssample

user ID
db2admin

password
db2admin

SQL statement
select * from jobs

9

actionPerformed()

JSP
354 IBM WebSphere Portal Toolkit V5

b. A connection object is created.

c. A DBResults object is created. This object encapsulates the database
inquiry.

d. Database Utilities (another bean) is invoked to execute the actual
database inquiry.

e. Results are stored as a String in the request object.

9. The doView method executes again:

a. Results are obtained in View mode.

b. Results are rendered directly in View mode.

11.2.2 Creating HRPortlet
The portlet will be created based on a Basic portlet type using the wizard. In this
section you create a portlet application with name HRPortlet. The portlet
application will also be published and executed in the Portal Test Environment.

1. If not already running, start the IBM WebSphere Studio Site Developer and
click Start -> Programs -> IBM WebSphere Studio -> Site Developer 5.0.

2. Select File -> New -> Portlet Application Project.

Note: If you do not see this option, select File -> New -> Other and then
Portlet Development and Portlet Application Project.

Figure 11-14 Starting creation of Portlet project

3. In Define Portlet Project, enter HRPortlet for the project name. Click Next.
 Chapter 11. Accessing back-end JDBC databases 355

Figure 11-15 Define the Portlet Project

4. In the J2EE Settings Page, click Next to accept default values.
356 IBM WebSphere Portal Toolkit V5

Figure 11-16 J2EE Settings Page

5. In Portlet Settings, check Change code generation options and enter
HRPortlet for the Class prefix. Click Finish to generate the framework for
your project.
 Chapter 11. Accessing back-end JDBC databases 357

Figure 11-17 Portlet Settings

6. If you have any portlets in the DefaultEAR project, remove them at this time.
For example:

a. Open the DefaultEAR / META-INF folder.

b. Double-click om application.xml file.

c. Select Module.

d. Remove all WAR modules except for HRPortlet.

e. In the workspace, click File -> Save All.
358 IBM WebSphere Portal Toolkit V5

Figure 11-18 Removing a WAR module

11.2.3 Importing the WAR file
A WAR file is provided for this sample scenario. By importing this WAR file into
your project, you will replace the original files previously created by the wizard.
For example:

� HRPortlet.java (Portlet class)

� HRPortletSessionBean.java (Session bean)

� HRPortletEditBean.java (Bean)

� HRPortletEdit.jsp (Edit Mode)

� HRPortletView.jsp (View Mode)

� portlet.xml (Portlet deployment descriptor)

� web.xml (Web deployment descriptor)

� A new class SQLUtilities.java (Utility) to set the DBSelect properties values
and create methods to execute SQL statements

� A new class SQLUtilitiesRow.java (Utility) to retrieve each row of the result set

� A new class HRPortletViewBean.java (Bean) to store the DBResult object

Follow these steps to import the WAR file:

1. Import the WAR file by selecting File -> Import.
 Chapter 11. Accessing back-end JDBC databases 359

Figure 11-19 Importing a WAR file

2. Select WAR file and click Next.

Figure 11-20 Select WAR file

3. In the Import Resources from a WAR file window, enter the following
information:

a. WAR file: browse to C:\LabFiles\JDBC\HR\HRPortlet.war

Note: The sample scenario included in this chapter requires that you
download the sample code available as additional materials. See
Appendix C, “Additional material” on page 543.
360 IBM WebSphere Portal Toolkit V5

b. Web project: select Existing. In the box that pops up, select HRPortlet
and click OK.

c. Context root: this will change to /HRPortlet.

d. Select in Options: Overwrite existent resources without warning.

Figure 11-21 Importing the provided WAR file

4. Click Finish.

11.2.4 Reviewing the portlet code
In this section, you will review the portlet code used in this sample scenario. For
example, to view the source code to HRPortlet.java, double-click the file name.
This file is located in the /Java Source/hrportlet/ folder.
 Chapter 11. Accessing back-end JDBC databases 361

1. The actionPerformed() method in this portlet does the following (see
Example 11-1) when an edit action occurs.

a. It gets the parameters (database, user ID, password and SQL statement)
from the request (PortletRequest).

b. It sets these values in the HRPortletSessionBean.java bean.

Example 11-1 HRPortlet.java - actionPerformed() method

.....
// ActionEvent handler
String actionString = event.getActionString();
// Add action string handler here
PortletRequest request = event.getRequest();

HRPortletSessionBean sessionBean = getSessionBean(request);

if (EDIT_ACTION.equals(actionString)) {
String dbname = (String) request.getParameter("dbname");
String userid = (String) request.getParameter("userid");
String password = (String) request.getParameter("password");
String sqlstring = (String) request.getParameter("sqlstring");
sessionBean.setDbName(dbname);
sessionBean.setUserId(userid);
sessionBean.setPassword(password);
sessionBean.setSqlString(sqlstring);

}

if (FORM_ACTION.equals(actionString)) {
// Set form text in the session bean
sessionBean.setFormText(request.getParameter(TEXT));

}
}

.....

2. The doEdit() method in the portlet does the following:

a. It creates an instance of HRPorteltEditBean bean.

b. It adds the action which will be executed when the form is submitted and
sets this value in the edit mode bean.

c. When the database, user ID, password and SQL statement values exist
for the session, it will also store these values in the edit mode bean.

d. The edit mode bean is passed in the request to the HRPortletEdit.jsp.
362 IBM WebSphere Portal Toolkit V5

Example 11-2 HRPortlet.java - doEdit() method

.....
HRPortletEditBean editBean = new HRPortletEditBean();

PortletURI formActionURI = response.createReturnURI();
formActionURI.addAction(EDIT_ACTION);
editBean.setFormActionURI(formActionURI.toString());
HRPortletSessionBean sessionBean = getSessionBean(request);
String sqlstring = sessionBean.getSqlString();
if (sqlstring != null) {

String dbname = sessionBean.getDbName();
String userid = sessionBean.getUserId();
String password = sessionBean.getPassword();

editBean.setDbname(dbname);
editBean.setPassword(password);
editBean.setUserid(userid);
editBean.setSqlstring(sqlstring);

}
request.setAttribute(EDIT_BEAN, editBean);

// Invoke the JSP to render
getPortletConfig().getContext().include(EDIT_JSP +

getJspExtension(request),
request, response);

.....

3. The doView() method does the following:

a. It checks to see whether there is a HRPortletSessionBean in the session.
The first time this method is invoked, the session bean will be null.

b. If there is an HRPortletSessionBean in session, it gets the database, user
ID, password and SQL sentence values stored in it and creates an
instance of HRPortletViewBean.

c. The execute() method of SQLUtilities class is called to execute the SQL
statement and the result is stored in the view mode bean by calling
populateData() method in the SQLUtilities class.

d. The view mode bean is passed in the request to HRPortletView.jsp.

Example 11-3 HRPortlet.java - doView() method

.....
// Check if portlet session exists
HRPortletSessionBean sessionBean = getSessionBean(request);
if (sessionBean == null) {

response.getWriter().println("NO PORTLET SESSION YET");
return;
 Chapter 11. Accessing back-end JDBC databases 363

}

String sqlstring = sessionBean.getSqlString();
if (sqlstring != null && !sqlstring.equals("")) {

String dbname = sessionBean.getDbName();
String userid = sessionBean.getUserId();
String password = sessionBean.getPassword();

// Make a view mode bean
HRPortletViewBean viewBean = new HRPortletViewBean();

SQLUtilities sqlUtility = new SQLUtilities();
try {

sqlUtility.execute(userid, password, dbname, sqlstring);
} catch (SQLException e) {

e.printStackTrace();
}
sqlUtility.populateData(viewBean);
request.setAttribute(VIEW_BEAN, viewBean);

// Set actionURI in the view mode bean
PortletURI formActionURI = response.createURI();
formActionURI.addAction(FORM_ACTION);
viewBean.setFormActionURI(formActionURI.toString());

}

// Invoke the JSP to render
getPortletConfig().getContext().include(VIEW_JSP +

getJspExtension(request),
request, response);

.....

4. The HRPortletEdit.jsp is used to prompt for the database, user ID, password
and SQL statement parameters. Double-click this file (located in /Web
Content/hrportlet/jsp/html/ folder) to view its source code.

a. Notice that the database name, user ID, password and SQL fields all have
the HTML tag value=”<%=editBean.getXXX()%>”. This allows the JSP to
display the persistent data stored in the bean.

Example 11-4 HRPortletEdit.jsp (Edit mode sample code)

.....
<% HRPortletEditBean editBean =
(HRPortletEditBean)portletRequest.getAttribute("hrportlet.HRPortletEditBean");
%>

<HTML>
<BODY>
364 IBM WebSphere Portal Toolkit V5

<h4>Complete with your database information and click Submit</h4>

<FORM method="post"
action="<portletAPI:createReturnURI><portletAPI:URIAction
name='<%=editBean.getFormActionURI()%>'/></portletAPI:createReturnURI>"">
<TABLE border="0">

<TBODY>
<TR>

<TD>
<TABLE border="0">

<TBODY>
<TR>

<TD>Database :</TD>
<TD><INPUT type="text" value="<%=editBean.getDbname()%>"

name='<portletAPI:encodeNamespace value="dbname"/>'
size="20"></TD>

</TR>
<TR>

.....

5. Once the database parameters are collected, the request is processed by the
actionPerformed() and doView() methods. The results are displayed by
HRPortletView.jsp. Double-click this file to view its source code.

a. This JSP tests to see whether there is a HRPortletViewBean.java bean in
the request. If there isn’t then displays a message to go to Edit mode and
configure and SQL statement. If the bean exists then the results of the
query are displayed.

Example 11-5 HRPortletView.jsp (View mode sample code)

.....
<%

HRPortletViewBean viewBean =
(HRPortletViewBean)portletRequest.getAttribute(HRPortlet.VIEW_BEAN);
%>

<% if (viewBean == null) { %>
<HTML>
<BODY>
This is the JDBC Sample Portlet. Go to Edit mode and configure a SQL
query
<% } else {

com.ibm.db.beans.DBSelect results = viewBean.getResultFromDatabase();
%>
.....
 Chapter 11. Accessing back-end JDBC databases 365

6. The classes SQLUtilities.java and SQLUtilitiesRow.java have been generated
in the data perspective. In the data perspective, you can create a connection
to database, import the tables, create SQL statements and generate Java
beans for the statements. These classes contain the methods to execute and
retrieve information from database. The execute() method is called by the
doView() method of HRPortlet.java when there is a statement in the session
and the information retrieved is stored in the view mode bean by calling the
populateData() method of SQLUtilities.java.

Example 11-6 SQLUtilities.java

public void execute(String userid,String password,String url,String
command)

throws SQLException {
try {

select.setUrl(url);
select.setCommand(command);
select.setUsername(userid);
select.setPassword(password);
select.execute();

}

// Free resources of select object.
finally {

select.close();
}

}

public void populateData(HRPortletViewBean viewBean) {
viewBean.setResultFromDatabase(select);

}

11.2.5 Running the HRPortlet application
1. Before you run the portlet, run the batch file to populate the test database to

be used in this sample scenario. Click
c:\LabFiles\Cloudscape\CreateCloudTable.bat to do this.

Note: The sample scenario included in this chapter requires that you
download the sample code available as additional materials. See Appendix C,
“Additional material” on page 543.
366 IBM WebSphere Portal Toolkit V5

Figure 11-22 Populating the test database

2. Run the HRPortlet portlet application by right-clicking HRPortlet in the
Navigator panel and selecting Run on server. Wait for Portal to start and run
your portlet.

Note: Click OK if you are prompted to use the Test Environment.

3. The portlet will run and you will see it in the built-in browser.

The View mode is shown with a message indicating that you have to provide
an SQL query; you will also need to switch the portlet into Edit mode (as
indicated in Figure 11-23) so you can enter these values.

Figure 11-23 HRPortlet in View mode before query

4. When in Edit mode, the JSP for this mode renders the form requesting the
database parameters.
 Chapter 11. Accessing back-end JDBC databases 367

5. For the first example, enter the following information and select Submit:

– Database: jdbc:db2j:C:\LabFiles\Cloudscape\WSSAMPLE

Note: The sample scenario included in this chapter requires that you
download the sample code available as additional materials. See
Appendix C, “Additional material” on page 543.

– User: db2admin

– Password: db2admin

– SQL statement: select * from jobs

Figure 11-24 HRPortlet portlet in Edit mode

6. Clicking Submit generates a createReturnURI and the portlet will return to
View mode showing the results of your query against the WSSAMPLE
database.
368 IBM WebSphere Portal Toolkit V5

Figure 11-25 HRPortlet in View mode with the query results in View mode

7. Enter Edit mode again. Notice that the database name, user ID, password
and SQL statement which were stored in Session are persistent.
 Chapter 11. Accessing back-end JDBC databases 369

Figure 11-26 Persistence of data

8. Enter a new query, for example select * from survey, and click Submit. You
will be presented with the results of your new query.

Figure 11-27 Results of the second query
370 IBM WebSphere Portal Toolkit V5

Chapter 12. Cooperative portlets

This chapter describes the architecture and development of cooperative portlets,
formerly known as Click-to-Action portlets. Cooperative portlets placed on a
portal page can be developed independently but they interact with one another
and share the same information. This enables an advanced user experience
scenario where portlets automatically react to events and actions originated from
other portlets.

After reading this chapter, you will be able to:

� Understand the architecture and value of cooperative portlets

� Develop source cooperative portlets

� Develop target cooperative portlets

In addition, at the end of this chapter, you will find information and solutions to
common problems in cooperative portlet development.

12

Note: The sample scenarios included in this chapter require that you have
completed Chapter 11, “Accessing back-end JDBC databases” on page 343.
You can also download the sample code available as additional materials. See
Appendix C, “Additional material” on page 543.
© Copyright IBM Corp. 2004. All rights reserved. 371

12.1 Overview
Cooperative portlets exchange information, react in a coordinated manner and
provide menus to share information by selecting an action. Selecting such a
menu item results in the execution of the actionPerformed() method on a target
cooperative portlet. Figure 12-1 illustrates an example of such a cooperative
portlet menu.

Figure 12-1 An example of a cooperative portlet menu

In Figure 12-1, one piece of information, for example a department number, can
be sent to a target portlet displaying all employees from the selected department
number or to a portlet displaying detailed information of the selected department.
In addition, the cooperative portlet technology also enables the broadcast of data
to multiple portlets by sending multiple property values with only one click.

The transfer of properties can be saved as wires using the Ctrl key. So the next
time the user clicks the icon, the saved menu selection is used without prompting
the user.

Portlet messaging versus cooperative portlets

In general, both portlet messaging and cooperative portlets can be used to
share data between two or more portlets. The most important difference is that
cooperative portlets are more loosely coupled than portlets using messaging.
Cooperative portlets do not have to know the name of the target portlet even if
they do not broadcast data. The matching of source and target portlets is done
at runtime based on registered properties and actions. Cooperative portlets
can also include a menu with a list of executable portlet actions. For this
menu, no additional programming is needed because it is part of the C2A tag
library.
372 IBM WebSphere Portal Toolkit V5

12.1.1 The WebSphere Portal property broker
During runtime, the WebSphere Portal property broker is responsible for
enabling cooperative portlets. This is done by matching the data type of output
properties from a source portlet with the data type of input properties from one or
more target portlets. Figure 12-2 shows the relationships between the two
portlets and properties.

Figure 12-2 The property broker matches input and output properties

Target portlets optionally provide actions to process the properties that it
receives. There is no difference between an action initiated by the portlet itself as
mentioned in Chapter 5, “Action event handling” on page 181 and an action
initiated by a source cooperative portlet.

Cooperative portlets can be source portlets, target portlets, or both.

� Source portlets identify to the property broker properties which they are able
to share with other portlets.

� Target portlets identify to the property broker actions which are able to
process properties contributed by other portlets.

12.1.2 Programming model
To enable your portlet for cooperation as well as a broker component, you have
to wrap your portlet class with a generic wrapper portlet. This wrapper intercepts
calls and interfaces with the broker. The wrapper is packaged in each
cooperative portlet’s WAR file.

Cooperative portlets can use a declarative or programmatic approach, or a
combination, to register and publish properties to the property broker. The
programmatic approach to publish properties is discussed in Chapter 13,
“Advanced cooperative portlets” on page 413. The declarative approach is
simpler. Few changes need to be made to existing portlets to enable them to
interact with other cooperative portlets on the page. Existing portlets that already

WebSphere Portal
Property Broker

Match

Source
Portlet

Target
Portlet

Input
Properties

Output
Properties
 Chapter 12. Cooperative portlets 373

use action processing simply declare their actions to the property broker using
WSDL. Figure 12-3 presents how to develop source cooperative portlets.

Figure 12-3 Steps to program a source cooperative portlet

In general terms, there are two steps at runtime to establish cooperative portlet
communication:

1. All properties must be registered with the cooperative broker. This can be
done by using the declarative approach which includes the creation of a Web
Service Description Language (WSDL) file and the configuration of the portlet
deployment descriptor. To register properties programmatically, you can use
the property broker API. Please note that registration of properties can only
be done during the event phase of the request-response cycle.

2. Notify the property broker about property changes. The easiest way to
achieve this is to include the encodeProperty tag in your JavaServer Page. As
an alternative, in the programmatic approach you will use the
changedProperties() method to publish properties.

Also, in the programmatic approach you have to configure a wire before you
publish properties. Figure 12-4 on page 375 shows how to develop target
portlets.

Using
Programmatic

Approach

Using
Declarative
Approach

1. Import pbportlet.jar

2. Update web.xml

Include
C2A:encodeProperty

Tag

Create WSDL

Update portlet.xml
or

or

Yes

No

4. Publish Properties

Enable
Wires?

3. Register
Properties

Execute
changedProperties()

Method

Execute
registerProperties()

Method
374 IBM WebSphere Portal Toolkit V5

Figure 12-4 Steps to create a target cooperative portlet

To get information about changed properties, target portlets register properties
and, optionally, actions with the property broker. When using the declarative
approach both properties and actions are always registered. When using the
programmatic approach, you can register properties without any actions.

In addition, during runtime process such programmatic target portlets are notified
about property changes by using the setProperties method from the
PropertyListener interface instead of the actionPerformed method.

12.1.3 Registering and publishing properties
For a portlet to be a source of data, programmers can use a custom JSP tag
library to flag sharable data on their output pages. The tags require a data type to
be specified as well as a specific value corresponding to an instance of this type.
If you want to use wires source portlets, you must register properties by using a
declarative or programmatic approach.

Target portlets associate their actions with an input property which has been
declared as an XML type. The actions are declared using WSDL, with a custom
binding extension which specifies the mapping from the abstract action
declaration to the actual action implementation. Associated with each action is a
single input parameter described by an XML type and zero or more output
parameters, each described by an XML type. Each input or output parameter
encapsulates exactly one property. The input property's type is used for matching
the action to sources, and its value is filled in when the end user triggers the

Using
Programmatic

Approach

Using
Declarative
Approach

1. Import pbportlet.jar

2. Update web.xml

3. Register Properties
or Actions

4. Get Updated
Properties

Evaluate Properties in
setProperties() or
actionPerformed()

Method

Execute
registerProperties() or

registerActions()
Method

Evaluate Action String
in actionPerfomed()

Method

Create WSDL

Update portlet.xml
or

or
 Chapter 12. Cooperative portlets 375

action using Click-to-Action. The output parameters, if specified, are used to
automatically trigger other compatible actions (ones which can consume the
same type) on other wired portlets every time the action executes (this may be
used to trigger chains of related actions).

Note: The location of the WSDL file is configured as a portlet parameter.

12.2 Sample scenario
The sample application shown in this section is based on the HRPortlet from
Chapter 11, “Accessing back-end JDBC databases” on page 343. Two different
versions of the HRPortlet will be used, as follows:

� The source cooperative portlet HRPortlet displays a list of jobs.

� The target cooperative portlet Employee Details Portlet displays a list of
employees working in the same department.

Using the cooperative portlet technology, users can select a department number
from the source cooperative portlet. After that, WebSphere Portal updates the
target portlet displaying all employees from the selected department.

12.2.1 Development workstation
This sample scenario provides step-by-step exercises to enable the JDBC portlet
project (HRPortlet) to work as a Click-to-Action target portlet. You will also enable
this portlet to act as a source Click-to-Action portlet. You will create, deploy and
run the portlet application. This exercise will allow you to understand the
techniques used to develop portlets with Click-to-Action features using the C2A
declarative approach.

The development workstation and its components can be seen in Figure 12-5 on
page 377.
376 IBM WebSphere Portal Toolkit V5

Figure 12-5 Development workstation

12.2.2 Description
Cooperative portlets subscribe to a model for declaring, publishing, and sharing
information with each other using the WebSphere Portal property broker. Portlets
subscribe to the broker by publishing typed data items, or properties, that they
can share, either as a provider or as a recipient.

� The portlet that provides a property is called the source portlet.

� The properties that the source portlet publishes are called output properties.

� The portlet that receives a property is called the target portlet.

� The properties that are received by the target are called input properties.

The target portlets optionally provide actions to process the properties that they
receive. Action processing in target portlets does not need to distinguish
between an action initiated within its own portlet area and an action initiated by
the transfer of a portlet property value. Each action is associated with a single
input parameter and zero or more output parameters, which provide information
to the action about the objects in which the property value should be bound, such
as the request or the session. Each parameter is associated with exactly one
property. Parameters associated with input properties are called input
parameters, while those associated with output properties are called output
parameters. Instead of actions, the target portlet can receive property changes
directly through the PropertyListener interface.

WebSphere Studio Site
Developer V5.0
Portal toolkit V5.0 for
WSAD or WSSD
Sample portlets

WebSphere Test Environment
IBM WebSphere Application
Server V5 via Portal V5
Cloudscape V5.1 via Portal V5
IBM WebSphere Portal V5
(installed via Portal toolkit)

Development Runtime

Run on Server
 Chapter 12. Cooperative portlets 377

At runtime, the property broker matches the data type of output properties from a
source portlet with the data type of input properties from one or more target
portlets. If a match is determined, the portlets are capable of sharing the
property. The actual transfer of the property can be initiated by one of the
following methods:

� A user launches a Click-to-Action event from an icon on the source portlet.
The icon presents a pop-up menu containing the list of targets for the action.
After the user selects a specific target, the property broker delivers the data to
the target in the form of the corresponding portlet action. Using the
Click-to-Action delivery method, users can transfer data with a simple click
from a source portlet to one or more target portlets, causing the target to react
to the action and display a new view with the results. The user can also
broadcast the property to all portlets on the page that have declared an action
associated with a matching input property.

� A user holds down the Ctrl key while clicking an action and chooses to have
the selection saved persistently as a connection between two portlets, called
a wire. If a wire is present the next time the user clicks the icon, no selection
menu is shown. Instead, the wired action(s) is/are automatically fired.
Subsequent updates to that property are transferred without further deliberate
user choice.

� The source portlet can perform a programmatic publish of properties to the
broker when it determines that property values have changed. Such property
values are transferred to the target(s) only if wires have been created.

Cooperative portlets can be source portlets, target portlets, or both.

� Source portlets identify to the property broker properties which they are able
to share with other portlets.

� Target portlets identify to the property broker actions which are able to
process properties contributed by other portlets.
378 IBM WebSphere Portal Toolkit V5

Figure 12-6 Click-to-Action architecture

The sequence flow for this sample scenario is as follows:

1. At portlet initialization time, the C2A wrapper processes any action WSDL file
associated with the application portlet and registers the actions with the C2A
broker.

2. During the render phase of a request cycle, JSPs associated with C2A source
portlets are processed. The custom C2A tags produce calls to the C2A
broker, which examines the type information to determine matching actions.
The broker generates additional code to create an icon to be used to display a
pop-up menu of actions, and adds code to dispatch actions on portlets upon
user selection from the menu.

3. After all render phase portlet callbacks are complete, the WebSphere Portal
core assembles the response page and returns it to the client (for example, a
browser).

4. When the user clicks the C2A icon for a source, he or she sees a menu of
compatible actions (on the page) and selects one.

source portlet

target portlet
 Chapter 12. Cooperative portlets 379

5. The client (for example, a browser) generates a new request containing the
chosen source and action information and sends it to the WebSphere Portal
Server.

6. The WebSphere Portal Core delivers the action to the target portlet. The
action is intercepted by the wrapper, which may interact with the broker to
further process the request before delivering the action to the target.

All portlet actions are intercepted by the wrapper; however, actions which are
invoked through direct interaction with the portlet (as opposed to interaction
through the C2A menus) are passed through transparently to the portlet. In more
advanced scenarios, such as the broadcast and scatter mentioned earlier, there
will be more interactions between the wrappers and the broker to determine the
appropriate target set and deliver the right data to the targets.

12.2.3 Source cooperative portlet
In this section, you will be required to execute the following tasks to enable a
portlet to act as a Click-to-Action source portlet using the declarative approach:

1. You will import the original portlet if it is not in your workspace. In this
scenario, the JDBC portlet from the previous sample scenario will be used
(HRPortlet). See Chapter 11, “Accessing back-end JDBC databases” on
page 343.

2. You will import the property broker jar file (pbportlet.jar).

3. You will update web.xml to refer to the property broker classes.

a. The servlet class entry should specify the
com.ibm.wps.pb.wrapper.PortletWrapper class in the property broker:

<servlet-class>com.ibm.wps.pb.wrapper.PortletWrapper</servlet-class>

b. The original portlet application class should also be specified in the
c2a-application-portlet-class initialization parameter. For example:

<init-param>
<param-name>c2a-application-portlet-class</param-name>
<param-value>hrportlet.HRPortlet</param-value>
</init-param>

4. You will update the JSP for View mode to include Click-to-Action menus.

Figure 12-7 on page 381 illustrates the source cooperative portlet for this sample
scenario.
380 IBM WebSphere Portal Toolkit V5

Figure 12-7 Cooperative portlets - sample scenario

Importing the original portlet
The HRPortlet portlet from the JDBC chapter (see Chapter 11, “Accessing
back-end JDBC databases” on page 343) will be used as a base for this sample
scenario. This portlet will be enabled to act as a source cooperative portlet in this
scenario. You will need to import this portlet if it is not in your workspace.

Follow these steps to import this portlet:

1. Import the WAR file by selecting File -> Import.

2. Select WAR file and click Next.

3. In the Import Resources from a WAR File window, enter the following
information:

a. WAR file: browse to C:\LabFiles\C2A\HRPortlet.war.

Note: You can also download the sample code available as additional
materials. See Appendix C, “Additional material” on page 543.

b. Web project: select Existing. In the box that pops up, select HRPortlet
and click OK.

c. Context root: this will change to /HRPortlet.

d. In Options, select the Overwrite existent resources without warning
check box.

view.jsp

C2A
broker

HRPortlet

view.jsp

wsdl

C2A
wrapper

web.xml

Employee
Details

C2A
wrapper

Source C2A portlet

Target C2A portlet

web.xml

portlet
xml
 Chapter 12. Cooperative portlets 381

Figure 12-8 Importing the original portlet HRPortlet

Importing the property broker file (pbportlet.jar)
You will need to import the property broker jar file (pbportlet.jar). Follow these
steps:

1. Switch to the portlet perspective.

2. Import the property broker jar file (pbportlet.jar):

a. In the J2EE Navigator view, select the HRPortlet\Web
Content\WEB-INF\lib folder.

b. Select File -> Import.

c. Select File system and click Next.
382 IBM WebSphere Portal Toolkit V5

Figure 12-9 Select File System

d. In the Import File system window, enter the following information:

• For the directory, browse to:

C:\Program Files\ibm\WebSphere Studio\runtimes\portal_v50\pb\lib

Note: You can also download the sample code available as additional
materials. See Appendix C, “Additional material” on page 543.

• Select pbportlet.jar.

• For the destination, select the folder HRPortlet/Web
Content/WEB-INF/lib.
 Chapter 12. Cooperative portlets 383

Figure 12-10 Select pbportlet.jar to import the jar file

e. Click Finish.

Important: Make sure pbportlet.jar is in the lib folder.
384 IBM WebSphere Portal Toolkit V5

Figure 12-11 pbportlet.jar

3. Update the Web Deployment Descriptor as follows:

a. In the J2EE Navigator view, expand HRPortlet and double-click Web
Deployment Descriptor.

b. Switch to the Servlets tab and select the hrportlet.HRPortlet servlet
(Figure 12-9 on page 383).

c. In the Details area, click the Browse... button to change the servlet class.

d. In the Servlet selection dialog, select the PortletWrapper class from the
com.ibm.wps.pb.wrapper package and click OK.
 Chapter 12. Cooperative portlets 385

Figure 12-12 Adding PortletWrapper

e. In the Initialization area, click the Add... button to add a new parameter.

f. Enter a parameter name of c2a-application-portlet-class and a
parameter value of hrportlet.HRPortlet. The final editor should look as
shown in Figure 12-13.

Figure 12-13 Web Deployment Descriptor for the source cooperative portlet
386 IBM WebSphere Portal Toolkit V5

g. Save your files (or press Ctrl-S to save the file) and close the deployment
descriptor editor.

4. Import the Click-to-Action tag library (c2a.tld).

Note: This step in included here as a reference for previous releases only, the
c2a.tld library is now part of WebSphere Portal V5 and does not need to be
packaged in the portlet WAR file.

a. Import the file by selecting File -> Import.

b. Select File system and click Next.

c. In the Import File system window, enter the following information:

• For the directory, browse to:

C:\Program Files\ibm\WebSphere
Studio\runtimes\portal_v50\shared\app\WEB-INF\tld

Note: You can also download the sample code available as additional
materials. See Appendix C, “Additional material” on page 543.

• Check the c2a.tld box.

• For the destination, enter the folder:

HRPortlet/WebContent/WEB-INF/tld

Figure 12-14 Importing c2a tag library (c2a.tld)
 Chapter 12. Cooperative portlets 387

d. Click Finish.

5. The final step is to update the HRPortletView.jsp with c2a tags.

a. In the J2EE Navigator, expand HRPortlet/Web Content/hrportlet/jsp/html
and double-click HRPortletView.jsp.

Figure 12-15 Selecting HRPortalView.jsp

b. In the JSP editor, switch to the Source tab.

Note: Source portlets can publish their output properties by inserting tags
from a custom JSP library in their JSPs. A JSP tag library is provided to
allow source properties to be identified in JSPs.

c. In the third line of this JSP, include the following line:

<%@ taglib uri="/WEB-INF/tld/c2a.tld" prefix="C2A" %>

You can also copy and paste the JSP from c:\LabFiles\C2A\snippets\.

Note: You can also download the sample code available as additional
materials. See Appendix C, “Additional material” on page 543.

For example, see Figure 12-16.

Figure 12-16 Adding tag library c2a.tld
388 IBM WebSphere Portal Toolkit V5

d. Two JSP tags can be used to declare output properties in the source
portlet:

• <c2a:encodeProperty/>

Uses source data and type information to insert markup that displays
the icon, generating a pop-up menu.

• <c2a:encodeProperties/>

Used to enclose normal HTML markup and one or more
encodeProperty tags with the markup. This tag is provided to support
the scatter scenario, where a user can optionally send more than one
unit of data to target portlets.

You will now declare the output properties. Scroll down to the following
lines:

<TD>
<P><%=results.getCacheValueAt(row, col)%></P>

</TD>

Change the line so it looks as follows:

<P>
<C2A:encodeProperty

name="<%=results.getColumnName(col).toString()+\"Param\"%>"
namespace="http://www.ibm.com/wps/c2a/examples/hrdetails"
type="<%=results.getColumnName(col)%>"
value="<%=results.getCacheValueAt(row, col).toString()%>" />
<%=results.getCacheValueAt(row, col)%>

</P>

You can also copy and paste the JSP from c:\LabFiles\C2A\snippets\.

Note: You can also download the sample code available as additional
materials. See Appendix C, “Additional material” on page 543.

For example, see Figure 12-17 on page 390.
 Chapter 12. Cooperative portlets 389

Figure 12-17 Adding C2A:encodeProperty to JSP (view mode)

Note: As you can see, the table column name is used as an output
property type. Therefore, a target portlet using the specified namespace
should provide an inbound property with this name.

e. Save all your files (you can use Ctlr-S).

12.2.4 Target cooperative portlet
In this section, you will import a second copy of the HRPortlet and update it to
support Click-to Action as a target cooperative portlet using the declarative
approach. This target portlet will execute a fixed SQL statement with a variable
where clause.

The code for the target portlet class must meet the following requirements:

� The action must be implemented either as a portlet action or a Struts action.
For portlet actions, you should use the simple action Strings rather than the
deprecated PortletAction class.

� Portlet actions must accept a single parameter. The parameter may appear
as a request parameter, a request attribute, a session attribute, or an action
attribute (deprecated), as specified in the action declaration or registration.

The HRPortlet is already prepared for this situation, so only a few changes are
needed in the portlet class code.

Figure 12-18 on page 391 illustrates the target cooperative portlet for this sample
scenario.
390 IBM WebSphere Portal Toolkit V5

Figure 12-18 Cooperative portlets - sample scenario

To import a second version of the HRPortlet, proceed as follows:

1. In the Portlet perspective, choose File -> New -> Portlet Application Project
from the main menu.

2. In the Create a Portlet Project window, enter a project name of
EmployeeDetailsPortlet and check Create empty portlet. Click Next.

view.jsp

C2A
broker

HRPortlet

view.jsp

wsdl

C2A
wrapper

web.xml

Employee
Details

C2A
wrapper

Source C2A portlet

Target C2A portlet

web.xml

portlet
xml
 Chapter 12. Cooperative portlets 391

Figure 12-19 Create portlet project EmployeeDetailsPortlet

3. In the J2EE Settings Page, check the Existing radio button for the Enterprise
application project and enter DefaultEAR. Click Finish.
392 IBM WebSphere Portal Toolkit V5

Figure 12-20 J2EE Settings Page

4. Click OK if you receive the Repair Service Configuration message indicating
that the project will be added to DefaultEAR.

Figure 12-21 Repair Server Configuration message

5. From the main menu, select File -> Import to import the original HRPortlet.
 Chapter 12. Cooperative portlets 393

6. Choose WAR file, click Next and configure as follows:

a. Browse to the location of the HRPortlet.war file in
c:\LabFiles\C2A\HRPortlet.war.

Note: You can also download the sample code available as additional
materials. See Appendix C, “Additional material” on page 543.

b. As the Web Project, select the existing Web project
EmployeeDetailsPortlet.

c. Check Overwrite existing resources without warning and click Finish.

Figure 12-22 Import a second version of HRPortlet (target c2a portlet)

7. Since the HRPortlet and EmployeeDetailsPortlet portlet applications use the
same UID, a warning message will appear in the task pane.
394 IBM WebSphere Portal Toolkit V5

Figure 12-23 Duplicate UID messages

8. To fix this problem, expand EmployeeDetailsPortlet/Web Content/WEB-INF in
the J2EE Navigator view. Double-click portlet.xml.
 Chapter 12. Cooperative portlets 395

Figure 12-24 Selecting portlet.xml

9. In the portlet deployment descriptor editor, select Portlet Application and
change the last digit of the UID for this portlet application. For example, in this
sample scenario, the last digit was 6 and it was changed to 7.

Figure 12-25 Changing a digit in portlet application UID

10.In a similar way, select Concrete Portlet Application and change the last
digit before the last dot of the UID to make it the same as in the previous step.
396 IBM WebSphere Portal Toolkit V5

Figure 12-26 Changing digit in concrete portlet application UID

11.Save your changes. The warning messages in the Tasks view should
disappear.

The following updates are needed in order to enable the EmployeeDetailsPortlet
to work as a target cooperative portlet.

� Import the property broker jar file (pbportlet.jar).

� Update web.xml to refer to the property broker classes. The servlet class
entry should specify the com.ibm.wps.pb.wrapper.PortletWrapper class in the
property broker. The original portlet application class should also be specified
using the c2a-application-portlet-class initialization parameter.

� Update portlet.xml to add a configuration parameter to each concrete portlet
that exposes actions to the property broker through the WSDL file. The
configuration parameter, c2a-action-descriptor, must specify a URL that
points to the WSDL file that declares actions.

� Create a WSDL file that will declare all Portlets actions which can accept data
transferred using the property broker.

Execute the following steps:

1. Import the property broker (pbportlet.jar) file into the EmployeeDetailsPortlet
project as you did for the c2a source portlet. For example:

a. Select File -> Import -> File system.

b. For the directory, browse to:

C:\Program Files\ibm\WebSphere Studio\runtimes\portal_v50\pb\lib

Note: You can also download the sample code available as additional
materials. See Appendix C, “Additional material” on page 543.

c. Select pbportlet.jar.

d. For the destination, select the folder EmployeeDetailsPortlet/Web
Content/WEB-INF/lib.
 Chapter 12. Cooperative portlets 397

Figure 12-27 Import the property broker jar file (pbportlet.jar)

e. Click Finish. Make sure the pbportlet.jar file is in the \WEB-INF\lib folder.

2. Update the Web deployment descriptor by changing the servlet class to
PortletWrapper and including the c2a-application-portlet-class
parameter.

a. In the J2EE Navigator view, expand HRPortlet and double-click Web
Deployment Descriptor.

b. Switch to the Servlets tab and select the hrportlet.HRPortlet servlet
(Figure 12-29 on page 399).

c. In the Details area, click the Browse... button to change the servlet class
(Figure 12-29 on page 399).

d. In the Servlet selection dialog, select the PortletWrapper class from the
com.ibm.wps.pb.wrapper package and click OK.
398 IBM WebSphere Portal Toolkit V5

Figure 12-28 Adding PortletWrapper

e. In the Initialization area, click the Add... button to add a new parameter.

f. Enter a parameter name of c2a-application-portlet-class and a
parameter value of hrportlet.HRPortlet. The final editor should look as
shown in Figure 12-29.

Figure 12-29 Web Deployment Descriptor for the target cooperative portlet
 Chapter 12. Cooperative portlets 399

g. Save your files (or press Ctrl-S to save the file) and close the deployment
descriptor editor.

3. A WSDL file is needed (EmployeeDetailsPortletC2A.wsdl); follow these steps:

a. Create a new folder with the name wsdl to store the WSDL files. Select
your EmployeeDetailsPortlet\Web Content folder.

b. Right-click the Web Content folder and select New -> Folder.

Figure 12-30 Create a new folder in Web Content directory

c. Type wsdl for the Folder name field then click Finish.

Figure 12-31 Create new folder wsdl
400 IBM WebSphere Portal Toolkit V5

d. The directory structure should now look as illustrated in Figure 12-32.

Figure 12-32 New wsdl folder

e. Select the new EmployeeDetailsPortlet\Web Content\wsdl folder.

f. Right-click the wsdl folder and choose File -> New -> Other... from the
context menu.

g. In the New window, select File from the Simple category. Click Next.

Figure 12-33 Creating a file resource
 Chapter 12. Cooperative portlets 401

h. In the New File dialog, enter a file name of
EmployeeDetailsPortletC2A.wsdl. Click Finish.

Figure 12-34 Creating file (wsdl) EmployeeDetailsPortletC2A.wsdl

i. In the XML editor, switch to the Source tab and enter the following XML
code shown in Example 12-1.

You can also copy and paste this file from
c:\LabFiles\C2A\Snippets\EmployeeDetailsPortletC2A.wsdl

Note: You can also download the sample code available as additional
materials. See Appendix C, “Additional material” on page 543.

Example 12-1 EmployeeDetailsPortletC2A.wsdl file

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="GetResults_Service"

 targetNamespace="http://www.ibm.com/wps/c2a/examples/hrdetails"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:portlet="http://www.ibm.com/wps/c2a"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.ibm.com/wps/c2a/examples/hrdetails"
402 IBM WebSphere Portal Toolkit V5

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.xmlsoap.org/wsdl/

http://schemas.xmlsoap.org/wsdl/ http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema.xsd">

<types>
<xsd:simpleType name="DEPT_NO">

<xsd:restriction base="xsd:string"></xsd:restriction>
</xsd:simpleType>

</types>

<message name="GetResultsMessageNameRequest">
<part name="get_ResultsPartName" type="tns:DEPT_NO" />

</message>

<portType name="GetResults_Service">
<operation name="get_ResultsOperation">

<input message="tns:GetResultsMessageNameRequest" />
</operation>

</portType>

<binding name="GetResultsBinding" type="tns:GetResults_Service">
<portlet:binding />
<operation name="get_ResultsOperation">

<portlet:action name="hrportlet.HRPortletDetailsAction" type="simple"
caption="Show all employees from this department."
description="Get.Results.for.specified.sql.string" />

<input>
<portlet:param name="DEPT_NOParam" partname="get_ResultsPartName"

caption="Show all employees from this department." />
</input>

</operation>
</binding>

</definitions>

4. The next step is to update the portlet deployment descriptor to include a
reference to the WSDL file:

a. In the J2EE Navigator view, expand EmployeeDetailsPortlet/Web
Content/WEB-INF and double-click portlet.xml.

b. In the portlet deployment descriptor editor, expand the concrete portlet
application and select hrportlet.HRPortlet.

c. Change the title to Employee Details Portlet.
 Chapter 12. Cooperative portlets 403

d. In the Setting Parameter area, click the Add... button to add the following
parameter:

c2a-action-descriptor

Its value should be:

/wsdl/EmployeeDetailsPortletC2A.wsdl

e. Press Ctrl-S to save the file and close the deployment descriptor editor.

Figure 12-35 Updating portlet descriptor with wsdl file

5. The last step is to update the actionPerformed() method in the portlet class. In
this scenario, you will use a special action string.

a. Open the HRPortlet.java file from the EmployeeDetailsPortlet project.

b. Insert the lines shown in Example 12-2 on page 405 at the end of the
actionPerformed() method.

You can also copy and paste this code from
c:\LabFiles\C2A\Snippets\ap.java

Note: You can also download the sample code available as additional
materials. See Appendix C, “Additional material” on page 543.
404 IBM WebSphere Portal Toolkit V5

Example 12-2 The hrportlet.HRPortletDetailsAction updates the SQL string

if (actionString.equals("hrportlet.HRPortletDetailsAction")) {
HRPortletSessionBean bean = this.getSessionBean(request);
bean.setSqlString(

"select * from employee where workdept='"
+ (String) request.getParameter("DEPT_NOParam")
+ "'");

}

6. Save all your files; you can use Ctrl-S.

12.2.5 Running the cooperative portlets
Execute the following steps to run the cooperative portlets scenario:

1. To run a project in the WebSphere Studio Site Developer test environment, it
is necessary to add the portlet project to the test environment. You can use a
previously created test server or you can create a new server as follows:

a. Click the Server Configuration tab (on the navigator panel).

b. Expand the Servers tree.

c. Right-click WebSphere Portal V5.0 Test Environment or Test
Environment.

d. If needed, click Add -> DefaultEAR to add your project to the test
environment.
 Chapter 12. Cooperative portlets 405

Figure 12-36 Adding a project to the test environment

2. If the Cloudscape sample database has not been populated, run the batch file
to populate the test database to be used in this scenario. Click
c:\LabFiles\Cloudscape\CreateCloudTable.bat to do this.

Note: You can also download the sample code available as additional
materials. See Appendix C, “Additional material” on page 543.

Figure 12-37 Populating test database

3. Next, click the J2EE Navigator tab to see your project again.
406 IBM WebSphere Portal Toolkit V5

4. Right-click HRPortlet. Then click Run on Server. This will load your project
into the test environment so that you can view it in the WebSphere Studio Site
Developer Web browser. It may take a minute or two for this process to
complete.

5. You will now see your newly created portlets project running in the Web
browser.

6. Switch to Edit mode in HRPortlet (c2a source portlet).

7. Enter the following information and click Submit.

– Database: jdbc:db2j:C:\LabFiles\Cloudscape\WSSAMPLE

Note: You can also download the sample code available as additional
materials. See Appendix C, “Additional material” on page 543.

– User: db2admin

– Password: db2admin

– SQL: select * from jobs

Figure 12-38 HRPortlet portlet in Edit mode

8. The HRPortlet now displays the jobs table, including a cooperative portlet
menu in the DEPT_NO column. Before you can use this menu, you have to
configure the data source in EmployeeDetailsPortlet.
 Chapter 12. Cooperative portlets 407

Figure 12-39 HRPortlet displays a cooperative menu in DEPT_NO column

9. Switch to Edit mode in EmployeeDetailsPortlet (c2a target portlet).

10.Enter the following information and click Submit. It is not necessary to enter
an SQL command here, because it is built during the processing of the
cooperative menu.

– Database: jdbc:db2j:C:\LabFiles\Cloudscape\WSSAMPLE

Note: You can also download the sample code available as additional
materials. See Appendix C, “Additional material” on page 543.

– User: db2admin

– Password: db2admin

Note: There is no need to enter an SQL statement (optional).

11.In the source cooperative portlet View mode, click a DEPT_NO column, for
example C01 or A00.

12.Click Show all employees from this department (see Figure 12-40 on
page 409).

Note: The EmployeeDetailsPortlet (target portlet) should now display all
employees in the selected department.
408 IBM WebSphere Portal Toolkit V5

Figure 12-40 EmployeeDetailsPortlet displays all employees from same department

12.3 Hints and tips
In this section, we provide guidelines to troubleshoot some common cooperative
portlets problems you may encounter.

Updates in portlet.xml are not reflected after a server restart
When using configuration parameters in portlet.xml, existing parameters are
preserved and only new ones are added. To change this behavior, you have to
change a special configuration parameter of the Deployment service as follows:

1. Open the file <WSSD_DIR>/runtimes/portal_v50/shared/app/config/services/
DeploymentService.

2. Scroll down to the line update.portlet.preserves.config.settings = true
and change this parameter value to false.

3. Restart the server.

Click 1

Click 2
 Chapter 12. Cooperative portlets 409

Updates in WSDL files are not reflected after a server restart
Because of some limitations, updating the portlet application does not cause the
WSDL to be read again.

There are a few ways to achieve an update after changing the WSDL file.

� You can reinstall the portlet application.

� You can program an action forcing the file to be reloaded.

� You can use XMLAccess to update the portlet. This is explained in
Appendix B, “Automatically redeploying portlets” on page 535.

To reinstall the portlet application:

1. From the server configuration view, double-click your server.

2. In the server configuration editor, switch to the Portal tab.

3. Check Enable base portlets for administration and customization, save
the configuration and close the editor.

4. Start the server.

5. Open a browser and log in. Switch to the administration page.

Figure 12-41 Switch to the Administration page to reinstall a portlet

6. From the left menu, select Portlets -> Manage Applications.

7. From the Web Modules list, select your cooperative target portlet and click
Uninstall.
410 IBM WebSphere Portal Toolkit V5

Figure 12-42 To uninstall a portlet, select the portlet and click Uninstall

8. Restart the server.

To force a reload of the WSDL files, you can also program a portlet action as
illustrated in Example 12-3. After execution of this action (for example in
configuration mode) and a new login, the runtime Portal will parse the changed
WSDL file and store the new action set.

Example 12-3 This action removes all registered actions

if (actionString.equals("RemoveAllActions")) {
PropertyBrokerService pbService = null;
try {

pbService =
(PropertyBrokerService) portletConfig

.getContext()

.getService(
PropertyBrokerService.class);

} catch (PortletServiceUnavailableException e) {
e.printStackTrace();

} catch (PortletServiceNotFoundException e) {
e.printStackTrace();

}
PortletSettings settings = request.getPortletSettings();
try {

pbService.unregisterActions(request, settings);
} catch (PropertyBrokerServiceException e) {

e.printStackTrace();
}

}

 Chapter 12. Cooperative portlets 411

The server stops immediately after a server start
When you deploy a portlet application with a changed portlet UID which was
already deployed before, the server does not start correctly because the old
portlet configuration still exists in the configuration database.

This also happens if you create a new portal server within WebSphere Studio. To
fix this problem, proceed as follows:

1. Remove all projects from your existing server configuration.

2. Enable the base portlets and start the server.

3. Log in to WebSphere Portal and remove the existing portlet through the
Administration page.

4. Stop the server.

5. Add the projects you removed previously.
412 IBM WebSphere Portal Toolkit V5

Chapter 13. Advanced cooperative
portlets

This chapter discusses advanced cooperative portlet topics.

After reading this chapter, you will be able to:

� Develop source cooperative portlets using a programmatic approach to
publish properties.

� Develop target cooperative portlets using a programmatic approach to
publish properties.

� Develop source cooperative portlets broadcasting data to two or more
portlets.

13

Note: The sample scenario included in this chapter requires that you have
read Chapter 12, “Cooperative portlets” on page 371. You can also download
the sample code available as additional materials. See Appendix C,
“Additional material” on page 543.
© Copyright IBM Corp. 2004. All rights reserved. 413

13.1 Publishing properties programmatically
As mentioned in Chapter 12, “Cooperative portlets” on page 371, each action in
a cooperative portlet is associated with a single input parameter and zero or
more output parameters that provide information to the action about the objects
in which the property value should be bound, such as the request object or the
session object.

Each parameter is associated with exactly one property. Parameters associated
with input properties are called input parameters, while those associated with
output properties are called output parameters. Instead of actions, target portlets
can receive property changes directly through the PropertyListener interface.

The actual transfer of the property can be initiated by one of the following
methods:

1. A user launches a Click-to-Action event from an icon on the source portlet.
The icon presents a pop-up menu containing the list of targets for the action.
After the user selects a specific target, the property broker delivers the data to
the target in the form of the corresponding portlet action.

2. A user holds the Ctrl key while clicking an action and chooses to have the
selection saved persistently as a connection between two portlets, called a
wire.

3. The source portlet can perform a programmatic publish of properties to the
broker, when it determines that property values have changed. Such property
values are transferred to the target(s) only if wires have been created.

The property broker provides APIs to give developers more control over how
portlets handle the input and output properties. In general terms, the
programmatic approach might be a better option over the declarative approach
when the portlet needs to do the following:

� Activate or deactivate actions for a session.

� Change the portlet state but not requiring the portlet to react immediately.

� Publish output properties using the changedProperties() method.

� Register actions programmatically instead of declaring them in a WSDL file.
This may be necessary when the action or property is not known at

Note: Cooperative portlets using the programmatic approach require that you
create a wire; for details about creating wires, see 13.5.4, “Wire portlets” on
page 440 and 13.4, “Wiring tool” on page 418. This is because property
values are transferred to the target portlets only if wires have been created.
414 IBM WebSphere Portal Toolkit V5

development time, such as when a portlet is generated by a builder
application.

� Generate markup content directly in the portlet rather than using JSPs.

The following packages are provided for portlets to publish properties to the
property broker programmatically:

� com.ibm.wps.pb.property
� com.ibm.wps.pb.portlet
� com.ibm.wps.pb.service

13.2 Portlet event handling
The portlet programming model involves an event phase and a render phase in
each request-response cycle.

� The event phase is when the property broker delivers notifications to
cooperative portlets and when the cooperative portlets can notify the property
broker of property value changes. During the event phase, an action may be
delivered on one portlet. If the property broker is used, this may result in other
actions being triggered on other portlets.

� The event phase is followed by the render phase, in which each portlet is
asked to return markup, which is then aggregated in a single page. The
markup may embed actions which can be invoked by the user. The page is
then returned to the client (such as a browser).

At any point during the event phase, a portlet may explicitly publish the value of
an output property to the property broker by invoking the changedProperties()
method. This is an alternative to the declaration of output parameters for actions
and binding the output parameter values to the request or session when the
action is invoked. This may happen in the following cases:

� In the callback method associated with the start of the event phase
(beginEventPhase method)

� In the invocation of the setProperties() method in a target portlet

� In the portlet action method invocation

The publishing calls are dealt with by the property broker in the same manner as
output parameters of actions: wires associated with output properties are
examined and the property values propagated using the information in the target
end of the wire.
 Chapter 13. Advanced cooperative portlets 415

Note: The process may continue recursively; however, the property broker
detects loops and breaks them. Also, during the event phase of the subsequent
request, the action is invoked on the corresponding target portlet or portlets.

Figure 13-1 illustrates a simplified version of cooperative portlets implemented
using the programmatic approach.

Figure 13-1 Sample summary of a programmatic approach

In the general case using a programmatic approach, the source portlet needs to
implement the following:

1. Specify the C2A wrapper in the web.xml descriptor as explained in
Chapter 12, “Cooperative portlets” on page 371.

2. The property broker attribute needs to be initialized; this can be done in the
initConcrete() method.

3. The portlet will need to register its output properties by using the
registerProperties() method. This can be done by implementing a
beginEventPhase() method so the portlet is notified when the event phase
starts.

Note: The EventPhaseListener interface requires that you also provide the
endEventPhase() method. If needed, some cleanup can be done in this
method.

4. The source portlet publishes its output properties, for example when
processing an action in the actionPerformed() method.

In a similar way, the target portlet needs to be updated as follows:

1. Specify the C2A wrapper in the web.xml descriptor as explained in
Chapter 12, “Cooperative portlets” on page 371.

1. Update web.xml with wrapper
2. initConcrete()

initialize property attribute
3. beginEventPhase()

If needed:
register output properties

4. actionPerformed()
createProperty()
createPropertyValue()
changedProperties()

Source portlet

1. Update web.xml with wrapper
2. initConcrete()

initialize property attribute
3. beginEventPhase()

If needed:
register input properties

4. setProperties()

Target portlet

Property
Broker

Services
416 IBM WebSphere Portal Toolkit V5

2. The property broker attribute needs to be initialized; this can be done in the
initConcrete() method.

3. The portlet will need to register its input properties by using the
registerProperties() method. This can be done by implementing a
beginEventPhase() method so the portlet is notified when the event phase
starts.

4. The target portlet implements the setProperties() method to be notified of
property changes reported by other source portlets.

Note: The target portlet must implement the PropertyListener interface.

13.3 Broadcasting source data
Using the broadcast feature of the cooperative broker, users can send the same
data to all portlets on the page with matching actions. The target cooperative
portlet of a broadcast can use the declarative or programmatic approach to
publish properties.

To include the broadcast menu item to the HRPortlet, proceed as follows:

1. Open the JSP HRPortlet/Web Content/hrportlet/jsp/html/HRPortletView.jsp.

2. In the encodeProperty tag, include the broadcast attribute so it looks as
shown in Example 13-1.

Example 13-1 The broadcast attribute enables the broadcast feature.

<P>
<C2A:encodeProperty
name="<%=results.getColumnName(col).toString()+\"Param\"%>"
namespace="http://www.ibm.com/wps/c2a/examples/hrdetails"
type="<%=results.getColumnName(col)%>"
value="<%=results.getCacheValueAt(row, col).toString()%>"
broadcast="true"/>
<%=results.getCacheValueAt(row, col)%>

</P>

3. Test the application as described in the last chapter. Do not forget to enter the
database attribute in the Edit mode of both the Employee and Department
Details Portlets.

4. From the cooperative portlet menu choose Invoke all actions. Now both
details portlets display the details of the selected department number.
 Chapter 13. Advanced cooperative portlets 417

Figure 13-2 Choose Invoke all actions to broadcast the data to all portlets

13.4 Wiring tool
The portlet wiring tool allows you to view the properties that portlets on the page
can send or receive. If a match is available between two portlets, you can create
a wire between the two portlets. Existing wires may also be deleted using the
tool. This is an alternative to the wire creation or deletion while interacting with
the portlets using the Ctrl key.

The wiring tool allows wires to be created in situations which are not handled by
the interactive approach. For example, the tool does not require the existence of
Click-to-Action menus to initiate wire creation, and can be used to create multiple
wires from a single source property (using the interactive approach, a single
source can be wired to a single target or all targets, not an arbitrary subset). Wire
creation or deletion is subject to the access control checks.

Figure 13-3 Creating wires programmatically using Portlet Wiring Tool
418 IBM WebSphere Portal Toolkit V5

This portlet is initially provided after the release of WebSphere Portal V5.0.
Subsequent versions of WebSphere Portal will include the Portlet Wiring Tool as
part of the product and deployed to the Page Customizer.

Note: You can download the tool from the WebSphere portal catalog. The
Navigation code is 1WP10004E.

13.5 Sample scenario
In this section, a sample scenario is provided to illustrate how to develop
cooperative portlets using the programmatic approach.

13.5.1 Declarative source cooperative portlet
In this scenario, you will implement a combined scenario where the source
cooperative portlet uses the declarative approach to interact with a target
cooperative portlet using the programmatic approach. The sample scenario is
shown in Figure 13-4.

Figure 13-4 A sample scenario using a combined approach

Creating the HRPortlet portlet application project
In this section, the source cooperative portlet from Chapter 12, “Cooperative
portlets” on page 371 will be used. Follow these steps if you do not have this
portlet project in your workspace:

1. If not already running, start the IBM WebSphere Studio Site Developer, click
Start -> Programs -> IBM WebSphere Studio -> Site Developer 5.0.

Source portlet (declarative)

1. Update web.xml with wrapper
2. initConcrete()

initialize property attribute
3. beginEventPhase()

If needed:
register input properties

4. setProperties()

Target portlet (programmatic)

Property
Broker

Services

1. Update web.xml with wrapper
2. Update JSP with c2a tags

view.jsp

HRPortlet C2A
wrapper
 Chapter 13. Advanced cooperative portlets 419

2. Select File -> New -> Portlet Application Project.

Note: If you do not see this option, select File -> New -> Other and click
Portlet Development and Portlet Application Project.

3. In the Define Portlet Project window, enter HRPortlet for the project name.
Click Next.

Figure 13-5 Define the Portlet Project

4. In the J2EE Settings Page, click Next to take the default values.

5. In the Portlet Settings Page, select Change code generation options and
enter HRPortlet for the Class prefix. Click Finish to generate the framework
for your project.
420 IBM WebSphere Portal Toolkit V5

Figure 13-6 Portlet Settings

6. If you have any other portlets in the DefaultEAR project, remove them at this
time.

Importing the HRPortlet portlet
The HRPortlet portlet from Chapter 12, “Cooperative portlets” on page 371 will
be used as a base for this scenario. This portlet will be enabled to act as a source
cooperative portlet in this scenario. You will need to import this portlet if it is not in
your workspace.

Follow these steps to import this portlet if it is not in your workspace:

1. Import the WAR file by selecting File -> Import.

2. Select WAR file and click Next.

3. In the Import Resources from a WAR File window, enter the following
information:

a. WAR file: browse to C:\LabFiles\C2A\solutions\HRPortlet.war.

Note: The sample scenario included in this chapter requires that you
download the sample code available as additional materials. See
Appendix C, “Additional material” on page 543.
 Chapter 13. Advanced cooperative portlets 421

b. Web project: select Existing. In the box that pops up, select HRPortlet
and click OK.

c. Context root: this will change to /HRPortlet.

d. In Options, select the Overwrite existent resources without warning
check box.

e. Click Finish to import the WAR file.

4. Make sure the web.xml descriptor has been updated with the c2a wrapper.

5. Make sure the PortletView.jsp has been updated with the c2a tags and c2a
tag library. See Example 13-2.

Example 13-2 C2a library and tags

<%@ page contentType="text/html" import="java.util.*, hrportlet.*"%>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>
<%@ taglib uri="/WEB-INF/tld/c2a.tld" prefix="C2A" %>
...
<TD>
<P><C2A:encodeProperty

name='<%=results.getColumnName(col).toString()+\"Param\"%>'
namespace="http://www.ibm.com/wps/c2a/examples/hrdetails"
type="<%=results.getColumnName(col)%>"
value="<%=results.getCacheValueAt(row, col).toString()%>" />

<%=results.getCacheValueAt(row, col)%>
</P>

</TD>

6. Save your files (or press Ctrl-S to save the files).

13.5.2 Enabling the portlet for target C2A programmatic
In this section, you will import a second copy of the HRPortlet and update it to
support Click-to Action as a target cooperative portlet using the programmatic
approach. This target portlet will execute a fixed SQL statement with a variable
where clause.

The code for the target portlet class must meet the following requirements:

� The action must be implemented either as a portlet action or a Struts action.
For portlet actions, you should use the simple action Strings rather than the
deprecated PortletAction class.

� Portlet actions must accept a single parameter. The parameter may appear
as a request parameter, a request attribute, a session attribute, or an action
attribute (deprecated), as specified in the action declaration or registration.
422 IBM WebSphere Portal Toolkit V5

The HRPortlet is already prepared for this situation, so only a few changes are
needed in the portlet class code. Figure 13-7 illustrates the target cooperative
portlet for this sample scenario.

Figure 13-7 Cooperative portlets - programmatic sample scenario (target portlet)

Creating a target portlet application project
To import a second version of the HRPortlet, create a portlet application project
as follows:

1. In the Portlet perspective, choose File -> New -> Portlet Application Project
from the main menu.

2. In the Create a Portlet Project window, enter DepartmentDetailsPortlet as
the project name and select Create empty portlet. Click Next.

Source portlet (declarative)

1. Update web.xml with wrapper
2. initConcrete()

initialize property attribute
3. beginEventPhase()

If needed:
register input properties

4. setProperties()

Target portlet (programmatic)

Property
Broker

Services

1. Update web.xml with wrapper
2. Update JSP with c2a tags

view.jsp

HRPortlet C2A
wrapper
 Chapter 13. Advanced cooperative portlets 423

Figure 13-8 Create portlet project DepartmentDetailsPortlet

3. In the J2EE Settings Page, select the Existing radio button for the Enterprise
application project and enter DefaultEAR as its name. Click Finish to create
the portlet project.
424 IBM WebSphere Portal Toolkit V5

Figure 13-9 J2EE Settings Page

4. Click OK if you receive the Repair Service Configuration message indicating
that the project will be added to DefaultEAR.

Figure 13-10 Repair Server Configuration message
 Chapter 13. Advanced cooperative portlets 425

Importing the original portlet application
1. From the main menu, select File -> Import to import the original HRPortlet.

2. Choose WAR file, click Next and configure as follows:

a. Browse to the location of the HRPortlet.war file in
c:\LabFiles\AdvC2A\HRPortlet.war.

Note: The sample scenario included in this chapter requires that you
download the sample code available as additional materials. See
Appendix C, “Additional material” on page 543.

b. As the Web Project, select the existing Web project
DepartmentDetailsPortlet.

c. Select Overwrite existing resources without warning and click Finish.

Figure 13-11 Import a second version of HRPortlet (target c2a portlet)

3. Since the HRPortlet and DepartmentDetailsPortlet portlet applications use the
same UID, a warning message will appear in the task pane.
426 IBM WebSphere Portal Toolkit V5

Figure 13-12 Duplicate UID messages

4. To fix this problem, expand DepartmentDetailsPortlet/Web Content/WEB-INF
in the J2EE Navigator view. Double-click portlet.xml.
 Chapter 13. Advanced cooperative portlets 427

Figure 13-13 Selecting portlet.xml

5. In the portlet deployment descriptor editor, select Portlet Application and
change the last digit of the UID for this portlet application. For example, in this
sample scenario, the last digit was 6 and it was changed to 7.

Figure 13-14 Changing a digit in portlet application UID
428 IBM WebSphere Portal Toolkit V5

6. In a similar way, select Concrete Portlet Application and change the last
digit before the last dot of the UID to give it the same value as in the previous
step.

Figure 13-15 Changing digit in concrete portlet application UID

7. Save your changes. The warning messages in the Tasks view should
disappear.

Importing pbportlet.jar
Import the property broker (pbportlet.jar) file into the DepartmentDetailsPortlet
project.

1. Select File -> Import -> File system.

2. For example, for the directory browse to:

C:\Program Files\ibm\WebSphere Studio\runtimes\portal_v50\pb\lib

3. Select pbportlet.jar.

4. For the destination, select the folder DepartmentDetailsPortlet/Web
Content/WEB-INF/lib.
 Chapter 13. Advanced cooperative portlets 429

Figure 13-16 Import the property broker jar file (pbportlet.jar)

5. Click Finish.

Updating the web.xml descriptor
Update the Web deployment descriptor by changing the servlet class to
PortletWrapper and including the c2a-application-portlet-class parameter.

1. In the J2EE Navigator view, expand DepartmentDetailsPortlet and
double-click Web Deployment Descriptor.

2. Switch to the Servlets tab and select the hrportlet.HRPortlet servlet
(Figure 13-18 on page 432).

3. In the Details area, click the Browse... button to change the servlet class
(Figure 13-18 on page 432).

4. In the Servlet selection dialog, select the PortletWrapper class from the
com.ibm.wps.pb.wrapper package and click OK.
430 IBM WebSphere Portal Toolkit V5

Figure 13-17 Adding PortletWrapper

5. In the Initialization area, click the Add... button to add a new parameter.

6. Enter a parameter name of c2a-application-portlet-class and a
parameter value of hrportlet.HRPortlet. The final editor should look as
shown in Figure 13-18 on page 432.
 Chapter 13. Advanced cooperative portlets 431

Figure 13-18 Web Deployment Descriptor for the target cooperative portlet

7. Save your files (or press Ctrl-S to save the file) and close the deployment
descriptor editor.

Updating the DepartmentDetailsPortlet
In this section, you will update the portlet to act as a target C2A portlet using the
programmatic approach. The DepartmentDetailsPortlet is a copy of the
HRPortlet and it will register the DEPT_NO property by using the property broker
API instead of a WSDL file used in the declarative approach.

Follow these steps to update the portlet class to publish the property and create
call back methods to recognize the property changes:

1. Open the file DepartmentDetailsPortlet/Java Source/hrportlet/HRPortlet.java.

2. Update the class definition so it implements the PropertyListener and
EventPhaseListener interfaces.

public class HRPortlet extends PortletAdapter implements PropertyListener,
EventPhaseListener, ActionListener

Note: The setProperties method of the PropertyListener interface receives
updates of property values. To register properties, you will use the
beginEventPhase method of the EventPhaseListener interface, since only
during the event phase is it possible to register and unregister properties.

3. Insert the following two new class attributes so the code looks like this:

public class HRPortlet extends PortletAdapter implements PropertyListener,
EventPhaseListener, ActionListener {
432 IBM WebSphere Portal Toolkit V5

PropertyBrokerService pbService;
PortletConfig portletConfig;

Note: pbService is an interface to the property broker and portletConfig
stores the portlet config.

4. Update the init method so it looks as shown in Example 13-3.

Example 13-3 Update init method to obtain portlet configuration

public void init(PortletConfig portletConfig) throws
UnavailableException {

super.init(portletConfig);
this.portletConfig=portletConfig;

}

5. Insert the initConcrete method shown in Example 13-4 to initialize the
property broker attribute.

Example 13-4 Initialize property broker

public void initConcrete(PortletSettings settings)
throws UnavailableException {
try {

pbService =
(PropertyBrokerService) getPortletConfig()

.getContext()

.getService(
PropertyBrokerService.class);

} catch (PortletServiceUnavailableException e) {
throw new UnavailableException("Could not locate

PropertyBrokerService.");
} catch (PortletServiceNotFoundException e) {

throw new UnavailableException("Could not locate
PropertyBrokerService.");

}
}

6. For simplicity, create the registerPropertiesIfNecessary method to register the
property we are interested in.

Note: This method performs the same as the WSDL file when using the
declarative approach. Notice also that you need to specify a direction of
Property.IN. In addition, actions are not registered (which is possible using
the registerActions method) in this scenario. In other words, this portlet will be
invoked by the property broker using the setProperties method instead of
actionPerformed.
 Chapter 13. Advanced cooperative portlets 433

Example 13-5 registerPropertiesIfNecessary method

private void registerPropertiesIfNecessary(PortletRequest request)
throws PropertyBrokerServiceException {
PortletSettings settings = request.getPortletSettings();
Property[] properties = pbService.getProperties(request, settings);
if (properties == null || properties.length == 0) {

PortletContext context = getPortletConfig().getContext();
//not registered, register now
properties = new Property[1];
properties[0] = PropertyFactory.createProperty(settings);
properties[0].setName("DEPT_NOParam");
properties[0].setDirection(Property.IN);
properties[0].setType("DEPT_NO");

properties[0].setNamespace("http://www.ibm.com/wps/c2a/examples/hrdetails");
properties[0].setTitleKey("HRDetails.Department");
properties[0].setDescriptionKey(

"Display department details");
pbService.registerProperties(request, settings, properties);

}
}

7. Add the beginEventPhase and endEventPhase methods which are call back
methods called during the event phase.

Example 13-6 The beginEventPhase methods registers the property if necessary

public void beginEventPhase(PortletRequest request) {
try {

registerPropertiesIfNecessary(request);
}
catch (Throwable e) {

e.printStackTrace();
}

}
public void endEventPhase(PortletRequest request) {

}

8. Add the setProperties method. Using this method, the class is notified about
property changes.

Example 13-7 setProperties updates the sql statement

public void setProperties(
PortletRequest request,
PropertyValue[] properties) {
PortletSession session = request.getPortletSession();
HRPortletSessionBean sessionBean = getSessionBean(request);
for (int i = 0; i < properties.length; i++) {
434 IBM WebSphere Portal Toolkit V5

System.out.println(properties[i].toString());
if (properties[i].getProperty().getName().equals("DEPT_NOParam")) {

String value = (String)properties[i].getValue();
if (value.equals("*"))

sessionBean.setSqlString("select * from department");
else

sessionBean.setSqlString(
"select * from department where deptno='"

+ value
+ "'");

}
}

}

9. Right-click anywhere in the Java editor and select Source -> Organize
Imports to include the missing import statements. In the Organize Imports
dialog, choose to import the com.ibm.wps.pb.property.Property class.

Figure 13-19 The Organize Imports dialog.

10.Save and close the HRPortlet.java file.

13.5.3 Running the cooperative portlets
Execute the following steps to run the cooperative portlets scenario:

1. To run a project in the WebSphere Studio Site Developer Test Environment, it
is necessary to add the portlet project to the test environment. You can use a
previously created test server or you can create a new server. Follow these
steps:

a. Click the Server Configuration tab (on the navigator panel).

b. Expand the Servers tree.
 Chapter 13. Advanced cooperative portlets 435

c. Right-click WebSphere Portal V5.0 Test Environment or Test
Environment.

d. If needed, click Add -> DefaultEAR to add your project to the Test
Environment.

Figure 13-20 Adding a project to the Test Environment

2. If the Cloudscape sample database has not been populated, run the batch file
to populate the test database to be used in this scenario. Click
c:\LabFiles\Cloudscape\CreateCloudTable.bat to do this.

Note: The sample scenario included in this chapter requires that you
download the sample code available as additional materials. See Appendix C,
“Additional material” on page 543.
436 IBM WebSphere Portal Toolkit V5

Figure 13-21 Populating test database

3. Next, click the J2EE Navigator tab to see your project again.

4. Right-click HRPortlet. Then click Run on Server. This will load your project
into the Test Environment so that you can view it in the WebSphere Studio
Site Developer internal Web browser. It may take a minute or two for this
process to complete.

5. You will now see your newly created portlets project running in the Web
browser.

6. Switch to Edit mode in HRPortlet (c2a source portlet).

7. Enter the following information and click Submit.

– Database: jdbc:db2j:C:\LabFiles\Cloudscape\WSSAMPLE

– User: db2admin

– Password: db2admin

– SQL: select * from jobs
 Chapter 13. Advanced cooperative portlets 437

Figure 13-22 HRPortlet portlet in Edit mode

8. The HRPortlet now displays the jobs table, including a cooperative portlet
menu in the DEPT_NO column. Before you can use this menu, you have to
configure the data source in DepartmentDetailsPortlet.
438 IBM WebSphere Portal Toolkit V5

Figure 13-23 HRPortlet displays a cooperative menu in the DEPT_NO column

9. Switch to Edit mode in DepartmentDetailsPortlet (c2a target portlet).

10.Enter the following information and click Submit. It is not necessary to enter
an SQL command here, because it is built during the processing of the
cooperative menu.

– Database: jdbc:db2j:C:\LabFiles\Cloudscape\WSSAMPLE

– User: db2admin

– Password: db2admin

Note: There is no need to enter an SQL statement (optional).

11.In the source portlet View mode, click the c2a icon in the DEPT_NO column,
for example before C01 or A00.

12.Click the c2a menu again to send the changed property to C2A.
 Chapter 13. Advanced cooperative portlets 439

Figure 13-24 Cooperative portlets

13.5.4 Wire portlets
In this section, you will wire the source and target portlets for C2A. Follow these
steps:

1. Select one of the C2A menu items but this time press the Ctrl key during the
selection.

2. A new dialog opens asking whether to Automate the action in future.
Select Yes.

Figure 13-25 Pressing Ctrl key during menu selection to create a wire

3. Click Yes to activate the wire.

4. Try other departments again.

5. Press the Ctrl key again when using C2A to disable the wire.

Note: Wiring can also be accomplished by using the C2A wiring tool.

13.5.5 Enabling HRPortlet for programmatic source C2A
In this section, you will be required to enhance the source C2A portlet application
to implement the programmatic approach. Figure 13-26 on page 441 illustrates
the source cooperative portlet for this sample scenario.
440 IBM WebSphere Portal Toolkit V5

Figure 13-26 Cooperative portlets - programmatic sample scenario (source portlet)

You will update HRPortlet to change property data using the programmatic
approach. You will also insert a button in the HRPortlet page to offer the display
of department details in the DepartmentDetailsPortlet (C2A target portlet).

Notice that in this portlet, you will need to register the DEPT_NO property using
the Property.OUT direction. In addition, the update of the property will be done in
the actionPerformed method.

Note: For this scenario, you may want to copy and paste the code provided in
the folder c:\LabFiles\AdvC2A\snippets\HRPortlet(source)\. The sample scenario
included in this chapter requires that you download the sample code available as
additional materials. See Appendix C, “Additional material” on page 543.

Proceed as follows to update the HRPortlet:

1. Open the file HRPortlet/Java Source/hrportlet/HRPortlet.java.

2. Update the class definition so it implements the EventPhaseListener interface:

public class HRPortlet extends PortletAdapter implements
EventPhaseListener, ActionListener {

Note: The beginEventPhase method of the EventPhaseListener interface is
used to register the output properties; this is because it is only possible to
register and unregister properties during the event phase.

3. At the beginning of this class, insert two new class attributes so the code
looks like this:

public class HRPortlet extends PortletAdapter implements
EventPhaseListener, ActionListener {

1. Update web.xml with wrapper
2. initConcrete()

initialize property attribute
3. beginEventPhase()

If needed:
register output properties

4. actionPerformed()
createProperty()
createPropertyValue()
changedProperties()

Source portlet

1. Update web.xml with wrapper
2. initConcrete()

initialize property attribute
3. beginEventPhase()

If needed:
register input properties

4. setProperties()

Target portlet

Property
Broker

Services
 Chapter 13. Advanced cooperative portlets 441

PropertyBrokerService pbService;
PortletConfig portletConfig;

Note: pbService is an interface to the property broker and portletConfig
stores the portlet configuration.

4. Change the init method so it looks as follows:

public void init(PortletConfig portletConfig) throws
UnavailableException {

super.init(portletConfig);
this.portletConfig=portletConfig;

}

5. Add the following initConcrete method to initialize the property broker
attribute.

Example 13-8 The initConcrete method initializes the property broker attribute

public void initConcrete(PortletSettings settings)
throws UnavailableException {
try {

pbService =
(PropertyBrokerService) getPortletConfig()

.getContext()

.getService(
PropertyBrokerService.class);

} catch (PortletServiceUnavailableException e) {
throw new UnavailableException("Could not locate

PropertyBrokerService.");
} catch (PortletServiceNotFoundException e) {

throw new UnavailableException("Could not locate
PropertyBrokerService.");

}
}

6. For simplicity, you will now add a new method called
registerPropertiesIfNecessary to register the property we are interested in.

Example 13-9 Register a new output property

private void registerPropertiesIfNecessary(PortletRequest request)
throws PropertyBrokerServiceException {
PortletSettings settings = request.getPortletSettings();
Property[] properties = pbService.getProperties(request, settings);
if (properties == null || properties.length == 0) {

PortletContext context = getPortletConfig().getContext();
//not registered, register now
properties = new Property[1];
properties[0] = PropertyFactory.createProperty(settings);
properties[0].setName("DEPT_NOParam");
442 IBM WebSphere Portal Toolkit V5

properties[0].setDirection(Property.OUT);
properties[0].setType("DEPT_NO");

properties[0].setNamespace("http://www.ibm.com/wps/c2a/examples/hrdetails");
properties[0].setTitleKey("HRDetails.Department");
properties[0].setDescriptionKey(

"Display department details");
pbService.registerProperties(request, settings, properties);

}
}

7. Implement the eventPhaseListener interface by inserting the
beginEventPhase and endEventPhase methods, which are callback methods
invoked during the event phase. The beginEventPhase invokes the method to
register the output property DEPT_NOParam.

Note: The endEventPhase method does nothing in this scenario but needs to
be included in the interface.

Example 13-10 beginEventPhase and endEventPhase methods

public void beginEventPhase(PortletRequest request) {
try {

registerPropertiesIfNecessary(request);
}
catch (Throwable e) {

e.printStackTrace();
}

}
public void endEventPhase(PortletRequest request) {

}

8. For simplicity, insert a new method with name changeProperty to notify the
broker about a changed property value. This method uses the
changedProperties method to notify property changes.

Example 13-11 Notify the broker of a property value change

private void changeProperty(PortletRequest request, String value) {
System.out.println("send data");
PortletSettings settings = request.getPortletSettings();
if (pbService != null) {

try {
Property p = PropertyFactory.createProperty(settings);
p.setName("DEPT_NOParam");
p.setDirection(Property.OUT);
p.setType("DEPT_NO");
p.setNamespace("http://www.ibm.com/wps/c2a/examples/hrdetails");
PropertyValue[] pva = new PropertyValue[1];
 Chapter 13. Advanced cooperative portlets 443

pva[0] = PropertyFactory.createPropertyValue(p, value);
pbService.changedProperties(request, getPortletConfig(), pva);

} catch (Exception e) {
e.printStackTrace();

}
}

}

9. At the end of the actionPerformed method, include the following code to
invoke the internal changeProperty method and notify the output property
change.

Example 13-12 Invoke method to notify the property value change

if (actionString.equals("DisplayAllDepartmentDetails")) {
this.changeProperty(request, "*");

}

10.Right-click anywhere in the Java editor and select Source -> Organize
Imports to include the missing import statements. In the Organize Imports
dialog, choose to import the com.ibm.wps.pb.property.Property class.

Figure 13-27 The Organize Imports dialog

11.Save and close the updated source cooperative portlet HRPortlet.java file.

12.Update the HRPortletView.jsp to insert a new action button offering to display
department details from all departments. Open the HRPortletView.jsp file and
insert the following code at the end of the file and before the </BODY> tag.

Note: The action name is DisplayAllDepartmentDetails and it will be
processed in the actionPerformed method. See Example 13-13 on page 445.
444 IBM WebSphere Portal Toolkit V5

Example 13-13 New button to offer display of all department details

<p align="center">
<FORM method="post"
action="<portletAPI:createReturnURI><portletAPI:URIAction
name='DisplayAllDepartmentDetails'/></portletAPI:createReturnURI>"">
<INPUT type="submit" name="submit" value="Display all department details">
</FORM>
</p>

13.Optionally, preview the JSP and see the new button.

14.Save and close the file.

13.5.6 Running the programmatic source portlet
Follow these steps to run the updated scenario:

1. Right-click HRPortlet and select Run on Server.

2. Click the Display all department details button. The
DepartmentDetailsPortlet displays all department details, as shown in
Figure 13-28.

Figure 13-28 Department Details Portlet displays details from all departments

3. A portlet wire is required. Try the Display all department details button
before and after adding the portlet wire.

Important: The method changedProperties() will only trigger events on wired
targets. If no wires exist for the published properties, it has no effect.
 Chapter 13. Advanced cooperative portlets 445

446 IBM WebSphere Portal Toolkit V5

Chapter 14. Struts portlets

Struts is a very popular framework for Web applications using a
Model-View-Controller (MVC) design pattern. The Struts framework is an open
source subproject of the Apache Software Foundation's Jakarta project and can
be used to effectively design Web applications.

This chapter discusses the Struts Portlet Framework, which adds support for
writing Struts application that can be deployed in WebSphere Portal.

After reading this chapter, you will be able to:

� Understand the architecture of the Struts framework

� Know how to develop Struts application in WebSphere Studio

� Know how to transform a Struts Web application into a Struts portlet

14
© Copyright IBM Corp. 2004. All rights reserved. 447

14.1 Overview
The Struts framework divides your application into three functional areas.The
model is the business logic, which in most cases involves access of data stores
such as relational databases. The development team that handles the model
may be expert at writing DB2 COBOL programs, or EJB entity beans, or some
other technology appropriate for storing and manipulating enterprise data.

The view is the code that presents images and data on Web pages. The code
comprises JSPs and the JavaBeans that store data for use by the JSPs. The
controller is the code that determines the overall flow of events.

Figure 14-1 The three tiers of the Struts framework

Struts supports this model by providing the following components:

� The Struts action servlet handles run-time events in accordance with a set of
rules that are provided at deployment time. Those rules are contained in a
Struts configuration file (struts-config.xml) and specify how the servlet
responds to every outcome received from the business logic. Changes to the
flow of control require changes only to the configuration file.

Struts also provides the Java class org.apache.struts.action.Action, which a
Java developer subclasses to create an "action class". At runtime, the
ActionServlet is said to "perform actions", which means that the servlet
invokes the perform method of each of the instantiated action classes.

Note: The object returned from the perform method directs ActionServlet as
to what action or JSP to access next.
448 IBM WebSphere Portal Toolkit V5

� Struts provides the Java class org.apache.struts.action.ActionForm, which a
Java developer subclasses to create a form bean. At runtime, the bean is
used in two ways: when a JSP prepares the related HTML form for display,
the JSP accesses the bean, which holds values to be placed into the form.
Those values are provided from business logic or from previous user input.
When user input is returned from a Web browser, the bean validates and
holds that input either for use by business logic or (if validation failed) for
subsequent redisplay.

� Struts provides numerous, custom JSP tags which are simple to use but are
powerful in the sense that they hide information. The page designer does not
need to know much about form beans beyond, for example, the bean names
and the names of each field in a given bean.

14.1.1 The Struts portlet framework
Struts application can run within WebSphere Portal using the Struts portlet
framework. Developers that have worked with Struts in the servlet environment
should adapt easily to the Struts Portlet Framework. The packaging of a Struts
portlet application is very similar to a Struts application in the servlet
environment.
However, WebSphere Portal also introduces additional concepts, such as portlet
modes, multiple device support, and portlet communication, which might need to
be addressed by the Struts application. Because of this, developers have to
consider the following main issues when developing Struts portlets:

� Action processing and rendering
In a normal servlet application all servlet processing occurs during the
service() method. The Struts rendering of the page is usually immediately
preceded by action processing; they are essentially part of one step. Portlet
processing, however, is implemented in two phases, an action phase and a
rendering phase.

When a Struts application is migrated to the portlet environment, some of the
information that was available during the action phase, namely the request
parameters, is no longer available during the rendering phase. Additionally,
since rendering methods, such as doView(), can be called when the portlet
page is refreshed without a new event occurring for that portlet, all information

Note: For more detailed information, you can find numerous sources available
about Struts. The Struts Web site offers resources for developers, including a
User Guide, informative JavaDoc, and the source code. For more information
about Struts, see the Struts Application Framework at:

http://jakarta.apache.org/struts/
 Chapter 14. Struts portlets 449

http://jakarta.apache.org/struts/

required to render the page must be available every time that method is
called.

A command pattern can be used to encapsulate the rendering of the view,
and the information required during this rendering. The pattern is
implemented using the IViewCommand interface.

� URI construction
URIs are constructed differently for portlets than for servlets. The portlet
creates the URI using the PortletResponse.createURI() method. The Struts
Portlet Framework has modified the tags in Struts so that they create portal
links.

� Changes to the configuration files
To run a Struts Web application within WebSphere Portal, developers have to
add new init parameters to the Web deployment descriptor (web.xml). The
Struts configuration file (struts-config.xml) must also be changed to specify
the WpsRequestProcessor as the controller

For more detailed information about the Struts portlet framework, see the Struts
Portlet Framework chapter of the Portal Infocenter:

http://publib.boulder.ibm.com/pvc/wp/500/ent/en/InfoCenter/index.html

14.2 Developing Struts Web applications
WebSphere Studio provides numerous tools for developing Struts Web
applications. For example, a visual assembly tool, the Web diagram editor, helps
developers to design a Struts-based Web application by creating Struts artifacts
and connecting these artifacts visually.
In this section you will develop a Struts Web application. This application adds a
new book to a fictitious bookshop. Please note this is only a sample application
which does not execute any real business logic.

To develop a Struts application proceed as follows:

1. Create a Struts Web application:

a. Switch to the Web perspective.

b. Select File -> New -> Web -> Web Project.

c. Enter the project name of WebBookStruts.

d. Select the Web Project features Add Struts support. This adds the
necessary support for Struts into your Web project.

e. Click Next >.

f. In the J2EE Settings Page, click Next > again.
450 IBM WebSphere Portal Toolkit V5

http://publib.boulder.ibm.com/pvc/wp/500/ent/en/InfoCenter/index.html

g. In the Struts settings page, select Override default settings and select
the Struts version 1.1.

Figure 14-2 For Struts portlets you need Struts version 1.1

h. Click Finish.

2. Next, graphically lay out the Web application using the Web Diagram Editor:

a. Select File -> New -> Other -> Web -> Struts -> Web Diagram to create
a new Web diagram.

b. Select the WebBookStruts Web project and enter the name BookWeb.gph.
Click Finish. The Web diagram editor opens.

c. Right-click anywhere in the editor and select New -> Web Page Node.
Name the Web page node addABook.jsp.
 Chapter 14. Struts portlets 451

Figure 14-3 In the Web diagram editor, create a new Web page

d. Add two Web page nodes. Change their names to addABookResponse.jsp
and error.jsp.

e. Select New -> Action Mapping Node to add a new action mapping node.
Change its name to addABook.

f. Select New -> Form Bean Node. Name it newBook and set the scope to
request.

g. Select addABook.jsp and choose Connection from the context menu.
Draw a connection to addABook.

h. Connect addABook to addABookResponse.jsp. Label the connection
success.

i. Connect addABook to error.jsp. Label the connection failure.

j. Connect addABookResponse.jsp to addABook.jsp.

k. Connect error.jsp to addABook.jsp.

l. Connect newBook to addABook.

m. Connect addABook.jsp to newBook. The final Web diagram should look as
in Figure 14-4 on page 453.
452 IBM WebSphere Portal Toolkit V5

Figure 14-4 The final Web diagram of the book application.

n. Press Ctrl-S to save the Web diagram.

3. From the Web diagram, we create first the newBook action form class as
follows:

a. Double-click newBook to launch the New Action Form Class file wizard.

b. On the first page, click Next >.

c. On the Choose new accessors page, click Next > again.

d. On the Create new accessors page, add four new accessors of type
String: title, isbn, author and category.

e. Add one accessor price of type java.mathBigDecimal.

f. Click Next >, then Finish. Close the Java editor.

4. From the Web diagram, we can now create the JSP and complete its content
as follows:

a. Double-click addABook.jsp to launch the New JSP file wizard.

b. Select XHTML as the Markup Language. Click Next > and on the second
page Next > again.

c. On the Page Directive Information Page, disable Generate a Page
Directive Information.

d. Click Next > three times.

e. On the Form Field Selection page, select newBookForm as the form
bean.

f. By pressing the shift key, select all four fields of the bean.
 Chapter 14. Struts portlets 453

Figure 14-5 JSP File wizard to create an html form

g. Click Next > and Finish.Close the Web designer.

5. From the Web diagram, double-click the error.jsp. Select XHTML as the
Markup language and disable the page directive generation. Click Finish.

6. In the Web page designer, enter an error message and close the Web
designer.

7. From the Web diagram, double-click the addABookResponse.jsp. Select
XHTML as the Markup language and disable the page directive generation.
Click Finish.

8. In the Web page designer, enter a success message and close the Web
designer.

9. Next, create the Struts Action class. The action class receives control from
the input page using the input data stored in the form bean.

a. Double-click the addABook action mapping to launch the New Action
Mapping dialog.

b. In the Form Bean Name field, select the newBookForm bean (see
Figure 14-6 on page 455).
454 IBM WebSphere Portal Toolkit V5

Figure 14-6 Create the action mapping

c. Click Finish. This creates the
com.ibm.webbookstruts.actions.AddABookAction class.

d. Save the file and close the Java editor. Close the Web diagram editor.

10.To test the Struts Web application, we will create a server project and run the
application on it.

a. In the J2EE Navigator view, select the addABook.jsp file and select Run
On Server from the context menu. In the server selection dialog, select
the WebSphere Express 5.0 Test Environment. Click Finish. The
following page is displayed. Enter some values to add a new book.

b. From the Servers control panel, stop the server: select the server and click
the Stop button.
 Chapter 14. Struts portlets 455

14.3 Migrating Struts Web applications
The following list presents the steps you have to follow to migrate an existing
Struts Web application into a Struts portlet application. Most of the changes only
affect the configurations files.

1. Make sure the existing Struts application has been built as a Struts 1.1
application.

2. Update the Struts action so that it does not write to the response object. This
is not supported in the Struts Portlet Framework because of WebSphere
Portal's two phase processing.

3. The Web deployment descriptor must be updated to use the WpsStrutsPortlet
as the servlet class instead of the ActionServlet.

4. The servlet mapping for Struts actions must be specified as the
struts-servlet-mapping init parameter.Create a portlet.xml. The
PortalStrutsExample.war can be used as an example.

5. Modify the struts-config.xml to specify the WpsRequestProcessor as the
controller.

6. Modify tags that use pageContext.forward() to use the PortletApiUtils forward.

7. Modify JSPs that use a forward to use the logic forward tag.

8. Modify JSPs as necessary to use the Struts tags for creating URLs, like the
Struts Link and Form tags.

9. The JAR files from the WEB_INF/lib directory of the PortalStrutsBlank.war
must be used. These files are the Struts JARs and the required Struts Portlet
Framework JARs.

10.The TLD files must be updated from the WEB_INF/lib directory of
PortalStrutsBlank.war. Verify the taglib attributes and that the JSP correctly
reference the TLD files. This has been a common source of problems when
migrating existing applications.

11.The JSPs should be modified so they do not use html, head and body
elements. All HTML output to the portal is written in the context of an HTML
table cell.

To migrate the WebBookStruts Web application into a portlet application,
proceed as follows.

1. In the Portlet perspective choose File -> New -> Portlet Application Project
from the main menu.

2. In the Create a Portlet Project window, enter a project name of
StrutsBookPortlet and check Create empty portlet. Click Next >.
456 IBM WebSphere Portal Toolkit V5

3. In the J2EE Settings page, select a J2EE Level of 1.2, check Existing
enterprise application project and select DefaultEAR. Click Finish.

4. From the main menu, select File -> Import... Choose WAR file and click Next
>. Browse to
WSAD_INSTALL_DIR\runtimes\portal_v50\dev\struts\StrutsPortlet. Check
PortalStrutsBlank.war. As the Web Project, select the existing Web project
StrutsBookPortlet. Check Overwrite existing resources without warning
and click Finish.

Figure 14-7 Import the PortletStrutsBlank.war file

5. Next, we copy all resources from the Web application to the portlet
application.

a. In the J2EE Navigator, select all packages from the WebBookStruts
project and choose Copy from the context menu.
 Chapter 14. Struts portlets 457

Figure 14-8 Copy the java files from the Web to the portlet project

b. Select the Java Source folder from the StrutsBookPortlet project and
choose Paste from the context menu.

c. Copy all JSP from the WebBookStruts/Web Content folder to the
StrutsBookPortlet/Web Content folder.

d. Delete index.jsp from the StrutsBookPortlet/Web Content folder.

e. In the StrutsBookPortlet/Web Content folder, rename addABook.jsp to
index.jsp.

f. Open index.jsp. Change the lines:

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>

to:
<%@ taglib uri="/WEB-INF/tld/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/tld/struts-bean.tld" prefix="bean" %>

g. Remove all tags between <head> and </head>, then remove all head and
body tags.

h. Repeat steps f and g for the remaining two JSPs in StrutsBookPortlet.

i. Delete struts-config.xml from the StrutsBookPortlet/Web
Content/WEB-INF folder.

j. Copy struts-config.xml from WebBookStruts/Web Content/WEB-INF folder
to the StrutsBookPortlet/Web Content/WEB-INF folder.

k. Open StrutsBookPortlet/Web Content/WEB-INF/struts-config.xml. The
Struts config editor opens. Switch to the XML Source tab.
458 IBM WebSphere Portal Toolkit V5

l. Include the following code before the message-resources tag:

<!-- ============================= Controller Configuration -->
<controller
processorClass="com.ibm.wps.portlets.struts.WpsRequestProcessor">
</controller>

Note: Because WebSphere Portal does not support the back button of the
Web browser, it can be difficult to navigate back through a number of
screens to a location earlier in the browser history. To browse back from
the addABook.Result.jsp or error.jsp, we have to add a homeFromStatic
forward to ort action mapping which references the static content.

m. Switch to the Global Forwards tab of the Struts configuration editor. Click
the New button. Enter a forward name of homeFromStatic and a path of
/index.jsp.

Figure 14-9 The Struts configuration editor

n. Open the addABookResponse.jsp file. Insert the following code snippet
before the </html> tag.

<html:link forward="homeFromStatic">Back to index</html:link>

o. Repeat the last step for the error.jsp.

p. Save and close the struts-config.xml file.

Running the Struts portlet
Execute the following steps to run the Struts portlet:

1. To run a project in the WebSphere Studio Site Developer Test Environment, it
is necessary to add the portlet project to the test environment. You can use a
test server you created before or create a new server.

a. Click the Server Configuration tab (on the navigator panel).
 Chapter 14. Struts portlets 459

b. Expand the Servers tree.

c. Right-click WebSphere Portal V5.0 Test Environment or your custom
name....

d. Click Add -> DefaultEAR to add your project to the test environment.

Figure 14-10 Adding the Struts portlet project to the test environment

e. Now click the J2EE Navigator tab to see your project again. Right-click
StrutsBookPortlet. Then click Run on Server. If the Server Selection
window opens, select your portal test environment and click Finish.
460 IBM WebSphere Portal Toolkit V5

Figure 14-11 WebBook Struts application running within WebSphere Portal

When you press the Submit button, the Struts framework within WebSphere
Portal executes the AddABook action and opens the addABookResponse.jsp or
error.jsp.
 Chapter 14. Struts portlets 461

462 IBM WebSphere Portal Toolkit V5

Chapter 15. Portlet preview

This chapter provides exercises to preview a portlet project using a remote
WebSphere Portal server. This function does not require you to manually export
and import files. The provided overview and sample scenario will allow you to
understand the techniques and the configuration required to preview portlets.

15
© Copyright IBM Corp. 2004. All rights reserved. 463

15.1 Overview
During portlet development using the Portal V5 Toolkit, you can preview a portlet
application running on WebSphere Portal on a local or remote machine. When
you want to preview a portlet application that you have already developed or
modified, select the provided Portlet Preview function.

In this environment, you do not have to send the rebuilt WAR file to the target
runtime portal, or launch the browser. The Portlet Preview option automatically
executes these tasks for you when you invoke this function. The Portlet Preview
option also uninstalls and re-installs the portlet application for you by using the
portal's XML configuration interface.

The development workstation and the remote Portal are shown in Figure 15-1.

Figure 15-1 Development workstation

Note: The Portlet Preview is a different function from the preview page function
which shows how a current page is likely to look when viewed with Microsoft
Internet Explorer.

To preview a portlet, you need WebSphere Portal 5.0 or 4.2 externally running on
a remote machine, your machine is already set with this scenario.The Portlet
Preview does not support WebSphere Portal installed as the test environment.
Instead, you can use Run on Server in the test environment to run the portlet
easily; this is similar to the Portlet Preview method.

Multiple users can preview portlets since normal HTTP communication channel
to a portal is used, and a single WebSphere Portal can support multiple users of
the Portlet Preview. A preview page is generated for every user. Every user must
use his/her own user ID.

WebSphere Studio Site
Developer V5.0
Portal Toolkit V5 for
WSAD and WSSD
External browser
(optional)

Development

IBM WebSphere Application
Server V5
Cloudscape or DB2
IBM WebSphere Portal V5

Runtime

Preview Portlet
464 IBM WebSphere Portal Toolkit V5

The Portlet Preview action automatically executes the following tasks for you:

� Builds a selected portlet project.

� Exports it as a WAR file.

� Creates a preview place unless it already exists. The name is defined in the
Portlet Preview preference.

� Creates a preview page for the user. The name is the same as the user ID.

� Installs or updates the portlet application into WebSphere Portal.

� Adds the portlet application to the preview page and activates the page.

� Sets the edit permission for the user.

� Launches a browser.

� Logs in to the portal server as the preview user and locates the preview page.

Temporary resources and configurations are generated when previewing a
portlet. After previewing, you can delete them by executing the Reset Portlet
Preview action, which automatically executes the following tasks for you.

� Deletes all portlet applications deployed by the user invoking the reset Portlet
Preview function.

� Deletes the preview page.

Note: You need to delete the preview place (Portal V4.x) manually using Portal
Administration.

15.1.1 Portlet Preview buttons available in the toolbar
Optionally, you may want to have the Preview Portlet and Reset Preview Portlet
buttons available in the toolbar (see Figure 15-4 on page 467). If you want this
option and it is not available, follow these steps to add them to the toolbar:

1. Select Window -> Customize Perspective.
 Chapter 15. Portlet preview 465

Figure 15-2 Customize portlet perspective

2. Select Other and check the Preview Portlet box to display items in the
portlet perspective. Click OK.

Figure 15-3 Customize Perspective - Other - Preview Portlet

3. Select the Preview Portlet drop-down list.
466 IBM WebSphere Portal Toolkit V5

Figure 15-4 Preview Portlet available options

15.2 Sample scenario
This sample scenario illustrates how you configure and implement the Portlet
Preview facility using WebSphere Studio Site Developer V5 and the Portal Toolkit
V5.

15.2.1 Defining the Portlet Preview preference
The first task is to configure your Portlet Preview preferences. Start the remote
Portal server and configure preferences in the Portlet Preview function. For
example, execute these steps:

1. If required, start the IBM WebSphere Studio Application Developer; click
Start -> Programs -> IBM WebSphere Studio -> Site Developer 5.0.

2. Stop any server running on the WebSphere Test Environment inside
WebSphere Studio Site Developer. Right-click the started server and select
Stop.

Figure 15-5 Stop servers
 Chapter 15. Portlet preview 467

3. Start the external WebSphere Portal; click Start -> Programs -> IBM
WebSphere -> Portal Server V5.0 -> Start the Server.

4. Wait a few minutes for the external Portal server to start.

5. Using the Preferences page, define the attributes used for previewing
portlets. To define these preferences, from the Window menu select
Preferences -> Portlet Preview.

6. Specify the following (see Figure 15-6 on page 470):

a. Host Address: http://portaldev.itso.ral.ibm.com:9081

Where portaldev is the fully-qualified host name of the machine where
WebSphere Portal is running. For this sample scenario, the remote server
has been configured to use port 9081.

Note: You cannot use the WebSphere Portal installed for the test
environment.

b. Base URI: /wps

The base URI for the portal, which is defined during WebSphere Portal
installation. The default URI is /wps. Be sure you enter the one your server
is using (default or customized value).

c. Default page: /portal

The home page. The default home page is /portal. Be sure you enter the
one your server is using (default or customized value).

d. Version: 5.0

Select the version of the Portal Server.

e. WebSphere Security: uncheck

Check whether WebSphere Security is enabled. This is not required in this
sample scenario.

f. WebSphere Portal Administrator User ID: provide the proper Portal
server administrator user ID

Note: The default ID is wpsadmin. This ID is used for administration tasks
to prepare for previewing portlets.

g. WebSphere Portal Administrator Password: provide the proper Portal
server administrator password

h. WebSphere Portal Log In User ID: provide the proper Portal server user
ID to log in to Portal server and access the portlet

i. WebSphere Portal Log In Password: provide the proper password
468 IBM WebSphere Portal Toolkit V5

Note: The user must be created manually in the Portal Administration
before previewing. The permissions will be automatically assigned to the
user at the edit level. The user ID will also be used for the name of the
preview page. To use a single WebSphere Portal for multiple users, you
must use an owner specific user ID.

j. Place for Preview (optional): leave blank

It is recommended to keep these fields blank.

i. Name:

The name of the place to be used for previewing. The default name is
Preview. The place will be created automatically by the Portlet Preview
if the specified place does not exist.

The portlet preview will set the user permission level to access the
place for preview even if the place was already created and the current
permission level is not adequate. The original permission level will be
restored with the Reset Portlet Preview action.

ii. Ordinal:

The ordinal attribute which specifies the sorting order of portal
resources. The default value is 20.You can specify where to insert the
preview place among places.

Note: For information on the ordinal attributes, refer to "Special
configuration data entries" in the InfoCenter of WebSphere Portal.
 Chapter 15. Portlet preview 469

Figure 15-6 Portlet Preview configuration panel

7. Click OK.

15.2.2 Previewing the portlet
In this section, we show how to preview the portlet. You can preview a portlet
application in the internal browser and also using an external browser. To
preview a portlet application, follow these steps:

1. In the J2EE Navigator view, right-click the portlet project you want to preview,
for example HelloWorld.

2. Select Preview Portlet... in the pop-up menu.
470 IBM WebSphere Portal Toolkit V5

Figure 15-7 Invoking Preview Portlet option

Note: If any unsaved changes exist in the project, the Export Problems dialog
appears. Click Yes to save the changes and export the project. Click No to
export the project without saving them.

3. The configured browser will be launched (the default uses the internal
browser) and the portlet will be previewed.

Note: If the portlet does not immediately appear, click the page name
(padmin page in this scenario).
 Chapter 15. Portlet preview 471

Figure 15-8 Portlet preview in internal browser

Note: Alternatively, you can preview the portlet by selecting the portlet project
you want to preview, then clicking the Preview Portlet button in the toolbar.

Note also that if there are any problems in the portlet, it will not be previewed
correctly and you will need to verify the Tasks view for errors.

4. Reset Portlet Preview (see Figure 15-7 on page 471) or use the proper option
in toolbar. Temporary resources and the configuration of the portal server are
generated to preview the portlet. You can delete them by performing the reset
portlet preview action. For example, follow these steps:

a. In the J2EE Navigator view, right-click the portlet project and select the
Reset Preview Portlet in the pop-up menu.

b. Alternatively, you can reset the portlet preview by selecting any portlet
project, then clicking the toolbar Preview Portlet button and selecting
Reset Portlet Preview.

Note: The following tasks will be carried out by this action:

i. In the portal server, all portlet applications previewed by the current
user will be uninstalled.

ii. In the portal server, the preview page of the current user will be
deleted.

iii. In your development machine, WAR files exported and previewed by
the current user will be deleted.
472 IBM WebSphere Portal Toolkit V5

5. Configure an external browser to be launched and preview the portlet. Select
Window -> Preferences.

Figure 15-9 Preferences

6. Select Web Browser and check the box Use external Web Browser.

7. Configure the external browser location by browsing to the Internet Explorer
location, for example: c:\Program Files\Internet Explorer\IEXPLORE.EXE.
 Chapter 15. Portlet preview 473

Figure 15-10 External Web browser configuration

8. Select the portlet application and click Preview Portlet (see Figure 15-7 on
page 471) or use the option in the toolbar. This will bring up Internet Explorer
to log in to the remote portal, deploy and run your selected portlet application.
Click the page name if you do not see the portlet.
474 IBM WebSphere Portal Toolkit V5

Figure 15-11 Portlet preview in external browser (IE)
 Chapter 15. Portlet preview 475

476 IBM WebSphere Portal Toolkit V5

Chapter 16. Remote Server Attach

This chapter provides an overview and a sample scenario to test and debug
portlet projects running on a remote WebSphere Portal server. The topics
presented in this chapter will allow you to understand the techniques and the
configuration required to test and debug portlets remotely.

The sample development workstation and the remote Portal server are illustrated
in Figure 16-1.

Figure 16-1 Development workstation

16

WebSphere Studio Site
Developer V5.0
Portal Toolkit V5 for
WSAD and WSSD
Sample portlets

Development

IBM WebSphere Application
Server V5
Cloudscape or DB2
IBM WebSphere Portal V5

Runtime

Remote Server Attach
© Copyright IBM Corp. 2004. All rights reserved. 477

16.1 Overview
You can run and optionally debug a portlet application running on a remote
WebSphere Portal system accessible through a network connection. The
recommended steps to implement this function are as follows:

1. Prepare Portal server for Remote Server Attach.

a. Install WebSphere Portal on a remote machine. In this scenario, it has
already been installed for you.

b. Configure JVM in the WebSphere Application Server Administrative
Console.

2. Configure WebSphere Studio for Remote Server Attach.

a. Select WebSphere Portal 5.0 Remote Server Attach.

b. Specify the Host (Portal server), JVM debug port, HTTP port.

3. If needed, install a portlet application in Portal for Remote Server Attach.

a. Build and export a portlet application project as a WAR file.

b. Manually install and configure the portlet application (WAR file) using
Portal Administration functions.

c. Add the portlet to a Portal page using Portal Administration functions.

4. Run and debug the portlet application using Remote Server Attach.

a. Select the portlet application project.

b. Select Debug on Server from the context menu.

c. Debug the portlet running in the remote Portal server.

Figure 16-2 Remote Server Attach sample scenario

Remote Portal

Portal page

HTTP

portlet
application

portlet
1

port 9081

Web browser

portlet
2

port
7777

WebSphere
Studio and

Portal Toolkit
V5

debugging port
478 IBM WebSphere Portal Toolkit V5

16.2 Preparing Portal for Remote Server Attach
In order to test and debug portlets remotely, some configuration is required.

1. First, stop any servers running on WebSphere Test Environment inside
Studio.

2. Start the external WebSphere Application Server; click Start -> Programs ->
IBM WebSphere -> Application Server v5.0 -> Start the Server.

3. Once WebSphere Application Server has started, open the Administrative
Console. Click Start -> Programs -> IBM WebSphere -> Application
Server v5.0 -> Administrative Console.

4. Log on to the Administrative Console with user ID wsadmin. Click OK.

Figure 16-3 WebSphere Application Server Administrative Console Login

5. Click No if you get the auto complete option message. It is not needed for this
scenario.

6. Expand Servers and select Application Servers -> WebSphere_Portal.
 Chapter 16. Remote Server Attach 479

Figure 16-4 Select WebSphere_Portal

7. In Additional Properties (Configuration page), scroll down and select Process
Definition.
480 IBM WebSphere Portal Toolkit V5

Figure 16-5 Select Process Definition

8. Select Java Virtual Machine (Additional Properties).
 Chapter 16. Remote Server Attach 481

Figure 16-6 Java Virtual Machine

9. In General Properties:

a. Select the Debug Mode checkbox.

b. Verify that the following string is defined as the Debug arguments:

-Djava.compiler=NONE -Xdebug -Xnoagent
-Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=7777

Note: The address specifies the JVM debug port number; the default
value is 7777.

c. Click Apply.
482 IBM WebSphere Portal Toolkit V5

Figure 16-7 JVM parameter enabling debug

10.In the menu bar, click Save. Also, click Save in Save Master Configuration.

Figure 16-8 Save the JVM configuration

11.Stop the Application Server by clicking Programs -> IBM WebSphere ->
Application Server -> Stop the Server.
 Chapter 16. Remote Server Attach 483

12.Close the desktop browser.

16.3 Remote Server Attach configuration
In this section of the lab, you will start the Portal server and configure
WebSphere Studio to connect to the remote Portal server.

1. Start WebSphere Portal by clicking Programs -> IBM WebSphere -> Portal
Server -> Start the Server. Wait a few minutes for Portal to be started (open
for e-business message).

2. If needed, start the WebSphere Studio Site Developer by selecting Start ->
Programs -> IBM WebSphere Studio -> Site Developer 5.0.

3. Create a new server and server configuration by selecting the Server
Configuration tab on the left pane and Server and Server Configuration on
the right side.

Figure 16-9 Server and Server Configuration

4. A new window will be displayed to allow you to define the new server and
server configuration.

a. Enter for example Test Remote Server Attach as the server name.

b. Select WebSphere Portal version 5.0 -> Remote Server Attach as the
server type.

c. Click Next to continue.
484 IBM WebSphere Portal Toolkit V5

Figure 16-10 Server configuration settings window

5. In the Remote Attach Server Instance Page; enter as host:
portaldev.itso.ral.ibm.com and click Next.

Figure 16-11 Host Name of the remote machine running Portal
 Chapter 16. Remote Server Attach 485

6. In the WebSphere v5.0 Remote Server Attach Configuration configure the
following:

a. JVM debug port: 7777

The debug port number provided by the server JVM.

b. HTTP port: use port 9081 (default value is 9080)

The transport port to access the remote Portal server.

c. Enable JavaScript debugging: do not check

Select this checkbox if you want to enable JavaScript debugging. It is not
needed for this lab.

d. BSF debug port: disabled

This is the port used to attach to the Bean Scripting Framework Manager
to enable JavaScript debugging.

Figure 16-12 Configurations for debugging

7. Click Finish.

16.4 Installing a portlet in Remote Portal
When the portlet is not available in the remote Portal server, you will need to
install it using the administration tools. In this section of the lab, you will export a
portlet application (HelloWorld) from WebSphere Studio and manually install it in
the remote Portal server.
486 IBM WebSphere Portal Toolkit V5

Exporting the portlet application (WAR file)
The HelloWorld portlet will be used for this scenario. Follow these steps to export
the portlet project and create a WAR file:

1. In the J2EE Navigator panel, right-click the HelloWorld portlet project and
select Export.

2. Select WAR file.

3. For example, provide the project name HelloWorld and the target location as
c:\LabFiles\RemoteAttach.

Note: You can also download the sample code available as additional
materials. See Appendix C, “Additional material” on page 543.

Figure 16-13 Exporting HelloWorld

Installing the portlet in Portal using Portal Administration
In this section, we provide a sample administration procedure to create a new
page, install a portlet and add this portlet to the created page.

1. Start the external Web browser (IE) and connect to the portal:

http://portaldev.itso.ral.ibm.com:9081/wps/portal

2. Log in to the portal as the administrator (user ID = padmin and password =
its0lab).
 Chapter 16. Remote Server Attach 487

Note: Password uses the number 0.

Figure 16-14 Login to WebSphere Portal

3. Click the Administration link.

Figure 16-15 Administration link

4. Choose Portal User Interface -> Manage Pages.
488 IBM WebSphere Portal Toolkit V5

Figure 16-16 Manage Pages option

5. Click the My Portal label.

Figure 16-17 My Portal Label

6. Click New label to create a new label.
 Chapter 16. Remote Server Attach 489

Figure 16-18 Select New Label

7. On the Create Label page, enter this information:

– Place Name: My Label

– Theme: Science or any other theme of your preference.

– Supported markup: HTML. Click the + sign to see this option in Advanced
Options.

Click OK to create the new label (My Label).
490 IBM WebSphere Portal Toolkit V5

Figure 16-19 Create label

8. You will see a message indicating that the label was successfully created.
Click OK.

Figure 16-20 My Label successfully created

9. Click the My Label label.
 Chapter 16. Remote Server Attach 491

Figure 16-21 Select My Label

10.Click New Page to create a new page. The new page will be created inside
My Label.

Figure 16-22 New Page creation

11.On the Create Label page, enter this information:

– Title: New Page

– Layout: two column portal page. Click the + plus sign to see the Advanced
Options.

– Click OK to create the page.
492 IBM WebSphere Portal Toolkit V5

Figure 16-23 Create new page

12.Verify that the page has been successfully created. Click OK.

Figure 16-24 New page has been created
 Chapter 16. Remote Server Attach 493

13.You will now install and add the portlet to the page. Navigate to the link
Administration -> Portlets -> Install. Do the following:

a. Click Browse.

b. Select the directory c:\LabFiles\RemoteAttach\HelloWorld.war and click
Open to select the file.

Note: You can also download the sample code available as additional
materials. See Appendix C, “Additional material” on page 543.

c. Click Next to continue.

Figure 16-25 Select directory

14.Click Try Again if you get the no Internet access message. Internet access
is not needed.

15.Verify that you are installing the HelloWorld portlet and click Install to
continue the portlet installation. This step may take some time.

Figure 16-26 Portlet install

16.Once the installation is complete, the message Portlets were successfully
installed appears at the bottom of the page.
494 IBM WebSphere Portal Toolkit V5

Figure 16-27 Successful install message

17.To add the Hello World portlet to My Label -> New Page, do the following:

a. Navigate to Administration -> Portal User Interface -> Manage pages.

b. Select the labels My Portal -> My Label.

c. You should see the page New Page (inside My Portal -> My Label).

d. Click the Edit Page Layout icon (looks like a pencil) on the right of New
Page.

Figure 16-28 Edit Page Layout

e. Click Add portlets on the left column in the portal page.

Figure 16-29 Add portlets
 Chapter 16. Remote Server Attach 495

f. Enter HelloWorld in the Search for field and click Search. The Hello World
portlet should appear in the result list.

g. Click the checkbox on the left of the HelloWorld portlet to select the portlet.

h. Click OK.

i. Click Done.

18.Navigate to My Portal -> My Label -> New Page to verify that the portlet
appears on the page.

.

Figure 16-30 New Page with installed HelloWorld portlet

16.5 Running the portlet
Once the portlet has been installed in WebSphere Portal, you will need to
connect to the server in Debug mode. If required, you can also trace the
execution of the portlet program by using debugging facilities such as
breakpoints and so on.

1. To run a project using the Remote Server Attach, you will need to add the
portlet project to the remote server.

a. Click the Server Configuration tab (on the navigator panel).

b. Expand the Servers tree.

c. Right-click Test Remote Server Attach.

d. Click Add -> DefaultEAR (or any other project that you want to run) to add
your project to the remote server.

2. In the Servers view, right-click the server and select Debug to connect to the
remote server.
496 IBM WebSphere Portal Toolkit V5

Figure 16-31 Debugging remotely

3. The server status should change to Connected in debug mode and the server
will be ready for portlet debugging using the Debug perspective.

Figure 16-32 Connected in Debug mode

4. As an example, set a breakpoint in the doConfigure() method in the
HelloWorld portlet (see Figure 16-33). That is, right-click the selected
statement and click Add Breakpoint.

Figure 16-33 Setting a breakpoint in doConfigure() method

5. Start debugging the portlet application by launching a new external browser
(IE) and log in to WebSphere Portal. For example, for this scenario use the
following values:

a. http://portaldev.itso.ral.ibm.com:9081/wps/portal

b. User ID is padmin and password is its0lab.
 Chapter 16. Remote Server Attach 497

6. Navigate to execute the portlet: My Portal -> My Label -> New Page.

7. Initially, you will receive the Step-by-Step Debug window. At this time, you
may want to skip the doGet method with the request as well as disable the
step-by-step mode.

Figure 16-34 Step-by-Step Debug window

8. When a breakpoint is reached, you will see a window similar to Figure 16-35
on page 499. It shows the breakpoint and you can also inspect your variables.
498 IBM WebSphere Portal Toolkit V5

Figure 16-35 Debugging the portlet

Note: The process of debugging portlet applications is the same as for Web
applications. You control and trace the execution of the portlet since you can
set breakpoints in Java source code and JSPs.

9. Click the triangle in the Debug menu bar to resume execution of the portlet.
 Chapter 16. Remote Server Attach 499

Figure 16-36 Debug window

10.You can disconnect the remote WebSphere Portal by right-clicking the server
name in the Servers view and clicking Disconnect.

Figure 16-37 Disconnecting from the Remote Server Attach
500 IBM WebSphere Portal Toolkit V5

Appendix A. Portlet development
platform sample installation

This appendix shows a sample portlet development installation by describing the
steps necessary to prepare a single computer running Windows 2000
Professional or Server for WebSphere application development and testing.

1. Installation of the WebSphere Studio Site Developer (WSSD) V5.0, the
WebSphere Application Server V5.0 Test Environment, and related fix packs

2. Installation of the Portal Toolkit and WebSphere Portal V5.0 for WebSphere
Studio Site Developer

3. Configuration and preparation of the workstation for lab exercises

4. Installation of the WebSphere Portal V5.0 (runtime environment)

A

© Copyright IBM Corp. 2004. All rights reserved. 501

Prerequisites

Minimum machine requirements
� 1GHz Pentium® III or higher

� 768MB RAM

� 20 GB hard drive, LAN Attached or loopback support

� TCP/IP stack must be installed

Software requirements
� Windows 2000 Professional or Server and Service Pack 3 (MS Hotfix

KB823980 is recommended)

� Cloudscape V5.1 or DB2 V8.1 FP 1(optional)

� WebSphere Studio Site Developer (WSSD) V5.0 and fix packs

� WebSphere Portal Toolkit V5.0 for WebSphere Studio Site Developer

� WebSphere Portal V5.0

� WebSphere Application Server V5.0 and fix packs

Figure A-1 illustrates the sample portlet development platform for the scenarios
in this redbook.

Figure A-1 Portlet development workstation

Installing a loopback adapter
Each target machine should have a static IP address assigned to it. For the
purposes of this installation, the hosts file will be used to provide address
resolution.

WebSphere Studio Site
Developer V5.0
Portal toolkit V5.0 for
WSAD or WSSD
Sample portlets

WebSphere Test Environment
IBM WebSphere Application
Server V5 via Portal V5
Cloudscape V5.1 via Portal V5
IBM WebSphere Portal V5
(installed via Portal toolkit)

Development Runtime

Run on Server
502 IBM WebSphere Portal Toolkit V5

1. Prior to software installation, disable your Ethernet or Token Ring adapter by
clicking Start -> Settings -> Network and Dial-up Connections. If Ethernet
or Token Ring adapters appear, right-click and disable them. You should see
something like Figure A-2.

Figure A-2 Network and dial-up connections

2. Install the Loopback Adapter.

a. Select Start -> Settings -> Control Panel.

b. Double-click Add/Remove Hardware. This will start the Add/Remove
Hardware Wizard. Click Next.

c. Select Add/Troubleshoot a device and click Next.

d. Select Add a new device and click Next.

e. Select No, I want to select the hardware from a list and click Next.

f. Select Network Adapters.

g. From the Manufacturers column, select Microsoft and from the Network
Adapter column, select Microsoft Loopback Adapter, then click Next.

h. The Loopback adapter will install.

3. Configure the Loopback Adapter.

a. Select Start -> Settings -> Network Adapters -> MS Loopback adapter
(or whatever you named it) -> Internet Protocol (TCP/IP) -> Properties.
You should see a window like Figure A-3 on page 504.
 Appendix A. Portlet development platform sample installation 503

Figure A-3 TCP/IP properties

b. Change to the option Use the following IP address then we suggest that
you specify 10.1.1.1 for the IP address and 255.255.255.0. for the
Subnet mask, then click the OK button.

4. Configure the hostname of your computer.

a. Go to My Computer and click Properties.

b. To change your hostname, click Network Identification, and then click
Properties; we suggest that you specify portaldev in the Computer name
field.

c. Click More..., and change the Primary DNS suffix; we suggest
itso.ral.ibm.com.

d. Click OK in the DNS Suffix window. Click OK in the Identification Changes
window; you should see a window like Figure A-4 on page 505.
504 IBM WebSphere Portal Toolkit V5

Figure A-4 Network Identification window with a full computer name

5. Obtain the fully qualified host name by executing ipconfig /all in a DOS
window. The connection-specific DNS suffix appended to the hostname will
be the fully qualified name of your computer. In the illustration shown in
Figure A-5 on page 506, the fully qualified name of the computer is
portaldev.itso.ral.ibm.com.
 Appendix A. Portlet development platform sample installation 505

Figure A-5 Output from ipconfig command

6. Open C:\WINNT\system32\drivers\etc\hosts with a text editor and add a line
with the static IP address and the fully qualified name of the computer. Be
sure to end the line by pressing the Enter key. The file should look like
Figure A-6.Save the file and close the editor.

.

Figure A-6 Lines from the hosts file

7. Reboot Windows for these changes to become effective.

WebSphere Studio Site Developer (WSSD) V5.0
Prepare the following WebSphere Portal V5.0 CDs:

� WebSphere Studio Site Developer for Windows, V5.0.1 - CD # 4-1

� WebSphere Studio Site Developer for Windows, V5.0.1 - CD # 4-2

� WebSphere Studio Site Developer PTFs for Windows, V5.0.1- CD # 4-3

� WebSphere Application Server Fix Pack 1 for Windows, V5.0 - CD # 1-6
506 IBM WebSphere Portal Toolkit V5

This section will explain the procedure to install the WebSphere Studio Site
Developer.

1. Insert WebSphere Studio Site Developer installation CD (CD # 4-1). Navigate
to the \wssd directory and double-click setup.exe. You will see the welcome
window as illustrated in Figure A-7. Click Install IBM WebSphere Studio
Site Developer to continue.

Figure A-7 WebSphere Site Developer installation welcome screen

2. Click Next to continue past the copyright notice screen.
 Appendix A. Portlet development platform sample installation 507

l

Figure A-8 Copyright notice screen

3. Select I accept the terms of this license agreement. Then click Next to
continue.

4. Accept the default settings for directory locations as shown in Figure A-9.
Click Next to continue.

Figure A-9 Installation destination folder

5. Select WebSphere Application Server - Express and WebSphere
Application Server v5.0. Click Next to continue.
508 IBM WebSphere Portal Toolkit V5

Figure A-10 WebSphere Studio Site Developer features to install

6. Click Install to begin the installation.

Figure A-11 Last screen before installation begins

7. Midway through the installation, you will be prompted to insert the disk IBM
WebSphere Studio Site Developer - DISK2 (Portal CD # 4-2). Insert this disk
and click OK to continue the installation.
 Appendix A. Portlet development platform sample installation 509

Figure A-12 Insert the disk and click OK to continue the installation

8. At the completion of the installation process, click Finish to exit.

9. If you are prompted to restart the machine, click Yes to do so.

Figure A-13 Click Yes to restart the machine

WebSphere Studio Site Developer - WSSD Fix Pack 1
After installing WebSphere Studio Site Developer, you have to update this
installation with Fix Pack 1; to do this, you have two options:

� Software Update function from the help menu (requires Internet connection)

� Using WebSphere Portal CD # 4-3

Software Update function from the help menu
When you run WebSphere Studio Site Developer for the first time, you will get a
dialog box to confirm the location of your development workspace. Check the
box to not show this window again (you can change this later) and click OK.
510 IBM WebSphere Portal Toolkit V5

Figure A-14 Setting your workspace

1. Click Help -> Software Updates -> New Updates.

Figure A-15 Help menu to install new updates

2. A dialog window will appear, indicating that WebSphere Studio Site
Developer is searching for new updates. This will take a few minutes.

Figure A-16 Updates dialog

3. Choose the two updates that it finds. Click Next to continue.
 Appendix A. Portlet development platform sample installation 511

Figure A-17 Selecting updates to install

4. Accept the license agreement and click Finish to install.

5. You will receive a verification window for each update that is installed. Click
Install for each of these.

Figure A-18 Installation warnings

6. When the operation is complete, you will be asked to restart WebSphere
Studio Site Developer. Click Yes to do so.
512 IBM WebSphere Portal Toolkit V5

Figure A-19 Restart the workbench dialog

Using Portal CDs
When you run WebSphere Studio Site Developer for the first time, you will get a
dialog box to confirm the location of your development workspace. Check the
box to not show this window again (you can change this later) and click OK.

Figure A-20 Setting your workspace

The WSSD Fix Pack 1 is available in the CD # 4-3 of the WebSphere Portal V5.0.
Insert the CD # 4-3 into the drive; you can also download this fix pack from the
Internet as a zip file from the following site:

www3.software.ibm.com/ibmdl/pub/software/websphere/studiotools/html/501/
wssd/download.html

1. Start the Update manager by selecting Help -> Software Updates -> Update
Manager.

Figure A-21 Update Manager
 Appendix A. Portlet development platform sample installation 513

http://www3.software.ibm.com/ibmdl/pub/software/websphere/studiotools/html/501/wssd/download.html
http://www.vmware.com
http://www.vmware.com

2. In the Feature Updates view, select My Computer and locate the CD drive or
the temporary directory you have extracted the zip file to.

3. Expand to the following.

– If you have downloaded the fix pack: wssd501 -> update -> IBM
WebSphere Studio Site Developer Updates.

– If you are using WebSphere Portal CD # 4-3: wssdptf -> IBM WebSphere
Studio Site Developer Updates.

Figure A-22 Navigating in the Feature Updates view

4. Select WebSphere Studio Site Developer (Windows) 5.0.1 and then click
Update in the right pane.

Figure A-23 Update feature of WebSphere Studio Site Developer

5. When the Feature Install screen appears, click Next.
514 IBM WebSphere Portal Toolkit V5

Figure A-24 Feature Install window

6. Once you have read and accepted the license, click Next.

7. You will see the Optional Features panel. Do not change any settings. Click
Next.

Figure A-25 Optional features screen
 Appendix A. Portlet development platform sample installation 515

8. Click Finish on the Install Location panel. You will be warned that you are
about to install an unsigned feature. There is no need to worry about this
warning, so click Install to continue.

9. Upon completion of the installation, you will be asked whether you want to
restart the workbench. Click No to continue.

10.Select WebSphere Studio Site Developer Product (Windows) 5.0.1 and
then click Update in the right pane.

Figure A-26 Update feature of WebSphere Studio Site Developer

11.Go through the Feature Install, Feature License, Optional Features by
successively clicking Next. Do not change any settings in the Optional
Features panel. Click Finish in the Install Location panel.

12.You will be warned that you are about to install an unsigned feature. There is
no need to worry about this warning so click Install to continue.

13.Upon completion of the installation, you will be asked whether you want to
restart the workbench. Click Yes to complete the installation.

WebSphere Studio Site Developer - WebSphere Application Server
Fix Pack 1

1. For local debugging, you will need to update the WebSphere Application
Server Test Environment; use the WebSphere Portal CD # 4-3 or download
the fix pack:
516 IBM WebSphere Portal Toolkit V5

a. Go to:

http://www3.software.ibm.com/ibmdl/pub/software/websphere/studiotools/html/
501/wssd/install_was.html

b. Click WebSphere Application Server v5.0, Windows download.

2. Ensure that WebSphere Studio is not running.

3. Navigate to the CD drive or to downloaded file and extract the fix pack file
X:\wasptf\was50_fp1_win.zip to a temporary folder (for example c:\temp) then
copy the extracted ptf folder to C:\Program Files\IBM\WebSphere
Studio\runtimes\base_v5\ptf.

Figure A-27 PTF directory

4. Run wteInstall.bat from the directory C:\Program Files\ibm\WebSphere
Studio\runtimes\base_v5\ptf directory to update the software.
 Appendix A. Portlet development platform sample installation 517

http://www3.software.ibm.com/ibmdl/pub/software/websphere/studiotools/html/501/wssd/install_was.html

Figure A-28 Running wteInstall.bat

5. Installation will finish silent.

WebSphere Studio Site Developer - WebSphere Application Server
Interim Fixes

1. Copy the entire fixes directory (including all its subdirectories and contents)
from the WebSphere Portal CD # 1-6 into C:\Program Files\ibm\WebSphere
Studio\runtimes\base_v5.

2. Run updateWizard.bat from the directory C:\Program Files\ibm\WebSphere
Studio\runtimes\base_v5\fixes to update the software.
518 IBM WebSphere Portal Toolkit V5

Figure A-29 WebSphere Application Server fixes directory

3. If you have problems launching this file, edit the updateWizard.bat file, verify if
the JAVA_HOME variable is correct; if not, correct it to match your
environment and run the updateWizard.bat again.
 Appendix A. Portlet development platform sample installation 519

Figure A-30 Modifying the JAVA_HOME setting

4. Click the Next button to begin the Update Installation Wizard.

Figure A-31 The Update Installation Wizard
520 IBM WebSphere Portal Toolkit V5

5. On the Specify Product Information window, enter C:\Program
Files\IBM\WebSphere Studio\runtimes\base_v5\fixes as the Installation
Directory. Click Next to continue.

Figure A-32 Selecting the installation directory

6. Click the option Install fixes. Then click Next to continue.
 Appendix A. Portlet development platform sample installation 521

Figure A-33 Choosing install fixes

7. Type C:\Program Files\IBM\WebSphere Studio\runtimes\base_v5 as the
directory where fixes are located. Click Next.

Figure A-34 Choosing the location of the fixes to install

8. Select the four fixes to install. Click Next.
522 IBM WebSphere Portal Toolkit V5

Figure A-35 Selecting the fixes to install

9. Click Next to begin the installation of the fixes.

Figure A-36 Beginning the installation
 Appendix A. Portlet development platform sample installation 523

10.When installation is complete, click Finish to exit.

Figure A-37 Completing the installation

WebSphere Portal Toolkit V5.0
Following are some considerations regarding WebSphere Portal Toolkit V5.0.

Toolkit installation
This section provides information on the installation of the WebSphere Portal
Toolkit.

Prepare the following WebSphere Portal V5.0 CDs:

� Portal Install, Portal InfoCenter, Portal Toolkit (Setup) Windows, V5.0 - Setup
CD

� Portal Server, WebSphere Portal content publishing for Windows, V5.0 -
CD # 2
524 IBM WebSphere Portal Toolkit V5

1. Hold down the Shift key to bypass the automatic starting.

2. Insert WebSphere Portal Setup CD. Navigate to the \PortalToolkit directory
and double-click Install.bat.

Figure A-38 Toolkit installation directory

3. Select the language to be used then click OK and wait for the installation
screen to load. Then click Next to continue.
 Appendix A. Portlet development platform sample installation 525

Figure A-39 Welcome screen for Toolkit installation

4. Read and accept the license agreement, then click Next.

5. Make sure the directory displayed is the installation directory of WebSphere
Studio and click Next.

Figure A-40 WebSphere Studio Site Developer installation directory

6. Select Portal Toolkit V5.0 and WebSphere Portal V5.0 for Test
Environment then click Next.
526 IBM WebSphere Portal Toolkit V5

Figure A-41 Select components to install

7. Verify the install location and click Next.

8. Hold down the Shift key to bypass the automatic starting.

9. Insert WebSphere Portal CD # 2, select the install.bat file in the \wps
directory and click Next.

Figure A-42 Portal Toolkit V5 install

10.Wait until the installation complete, then click Finish.

Configuring Studio Site Developer and the Portal Toolkit
To use the WebSphere Studio Site Developer and WebSphere Portal Toolkit, you
must first configure a Test Environment. It is not necessary for a separate
instance of WebSphere Application Server or WebSphere Portal to be running to
run the Portlet code that you developed in the WebSphere Studio Site Developer
IDE.
 Appendix A. Portlet development platform sample installation 527

Start the WebSphere Studio Site Developer. Select Start->Programs->IBM
WebSphere Studio-> Site Developer 5.0.

1. The first time you start WebSphere Studio Site Developer, it will ask you to
specify a directory to be used as your development workspace. Accept the
default directory, check the box next to Use this workspace as the default
and do not show this dialog box again, and click OK to open Site
Developer.

Note: You have already checked OK to this dialog, so you probably will not
receive it a second time.

Figure A-43 Workspace directory

2. It may take a while for Site Developer to load for the first time. Please be
patient.

Figure A-44 Loading WebSphere Studio Site Developer
528 IBM WebSphere Portal Toolkit V5

3. Once WebSphere Studio Site Developer is loaded, you should see the
following message as shown in Figure A-45; click Yes.

Figure A-45 Updates pop-up window

4. Select the pending configuration change and click Finish.

Figure A-46 Configuration changes

5. Click Yes when asked to restart the workbench.

6. Once WebSphere Studio Site Developer is restarted, click the Server
Configuration tab as shown in Figure A-47 on page 530.
 Appendix A. Portlet development platform sample installation 529

Figure A-47 Server Configuration tab

7. Right-click Servers, then click New, then Server and Server Configuration
as shown in Figure A-48.

Figure A-48 Creating a new server and configuration

8. A new window will be displayed to allow you to configure the new server and
server configuration. Enter Test Environment as the server name. Select Test
Environment under WebSphere Portal version 5.0 as the server type. Click
Next to continue.

Note: You must enter a server name to continue. Also, be sure to select Test
Environment.
530 IBM WebSphere Portal Toolkit V5

Figure A-49 Server configuration settings window

9. This will bring up a window to select the HTTP port number to be used by Site
Developer. The default is 9081. Click Finish to add the Test Environment.

Figure A-50 HTTP port selection

10.The server has been successfully added and can now be seen in the Server
Configuration tab.
 Appendix A. Portlet development platform sample installation 531

Figure A-51 Test Environment has been added successfully

11.WebSphere Site Developer and the Portal Toolkit are configured so that
whenever you test a portlet by right-clicking it and selecting Run on Server, it
will execute in this Test Environment.

Figure A-52 Running a portlet in the Test Environment
532 IBM WebSphere Portal Toolkit V5

Configuration and preparation of the workstation
This section details how to create a Cloudscape sample database for use with
the scenarios in this redbook when accessing a back-end database using the
JDBC interface.

Installing the Cloudscape sample database
1. If needed, download the additional materials associated with this redbook (lab

files) and find the provided CreateCloudTable.bat file.

2. From the Windows Explorer, navigate to C:\LabFiles\Cloudscape and execute
CreateCloudTable.bat as show in Figure A-53. This command will create and
populate the WSSAMPLE database with sample data.

Note: The CreateCloudTable.bat file can be downloaded from the sample
code available as additional materials. See Appendix C, “Additional material”
on page 543.

Figure A-53 Cloudscape script to create and populate a sample database

3. Make sure that the database was populated; to do this, you can use a tool
that comes with Cloudscape: Cloudview.

a. Make sure that JAVA_HOME directory is in your PATH, so you can run
“java” in your command prompt.
 Appendix A. Portlet development platform sample installation 533

b. In a command prompt window, navigate to C:\Program
Files\IBM\WebSphere
Studio\runtimes\portal_v50\shared\app\cloudscape\bin and execute the
setCP.bat; this will set all the environment variables in order to run the
CloudView.

c. Execute the cview.bat, then when it starts click File -> Open and navigate
to C:\LabFiles\Cloudscape\WSSAMPLE, then click Open. Navigate to the
CloudView interface to becme familiar with it and check the sample data
available in the WSSAMPLE database.

Figure A-54 Checking the database creation with CloudView
534 IBM WebSphere Portal Toolkit V5

Appendix B. Automatically redeploying
portlets

Often when you develop portlets, for example Struts or Cooperative Portlets, you
have to redeploy the portlet after changing configuration files. You can do this
manually using the administration portlets. This appendix describes how to
configure WebSphere Studio to redeploy portlets automatically without restarting
your test portal server.

B

© Copyright IBM Corp. 2004. All rights reserved. 535

Description
To configure WebSphere Studio, proceed as follows:

1. Log in to WebSphere Portal and open the Administration page.

2. Select Portlets -> Manage Applications.

Figure B-1 Select Manage Applications to get the portlet name

3. Select the Web module you want to redeploy and click the Show Info button.

4. In the portlet info page, mark the Portlet Application Name and copy it to the
clipboard.

Figure B-2 The portlet info portlet

5. In WebSphere Studio, select File -> New -> Other....

6. In the New Projects wizard, select Project from the Simple category. Click
Next and enter a project name of PortletReConfigurationFiles.

7. Switch to the XML perspective. In the Navigator view, right-click the
PortletReConfigurationFiles project and select New -> XML.

8. Select Create XML file from Scratch and click Next. Enter a xml file name of
UpdatePortlet.xml and click Finish.

9. In the Source tab of the XML editor, enter the XML code shown in
Example 16-1 on page 537.
536 IBM WebSphere Portal Toolkit V5

Example 16-1 XML file for updating the portlet using XMLAccess

<?xml version="1.0" encoding="UTF-8"?>
<request xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="PortalConfig_1.2.xsd" type="update"
create-oids="true">

<portal action="locate">
<web-app action="update" active='true'

uid="com.ibm.myportlet.MyPortlet.7058b2390e0e001817ab8f2fcd901ef9">
<url>file://localhost/D:/wps5/installableApps/MyPortlet.war</url>

</web-app>
</portal>

</request>

10.Replace the uid value with the Portlet Application Name you copied in step 4.
Replace the url value with the absolute portlet path you want to use. We will
use this path to export the portlet application.

11.Save and close the XML file.

12.Switch to the Java perspective. Select File -> New -> Project.... Select Java
Project from the Java category. Click Next and enter the project name
XMLAccess. Click Finish.

13.Right-click the XMLAccess project and select Properties.

14.In the Properties window, switch to the Java Build Path category.

15.Switch to the Libraries tab. Click the Add External JARs... button. Browse to
the installation location of WebSphere Portal or WebSphere Portal Test
Environment. Select tools.jar from the WPS_INSTALL_DIR/bin directory.

Figure B-3 Add the tools.jar file to the classpath
 Appendix B. Automatically redeploying portlets 537

16.Click OK to close the Properties window.

17.Select Run... from the Run tool menu.

Figure B-4 Select Run... to create a new Launch configuration

18.Select Java Application from the Launch Configuration list and click the
New... button.

19.Enter the name UpdatePortlet and check Include external jars....

Figure B-5 Launch configurations

20.Click the Search... button near the Main class field.

21.In the Choose Main Type dialog, select the XmlAccess class and click OK.

22.Switch to the Arguments tab. In the Program arguments field, enter the
following text:

-in UpdatePortlet.xml -user wpsadmin -pwd wpsadmin -url
http://localhost:9081/wps/config

23.Replace the user, pwd and url arguments with the values of your server.
538 IBM WebSphere Portal Toolkit V5

24.Uncheck Use default working directory. Select Workspace and browse to
the PortletReConfigurationProject.

Figure B-6 Arguments tab in Launch Configurations dialog

25.Click Run.

26.If you did not export the Portlet war file previously, you will see an error
message in the Console view. That is fine for now. Otherwise, you should see
an output as in Figure B-7 on page 540.
 Appendix B. Automatically redeploying portlets 539

Figure B-7 Console output after redeploying the portlet

27.Switch to the portlet perspective.

28.In the J2EE Navigator view, select your portlet and choose Export... from the
context menu.

29.In the Export wizard, select WAR file and click Next >. Select the portlet you
want to export and enter the absolute path you configured in Example 16-1 on
page 537.

Figure B-8 Export your Portlet
540 IBM WebSphere Portal Toolkit V5

30.Click Finish.

31.Select Window ->Customize Perspective....

32.In the Customize Perspective window, check Launch from the Other sub
tree.

Figure B-9 Check Launch to get new items in the toolbar

To redeploy your portlet, proceed as follows:

1. Export your portlet war file as described in Step 28 on page 540.

2. Select UpdatePortlet from the Run tool menu.

Figure B-10 Select UpdatePortlet to redeploy the portlet
 Appendix B. Automatically redeploying portlets 541

542 IBM WebSphere Portal Toolkit V5

Appendix C. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246076

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG24-6076.

C

© Copyright IBM Corp. 2004. All rights reserved. 543

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
SG246076.zip Zipped code samples

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 3 MB minimum
Operating System: Windows
Processor: 1GH or higher
Memory: 512 MB or higher

How to use the Web material
Create a subdirectory (folder) on your workstation and unzip the contents of the
Web material zip file into this folder.
544 IBM WebSphere Portal Toolkit V5

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 546. Note that some of the documents referenced here may be available
in softcopy only.

� IBM WebSphere Portal V4 Developer’s Handbook, SG24-6897

� IBM WebSphere Portal V4.1 Handbook Volume 2, SG24-6920

� IBM WebSphere Portal V4.1 Handbook Volume 3, SG24-6921

� IBM WebSphere V4.0 Advanced Edition Handbook, SG24-6176

� IBM WebSphere V4.0 Advanced Edition Security, SG24-6520

� WebSphere Portal V4.1 AIX 5L Installation, REDP3594

� WebSphere Portal V4.1 Windows 2000 Installation, REDP3593

� IBM WebSphere Portal V4.1.2 in a Linux Environment, REDP0319

� WebSphere Portal Collaborative Components, REDP0319

Other publications
These publications are also relevant as further information sources:

� WebSphere Portal Primer, ISBN: 1-931182-13-2

Online resources
These Web sites and URLs are also relevant as further information sources:

� IBM Portal Information Kit:

http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=landings/portal
kit&S_TACT=102BBW01&S_CMP=campaign
© Copyright IBM Corp. 2004. All rights reserved. 545

http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=landings/portalkit&S_TACT=102BBW01&S_CMP=campaign
http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=landings/portalkit&S_TACT=102BBW01&S_CMP=campaign

� IBM WebSphere Software Platform:

http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=highlights/

� IBM WebSphere Application Server Support:

http://www-3.ibm.com/software/webservers/appserv/support.html

� IBM WebSphere Portal - InfoCenter:

http://www.ibm.com/software/webservers/portal/library/enable/InfoCenter/

� IBM WebSphere Application Server AE - InfoCenter:

http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/infocenter/inde
x.htmlu

� IBM WebSphere Portal for Multiplatform:

http://www.ibm.com/software/info1/websphere/solutions/offerings/portallibra
ry.jsp

� Using WebSphere Portal log files:

http://www7b.software.ibm.com/wsdd/zones/portal/V41InfoCenter/InfoCenter/wp
f-ena/en/InfoCenter/wps/trouble.html#portal_log

� WebSphere Developer Domain - Search:

http://www7b.software.ibm.com/webapp/dd/transform.wss?URL=/wsdd/library/ind
ex.xml&xslURL=/wsdd/xsl/document.xsl&format=two-column&site=wsdd

� WebSphere Portal Primer book:

http://mc-store.com/bookfromibmp.html

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
546 IBM WebSphere Portal Toolkit V5

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=highlights/
http://www-3.ibm.com/software/webservers/appserv/support.html
http://www.ibm.com/software/webservers/portal/library/enable/InfoCenter/
http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/infocenter/index.htmlu
http://www.ibm.com/software/info1/websphere/solutions/offerings/portallibrary.jsp
http://www7b.software.ibm.com/wsdd/zones/portal/V41InfoCenter/InfoCenter/wpf-ena/en/InfoCenter/wps/trouble.html#portal_log
http://www7b.software.ibm.com/webapp/dd/transform.wss?URL=/wsdd/library/index.xml&xslURL=/wsdd/xsl/document.xsl&format=two-column&site=wsdd
http://mc-store.com/bookfromibmp.html

Index

A
Abstract and concrete portlet applications 62
accessibility 7
Accessing resource bundles in JSPs 257
Accessing resource bundles in portlets 256
Accessing Web Services 291
Action Event Handling 98
ActionEvent 99
ActionListener 98–99
Active Credential 116
active credential 323
Add a JavaBean 174
Add actionlistener 160
Adjusting Portal resource bundles 264
Administrative slot 115
Apache Jetspeed 10
architecture 10
Attribute storage summary 107
Authentication 5
Authorization 5

B
bidi 123
breakpoint 213
Building a war file 78
Business to Business 5, 8
Business to Consumer 5, 8
Business to Employee 5, 8

C
c2a.tld 118
Canonical Portal URLs 41
categorization 42
Click-to-Action 371
Cloudscape 533
Cloudview 533
Collaboration 6, 18
Content Management 6, 17, 43
Content management 6
content.tld 118
ContentAccessService 109
Controller 154
© Copyright IBM Corp. 2004. All rights reserved.
cooperative broker 417
Cooperative Portlets 371

beginEventPhase() 416
broadcast 417
broadcasting 413
C2A wrapper 416
callback method 415
changedProperties() 414
Click-to-Action architecture 379
Click-to-Action event 414
Click-to-Action menus 418
combined scenario 419
Ctrl key 414
encodeProperty 374
encodeProperty tag 417
event phase 415
Hints and tips 409
Import Resources from a WAR File 421
input parameters 414
J2EE Settings page 420
output parameters 414
Overview 372
Portlet Messaging 372
portlet.xml 427
PortletWrapper 398
programmatic approach 413, 416
Programming model 373
property broker 414
PropertyListener 375
Register and publish properties 375
registerProperties() 416
Run the cooperative portlets 405
sample scenario 419
setProperties() 415
Source cooperative portlet 380
Steps to program a source cooperative portlet
374
Target cooperative portlet 390
Web Deployment Descriptor 398
Web Service Description Language 374
WebSphere Portal Property Broker 373

Cooperative portlets 371
Core event objects 99
Core Portlet Objects 83
 547

Create a portlet project 154
Create the Service Factory 111
createReturnURI 119
createURI 119
Credential 115
credential slots 321
Credential Vault 319–320, 330

Active credential objects 323
Add credential vault handling 333
administrative slot 322
Administrator-managed segments 321
Components of the Credential Vault 321
Credential slots 322
Credentials objects 323
HttpBasicAuth 323
HttpFormBasedAuth 323
Import a protected servlet application 325
J2EE Settings Page 332
JaasSubjectPassive 323
JavaMail 323
LtpaToken 323
Overview 320
Passive credential objects 323
portlet private slot 322
Portlet Settings 332
private keys 320
shared slot 322
SimplePassive 323
SiteMinderToken 323
SSL client certificates 320
system slot 322
user credentials 320
User-managed segments 321
UserPasswordPassive 323
Using active credentials 330
Using passive credentials 341
Vault segments 321
WebSealToken 323

Credential Vault organization 321
Credential Vault Portlet Service 321
credentials 320
CredentialsVaultService 109
CredentialVaultService Methods 117
Custom developed portlets 49
Custom Services 109
Customizable portlets from a vendor 49

D
dataAttribute 120
database connection 344
dataLoop 120
Debug a portlet application 216
declarative approach 373
DefaultPortletMessage 103, 227
Demilitarized Zone 11
deployment concerns 53
Directory services 5
Document Categories 42
Document Filter Technology 43
document filters 42

E
e-commerce 6
e-learning 6
encodeNameSpace 121
encodeURI 122
engine.tld 118
Eureka! categorizer 42
Event Handling 60
extend.tld 118
extranet 11

F
first generation portals 3
first portlet application 153
Flyweight pattern 22
Fourth generation portals 3

G
generations of portal technology 3
getURL 109

H
high availability 11
Highlights 37
Highlights in WebSphere Portal V5 37
Host integration 7

I
infrastructure 17
init 118
Installation

Configuration and preparation of the workstation
548 IBM WebSphere Portal Toolkit V5

533
Configuring WebSphere Studio Site Developer
and the Portal Toolkit 527
hosts 506
Install the Cloudscape sample database 533
Installing a loopback adapter 502
Minimum machine requirements 502
Network Identification 504
Portal Toolkit 501
Prerequisites 502
Primary DNS suffix 504
Server Configuration 529
Software requirements 502
Software Update function from the help menu
510
Toolkit installation 524
Using Portal CDs 513
WebSphere Application Server - Express 508
WebSphere Application Server Interim Fixes
518
WebSphere Studio Site Developer 501, 506
WebSphere Studio Site Developer PTFs 506

installation 501
Internationalization 6–7
Internet 11
Inter-Portlet Communication 60

J
Java Community Process 13
JDBC 343

create a database connection 344
Create a new connection 344
Create a SQL statement 347
Data Definition view 346
DB Servers view 344
Generate Java classes 347
Importing the WAR file 359
Overview 353
Run the SQL statement 351

Jetspeed implementation 14

L
layout 20
Listeners 95
log 123
Loopback Adapter 503

M
menu.tld 118
MessageEvent 103, 227
MessageListener 102, 226
Mode 54
Model 154
Model-View-Controller 22, 154
Model-View-Controller (MVC) 447
ModeModifier 101
multiple devices 10
MVC

Model, View and Control 56
MVC architecture 55

N
National Language Support 249

Accessing resource bundles in JSPs 257
Accessing resource bundles in portlets 256
Adjusting Portal resource bundles 264
Creating Resource Bundles in WebSphere Stu-
dio 252
NLS administration 260
NLS best practices 265
Portal NLS administration 263
Portlet NLS administration 260
Resource bundles 250
Sample scenario 266
Setting NLS titles 263
Translating Resource Bundles 254
Translating whole resources 258
Working with characters 265

next-generation desktop 5
NLS administration 249, 260
NLS best practices 249, 265

O
Organization for the Advancement of Structured In-
formation Standards 13
Overview 1, 464

Aggregation Module 16
Authentication Server 16
Authorization 40
Click-To-Action 46
Client to remote application 49
Comparison of V4.x Permission vs. V5.x Roles
20
Content Publishing 44
credentials 9
 Index 549

Customer Relationship Management 48
database structures 17
Document Categories and Summaries 42
e-Business needs 4
Enabling for Communities 38
Enterprise Resource Planning 48
Eureka! Categorizer 42
Event Broker 39
events 9
evolution 2
evolution process 3
First generation portals 3
Fourth generation portals 3
General Infrastructure 38
generations of portal technology 3
high availability 11
IBM Portlet Wiring Tool V5.0 47
J2EE platform 4
J2EE Security 39
Jetspeed implementation 10
LDAP 17
Member Subsystem 39
model-view-controller 26
Open Source Portal 10
Overview 4
Page content 15
page structure 15
page structure. 15
Permissions 20
Portal concepts 19
Portal Document Manager 43
Portal engine 16
Portal Install 37
Portal Servlet 16
portal technology 4
Portlet container 16
portlet container 27
Portlet events and messaging 29
portlets 9, 16
Presentation services 15
profile information 9
Property Broker 38
remote content 9
Reverse Proxy Security Server 12
Roles 20
Search 42
Second generation portals 3
Security services 17
services 17

Site Analysis 18
Skins 22
SSO Functionality 39
Struts Portlet Framework 45
Summarizer 43
Themes 21
Third generation portals 3
Toolkit 19
Transcoding 45
Transcoding Technology 17
User and Group Management 17
WebSphere Portal 16–17

P
Page Aggregation 59
Parameter summary 76
Passive Credential 115
passive credentials 323
person.tld 118
Personalization 6, 17
Pervasive computing 6
PorltetRequest request 109
Portal access control 40
portal administrator 22
Portal Document Manager 43
Portal Framework 7, 9
Portal NLS administration 263
Portal technology 1–2
Portal Toolkit 47, 125

Adding portlets to applications 149
Additional markups 136
Additional modes 136
Application name 133
Basic portlet 138
Code generation options 133
Configure a server and server instance 146
Context Root 132
Default locale 133
Deploying portlets 146
Developing portlet applications 136
Enterprise Application project 131
Examples 150
Generated classes 138
IBM WebSphere Studio Workbench 128
images 138
J2EE level 132
J2EE Settings Page 131
Java Source 137
550 IBM WebSphere Portal Toolkit V5

META-INF 137
Package 137
Portal Toolkit installation 128
Portlet application contents 137
Portlet Application wizard 129
Portlet name 133
Portlet title 133
Portlet.xml interface 140
Run the application 148
Web Content 137
WEB-INF 138

portals 1
Portlet 19, 83
Portlet API 53, 82

Abstract and concrete portlet applications 62
Action Event Handling 98
ActionEvent 99
ActionListener 99
Active Credentials 116
Administrator Managed 115
Attribute storage summary 107
Client 87
Configure 55
Control 57
Core Credential Vault Objects 114
Core event objects 99
Create the Service Factory 111
Credential Vault 113
Custom Services 109
DefaultPortletMessage 103
Define the Service 110
Edit 55
Event Handling 60
EventPhaseListener 106
Help 55
Hierarchy 82
Implement the Service 110
Inter-Portlet Communication 60
Listeners 95
MessageEvent 103
Mode 54
Model 56
Model View Control architecture 56
ModeModifier 101
MVC architecture 55
Page Aggregation 59
Parameter summary 76
Portlet deployment 61
Portlet JSPs 118

Portlet life cycle 53
Portlet messaging 102
Portlet Services 108
Portlet Tag Library 118
portlet terms 54
Portlet window 54
portlet.xml 67
PortletAdapter 83
PortletApplicationSettings object 90
PortletApplicationSettingsAttributesListener 98
PortletConfig object 88
PortletContext object 88
PortletData object 91
PortletException 93
PortletLog object 92
PortletMessage 104
PortletPageListener 95
PortletRequest 84
PortletResponse 85
PortletSession object 86
PortletSessionListener 97
PortletSettings object 89
PortletSettingsAttributesListener 98
PortletTitleListener 95
PortletURI 94, 100
PortletWindow object 93
PropertyListener 105
Real Estate 59
Register the Service 112
Security 60
Segment 114
Slot 115
State 54
Test the service 113
Third party authentication 113
Tivoli Access Manager 113
UnavailableException 93
User Managed 115
User object 94
Vault 114
View 55, 57
web.xml 64
Web.xml and Portlet.xml relationship 76
What is a portlet 54
What is a Portlet Application 61
WindowListener 97

Portlet application 19, 61
Portlet Containers 109
Portlet debugging 213
 Index 551

Add Breakpoint 217
Fix compile errors 214
Java validator 214
Step-by-Step Debug 220

Portlet deployment 61
Portlet development platform sample installation
501
Portlet life cycle 27, 53, 80
Portlet life cyle 80
Portlet messaging 102, 226, 372
Portlet Messaging vs. Cooperative Portlets 372
Portlet Modes 25
Portlet MVC architecture 57
Portlet MVC sample 58
Portlet NLS Administration 260
Portlet NLS administration 260
Portlet Preview 464

Define the Portlet Preview preference 467
Overview 464
Portlet Preview buttons 465
Preview Portlet 466
Preview preference 467
Sample scenario 467

Portlet preview 463
Portlet Private slot 115
Portlet solution patterns 48
Portlet states 26
portlet terms 54
Portlet to remote application 50
Portlet to Web application 51
Portlet window 54
portlet wiring tool 418
portlet.tld 118
portlet.xml 67
PortletApplicationSettings object 90
PortletApplicationSettingsAttributesListener 98
PortletConfig object 88
PortletContext object 88
PortletData object 91
PortletException 93
PortletLog object 92
PortletMessage 104, 228
PortletPageListener 95
PortletRequest 84
PortletResponse 85
PortletResponse response 109
Portlets 22

Core Portlet Objects 83
DefaultPortletMessage 103, 227

Portlet 83
Portlet API 82
Portlet deployment 61
Portlet JSPs 118
Portlet life cycle 80
Portlet MVC architecture 57
Portlet MVC Sample 58
Portlet Services 108
portlet terms 54
Portlet window 54
portlet.xml 67
PortletAdapter 83
PortletApplicationSettings object 90
PortletApplicationSettingsAttributesListener 98
PortletConfig object 88
PortletContext object 88
PortletData object 91
PortletException 93
PortletLog object 92
PortletPageListener 95
PortletRequest 84
PortletResponse 85
PortletSession object 86
PortletSessionListener 97
PortletSettings object 89
PortletSettingsAttributesListener 98
PortletTitleListener 95
PortletURI 94, 100
PortletWindow object 93
Servlets versus Portlets 59
Web.xml and Portlet.xml relationship 76
What is a Portlet Application? 61
WindowListener 97

PortletSession object 86
PortletSessionListener 97
PortletSettings 24
PortletSettingsAttributeListener 98
PortletSettingsAttributesListener 98
PortletTitleListener 95
PortletURI 94, 100
Preview Portlet 474
programmatic approach 374
property broker 382

R
Redbooks Web site 546

Contact us xvi
Register the Service 112
552 IBM WebSphere Portal Toolkit V5

relational database 353
remote content 9
Remote Server Attach 477

Add Breakpoint 497
BSF debug port 486
Debug Mode 482
Disconnect 500
Enable JavaScript debugging 486
Exporting the portlet application 487
HTTP port 486
Install a portlet in Remote Portal 486
Installing the portlet in Portal using Portal Admin-
istration 487
JVM debug port 486
Preparing Portal for Remote Server Attach 479
Process Definition 480
Remote Server Attach configuration 484
Run the portlet 496
Server Configuration 496
Test Remote Server Attach 496

Remove Breakpoint 222
Reset Preview Portlet 472
Resource bundles 249–250
Resources 124

S
Search 6, 18
search and taxonomy 7
search functionality 42
Second generation portals 3
Segment 114
Service Provider Interface 40
ServletResponse 85
Servlets vs. Portlets 59
Setting NLS titles 263
settingsAttribute 120
settingsLoop 121
Shared slot 115
simple action Strings 390
Single Sign-On 161, 320
site analytics 7
Site usage 7
Slot 115
Standard MVC architecture 56
State 54
String url 109
Struts actions 456
Struts applications

action processing 449
components 448
controller 448
custom JSP tags 449
Java developer subclasses 448
model 448
Overview 448
portlet environment 449
rendering 449
resources 457
Struts Portlet Framework 45, 447
struts-config.xml 448
view 448
Web application 456–457
Web page designer 454

Struts portlet 459
Summarizer 43
System slot 115

T
target portlet application 423
Test Environment 330
Test the service 113
text 123
The Portlet Wiring Tool 47
Third generation portals 3
Tivoli Access Manager lock box 322
Tooling 18
Toolkit installation 125
Toolkit V5 125
Transcoding technology 45
Translating Resource Bundles 254
Translating whole resources 249, 258

U
UID Guidelines 77
Update the portlet project 171
URIAction 119
URIParameter 120
URL 41
URL Generation, Processing and Mappings 41
URL Mappings 41
User object 94
User-friendly Portal URLs 41
Using resource bundles 249
 Index 553

V
validator 214
vault segment 321
View 154

W
Web crawler 43
Web Service client 291
Web Service Description Language 374
Web Services 18, 316
Web Services Client

Create a Web Service 299
Create a Web Services client portlet 308
Generate a proxy 300
sample Web Service 298
simple Web Service project 293
Test the generate proxy 300
Web Service Bean Identity 302
Web Service Bind Proxy Generation 304
Web Service Client Portlet Project 309
Web Service Deployment Settings 301
Web Service Java Bean Selection 302
Web Service Portlet Parameters 311
Web Services 300

Web Services for Remote Portals 13
web.xml 64
Web-based content 9
WebSphere Portal 19
WebSphere Portal content publishing 44
WebSphere Portal Property Broker 373
WebSphere Portal Toolkit V5.0 524
WebSphere Studio Application Developer 53
WebSphere Test Environment Express 293
What is a portlet 54
What is a Portlet Application 61
WindowListener 97
wiring tool

download 419
Working with characters 249, 265
554 IBM WebSphere Portal Toolkit V5

(1.0” spine)
0.875”<->

1.498”
460 <->

 788 pages

IBM
 W

ebSphere Portal V5
A Guide for Portlet Application Developm

ent

®

SG24-6076-00 ISBN 0738498513

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

IBM WebSphere Portal V5
A Guide for Portlet
Application Development

Learn about Portal
Toolkit and portlet
application
development

Actions, messaging,
Credential Vault,
cooperative portlets

Access Web Services
from portlet
applications

This IBM Redbook helps you design, develop and implement portlet
applications using the IBM WebSphere Studio Site Developer and
the Portal Toolkit V5. The information provided in this redbook
targets Business-to-Employee (B2E) enterprise applications, but
most of the scenarios presented apply to Business-to-Consumer
(B2C) applications as well. In this redbook, you will find
step-by-step examples and scenarios showing ways to integrate
your enterprise applications into an IBM WebSphere Portal
environment using the WebSphere Portal APIs provided by the Portal
Toolkit to develop portlets as well as extend your portlet capabilities
to use other advanced functions such as cooperative portlets,
national language support, action events, portlet messaging,
Credential Vault, Web Services and portlet debugging capabilities.

Elements of the portlet API are described and sample code is
provided. The scenarios included in this redbook can be used to
learn about portlet programming and as a basis to develop your own
portlet applications. You will also find numerous scenarios
describing recommended ways to develop portlets and portlet
applications using the APIs provided by the IBM WebSphere Portal
Toolkit. The sample scenarios in this redbook have been developed
using the WebSphere Studio Site Developer but they can also be
developed using the WebShere Studio Application Developer. A
basic knowledge of Java technologies such as servlets, JavaBeans,
EJBs, JavaServer Pages (JSPs), as well as XML applications and the
terminology used in Web publishing, is assumed.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. Overview
	1.1 Portal evolution
	1.1.1 The generations of portal technology

	1.2 Overview
	1.2.1 What is a portal?
	1.2.2 Enablement for portals
	1.2.3 The WebSphere Portal framework
	1.2.4 WebSphere Portal architecture
	1.2.5 WebSphere Portal tooling

	1.3 WebSphere Portal
	1.3.1 Portal concepts
	1.3.2 Portlets
	1.3.3 Portlet modes
	1.3.4 Portlet states
	1.3.5 Portlets and the model-view-controller (MVC) design pattern
	1.3.6 WebSphere Portal runtime: the portlet container
	1.3.7 Portlet life cycle
	1.3.8 Portlet events and messaging
	1.3.9 Page aggregation

	1.4 Highlights in WebSphere Portal V5
	1.4.1 Portal install
	1.4.2 General infrastructure
	1.4.3 Event broker
	1.4.4 Member subsystem
	1.4.5 Authentication
	1.4.6 Authorization
	1.4.7 URL generation, processing and mappings
	1.4.8 Search
	1.4.9 Content management
	1.4.10 Content publishing
	1.4.11 Transcoding
	1.4.12 Struts Portlet Framework
	1.4.13 User interface
	1.4.14 Cooperative portlets (Click-To-Action)
	1.4.15 Portal Toolkit

	1.5 Portlet solution patterns

	Chapter 2. Portlet API
	2.1 What is a portlet?
	2.2 Basic portlet terms
	2.3 MVC architecture
	2.3.1 Standard MVC architecture
	2.3.2 Portlet MVC architecture
	2.3.3 Portlet MVC sample

	2.4 Servlets versus portlets
	2.5 What is a portlet application?
	2.6 Portlet deployment
	2.6.1 web.xml
	2.6.2 portlet.xml
	2.6.3 Parameter summary
	2.6.4 Descriptors relationship (web.xml and portlet.xml)
	2.6.5 UID guidelines
	2.6.6 Building a war file

	2.7 Portlet life cycle
	2.8 Portlet API
	2.8.1 Hierarchy

	2.9 Core portlet objects
	2.9.1 Portlet
	2.9.2 PortletAdapter
	2.9.3 PortletRequest
	2.9.4 PortletResponse
	2.9.5 PortletSession object
	2.9.6 Client
	2.9.7 PortletConfig object
	2.9.8 PortletContext object
	2.9.9 PortletSettings object
	2.9.10 PortletApplicationSettings object
	2.9.11 PortletData object
	2.9.12 PortletLog object
	2.9.13 PortletException
	2.9.14 UnavailableException
	2.9.15 PortletWindow object
	2.9.16 User object
	2.9.17 PortletURI

	2.10 Listeners
	2.10.1 PortletTitleListener
	2.10.2 PortletPageListener
	2.10.3 PortletSessionListener
	2.10.4 WindowListener
	2.10.5 PortletSettingsAttributeListener
	2.10.6 PortletApplicationSettingsAttributesListener

	2.11 Action event handling
	2.12 Core event objects
	2.12.1 ActionListener
	2.12.2 ActionEvent
	2.12.3 PortletURI
	2.12.4 ModeModifier

	2.13 Portlet messaging
	2.13.1 MessageListener
	2.13.2 MessageEvent
	2.13.3 DefaultPortletMessage
	2.13.4 PortletMessage

	2.14 PropertyListener interface
	2.15 EventPhaseListener interface
	2.16 Attribute storage summary
	2.17 Portlet services
	2.17.1 ContentAccessService
	2.17.2 Custom services

	2.18 Credential Vault
	2.19 Core Credential Vault objects
	2.19.1 Vault
	2.19.2 Segment
	2.19.3 Slot
	2.19.4 Credential

	2.20 Portlet JSPs
	2.20.1 Portlet tag library

	2.21 Resources

	Chapter 3. Portal Toolkit
	3.1 Hardware and software requirements
	3.2 Portal Toolkit installation
	3.3 Development environment
	3.4 Portlet application wizard
	3.5 Developing portlet applications
	3.5.1 Portlet application contents
	3.5.2 Generated classes

	3.6 Portlet.xml descriptor
	3.7 Deploying portlets
	3.8 Adding portlets to applications
	3.9 Examples

	Chapter 4. A first portlet application
	4.1 Sample scenario
	4.1.1 Creating a portlet project
	4.1.2 Configuring the Test Environment
	4.1.3 Running the portlet application
	4.1.4 Updating the portlet project
	4.1.5 Adding a JavaBean to your portlet project

	Chapter 5. Action event handling
	5.1 Action event
	5.2 Window events
	5.3 Simple action String support
	5.4 Sample scenario
	5.4.1 Scenario overview
	5.4.2 Creating the ActionEvent portlet
	5.4.3 Run the ActionEvent portlet application

	Chapter 6. Portlet debugging
	6.1 Overview
	6.2 Sample scenario
	6.2.1 Fixing compile errors
	6.2.2 Debugging a portlet application

	Chapter 7. Portlet messaging
	7.1 Portlet messaging
	7.2 MessageListener
	7.3 MessageEvent
	7.4 DefaultPortletMessage
	7.5 PortletMessage
	7.6 Sample scenario
	7.6.1 Description
	7.6.2 Sending a message
	7.6.3 Creating the target portlet
	7.6.4 Running the portlet application

	7.7 Broadcasting messages

	Chapter 8. National Language Support (NLS)
	8.1 Resource bundles
	8.1.1 Creating resource bundles in WebSphere Studio
	8.1.2 Translating resource bundles
	8.1.3 Accessing resource bundles in portlets
	8.1.4 Accessing resource bundles in JSPs

	8.2 Translating whole resources
	8.3 NLS administration
	8.3.1 Portlet NLS administration
	8.3.2 Portal NLS administration
	8.3.3 Setting NLS titles
	8.3.4 Adjusting Portal resource bundles

	8.4 Working with characters
	8.5 NLS best practices
	8.6 Sample scenario: NLS bundles
	8.6.1 NLS bundles
	8.6.2 Accessing NLS bundles from JSPs
	8.6.3 Running the NLS scenario
	8.6.4 Accessing NLS bundles in Java portlets

	8.7 Sample scenario: translating whole resources

	Chapter 9. Accessing Web Services
	9.1 Overview
	9.2 A simple Web Service project
	9.2.1 A sample Web Service

	9.3 Creating a Web Services client portlet
	9.4 Run the WSClientPortlet application

	Chapter 10. Using the Credential Vault
	10.1 Overview
	10.2 Importing a protected servlet application
	10.3 Using active credentials
	10.3.1 Updating the generated portlet
	10.3.2 Running the portlet

	10.4 Using passive credentials

	Chapter 11. Accessing back-end JDBC databases
	11.1 Creating a database connection
	11.1.1 Creating a new connection
	11.1.2 Importing to a folder
	11.1.3 Creating an SQL statement
	11.1.4 Generating Java classes
	11.1.5 Running the SQL statement

	11.2 Sample scenario
	11.2.1 Overview
	11.2.2 Creating HRPortlet
	11.2.3 Importing the WAR file
	11.2.4 Reviewing the portlet code
	11.2.5 Running the HRPortlet application

	Chapter 12. Cooperative portlets
	12.1 Overview
	12.1.1 The WebSphere Portal property broker
	12.1.2 Programming model
	12.1.3 Registering and publishing properties

	12.2 Sample scenario
	12.2.1 Development workstation
	12.2.2 Description
	12.2.3 Source cooperative portlet
	12.2.4 Target cooperative portlet
	12.2.5 Running the cooperative portlets

	12.3 Hints and tips

	Chapter 13. Advanced cooperative portlets
	13.1 Publishing properties programmatically
	13.2 Portlet event handling
	13.3 Broadcasting source data
	13.4 Wiring tool
	13.5 Sample scenario
	13.5.1 Declarative source cooperative portlet
	13.5.2 Enabling the portlet for target C2A programmatic
	13.5.3 Running the cooperative portlets
	13.5.4 Wire portlets
	13.5.5 Enabling HRPortlet for programmatic source C2A
	13.5.6 Running the programmatic source portlet

	Chapter 14. Struts portlets
	14.1 Overview
	14.1.1 The Struts portlet framework

	14.2 Developing Struts Web applications
	14.3 Migrating Struts Web applications

	Chapter 15. Portlet preview
	15.1 Overview
	15.1.1 Portlet Preview buttons available in the toolbar

	15.2 Sample scenario
	15.2.1 Defining the Portlet Preview preference
	15.2.2 Previewing the portlet

	Chapter 16. Remote Server Attach
	16.1 Overview
	16.2 Preparing Portal for Remote Server Attach
	16.3 Remote Server Attach configuration
	16.4 Installing a portlet in Remote Portal
	16.5 Running the portlet

	Appendix A. Portlet development platform sample installation
	Prerequisites
	Installing a loopback adapter

	WebSphere Studio Site Developer (WSSD) V5.0
	WebSphere Studio Site Developer - WSSD Fix Pack 1
	WebSphere Studio Site Developer - WebSphere Application Server Fix Pack 1
	WebSphere Studio Site Developer - WebSphere Application Server Interim Fixes

	WebSphere Portal Toolkit V5.0
	Toolkit installation

	Configuring Studio Site Developer and the Portal Toolkit
	Configuration and preparation of the workstation
	Installing the Cloudscape sample database

	Appendix B. Automatically redeploying portlets
	Description

	Appendix C. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

