

IBM Software Group / Information Management

IBM Informix Dynamic Server 10

Aomar BARIZ

IBm SWG Technical Sales IMT France & NWA 19 Septembre 2006

IBM France
2 Avenue Gambetta
92400 Courbevoie

Agenda

- Introduction
- Engagement IBM
- IBM Informix IDS 10
 - 50 nouvelles fonctionnalités
 - Zoom technique
- Feedback beta test IDS 10
- Roadmap Informix
- Q&A

Agenda

Engagement Technique IBM

- IBM Informix IDS 10
 - 50 nouvelles fonctionnalités
 - Zoom technique
- Q&A

INTRODUCTION

Introduction

- Le marché de la base de donnée Informix a été très dynamique en 2005
- Le revenu IBM Informix + DB2 a été de 3 Milliards de \$\$
- Gros clients informix ont fait des modifications majeurs sur leurs systèmes d'informations et ont décidé de confirmer leurs confiances à Informix
- Le marché est majoritairement composé de clients en v9 et V10
- Quelques résistants et ISV continuent d'utiliser IBM Informix IDS v7

ENGAGEMENT IBM

Engagement IBM

- Ambuj Goyal General Manager IBM Information Management depuis 2005
- Ambuj Goyal a confirmé son engagement sur la pérennité des produits IBM Informix à l'iiug le 2 février 2006
- Ambuj Goyal a pris engagement que les produits Informix vont évoluer comme tous les produits du portefeuille IBM

Engagement IBM

- IBM Informix est la seule marque logicielle pour laquelle IBM est aujourd'hui capable de fournir un engagement et une ROADMAP technique d'évolution jusqu'en 2011
- Ambuj Goyal positionnement clairement IDS comme leader sur le marché OLTP et de la base de donnée embarquée
- Enfin Ambuj Goyal réaffirme que tous les produits du portefeuille IBM sont compatible avec Informix Dynamic Server *

IBM Informix IDS 10.00

50 NOUVELLES FONCTIONNALITES

SECURITE

- 1) Column-level encryption
 - Amélioration de la confidentialité au travers des fonctions d'encryptage AES ou TDES, fournies par défaut.
- 2) Contrôle automatique des utilitaires Informix sous UNIX
 - > Vérification des permissions/groupes/taille de tous les binaires et fichiers de configuration.
- 3) Restriction de l'enregistrement des routines externes
 - Le nouveau rôle EXTEND permet de définir les personnes pouvant enregistrer des "User-defined routines".
- 4) Protection contre les attaques "denial-of-services"
 - Paramétrage plus souple de l'écoute des "listener threads" grâce aux variables LISTEN_TIMEOUT, MAX_INCOMPLETE_CONNECTION.
- ADMINISTRATION, PARAMETRAGE et HAUTE DISPONIBILITE
 - 5) Configuration de la taille des pages pour chaque dbspace
 - De 2 kilo octets à 16 Kilo octets.
 - 6) Définition de buffer pools
 - Pool spécifique à chaque dbspace ayant une taille de page non standard.

ADMINISTRATION, PARAMETRAGE et HAUTE DISPONIBILITE

- 6) Gestion des TBLSPACE TBLSPACE
 - Nouveaux paramètres du fichier ONCONFIG : TBLTBLFIRST, TBLTBLNEXT afin de réduire la fragmentation du tablespace tablespace du ROOT DBSPACE (ensemble des pages décrivant la localisation de tous les tablespaces)
- 7) Mode d'administration "single-user"
 - > Un mode mono utilisateur permettant la connection aux bases de données.
- 8) Gestion des permissions au travers de rôles.
 - > Création possible d'un rôle et assignation à des utilisateurs individuels ou à PUBLIC par base.
- 9) Renommage de DBSPACE
 - > L'administrateur, en mode Quiescent, peut renommer les DBSPACE non critiques.
- 10) Notification des évènements désignés
 - Le nouveau paramètre ALRM_ALL_EVENTS permet de spécifier la catégorie d'évènements pour lesquels le DBA doit être alerté.
- 11) Segment de mémoire supérieur à 4 giga octets
 - Permet d'adresser pour une instance toutes les ressources mémoire d'une machine 64 bits.
- 12) Configuration HDR possible avec l'external backup
 - > Auparavant uniquement l'utilisation standard d'ONBAR ou ONTAPE était supportée.

ADMINISTRATION, PARAMETRAGE et HAUTE DISPONIBILITE

- 13) Recréation automatique des index corrompus en HDR
 - Détection automatique de la corruption sur le secondaire et envoie des données du primaire vers le serveur secondaire.
- 14) Basculement automatique des serveurs HDR
 - > Pour que le serveur secondaire devienne secondaire après restauration du primaire lors d'un échec.
- 15) Détermination complète de la version IDS
 - > Information complète pour tous les utilitaires d'IDS, option -version.
- 16) Extensions faites à l'interface d'administration Web ISA 1.60
 - Pour le support des deux fonctionnalités : ER Template et Single-user mode.
- 17) Support du format IPv6
- 18) Renommage du nom d'instance sous Windows
 - > L'utilitaire "Instance Manager" permet de changer le nom d'une instance.
- 19) Amélioration des conversions/réversions de la base HPL
 - La nouvelle variable IFX_ONPLOAD_AUTO_UPGRADE facilite la mise à jour de la base de données interne utilisée par High Performance Loader.

PERFORMANCE

- 20) Amélioration de la gestion de certaines requêtes
 - Pour les transactions XA, jointure imbriquée compatible ANSI "left-outer join", les sous requêtes, et la jointure de type "Full-outer join".
- 21) Allocation de mémoire pour les requêtes non-PDQ
 - Paramètrage possible au delà des 128K par défaut, pour les requêtes spécifiant des ORDER BY, GROUP BY, effectuant des jointures Hash ou ayant un usage intensif de mémoire.
- 22) Directives d'optimisation externes applicables dynamiquement
 - Au travers de la nouvelle instruction SQL SAVE EXTERNAL DIRECTIVES.
- 23) Fragmentation possible dans un seul DBSPACE
 - > Pour permettre la gestion des fragments (ATTACH et DETACH) sans multiple DBSPACE.
- 24) Recovery plus rapide en mode Fuzzy CheckPoints
 - > Deux nouvelles variables FAST_RESTART_PHYSLOG et FAST_RESTART_CKPT_FUZZYLOG
- 25) OPTCOMPIND dynamique pour changer le comportement de l'optimiseur durant une session SQL
 - > Nouvelle instruction SQL : SET ENVIRONMENT OPTCOMPIND

EXTENSIONS SQL

- 26) Création et suppression d'index Online
 - > Pour éviter la pose de verrou exclusif sur les tables et augmenter ainsi la disponibilité d'IDS.

ENTERPRISE REPLICATION

- 27) "Master replicat"
 - Pour permettre la génération de table sur les serveurs participant à la réplication et l'ALTER TABLE.
- 28) "Replicate template"
 - Pour simplifier la mise en place de la réplication en mode "full row".
- 29) Réparation et resynchronisation d'un replicat
 - Pour permettre une gestion des conflits ATS ou RIS simplifiée.
- 30) ALTER TABLE d'une table répliquée
 - Pour permettre ONLINE l'ajout/suppression d'une colonne, la définition de nouvelle(s) contrainte(s), un changement de stratégie d'EXTENT, la gestion de fragments.
- 31) "Remastering"
 - > Sans interrompre la réplication, il est possible de modifier le choix de colonnes participant à un réplicat.

ENTERPRISE REPLICATION

- 32) Evénements ER gérés par l'ALARMPROGRAM
 - Ajout d' "EVENT ALARM" pour la notification/action à travers du script personnalisable : ALARMPROGRAM.
- 33) Suppression possible des messages de Warning ou Erreur dans les fichiers ATS RIS
 - > Au travers de la nouvelle variable CDR_SUPPRESS_ATSRISWARN.

SAUVEGARDE ET RESTAURATION

- 34) Restauration au niveau table "Point-in-time"
 - > Extension de fonctionnalité de l'utilitaire ARCHECKER pour restaurer des données au travers de filtres avec ONBAR ou ONTAPE.
- 35) Visualisation des journaux sauvegardés par ONBAR
 - L'utilitaire ONLOG permet maintenant de visualiser un ancien journal logique sauvegardé.
- 36) Changement de mode de debug lors d'une sauvegarde ONBAR
 - > Permet de gagner de l'espace disque lors du diagnostique d'un incident complexe.
- 37) Utilisation d'ONTAPE en mode flux
 - Permet la compression d'une sauvegarde, et l'automatisation des sauvegardes/restauration.
- 38) Sauvegarde externe possible avec l'utilitaire ONTAPE
 - > Permet la sauvegarde et restauration entre deux instances différentes.

STOCKAGE

- 39) Support des identifiants longs avec HPL
 - > Jusqu'à 128 caractères avec l'utilitaire en ligne de commande mais pas avec l'interface graphique.
- 40) Interface incluse pour l'utilisation de Tivoli Storage Manager
 - Les librairies fournies faciliteront l'installation de TSM.

EXTENSIBILITES

- 41) Manipulation de type interne étendu avec les tables distantes
 - > Possibilité d'exécuter des requêtes distantes (entre 2 instances IDS) utilisant les types BOOLEAN,BLOB,CLOB et LVARCHAR.
- 42) Obtention d'informations relatives à l'exécution de trigger
 - Possibilité d'exécution de "user-defined routines" déclenchées par un trigger afin d'obtenir des informations sur les tables/vues/instructions/enregistrements invoqués.
- 43) Support du JRE 1.4
 - Les "user-defined routines" java sont supportées avec le JRE 1.4, ce qui permet d'être conforme aux spécifications SUN JDBC 3.0.

INSTALLATION

- 44) Message "Licence Agreement" supplémentaire
 - > Affichage lors de l'installation des termes et conditions d'utilisation du produit IDS.

INSTALLATION

- 45) Nouveau répertoire /doc pour la documentation
 - Ce répertoire contient : les Releases Notes, les Machines Notes, les Documentation Notes ainsi que le manuel d'installation au format PDF "IBM Informix Dynamic Server Installation Guide".
- 46) Interface graphique d'installation sous Unix et Linux
- 47) Installation d'IDS en mode cluster sous Windows
 - L'utilitaire IBM Informix ClusterIT permet d'installer IDS en mode cluster sur le noeud primaire et secondaire.

INTER-OPERABILITE

- 48) Connexion directe à DB2 des applications ESQL/C
 - Support de la DB2 UDB v8.2

ET ENCORE......

- 49) Table Level pour les tables ayant des données stockées dans les smart blobs
- 50)TRUNCATE TABLE

ZOOM TECHNIQUE

Mémoire Partagée > 4 Go

Objectif

- Machine 64 bits
 - Segment mémoire > 4Go
 - Performance : HP-UX, 6 segments
 - Allocation dynamique pour le DBA

Adressage Mémoire

- -2^{64}
- Limite Système
 - SHMMAX

Adressage Mémoire > 4 Go

- Représentation des adresses mémoires 64 bits
 - Unix / Windows : mot mémoire de 8 octets
- Segment de mémoire partagée
 - Adressable à 4 To
 - SHMVIRTSIZE
 - SHMADD
 - Onmode –a <segsize>
- Segment mémoire de message portion, 4Go
 - Compatibilité des clients 64 bits de protocole onipcshm

Taille des pages disques paramétrables

Objectifs

- Optimisation de l'espace disque
- Optimisation des clés d'index
- Optimisation des accès disque

DBSpaces

Taille des pages paramétrables

Buffer Pool

- Pages paramétrables
- Création automatique

Optimisation de l'espace disque

Pages Larges

Espace disque contigu à 16Ko

- Multiple de la page système (2Ko / 4Ko)
 - Exemple, 1 row de 1200 octets
 - 1 rangée stockée sur 1 page de 2Ko (6Ko pour 3 rows)
 - > 3 rangées stockées sur 1 page de 4Ko
 - > Gain: 33%

Optimisation des clés d'index

Cléfs d'index

Taille des cléfs d'index

Profondeur de l'arbre d'index

- Réduction des niveaux
- Amélioration des parcours d'index

Optimisation des accès disque

- Diminution des entrées / sorties
- Diminution des accès aux remainders pages
- Diminution des parcours d'index

Dbspaces

Onspaces

- Création des dbspaces
- Spécification de la taille de page
 - onspaces -c -d dbs -k pgsize -p path -o offset -s size

Pgsize

- Taille de la page (Ko)
- Configurable
 - Multiple de la page système
 - 2 à 16 Ko

Buffers Pools

Onparams

- Création des buffers pools
- Spécification des buffers

```
Onparams -b -g pgsize -n buffs -r lrus -x max -m min
- pgsize : taille de la page (Ko)
- buffs : nombre de buffers
- lrus : nombre de LRU
- max : max %dirty pages
- min : min %dirty pages
```

-BUFFERS_DEF

 Nombre de page du buffer pool par défaut en création automatique

Paramétrage des buffers pools

ONCONFIG

- BUFFERS DEF
- LRUS DEF
- LRU MAX DIRTY DEF
- LRU MIN DIRTY DEF
- BUFFERS 2K to BUFFERS 32K
- LRU MIN DIRTY 2K to LRU MIN DIRTY 32K
- LRU MAX DIRTY 2K to LRU MAX DIRTY 32K
- LRUS 2K to LRUS 32K

Présentation technique

Default # of buffers when a pool is automatically added Default # of LRUS when a pool is automatically added Maximum % dirty when a pool is automatically added Minimum % dirty when pool is automatically added

of buffers for each pool of the specified page size

Minimum % dirty pages for the specified buffer pool

Maximum % dirty pages for the specified buffer pool # of LRUS for the specified buffer pool

Single-user mode

Objectifs

- Permettre l'exécution de script SQL dans un mode mono-utilisateur.
- Eviter les accès concurrents positionnant des verrous rendant impossible les ALTER et autres commandes DDL.

Nouveau mode du moteur IDS

- Il s'agit d'un mode intermédiaire entre le mode "Quiescent" et le mode "Online".
- Activable par les commandes onmode ou oninit.
 - onmode –j : pour passer de Quiescent ou Online à Single-User
 - oninit –j : pour passer de Offline à Single-User

Extension apportée à ISA

 L'interface web ISA 1.60 permet le positionnement du moteur IDS dans ce mode.

Création / Suppression d'index, Accès Concurrent

Objectifs

Création et suppression d'index sur les tables modifiées

Création d'index

- Extension de la syntaxe
 - CREATE INDEX ... [ONLINE]

Suppression d'index

- Extension de la syntaxe
 - DROP INDEX ... [ONLINE]

Create Index ... Online

Verrous en mode partagé

IS-Lock (table)

Partition des pré-images de pages

- 1 par dbspace pour chaque fragment de la table
- checkpoint

Index de base

Construction à partir du snapshot de la table / pré-images de pages

Updater log

- Partition temporaire : Insert / Update / Delete
- Exécution à posteriori
- Seuil de verrouillage : 90%
- Mise à jour du catalogue système

Drop Index ... Online

- Verrous en mode partagé
 - IS-Lock (table)
- Dictionnaire de données
 - Index marqué dans l'état drop-online
 - Optimiseur : ignore l'index
- Verrou exclusif sur l'index
 - Lecture uniquement sur la table
- Suppression de l'index
 - Database non journalisée : immédiat
 - Database journalisée : au commit
- Mise à jour du catalogue système

Optimiseur SQL, directives externes

Objectif

Directive d'optimisation SQL dynamique

Syntaxe SQL

SAVE EXTERNAL DIRECTIVES < directives > ... FOR < query >

Catalogue système

SYSDIRECTIVES

Paramétrage

– EXT_DIRECTIVES (onconfig)

- IFX_EXTDIRECTIVES (environnement)

Directives Externes, SQL

Syntaxe SQL

- SAVE EXTERNAL DIRECTIVES <directives>
 - ACTIVE | INACTIVE | TEST ONLY FOR <query>

Exemple

```
SAVE EXTERNAL DIRECTIVES

/* +AVOID_INDEX (table1 index1) */,

/* +FULL(table1) */

ACTIVE FOR

Select col1, col2

From table1, table2

Where table1.co1 = table2.col1
```


Cache des directives externes

Cache des directives

- Stockage des clés de hash
- Pour les directives 'Active'

Lecture du catalogue

Hash code dans le cache

Options ONSTAT

onstat –g mem : memory pool 'extdpool'

onstat –g cac : cache des directives

onstat –g ed : directives externes

Paramétrage des directives externes

EXT_DIRECTIVES

- 0 : OFF niveau serveur
- 1 : ON niveau serveur, OFF par défaut niveau session
- 2 : ON niveau serveur, ON par défaut niveau session

IFX_EXTDIRECTIVES

- Non positionné : ON si EXT_DIRECTIVES=2, OFF sinon
- 0 : OFF niveau session
- 1 : ON niveau session
- 2 : ON niveau session en TESTONLY pour le DBA

HDR, Transfert des index

Objectif

Ne pas transférer un index corrompu sur le serveur secondaire

Modes de transfert

- Manuel
 - Onmode
 - Nommage explicite de l'index
- Automatique
 - DR_IDXAUTO
 - Activation Onmode

HDR, Transfert des index

Replication manuelle

- \$ onmode -d index <database:[owner.]table#index>

Replication automatique

```
– DRIDXAUTO { 0 | 1 }
```

- onmode -d idxauto { ON | OFF }

Enterprise Replication

Template de Replicat

- Mise en place simplifié de l'ER
- Extraction pour une base des tables, des attributs de colonnes, et des clefs primaires pour l'ER.
- Possibilité de créer :
 - Master réplicat
 - Group réplicat
 - Replicat set
- Manipulation des Templates possible à traver ISA 1.60
- ALTER DML Totalement supporté
 - ADD
 - DROP
 - Changement de stratégie d'EXTEND
 - Changement de type d'une colonne
 - Possibilité de clustering ou de re-clustering
- Ajout de nouvelle Alarm qui sont gérés directement par l'event Alarm informix

Enterprise Replication

Indisponibilité réduite mais pas nulle

Le temps de l'ALTER ne permet pas l'insertion et la modification des données sur la table.

Synchronisation et Resynchronisation

- cdr sync replicate ou cdr sync replicatset permet de synchroniser les réplicat à partir d'un serveur ou d'un master group.
- Basé sur le résultat trouvé dans les répertoires ATS et RIS les enregistrement sont ajoutés ou effacés en fonctions des cas de figures

Vérification de la consistence des réplicats

- Cdr check replicate ou cdr check replicateset permet de vérifier l'intégrité d'un réplicat ou d'un replicateset par rapport à un serveur ou un master group.
- Détecte et corrige "online" les enregistrement corrompues.

Visualisation des statistiques directement a partir des commandes cdr

- cdr stats rqm nous permet de visulaer directement la rqm
- cdr stats recv affiche la queue du "receiver" pour les statistics parallèle and les statistiques liés à la latence

Enterprise Replication

Exemple de modification : ajout d'une colonne

- L'opération s'effectuera en deux étapes :
 - Ajouter la colonne à toutes les tables participants au réplicat.
 - Puis remasteriser le Master replicat

```
ALTER TABLE table_name ADD (col_name type);
```

cdr remaster replicate replicat_maitre_modifié <select statement>

Ontape, mode flux

Objectifs

- Ecriture des archives de niveau 0,1,2 sur la sortie standard
- Lecture des archives de niveau 0,1,2 sur l'entrée standard
- Utilisation des "pipes" systèmes

Archivage et Restauration

- Sur STDIO
- Mode non interactif

ONCONFIG

TAPEDEV positionné à STDIO

Ontape, exemples de flux

Archivage sur STDOUT

ontape -s -L 0 | compress -c > /tmp/archive.Z

Restauration sur STDIN

uncompress -c /tmp/archive.Z | ontape -p

Restauration distante (HDR, clonage)

Ontape –s –L 0 –F | (rsh secondary_host "ontape –p")

Log Salvage

Ontape -S

Restauration de niveau table

Objectifs

- Restaurer une table depuis une archive de niveau 0
- Pilotage SQL
- Filtre sur les données extraites
- Relocalisation des données extraites
- Restauration de type "Point in time"

Restauration

- Archecker
- Archives onbar
- Archives ontape

Archecker, composants

Configuration

- AC_CONFIG
 - Librairie XBSA
 - Fichier des objets ixbar
 - Fichier de commande SQL

Pilotage SQL

Commandes de restauration

Traces

Options de traçage

Archecker, restauration physique

- Extraction d'une archive de niveau 0
- Scan des dbspaces de données
- Traitement des pages de données
- Extraction des enregistrements de pages
- Filtres sur les données extraites
- Espace temporaire pour les enregistrements stockés sur plusieurs pages
- Conversion en requête SQL
- Insertion SQL

Archecker, restauration logique

- Archive de niveau 0, et Logical Log
- Restauration de type "Point in time"
- Log Stager
 - Lecture des logicals log
 - Filtre des logs
 - Insertion des log records dans des tables de logs

Log Applier

- Lecture des tables de logs
- Exécution des enregistrements de logs aux tables extraites

Archecker, commandes SQL

```
$ cat cmd.sql
database db;
create table tab_source (a serial, b char(20)) in dbspace1;
create table tab_dest (a serial, b char(20)) in dbspace2;
insert into tab_dest select * from tab_source;
set workspace to dbs1,dbs2;
restore to '2005-03-01 10:20:05';
```


Archecker, exemple

\$ archecker -bdvsX -f setup.cmd

AC_STORAGE /tmp
AC_MSGPATH /tmp/ac.log

AC_VERBOSE on AC_TAPEBLOCK 32 KB AC_PAGESIZE 4096

AC_IXBAR /prod/ids10/etc/ixbar.96

Dropping old log control tables

Extracting table d1:t1 into d2:t1n

Extracting table d1:t2 into d2:t2n

Scan PASSED

Control page checks PASSED

Table checks PASSED

Table extraction commands 2

Tables/fragments found on archive

LOADED: d2:t2n produced 37 rows.

LOADED: d2:t1n produced 36 rows

Creating log control tables

Staging Log 1:14 Staging Log 1:15

Logically recovered d2:t1n Inserted 602 Deleted 19 Updated 0

Logically recovered d2:t2n Inserted 0 Deleted 9 Updated 0

Tables Extraites

Restaure Physique

Restaure Logique

ENCRYPTAGE des données

Objectif:

Protéger les informations confidentielles stockées avec IDS

Algorithmes d'encryptage :

- IDS permet simplement l'utilisation d'algorithmes de type :
 - "Triple-DES" (1990 : Triple Data Encryption Standard)
 - "AES" (1997 : Advanced Encryption Standard)
 pour un stockage au format BASE64 (appelé aussi Radix-64)

Données visées :

 Tous les types CHAR, NCHAR, VARCHAR, NVARCHAR, LVARCHAR, BLOB et CLOB

ENCRYPTAGE des données

Utilisation :

- De nouvelles instructions SQL ont été introduites :
 - SET ENCRYPTION PASSWORD
 - ENCRYPT_AES()
 - ENCRYPT_TDES()
 - DECRYPT_CHAR()

Contraintes :

- Les anciens type 'large objects' TEXT et BYTE ne sont pas supportés.
- Le mot de passe est passé "non encrypté" lors du dialogue client-serveur (par défaut) si le protocole de communication standard est utilisé. Le protocole ENCCSM résoud ceci.
- Redimensionnement des champs nécessaire.

ENCRYPTAGE des données

- Calcul du dimensionnement des colonnes
 - Varie suivant si le HINT est employé et le choix de l'algorithme AES ou TDES :
 - EXECUTE FUNCTION LENGTH(ENCRYPT_TDES("1234567890123456", "simple password"))
 - Retourne 55
 - EXECUTE FUNCTION LENGTH(ENCRYPT_TDES("1234567890123456", "simple password", "12345678901234567890123456789012"))
 - Retourne 107
 - EXECUTE FUNCTION LENGTH(ENCRYPT_AES("1234567890123456", "simple password"))
 - Retourne 67
 - EXECUTE FUNCTION LENGTH(ENCRYPT_TDES("1234567890123456", "simple password"))
 - Retourne 119

FEEDBACK BETAT TEST IDS 10

Bêta tests

- Les béta tests sur IDS 10.0 ont eu lieu du 1 juillet 2004 au 15 octobre 2004
- 17 clients WW ont participé
- Quelques noms: U.S.Courts; BAE; BYTEC; mobilcom;
 Nonne&Scheider; DEISTER;NITE;Verizon;West;Schleupen;Canadian Nat'l Rail; Northrop Grumman (optical)

Bêta tests

- Performance : Des tests ont permis de comparer les performances IDS 10.0 par rapport à la version IDS 9.40UC4
- Lors de la sortie de la v9.4, les béta tests de l'époque ont montré une nette progression en terme de performance par rapport à IDS v7.31
 - Dbimport : nous avons effectués l'import d'une base de 10GB

IDS Version	Page Size of the data chunk	duration	DS_NONPDQ_QERY_MEM
9.40UC4W1	2k	8:45h	default
10.0UC1B3	8k	7:49h	16384k

 DS_NONPDQ_QUERY_MEM variable utilisée dans un environnement non PDQ qui permet d'accélérer la création des indexes lors du dbimport.

Bêta tests

Autres tests : sur une table de 65000 enregistrements avec un index composé :

DS_NONPDQ_QUERY_MEM	duration
default (128k)	1:16,86min
	1:17,33min
1024k	0:43,86min
	0:38,95min
4096k	0:28,65min
	0:29,51min
16384k	0:29:56min
	0:29,06min

http://www.ibm.com/software/data/informix