
19 septembre 2006Tendances Logicielles

“Toward Completing A Vision”

A Preview of Version 7 of the IBM Rational 
Software Model Driven Development Product 
Family

William T. Smith (smithtw@us.ibm.com)
Product Manager, Model Driven Development, IBM 
Rational 



19 septembre 2006Tendances Logicielles

Agenda

• The Rational MDD Heritage

• The New MDD Product Family: Vision and Current State (v6)

• The New MDD Product Family: Toward Completing The Vision 
(v7)



19 septembre 2006Tendances Logicielles

The Abstraction Curve

7F 3A7F 3A
2D FF2D FF

Increasing
Levels of

Abstraction

Pseudocode - 3GLTextual Modeling

Assembler - Textual Development

Visual Modeling

3GL Textual Development

Round Trip 
Engineering

Time

Executable
Models



19 septembre 2006Tendances Logicielles

Market Landscape, 1995-1997

• UML was new

• C/C++ were dominant languages, Java just emerging

• IDEs were not common

• Frameworks and runtimes we take for granted today, did not exist



19 septembre 2006Tendances Logicielles

Rational Rose emerged as…

• Language- and platform-agnostic

• Stand-alone (not in an IDE shell)

• Based on a proprietary UML 1.x metamodel

• Later introduced model-code synchronization (“RTE”) to support 
construction activity



19 septembre 2006Tendances Logicielles

Market Landscape, 1999-2001

• Broad and enthusiastic adoption of Java

• Emergence of J2EE framework and runtimes

• Emergence of .NET

• Introduction of Eclipse

• IDEs became ubiquitous in the Java and .NET worlds 

• Rose began to face competition from code-centric, in-IDE modeling products



19 septembre 2006Tendances Logicielles

Rational XDE evolves as… 

• Biased toward Java/J2EE and .NET

• Hosted within IDE environment

• Based on another proprietary UML 1.x metamodel

• Still using model-code synchronization to support construction activity



19 septembre 2006Tendances Logicielles

Market Landscape, 2002-…

• Limitations of model-code synchronization were showing

• …

• …



19 septembre 2006Tendances Logicielles

Model-Code Synchronization in Rose and XDE

CODE

UML SEMANTIC 
MODEL AT 

CODE LEVEL OF 
ABSTRACTION

synchronization
technology

A UML model persists 
code semantics 

redundantly.

The model is at the same 
level of abstraction as the 

code

aka “Round Trip Engineering”

•Performance overhead
•Anomalous sync behaviors
•Tendency to drag design down to the 
implementation level of abstraction
•Code refactoring must process two sets 
of semantics
•Challenging team workflows



19 septembre 2006Tendances Logicielles

Industry trends for Analysis Design and Construction

Eclipse and
componentization

Other open source
software

(incl PHP/perl/python)

Packaged
app vendors 

coming into play

Commoditization
of commercial 
development 

tools
Microsoft

Ventures into
MDD

Systems 
development
mkt evolution

UML 
“reality check”

Outsourcing & 
offshoring (GDD)

MDA, DSLs, SOAs, 
SW Product Lines

Bridging business,
application, & data

modeling

Lighter-weight 
processes 

(Agile, XP, SCRUM, …)

Maturation of 
frameworks and 

runtimes 
(more abstractions)

Market Landscape, 2002-…



19 septembre 2006Tendances Logicielles

Agenda

• The Rational MDD Heritage

• The New MDD Product Family: Vision and Current State (v6)

• The New MDD Product Family: Toward Completing The Vision 
(v7)



19 septembre 2006Tendances Logicielles

Rational Rose
Rational XDE

Analysis Design & Construction products

Business 
Architecture

Information 
Architecture

RAD

Rational Software Architect

Rational Software
Modeler

WebSphere 
Business Modeler

WebSphere Integration 
Developer

     Rational Systems Developer

BPEL

Implementation
 Technology

WAS, J2EE,
WebSphere Portal, 
Native System z

Databases

Std./ANSI 
C/C++, Java

Embedded, 
realtime

WebSphere 
Process 
Server

Technical 
Architecture

3rd party
IDE

Vertical
Domain
Add-ons

Rational Rose Technical Developer

Rational Data 
Architect

Construction/Assembly

VB6, VS2003, 
JBuilder, …

RWD
WAS, Java,
Native System z

(other IDEs) (other data
modeling tools)

Visual
Construction

Model-driven
development

Data-driven
development

Business process
modeling &
integration

Classic
MDD

Systems
development

EGL
Extension

EGL
Extension

EGL
Extension

Business
application

development



19 septembre 2006Tendances Logicielles

Analysis, Design, and Construction

“an investigation of constituent 
parts and their interrelationships 
making up a whole.”

“the act of working out the form of 
something (as by making a sketch 
or outline or plan)”

“the act of constructing or 
building something”

Business Process Analysis
Model Problem Domain
Write Requirements
Model Possible Solution(s)

Model solution intent

Implement Solution
Model solution reality



19 septembre 2006Tendances Logicielles

The Abstraction Curve Revisited

Increasing
Levels of

Abstraction
and

Automation

UML and Domain-Specific 
Conceptual Modeling

Asset Based 
Development

Model Driven 
Automations

Round Trip Engineering
Code Modeling

Time

Executable
Models



19 septembre 2006Tendances Logicielles

Key Elements of the MDD Vision

• Business value
• Simply supporting UML modeling and RTE is no longer enough
• MDD must return more repeatability
• MDD must return more automation of repetitive development tasks
• MDD must bridge and integrate domains (business domains, activity domains, problem domains, 

solution and technical domains)
• MDD must be better integrated with other aspects of the development process and the tools that 

support them

• Flexibility
• Support multiple MDD “theories of operations”, corresponding to multiple development governance 

philosophies

• Extensibility



19 septembre 2006Tendances Logicielles

Rational Software Modeler, Architect evolve as…

• Eclipse-based

• Leveraging Eclipse infrastructure to support model-based integration and 
automation capabilities

• Using open source UML2 metamodel

• Using code modeling (DSLs) instead of UML with “RTE”

• Reflecting an updated, more ambitious vision for Model Driven 
Development



19 septembre 2006Tendances Logicielles

Key Elements of the MDD Vision

• Business value
• Simply supporting UML modeling and RTE is no longer enough
• MDD must return more repeatability
• MDD must return more automation of repetitive development tasks
• MDD must bridge and integrate domains (business domains, activity domains, problem domains, 

solution and technical domains)
• MDD must be better integrated with other aspects of the development process and the tools that 

support them

• Flexibility
• Support multiple MDD “theories of operations”, corresponding to multiple development governance 

philosophies

• Extensibility



19 septembre 2006Tendances Logicielles

Model Driven Development With Rational

Code modeling (e.g. RAD “UML Visual Editor”, 
VS2005 “Class Designer”)

Application Design 
(high abstraction)

Implementation

Business Analysis
Business Process Models

Apply Patterns

Application Use-Cases

Application Analysis

Transform
(embedded patterns)

Apply Patterns

Transform
(embedded patterns)

Apply Patterns

Transform
(embedded patterns)

Apply Patterns

Transform
(embedded patterns)

ITE
R

A
TE

CIM

PIM

PSM

Business Use-Cases

MDA RUP

Platform-specific model “markup”
“Reconciliation 

Assistants” 

TRACEABILITY 
LINKS

“Reconciliation 
Assistants” 

“Reconciliation 
Assistants” 

“Reconciliation 
Assistants” 

http://www.omg.org/mda/


19 septembre 2006Tendances Logicielles

Key Elements of the MDD Vision

• Business value
• Simply supporting UML modeling and RTE is no longer enough
• MDD must return more repeatability
• MDD must return more automation of repetitive development tasks
• MDD must bridge and integrate domains (business domains, activity domains, problem domains, 

solution and technical domains)
• MDD must be better integrated with other aspects of the development process and the tools that 

support them

• Flexibility
• Support multiple MDD “theories of operations”, corresponding to multiple development governance 

philosophies

• Extensibility



19 septembre 2006Tendances Logicielles

“Code Model 
Is King”
•No conceptual 
models
•Use code modeling 
for comprehension, 
documentation, 
maintainability

Weaker              Top-down Governance              Stronger

“Noodle, Seed and 
Toss"
•Use conceptual (UML) models to 
identify issues and de-risk design 
early in the development cycle
•Conceptual models may be 
considered “disposable” after 
implementation is seeded
•Switch to code modeling after 
seeding

“Mixed Modeling”
•Conceptual models are “morphed” 
into mixed models during 
transformation
•Diagrams, traceability relationships 
between conceptual and code 
elements, areas preserved
•Thereafter, “Code becomes King”.  
Subsequent changes to code reflect 
immediately in the diagrams that 
depict it.
•New conceptual content can be 
added in subsequent iterations 

"Conceptual 
Model Is King"
•All changes are made 
in conceptual model 
and driven (generated) 
into the 
implementation.

MDD “Theories of Operations” Map To Governance Philosophies



19 septembre 2006Tendances Logicielles

Terms
• Conceptual Model (generalization)

• A model based on a semantic domain that is more abstract and typically more general-purpose than a 3GL or other semantic domain 
that directly reflects an implementation technology

• UML Model
• A type of conceptual model based on UML semantics (i.e. a UML metamodel)
• Contains UML semantic elements plus UML diagrams whose notational elements reflect underlying UML semantic elements
• In RSx, persisted as “UML model files”  (with .emx extensions) typically contained in UML-natured projects

• Domain-Specific Model (generalization)
• A model based on a particular semantic domain (i.e. a metamodel of that domain) be it UML, Java, CLR, C++, CORBA IDL, DDL, 

WSDL, SCA, …   
• IBM thinks of UML as an ‘analysis and design’ semantic domain
• IBM thinks of Java, CLR, etc. as ‘construction’ semantic domains
• In RSx, implementation details may vary -- metamodels may be defined in EMF or sometimes other technologies
• In RSx, defining the scope of any logical model is somewhat arbitrary.  A logical UML model may span multiple UML model files that 

reside in one or more UML projects.  A logical Java model might reside in one or more Java projects

• Code Model
• A model based on 3GL semantics (e.g. a Java metamodel or CLR metamodel)
• Contains 3GL semantic elements and relationships, plus ‘free standing’ diagrams whose notational elements reflect underlying 3GL 

semantic elements
• In RSx, serialized and persisted as source code files (semantics) and diagram files (with .dnx extensions) contained in 3GL-natured 

projects

• Mixed Model
• A shorthand way of referring to a model that contains elements of semantic domain “X” plus diagrams that reflect elements of domain 

“X” as well as other semantic domains
• To date, RSx has not implemented any features that persist mixed-domain semantics within a single file



19 septembre 2006Tendances Logicielles

Models Taxonomy

Analysis and Design

Construction

“Code models”



19 septembre 2006Tendances Logicielles

MDD “Theories of Operations” Map To Governance Philosophies

“Code Model 
Is King”
•No conceptual 
models
•Use code modeling 
for comprehension, 
documentation, 
maintainability

Weaker              Top-down Governance              Stronger

“Mixed Modeling”
•Conceptual models are “morphed” 
into mixed models during 
transformation
•Diagrams, traceability relationships 
between conceptual and code 
elements, areas preserved
•Thereafter, “Code becomes King”.  
Subsequent changes to code reflect 
immediately in the diagrams that 
depict it.
•New conceptual content can be 
added in subsequent iterations 

"Conceptual 
Model Is King"
•All changes are made 
in conceptual model 
and driven (generated) 
into the 
implementation.

“Noodle, Seed and 
Toss"
•Use conceptual (UML) models to 
identify issues and de-risk design 
early in the development cycle
•Conceptual models may be 
considered “disposable” after 
implementation is seeded
•Switch to code modeling after 
seeding



19 septembre 2006Tendances Logicielles

Code Modeling with Rational

CODE

Diagrams that directly 
reflect and in some cases 

edit the source code

The only source 
of semantic 
information is 
here

Domain-Specific
Languages for 

3GL 
Implementation 

Domains

Code and diagrams are always in sync

Team workflows are simple

Code refactoring takes care of everything 



19 septembre 2006Tendances Logicielles

“Code Model Is King”

Code modeling (e.g. RAD “UML Visual Editor”, 
VS2005 “Class Designer”)

Application Design 
(high abstraction)

Implementation

Business Analysis
Business Process Models

Apply Patterns

Application Use-Cases

Application Analysis

Transform
(embedded patterns)

Apply Patterns

Transform
(embedded patterns)

Apply Patterns

Transform
(embedded patterns)

Apply Patterns

Transform
(embedded patterns)

ITE
R

A
TE

CIM

PIM

PSM

Business Use-Cases

RUP

Platform-specific model “markup”
“Reconciliation 

Assistants” 

TRACEABILITY 
LINKS

“Reconciliation 
Assistants” 

“Reconciliation 
Assistants” 

“Reconciliation 
Assistants” 

http://www.omg.org/mda/


19 septembre 2006Tendances Logicielles

“Code Model Is King”

Code modeling (e.g. RAD “UML Visual Editor”, 
VS2005 “Class Designer”)

Implementation

RUP “Agile”
Configuration

Analysis, design

ITER
A

TE



19 septembre 2006Tendances Logicielles

Demo: 
“Code Model is King”



19 septembre 2006Tendances Logicielles

“Code Model Is King” Value Proposition

• Documentation, Compliance:
• “My manager/architect wants UML diagrams”

• “My {customer|general contractor|regulator} requires UML diagrams”
• Comprehension

• “I don’t understand the code that Jacques wrote”

• Where’s Jacques?
• Maintainability, creativity

• “I’m a developer, I don’t want to have to learn UML and work with model files, but I like the 
freedom and clarity that diagrams bring to my design process”

• Low/No Cost
• I don’t have to learn UML semantics

• I don’t have to work with model files or perform model diff-merges

• It’s a completely natural fit into my development environment



19 septembre 2006Tendances Logicielles

“Code Model 
Is King”
•No conceptual 
models
•Use code modeling 
for comprehension, 
documentation, 
maintainability

Weaker              Top-down Governance              Stronger

“Mixed Modeling”
•Conceptual models are “morphed” 
into mixed models during 
transformation
•Diagrams, traceability relationships 
between conceptual and code 
elements, areas preserved
•Thereafter, “Code becomes King”.  
Subsequent changes to code reflect 
immediately in the diagrams that 
depict it.
•New conceptual content can be 
added in subsequent iterations 

"Conceptual 
Model Is King"
•All changes are made 
in conceptual model 
and driven (generated) 
into the 
implementation.

“Noodle, Seed and 
Toss"
•Use conceptual (UML) models to 
identify issues and de-risk design 
early in the development cycle
•Conceptual models may be 
considered “disposable” after 
implementation is seeded
•Switch to code modeling after 
seeding

MDD “Theories of Operations” Map To Governance Philosophies



19 septembre 2006Tendances Logicielles

“Noodle, Seed, and Toss”

Code modeling (e.g. RAD “UML Visual Editor”, 
VS2005 “Class Designer”)

Application Design 
(higher abstraction)

Implementation

Apply Patterns

Transform
(embedded patterns)

PIM

PSM

MDA
RUP 

Custom
Configuration

Platform-specific model “markup”
“Reconciliation 

Assistants” 

ITE
R

A
TE ITER

A
TE

http://www.omg.org/mda/


19 septembre 2006Tendances Logicielles

Demo: 
“Noodle, Seed, and Toss”



19 septembre 2006Tendances Logicielles

“Noodle, Seed, and Toss” Value Proposition

• “Light” Governance:
• “My architect gave me a bunch of UML that I must use as a starting point…”

• “My {customer|general contractor|regulator} gives me design contracts in the form of UML 
models”

• “We want to be able to do use-case and/or activity and/or state machine and/or instance 
modeling”

• Risk avoidance
• Conceptual models can be modified more quickly and at less cost than code models, during early 

stages of specification and design
• Automation

• “I can make one-time use of patterns and transformations based on a UML source model”
• Low/No Cost

• “Once we throw away the original conceptual model, we no longer have to work with model files or 
perform model diff-merges”



19 septembre 2006Tendances Logicielles

“Code Model 
Is King”
•No conceptual 
models
•Use code modeling 
for comprehension, 
documentation, 
maintainability

Weaker              Top-down Governance              Stronger

“Mixed Modeling”
•Conceptual models are “morphed” 
into mixed models during 
transformation
•Diagrams, traceability relationships 
between conceptual and code 
elements, areas preserved
•Thereafter, “Code becomes King”.  
Subsequent changes to code reflect 
immediately in the diagrams that 
depict it.
•New conceptual content can be 
added in subsequent iterations 

"Conceptual 
Model Is King"
•All changes are made 
in conceptual model 
and driven (generated) 
into the 
implementation.

“Noodle, Seed and 
Toss"
•Use conceptual (UML) models to 
identify issues and de-risk design 
early in the development cycle
•Conceptual models may be 
considered “disposable” after 
implementation is seeded
•Switch to code modeling after 
seeding

MDD “Theories of Operations” Map To Governance Philosophies



19 septembre 2006Tendances Logicielles

“Mixed Modeling”

Code modeling (e.g. RAD “UML Visual Editor”, 
VS2005 “Class Designer”)

Application Design 
(high abstraction)

Implementation

Business Analysis
Business Process Models

Apply Patterns

Application Use-Cases

Application Analysis

Transform
(embedded patterns)

Apply Patterns

Transform
(embedded patterns)

Apply Patterns

Transform
(embedded patterns)

Apply Patterns

Transform
(embedded patterns)

ITE
R

A
TE

CIM

PIM

PSM

Business Use-Cases

MDA RUP

Platform-specific model “markup”
“Reconciliation 

Assistants” 

TRACEABILITY 
LINKS

“Reconciliation 
Assistants” 

“Reconciliation 
Assistants” 

“Reconciliation 
Assistants” 

http://www.omg.org/mda/


19 septembre 2006Tendances Logicielles

“Mixed Modeling”

Code modeling (e.g. RAD “UML Visual Editor”, 
VS2005 “Class Designer”)

Application Design 
(high abstraction)

Implementation

Business Analysis
Business Process Models

Apply Patterns

Application Use-Cases

Application Analysis

Transform
(embedded patterns)

Apply Patterns

Transform
(embedded patterns)

Apply Patterns

Transform
(embedded patterns)

Apply Patterns

Transform
(embedded patterns)

ITE
R

A
TE

CIM

PIM

PSM

Business Use-Cases

MDA RUP

Platform-specific model “markup”

TRACEABILITY 
LINKS

“Reconciliation 
Assistants” 

“Reconciliation 
Assistants” 

“Reconciliation 
Assistants” 

DIRECT NOTATIONAL 
REFERENCES TO THE 

ACTUAL 
IMPLEMENTATION 

CONSTRUCTSITER
A

TE

http://www.omg.org/mda/


19 septembre 2006Tendances Logicielles

Demo: “Mixed Modeling”



19 septembre 2006Tendances Logicielles

“Mixed Modeling” Value Proposition

• “Moderate” Governance:
• “We can iteratively create new designs in UML and convert them into implementations in a specific domain.”

• “Our abstract views of use-cases, activity flows, state machines, class and component models can be depicted 
directly alongside direct graphical representations of implementation-level constructs

• “The diagrams that show implementation-level concerns can never get out of sync with the implementation 
artifacts themselves”

• Developers don’t have to learn UML semantics, just notations

• But…

• “As the implementation evolves, we have no baseline of the original intent at that level of abstraction against 
which to compare the current state, unless we retain a copy of the original source design model and do an 
unassisted visual comparison of that to the implementation-level diagrams.”

• Low/No Cost
• “We used RTE in Rose/XDE and liked it but it was really difficult to use in a team environment because people 

kept changing the model and code simultaneously.  This works far better.”



19 septembre 2006Tendances Logicielles

“Code Model 
Is King”
•No conceptual 
models
•Use code modeling 
for comprehension, 
documentation, 
maintainability

Weaker              Top-down Governance              Stronger

“Mixed Modeling”
•Conceptual models are “morphed” 
into mixed models during 
transformation
•Diagrams, traceability relationships 
between conceptual and code 
elements, areas preserved
•Thereafter, “Code becomes King”.  
Subsequent changes to code reflect 
immediately in the diagrams that 
depict it.
•New conceptual content can be 
added in subsequent iterations 

"Conceptual 
Model Is King"
•All changes are made 
in conceptual model 
and driven (generated) 
into the 
implementation.

“Noodle, Seed and 
Toss"
•Use conceptual (UML) models to 
identify issues and de-risk design 
early in the development cycle
•Conceptual models may be 
considered “disposable” after 
implementation is seeded
•Switch to code modeling after 
seeding

MDD “Theories of Operations” Map To Governance Philosophies



19 septembre 2006Tendances Logicielles

“Conceptual Model Is King”

Code modeling (e.g. RAD “UML Visual Editor”, 
VS2005 “Class Designer”)

Application Design 
(high abstraction)

Implementation

Business Analysis
Business Process Models

Apply Patterns

Application Use-Cases

Application Analysis

Transform
(embedded patterns)

Apply Patterns

Transform
(embedded patterns)

Apply Patterns

Transform
(embedded patterns)

Apply Patterns

Transform
(embedded patterns)

ITE
R

A
TE

CIM

PIM

PSM

Business Use-Cases

MDA RUP

Platform-specific model “markup”
“Reconciliation 

Assistants” 

TRACEABILITY 
LINKS

“Reconciliation 
Assistants” 

“Reconciliation 
Assistants” 

“Reconciliation 
Assistants” 

http://www.omg.org/mda/


19 septembre 2006Tendances Logicielles

“Conceptual Model Is King” Value Proposition

• Maximal Governance:
• “Architects have complete control over how the design contract is implemented”

• Potential For High Automation:
• This theory of operations is appropriate when you expect to develop very high-value automations 

(transformations) that generate a very high percentage of behavioral code

• Developing high-value automations can be costly

• Realizing ROI depends upon potential for re-using the assets across multiple projects

• SOAs are great candidates (lots of repetitive ‘plumbing’ code

• Other types of “software product lines”



19 septembre 2006Tendances Logicielles

Agenda

• The Rational MDD Heritage

• The New MDD Product Family: Vision, Overview, and Current 
State (v6)

• The New MDD Product Family: Toward Completing The Vision 
(v7)



19 septembre 2006Tendances Logicielles

Key Elements of the MDD Vision

• Business value
• Simply supporting UML modeling and RTE is no longer enough
• MDD must return more repeatability
• MDD must return more automation of repetitive development tasks
• MDD must bridge and integrate domains (business domains, activity domains, problem domains, 

solution and technical domains)
• MDD must be better integrated with other aspects of the development process and the tools that 

support them

• Flexibility
• Support multiple MDD “theories of operations”, corresponding to multiple development governance 

philosophies

• Extensibility



19 septembre 2006Tendances Logicielles

MDD “Theories of Operations” Map To Governance Philosophies

“Code Model 
Is King”
•No conceptual 
models
•Use code modeling 
for comprehension, 
documentation, 
maintainability

Weaker              Top-down Governance              Stronger

“Mixed Modeling”
•Conceptual models are “morphed” 
into mixed models during 
transformation
•Diagrams, traceability relationships 
between conceptual and code 
elements, areas preserved
•Thereafter, “Code becomes King”.  
Subsequent changes to code reflect 
immediately in the diagrams that 
depict it.
•New conceptual content can be 
added in subsequent iterations 

“True RTE"
•Create and preserve 
conceptual models
•Conceptual models and 
implementations evolve 
independently after 
implementation is seeded
•Periodically reconcile 
conceptual models to 
implementations

"Conceptual 
Model Is King"
•All changes are made 
in conceptual model 
and driven (generated) 
into the 
implementation.

New in v7

“Noodle, Seed and 
Toss"
•Use conceptual (UML) models to 
identify issues and de-risk design 
early in the development cycle
•Conceptual models may be 
considered “disposable” after 
implementation is seeded
•Switch to code modeling after 
seeding



19 septembre 2006Tendances Logicielles

“True RTE”

Code modeling (e.g. RAD “UML Visual Editor”, 
VS2005 “Class Designer”)

Application Design 
(high abstraction)

Implementation

Business Analysis
Business Process Models

Apply Patterns

Application Use-Cases

Application Analysis

Transform
(embedded patterns)

Apply Patterns

Transform
(embedded patterns)

Apply Patterns

Transform
(embedded patterns)

Apply Patterns

Transform
(embedded patterns)

ITE
R

A
TE

CIM

PIM

PSM

Business Use-Cases

MDA RUP

Platform-specific model “markup”
“Reconciliation 

Assistants” 

TRACEABILITY 
LINKS

“Reconciliation 
Assistants” 

“Reconciliation 
Assistants” 

“Reconciliation 
Assistants” 

http://www.omg.org/mda/


19 septembre 2006Tendances Logicielles

IRM

“True RTE” (1,2)

Requirements
Design

Construction
Test

i1 D.M.

Iteration 1 Iteration 2 Iteration N…

…Transform

Architect works with UML, 
Profiles, Patterns to develop 
1st iteration design model

Architect Invokes transformations 
using the “generate traceability” 
option to seed 1st iteration 
implementation model (structural, 
boilerplate, and possibly some 
behavioral code;  metadata; code-
level diagrams)

1

2



19 septembre 2006Tendances Logicielles

Requirements
Design

Construction
Test

i1 D.M.

I1 I.M.

i2 D.M.

Iteration 1 Iteration 2 Iteration N…

∆

Test
Automations

 and 
Code Analytics

IRM

∆

The concurrent activities 
of architects and 

developers result in a set 
of uncorrelated changes

“True RTE” (3)

Architect refines architecture, 
designs 2nd iteration features

3a

Developers implement details of 1st iteration 
features

•Write business logic
•Use Implementation Domain Modeling to assist 
with understanding code structure and behavior
•Use static and runtime code analysis features 
to guide refactoring decisions which are then 
implemented using visual refactoring 
capabilities

3b



19 septembre 2006Tendances Logicielles

Requirements
Design

Construction
Test

i1 I.M.

i2 D.M.

Iteration 1 Iteration 2 Iteration N…

Reconcile

IRM

“True RTE” (4)

4

Reconciliation Tooling

• Inverse transformation applied to 
implementation creates in-memory model at 
design level of abstraction

• Architect performs compare-merge of in-
memory model and current-state persisted 
design model, identifying and reconciling …

• Implementation constructs not traceable to design model 
(i.e. new types, methods, … introduced by the 
developers): 

• harvest into design if desirable
• Ignore if not ‘architecturally significant’

• Constructs traceable to model but no longer in agreement 
with design: 

• update design if desirable 

• Re-apply forward transformation…
• “Harvested” implementation elements thus preserved
• Undesirable implementation changes thus overwritten



19 septembre 2006Tendances Logicielles

Requirements
Design

Coding
Test

I2 D.M.

i2 I.M.

Iteration 1 Iteration 2 Iteration N…

…

IRM

“True RTE” (5,6)

i3 D.M.

5

Architect re-applies 
transformations to update 
implementation model with 
architectural refinements and  2nd 
iteration features

Architect proceeds to design of 
3rd iteration features

Developers adopt architectural 
refinements and implement 
details of 2nd iteration features

6a

6b



19 septembre 2006Tendances Logicielles

Demo: “True RTE”



19 septembre 2006Tendances Logicielles

“True RTE” Value Proposition

• “Flexible” Governance:
• “We can iteratively create new designs in UML and convert them into implementations in a specific domain.”

• “Our abstract views of use-cases, activity flows, state machines, class and component models can be depicted 
directly alongside direct graphical representations of implementation-level constructs

• “The diagrams that show implementation-level concerns can never get out of sync with the implementation 
artifacts themselves”

• Developers don’t have to learn UML semantics, just notations

• But…

• “As the implementation evolves, we have no baseline of the original intent at that level of abstraction against 
which to compare the current state, unless we retain a copy of the original source design model and do an 
unassisted visual comparison of that to the implementation-level diagrams.”

• Low/No Cost
• “We used RTE in Rose/XDE and liked it but it was really difficult to use in a team environment because people 

kept changing the model and code simultaneously.  This works far better.”



19 septembre 2006Tendances Logicielles

Key Elements of the MDD Vision

• Business value
• Simply supporting UML modeling and RTE is no longer enough
• MDD must return more repeatability
• MDD must return more automation of repetitive development tasks
• MDD must bridge and integrate domains (business domains, activity domains, problem domains, 

solution and technical domains)
• MDD must be better integrated with other aspects of the development process and the tools that 

support them

• Flexibility
• Support multiple MDD “theories of operations”, corresponding to multiple development governance 

philosophies

• Extensibility



19 septembre 2006Tendances Logicielles

Java Modeling in v7

• Java 5 support (annotations, generics, enums, static import, varargs…)

• Operation signature preference (UML or Java)

• Ability to depict classes in external jars

• Java developer tools available from diagram context menus (source, open type)

• Inline editing of java fields and methods (with optional invocation of refactoring)

• Many additional properties added to properties view

• Properties view tabs for s of packages, classes, interfaces, fields & methods 

• Option to create field’s type using import statement instead of fully qualified name

• Improved collection support

Screen shot(s), prune and format enhancements…



19 septembre 2006Tendances Logicielles

Web Modeling in v7: Overhauled Web Diagram Editor (WDE)

• Multi-Page patterns
• Input / output
• Master / details
• …

Direct-edit mode Visualize Data and Service consumption

Usage goal: create a complete data/service driven application completely within WDE



19 septembre 2006Tendances Logicielles

UML Modeling in v7 (1 of 2)

• Adopt final UML2 spec (2.1)
• Search enhancements (leveraging new indexing work)
• Component diagrams: better stereotypes
• Deployment diagrams: Better instance modeling & stereotypes
• Sequence diagrams: lifeline collapse
• Object diagrams: NEW!



19 septembre 2006Tendances Logicielles

Activity Diagrams
• Additional element (action) types (~ intermediate level support)

• Sub-diagram support on structured activity nodes
• Partition shown on activity
• Multi-select
• Operation shown on call node

6.0 7.0

Structure Diagrams
• Part shape gives feedback for DnD operations (create port/type part);  many 

more DnD operations
• Port property sheet changes
• Parts have a Shape compartment (show inside)
• Improved label layout
• Ball socket notation

UML Modeling In v7 (2 of 2) 



19 septembre 2006Tendances Logicielles

Key Elements of the MDD Vision

• Business value
• Simply supporting UML modeling and RTE is no longer enough
• MDD must return more repeatability
• MDD must return more automation of repetitive development tasks
• MDD must bridge and integrate domains (business domains, activity domains, problem domains, 

solution and technical domains)
• MDD must be better integrated with other aspects of the development process and the tools 

that support them

• Flexibility
• Support multiple MDD “theories of operations”, corresponding to multiple development governance 

philosophies

• Extensibility



19 septembre 2006Tendances Logicielles

Team Modeling (UML)

• Sub-units (independence of physical structure from logical structure) 
• Diff-merge enhancements

Screen shots – consult w/ Kim re:
what would be effective



19 septembre 2006Tendances Logicielles

Key Elements of the MDD Vision

• Business value
• Simply supporting UML modeling and RTE is no longer enough
• MDD must return more repeatability
• MDD must return more automation of repetitive development tasks
• MDD must bridge and integrate domains (business domains, activity domains, problem 

domains, solution and technical domains)
• MDD must be better integrated with other aspects of the development process and the tools that 

support them

• Flexibility
• Support multiple MDD “theories of operations”, corresponding to multiple development governance 

philosophies

• Extensibility



19 septembre 2006Tendances Logicielles

Further Unification of Conceptual and Code Modeling

• Better Integration of  
• Search

• “Type”

• “Show related elements”

• Support use of code model elements in conceptual UML Structure diagrams
• Common Modeling Infrastructure Improvements

• Common explorer

• Pan tool

• Paste into diagrams from external apps

• Improved layout algorithms

• Better diagram work area management



19 septembre 2006Tendances Logicielles

Key Elements of the MDD Vision

• Business value
• Simply supporting UML modeling and RTE is no longer enough
• MDD must return more repeatability
• MDD must return more automation of repetitive development tasks
• MDD must bridge and integrate domains (business domains, activity domains, problem 

domains, solution and technical domains)
• MDD must be better integrated with other aspects of the development process and the tools that 

support them

• Flexibility
• Support multiple MDD “theories of operations”, corresponding to multiple development governance 

philosophies

• Extensibility



19 septembre 2006Tendances Logicielles

Packaged Transformations in v7

• WSDL improved and productized
• XSD improved and productized
• Java updated (Java 5)
• Java inverse / reconciliation
• C++ updated (fuller support, non-destructive re-apply, inverse / reconciliation)
• EGL

• Later…
• C# forward / inverse / reconciliation

• Gen from state machines

• BPEL, further improvements to WSDL and XSD



19 septembre 2006Tendances Logicielles

Data-Oriented Application Architects

LDM “Naked UML”

LDM UML w/ UML2 DM profile

LDM UML imported from XDE 
With XDE LDM profile

LDM UML w/ UML2 
DM profile PDM (ddl)

RSM, RSA RDA

RSA (RAD, RDA)RSA

Transformations

Shell-sharing by 
RSx and RDA



19 septembre 2006Tendances Logicielles

Heterogeneous Development With the IBM Rational SDP

WebSphere Business Modeler RequisitePro

RSM  /  RSD  /  RSA

RSM  /  RSD  /  RSA

Purify+
Rational Performance Tester

Rational Functional Tester
Rational Manual Tester

iterate

C
learC

ase and C
learQ

uest
R

at
io

na
l U

ni
fie

d 
Pr

oc
es

s 
 R

at
io

na
l P

or
tfo

lio
 M

an
ag

er

View Web-published UML Models

RAD / RWD / EclipseVS.NET

Learn, deploy, and maintain a complete IT governance solution consisting of an 
open standards-based set of integrated lifecycle tools, with consistent 

workflows and single-source product support, enabling development that can 
target a mix of platforms including Enterprise Java and .NET

Modeling
Extension for 

Microsoft® .NET



19 septembre 2006Tendances Logicielles

“Code Model Is King”: Rational Application Developer

Direct 
depictions of 

code, UML-like 
notation

Diagrams 
stored in 
.dnx files

Java project

Java palette

Java context 
menus



19 septembre 2006Tendances Logicielles

“Code Model Is King”: Visual Studio

C# palette

Diagrams 
stored in .cd 

files

C# project

Direct 
depictions of 

code, UML-like 
notation



19 septembre 2006Tendances Logicielles

Model Driven Development for Microsoft® .NET

• UML to C# transformation (supports “Seed code…” and “Conceptual Model Is King”)
• C# to UML inverse transformation, reconcile (supports “True RTE”)
• .NET CTS type visualization

• Read-only visualization based on assemblies (binaries)
• Use as modeling ‘library’ to resolve type references

• C# source visualization
• Initially read-only 
• Supports “Mixed Modeling”

• Migration of XDE code models
• Initially C#
• Import code model as normal
• Subsequent pass converts code model UML elements into references to CTS types and C# sources (ready for 

“Mixed Modeling”)
• Support for VB, managed C++ remains TBD at this point



19 septembre 2006Tendances Logicielles

Importing and Visualizing a Solution



19 septembre 2006Tendances Logicielles

“Mixed Modeling”: RSx with .NET Extension

Screen shot



19 septembre 2006Tendances Logicielles

“True RTE”: RSx with .NET Extension

Screen shot



19 septembre 2006Tendances Logicielles

Demo: 
MDD for .NET



19 septembre 2006Tendances Logicielles

Key Elements of the MDD Vision

• Business value
• Simply supporting UML modeling and RTE is no longer enough
• MDD must return more repeatability
• MDD must return more automation of repetitive development tasks
• MDD must bridge and integrate domains (business domains, activity domains, problem domains, 

solution and technical domains)
• MDD must be better integrated with other aspects of the development process and the tools that 

support them

• Flexibility
• Support multiple MDD “theories of operations”, corresponding to multiple development governance 

philosophies

• Extensibility



19 septembre 2006Tendances Logicielles

High-level 6.0 architecture

UML2 Domain adaptersUML2 Domain adapters

org.eclipse.UML2 API org.eclipse.UML2 API 

EclipseEclipse
GEFGEF

EMF-models (EJB, Java, XSD,…)EMF-models (EJB, Java, XSD,…)

Diagram Plug-ins (one per diagram type)Diagram Plug-ins (one per diagram type)

UML Modeling & Domain Modeling editorsUML Modeling & Domain Modeling editors

UML2 EMF modelUML2 EMF model

Aurora EMF ServicesAurora EMF Services

EMFEMF

Notation API Notation API 

Notation EMF modelNotation EMF model

Model Services Layer API Model Services Layer API 

Presentation Engine   &    Application FrameworkPresentation Engine   &    Application Framework Transformation FrameworkTransformation Framework

Patterns FrameworkPatterns Framework

UML Transformations & PatternsUML Transformations & Patterns



19 septembre 2006Tendances Logicielles

EclipseEclipse

High-level 7.0 architecture

GEFGEF

EMF-models (EJB, Java, XSD,…)EMF-models (EJB, Java, XSD,…)

Diagram Plug-ins Diagram Plug-ins 
(one per diagram type)(one per diagram type)

UML Modeling &  Domain Modeling editorsUML Modeling &  Domain Modeling editors

UML2UML2
GMFGMF

EMF/EMFTEMF/EMFT

Transformation FrameworkTransformation Framework

Patterns FrameworkPatterns Framework

UML Transformations & PatternsUML Transformations & Patterns

UML2 Domain adaptersUML2 Domain adapters

EMF JET2EMF JET2



19 septembre 2006Tendances Logicielles

Model-to-Model Transform Authoring

Screen shot



19 septembre 2006Tendances Logicielles

Exemplar-Driven Authoring for JET2 Model-Text (Code)

Screen shot



19 septembre 2006Tendances Logicielles

Author UML  UML

Create
Exemplar

End-Product
(UML)

Create
Exemplar

Source
(UML)

Define 
Mappings

(meet-in-middle)

UML

Sophisticated (business value)

Implementation 
Domain Expert

------------ Specification Domain Expert ------------

S1a

S2

Graphical Mapping Tools, Java

Domains

Mappings

Programming Models

----- Implementation Domain Expert -----Who

Implement
UMLUML
Mappings

S3
S1b

UML UML



19 septembre 2006Tendances Logicielles

Apply UML  UML

Compose New 
Production

Spec
(UML)

New
Production

Implementation
1

Specification Domain Expert

2

Configure, 
Apply



19 septembre 2006Tendances Logicielles

Author UML “Grammared” model  UML “Intermediate” model  code

Create
End-Product

Exemplar
(code)

Define
“Sparse”

Intermediate
model
(eCore)

Harvest 
Mappings

(bottom-up) 

Define
Exemplar

Source
(“grammared” 

UML)

Define 
Mappings

(meet-in-middle)

• Code eCore / XML
Java

UML

Simple / 1:1 Sophisticated (business value)

Implementation 
Domain Expert

---------- Spec. Domain Expert --------

S1

S2

P2

Graphical Mapping Tools, Java 
“light”

Domains

Mappings

Programming Models

P1

-------- Implementation Domain Expert -------------Who

Implement
eCorecode

Mappings

Implement
UMLeCore

Mappings

S3

P3

eCore, UML,
Java

Exemplar Authoring, JET2, Java



19 septembre 2006Tendances Logicielles

Apply UML “Grammared” model  UML “Intermediate” model  code

Compose New 
Production

Source
(UML)

New
Production

Intermediate
(in-memory eCore)

New
Production

Code

1

Problem Domain Expert

2 3

Configure, 
Apply

Transparent



19 septembre 2006Tendances Logicielles

Agenda

• The Rational MDD Heritage

• The New MDD Product Family: Vision, Overview, and Current 
State (v6)

• The New MDD Product Family: Toward Completing The Vision 
(v7)

• Listening To Our Customers



19 septembre 2006Tendances Logicielles

Key Elements of the MDD Vision

• Business value
• Simply supporting UML modeling and RTE is no longer enough
• MDD must return more repeatability
• MDD must return more automation of repetitive development tasks
• MDD must bridge and integrate domains (business domains, activity domains, problem domains, 

solution and technical domains)
• MDD must be better integrated with other aspects of the development process and the tools that 

support them

• Flexibility
• Support multiple MDD “theories of operations”, corresponding to multiple development governance 

philosophies

• Extensibility

• Total Cost of Ownership



19 septembre 2006Tendances Logicielles

We Are Listening

““I m p r o v e    p e r f o r m a n c e”I m p r o v e    p e r f o r m a n c e”

“Automate product deployment”

“Needs too much RAM”

“Smaller on-disk footprint”

““I only want to buy or install what I want to use – don’t make me take more”I only want to buy or install what I want to use – don’t make me take more”

“We want license enforcement”

“Work in my existing
Eclipse environment”



19 septembre 2006Tendances Logicielles

Performance Results in V6.0.1.1 (Speed)



19 septembre 2006Tendances Logicielles

Performance Improvements in V6.0.1.1 (Space)

1.07

1.1

1.12

1.12

1.17

1.24

1.24

1.33

1.77

2.07

2.18

2.45

3

3.33

0 0.5 1 1.5 2 2.5 3 3.5

230) Open a huge html file in Page Designer

301) Undo Delete Package in RSA

283) Copy Package in RSA

299) Trace in RSA

295) Save Model in RSA

108) web diagram

278) Validate WSDL for sample WID project

116) HTML editing

15) Import a large war file

EGL Sprint clean build

325) Build WSC workspace 5 times

EGL Spint inc build

EGL Singapore clean build

EGL Singapore inc build

e.g. 2x less 
memory



19 septembre 2006Tendances Logicielles

General Modeling Usability
• Improved relationship anchor support
• “Change Metatype” refactoring action
• Zoom tool, animated zoom, animated arrange 
• “Duplicate element” action when drawing
• Connector assistants for Notes and Geo Shapes

6.0 7.0



19 septembre 2006Tendances Logicielles

Product Installation and Deployment (1)

Features become 
optionally 
installable

Affords 
management of 

footprint

Configurable 
Silent Installs



19 septembre 2006Tendances Logicielles

Product Installation and Deployment (2)

• Option to install into existing Eclipse environment
• Install will check plug-in versions for compatibility

• More choices to optionally install features
• Configurable silent install

Install into existing 
Eclipse instance



19 septembre 2006Tendances Logicielles

Product Installation and Deployment (3)

• IT administrator can pre-configure customized 
installations for specific user-communities

• Managed / scheduled updates



19 septembre 2006Tendances Logicielles

We Are Listening

““I m p r o v e    p e r f o r m a n c e”I m p r o v e    p e r f o r m a n c e”

“Automate product deployment”

“Needs too much RAM”

“Smaller on-disk footprint”

““I only want to buy or install what I want to use – don’t make me take more”I only want to buy or install what I want to use – don’t make me take more”

“We want license enforcement”

“Work in my existing
Eclipse environment”



19 septembre 2006Tendances Logicielles

Questions



19 septembre 2006Tendances Logicielles

Presenter:  William T. Smith
 smithtw@us.ibm.com

Thank You


