
Retiming on Flexible Circuit Structures

Jason Baumgartner
IBM Enterprise Systems Group

Austin, TX 78758

Andreas Kuehlmann
Cadence Berkeley Labs

Berkeley, CA 94704

Abstract

In this paper we present two techniques for en-
hancing min-area retiming. First, we discuss an on-
the-fly retiming approach based on a sequential
AND/INVERTER/REGISTER graph. This technique
sequentially compacts the circuit structure using a com-
bination of register “dragging” and AND vertex hashing.
Second, we present an extension of the classical retiming
formulation that allows an optimal sharing of fanin regis-
ters of AND clusters, similar to traditional fanout register
sharing. The combination of both techniques is capable
of minimizing the circuit size beyond that possible with
a standard Leiserson and Saxe retiming approach on a
static netlist structure. Both techniques are aimed at opti-
mizing the performance of reachability-based verification
methods. A large set of experiments using benchmark
and industrial circuits demonstrate the effectiveness of the
described techniques.

1 Introduction

Retiming is a structural optimization technique that re-
locates the registers in a logic circuit with the objective
of minimizing their total count, minimizing the longest
combinational delay, or achieving both goals simultane-
ously [1, 2]. Traditionally, retiming is applied on a fixed cir-
cuit graph and repositions the registers without altering the
actual logic structure. When interleaved with combinational
optimization steps, a repeated application of retiming can
optimize the overall circuit structure significantly [3, 4, 5].

In this paper we present two techniques that extend the
classical formulation and application of retiming by allow-
ing it to operate on a more dynamic structure. First, we
describe an on-the-fly retiming approach that is based on
a sequential AND/INVERTER/REGISTER (AIR) graph. It
merges registers and combinational circuit components by
structural hashing which is applied during graph construc-
tion. Similar to inverter removal in combinational circuit
compaction [6], the proposed approach “drags” registers

through the sequential circuit graph as far as possible. As
a result, many registers and AND vertices can be merged
which leads to a significant reduction of the circuit size.

The second technique is based on the idea that, similar
to fanout register sharing, fanin registers of an AND clus-
ter can be optimally shared by adjusting the AND decom-
position. This adjustment can reduce the register count to
the maximum number of registers on any incoming clus-
ter edge. We describe a corresponding extension of the re-
timing formulation based upon the AIR graph which mod-
els fanin register sharing similar to the Leiserson and Saxe
model of fanout sharing [2]. We further describe an algo-
rithm that optimally reconstructs an AND tree decomposi-
tion based upon the retiming solution.

The presented technique takes a new view of the retiming
formulation by departing from the traditional use of a fixed
circuit structure, providing an exact retiming model that
considers all possible implementations of the AND clusters
of a circuit. To our knowledge, there are only two previous
publications related to our work. In [7] a technique is pre-
sented that simultaneously considers multiple structures for
possible logic implementations using a choice node. This
method is aimed at technology mapping and, despite its re-
cursive capability, must explicitly generate candidate struc-
tures for an AND cluster decomposition including possi-
ble retiming configurations. Our approach defers the ac-
tual decomposition step until after the optimal retiming is
computed. In [8] the concept of algebraic factorization is
extended to sequential expressions, which implicitly inter-
twines retiming with structural rewriting. In contrast to our
work, this technique is based on individual, local restructur-
ing steps and does not model the decomposition flexibility
of the expressions for global retiming.

2 Illustrating Example

We restrict our presentation to bit-level circuits based
on edge-triggered or master/slave flip-flops (registers) with
designated initial states. Extensions to level-sensitive flip-
flops or vectored registers are largely straightforward and
hence are not discussed in this paper.

1



1

(a)

(b)

(c)

0 0

0

1

0 0

1

0

1

0

0

y2

x2

x3

y1

x1

x2

x3

y1

x2

x3

y1

x1

g1

g2

g3

g4

x1

y2

y2

r0

r2

r1

g4

g3

g1=g2

g4

g3

g1=g2

Figure 1: Example for the application of retiming: (a) orig-
inal circuit, (b) circuit after on-the-fly retiming, (c) circuit
after retiming with AND cluster fanin sharing.

Figure 1 introduces an example circuit to demonstrate
the two presented techniques. As shown in part (a), the
original circuit contains seven registers. The idea of on-the-
fly retiming is derived from the concept of on-the-fly com-
paction of combinational circuits [6]. In addition to AND

vertex hashing, forward retiming is applied during graph
construction by “dragging” as many registers through the
vertices as possible. The graph is built starting from the pri-
mary inputs and, for cyclic circuits, from any cuts of the
register loops. Figure 1b gives the result of the on-the-fly
retiming when the circuit of (a) is processed from the pri-
mary inputs and a cut at r0. As shown, the four registers in
front of gate g2 and two input inverters have been dragged
through the gate. This allows gate g2 to merge with g1, and
further allows the sharing of registers r1, r2, and r0. No
further forward retiming is possible since edge (x2; g3) has
no registers to drag past gate g3. Note that this particular
result is identical to an optimal retiming computed by the
standard Leiserson and Saxe min-area retiming algorithm.

Figure 1c shows a functionally equivalent version of the
circuit that contains only two registers instead of three. Here
the two registers in front of the AND cluster g3=g4 have
been merged. This structure can be obtained from circuit (b)
by applying combinational synthesis, i.e., rearranging gates

g3 and g4, followed by another retiming move. Clearly, in
such a two-step approach, it is not obvious that a combi-
national optimization move will perform the needed gate
rearrangement because it cannot foresee its benefit for the
following retiming step. On the other hand, if the retiming
formulation could take into account all possible decompo-
sitions of the three-input AND cluster g3=g4, the optimal
structure as depicted in (c) could be generated in one step.

We discuss the on-the-fly retiming approach and the new
retiming formulation that models optimal register sharing
for AND clusters in Sections 3 and 4, respectively.

3 On-the-fly Retiming

We apply on-the-fly retiming during construction of an
AIR graph, where the vertices represent AND functions
which have one or more incoming edges. Each edge holds
three attributes – the number of registers along that edge,
the initial values of those registers, and a flag to indicate
whether the referred vertex function is complemented. The
function represented by two edges are sequentially equiv-
alent if they have: (1) the same source vertex, (2) identi-
cal complementation attributes, and (3) the same number
of registers with matching initial values. For quick equiva-
lence checking, the edge representation uses a 64-bit canon-
ical word to represent these three items. The word is com-
posed of four bit fields. The first three fields represent an
index into the array of graph vertices, the number of edge
registers, and an index to a canonical representation of their
initial values, respectively. Lastly, a single bit is used to
indicate edge complementation. Using this data structure,
a simple comparison of two words can decide whether two
edges are functionally equivalent.

The algorithm for constructing an AND gate for the AIR

graph is given in Figure 2. The graph construction starts at
the primary inputs and an arbitrary set of register cuts of the
cyclic circuitry. For each register at a cut, first a dummy
AND vertex is created and used as a place holder. Once the
structure for the next-state function of a register is built, the
placeholder is merged onto that structure. A repeated for-
ward hashing can then be applied to possibly further com-
pact the graph structure.

As shown, first the algorithm performs constant folding
similar to methods applied in combinational circuit com-
paction [6]. Next, the registers of both edges are truncated
by “dragging” as many registers as possible through the
AND vertex. The initial states of the retimed registers are
computed by a pairwise AND of the initial states of the orig-
inal edge registers. After truncation, the edges are hashed.
If the hash lookup finds a pre-existing isomorphic vertex,
it is reused; otherwise a new vertex is constructed. Note
that the “dragged” set of registers is added back before the
edge is returned. The AIR graph for the circuit of Figure 1b

2



/* Create_And takes two operand edges p1 and
p2, and returns an edge representing the
AND of p1 and p2 */

Algorithm Create_And(p1, p2) f
if (p1 == const 0) return const 0;
if (p2 == const 0) return const 0;
if (p1 == const 1) return p2;
if (p2 == const 1) return p1;
if (p1 == p2) return p1;
if (p1 == p2) return const 0;

/* Drag as many registers as possible
from both edges and store them in r */

n = Min(Num_Regs(p1), Num_Regs(p2));
q1; r1 = Truncate_Registers(p1, n);
q2; r2 = Truncate_Registers(p2, n);
/* AND the initial states */
r = And_Initial_States(r1, r2);

/* Apply ranking to catch commutativity */
if (Rank(q1) > Rank(q2)) Swap(q1, q2);
/* Hash lookup for vertex with q1 and q2 */
q = Hash_Lookup(q1, q2);
if (q == NULL) f
/* Allocate new vertex if lookup failed

and add to hash table */
q = Create_And_Vertex(q1, q2);

g
/* Add back stripped registers */
return q + r;

g

Figure 2: Pseudo-code for constructing an AND vertex for
the AIR graph.

{1}

{1,1}

{...} set of registers with initial states
complemented edge

{1}

{1}

y2x1

x2

x3

g4

y1

g3

g1=g2

Figure 3: AIR graph for the circuit of Figure 1b.

is shown in Figure 3. The graph was constructed starting
from the inputs and a cut at register r0.

4 Optimal Sharing of Fanin Registers

Figure 4a shows a retiming graph that was annotated for
fanout register sharing as described in [2]. The idea is to add

...

...
(a)

(b)

Dummy vertex for fanout register sharing

Dummy vertex for fanin register sharing

Vertex for AND, input, or output

wmax�w2

n

wmax�w1

n

wn

n

w1

n

w2

n

wmax�w2

n

w2

n

wn

n

w1

n

wmax�wn

n

wmax�w1

n

wmax�wn

n

Figure 4: Sharing of fanout and fanin registers: (a) original
idea of fanout register sharing [2], (b) extension to fanin
register sharing.

a dummy sink vertex for each regular vertex with a fanout
degree greater than one. This dummy vertex is then con-
nected to all fanout vertices, and edge weights are assigned
as shown (the division is handled by scaling-down a “cost-
per-unit-weight” edge attribute to 1=n). Such modeling re-
sults in a formulation that minimizes the maximum number
of registers at any of the fanout edges. This reflects the fact
that all fanout edges from a given vertex can share their reg-
isters with those along the maximum-weight edge.

Figure 4b shows how this idea can be adapted to fanin
register sharing. Similar to the previous case, a dummy ver-
tex for fanin register sharing is created. With this config-
uration, the retiming optimization problem will minimize
the maximum number of registers at any of the fanin edges.
Once a min-area retiming is computed, the AND cluster
can be straight-forwardly decomposed to require only this
“max-inedge-weight” number of registers. Note that fanin
sharing and fanout sharing are in general orthogonal opti-
mizations, and concurrent use of both can yield optimiza-
tions beyond that possible with either approach alone.

This decomposition is illustrated in Figure 5. For a given
set of inputs of an AND cluster, the algorithm first sorts
them by their retimed weight. Next, an AND tree is built
using the structure of Figure 5b. For each set of inputs with
an identical number of registers, a balanced AND subtree is
constructed. The individual subtrees are then connected by
registers in a linear sequence. The total number of resulting
registers on the edges between the subtrees is equal to the
difference of their register weights.

3



(a)

...

...

...

(b)

k + n+m

n+m

n+m

m

0

m

k + n+m

m

k

n

Figure 5: Decomposition of AND clusters for maximal reg-
ister sharing: (a) vertex with inedges sorted by weight, (b)
corresponding AND tree.

For maximum fanin sharing, the AIR graph produced
by the on-the-fly retiming algorithm is first restructured to
maximize the individual AND clusters. Next a retiming
graph with the dummy vertices for fanin and fanout sharing
is built. A splitting vertex is introduced onto edges involved
in simultaneous fanin and fanout sharing. Once an optimal
retiming is calculated by the ILP solver, the two-input AND

graph is rebuilt using the procedure described above.
Figure 6 shows the retiming graph for the example of

Figure 1. Part (a) gives the edge weights for the original
problem derived from the on-the-fly retimed circuit of Fig-
ure 1b. Part (b) shows the resulting weights from the ILP
solver which corresponds to the optimal circuit of Figure 1c.

5 Experiments

In this section we provide experimental results for re-
timing with the various techniques. All experiments were
run on an IBM ThinkPad Model T21, with an 800Mhz PIII
and 256 MBytes main memory, running the Linux operating
system. Our implementation is a C-based retiming engine,
utilizing the data structure and algorithms described in this
paper. As ILP solver we used the primal network simplex
algorithm from IBM’s Optimization Solutions Library [9].

Since we apply the presented approach for enhanced ver-
ification, all experiments use peripheral retiming that re-
moves as many registers as possible from the inputs and
outputs. More details of this technique can be found in [5].

Table 1 provides the results for various retiming experi-
ments for the ISCAS89 benchmarks. Table 2 gives the re-
sults for the same set of experiments for selected IBM Gi-
gahertz Processor (GP) circuits. For each option, we report
the number of 2-input AND vertices and registers. Column
1 and 2 give the name of the circuits and their initial, un-
retimed sizes, respectively. Column 3 provides the circuit
sizes for plain retiming as in [2] without the application of
on-the-fly retiming or fanin-register sharing. In column 4
we give the results for fanin-register sharing without on-the-
fly retiming, whereas for the results of column 5 we enabled
both fanin-register sharing as well as on-the-fly retiming.

(a)

(b) H

H

Splitting vertex between output and input part

H Host node

x3

x2

y1

y21

3

1

3

1

3

1

3

g1=g2

g3=g4
1

3

x1

0

3

0

3 1

3

0

3

0

3

1

3

x3

x2

y1

y21

3

2

3

1

3

1

3

g1=g2

g3=g4
1

3

x1

1

3

2

3

0

3

0

3

0

3

0

3

0

3

0

3

Figure 6: Retiming graph for the circuit of Figure 1: (a)
graph for Figure 1b containing 3 registers, (b) optimal
weight soultion of Figure 1c containing 2 registers.

In columns 6 and 7 we report results for an iterated appli-
cation of retiming interleaved with combinational restruc-
turing. For this we utilized a combinational simplification
engine as described in [10]. We iterated between both en-
gines until no further improvement was gained and reported
the best results. Column 6 gives these results using plain
retiming identical to the option used in column 3. Column
7 reports the best results of the iterations using the options
of columns 4 or 5. For selecting the best run, we used the
number of registers instead of the number of AND vertices.
In column 8 we provide the required computing resources
for the best result of the prior columns.

There are several noteworthy trends in the above tables.
First, as expected, retiming alone can significantly decrease
the register count. We obtained an average reduction of

4



Design Original Plain Retiming On-the-Fly Iteration of interleaved
circuit retiming with retiming retiming and combinational restructuring

[2] fanin with fanin (iterated until no further improvements)
sharing sharing Plain Best result of CPU time (sec)

retiming columns 4 or 5 Memory (MB)
PROLOG 853 / 136 853 / 45 676 / 45 672 / 46 709 / 45 644 / 45 1.0 / 14.9
S1196 480 / 18 480 / 16 475 / 16 475 / 16 463 / 16 456 / 16 0.4 / 4.4
S1238 533 / 18 533 / 16 532 / 16 532 / 16 518 / 16 513 / 16 0.5 / 6.5
S1269 478 / 37 478 / 36 462 / 36 463 / 36 459 / 36 450 / 36 0.3 / 4.4
S13207 1 3205 / 638 3205 / 389 2604 / 390 2593 / 407 1295 / 266 1221 / 267 3.6 / 31.3
S1423 507 / 74 507 / 72 458 / 72 458 / 72 461 / 72 455 / 72 0.4 / 5.5
S1488 734 / 6 734 / 6 618 / 6 632 / 6 659 / 6 610 / 6 0.7 / 12.7
S1494 746 / 6 746 / 6 629 / 6 644 / 6 668 / 6 622 / 6 0.4 / 6.5
S1512 484 / 57 484 / 57 455 / 57 455 / 57 470 / 57 455 / 57 0.3 / 2.4
S15850 1 3852 / 534 3852 / 495 3457 / 498 3465 / 498 3283 / 490 3112 / 475 9.3 / 34.5
S208 1 77 / 8 77 / 8 70 / 8 71 / 8 70 / 8 70 / 8 0.2 / 2.2
S27 8 / 3 8 / 3 8 / 3 8 / 3 8 / 3 8 / 3 0.1 / 2.3
S298 125 / 14 125 / 14 97 / 14 97 / 14 100 / 14 91 / 14 0.2 / 6.3
S3271 1125 / 116 1125 / 110 1091 / 110 1093 / 110 1082 / 110 1067 / 110 1.0 / 8.7
S3330 820 / 132 820 / 45 657 / 45 654 / 46 692 / 45 624 / 45 0.7 / 9.7
S3384 1070 / 183 1070 / 72 1070 / 72 1070 / 72 1064 / 72 1062 / 72 0.9 / 6.7
S344 109 / 15 109 / 15 102 / 15 102 / 15 101 / 15 98 / 15 0.2 / 2.3
S349 112 / 15 112 / 15 104 / 15 104 / 15 101 / 15 98 / 15 0.2 / 2.3
S35932 12204 / 1728 12204 / 1728 11948 / 1728 11948 / 1728 11660 / 1728 11660 / 1728 14.3 / 38.5
S382 148 / 21 148 / 15 134 / 15 136 / 15 140 / 15 134 / 15 0.2 / 2.3
S38584 1 13479 / 1426 13479 / 1416 11769 / 1375 11811 / 1415 11794 / 1374 11464 / 1373 86.6 / 239.9
S386 188 / 6 188 / 6 126 / 6 133 / 6 166 / 6 125 / 6 0.2 / 4.3
S400 158 / 21 158 / 15 141 / 15 143 / 15 148 / 15 141 / 15 0.2 / 2.3
S420 1 165 / 16 165 / 16 156 / 16 159 / 16 156 / 16 156 / 16 0.2 / 2.3
S444 169 / 21 169 / 15 150 / 15 153 / 15 155 / 15 149 / 15 0.2 / 2.3
S4863 1750 / 104 1750 / 72 1537 / 37 1537 / 37 1376 / 37 1326 / 37 2.4 / 17.3
S499 187 / 22 187 / 22 199 / 22 199 / 22 187 / 22 190 / 20 0.3 / 4.4
S510 213 / 6 213 / 6 213 / 6 213 / 6 211 / 6 206 / 6 0.3 / 6.4
S526N 251 / 21 251 / 21 191 / 21 191 / 21 202 / 21 183 / 21 0.3 / 6.4
S5378 1422 / 179 1422 / 115 1346 / 114 1321 / 124 1260 / 112 1242 / 113 1.4 / 15.0
S635 190 / 32 190 / 32 190 / 32 190 / 32 161 / 32 161 / 32 0.2 / 2.3
S641 160 / 19 160 / 15 132 / 15 132 / 15 146 / 15 131 / 15 0.2 / 3.3
S6669 2263 / 239 2263 / 92 2199 / 92 2199 / 92 2238 / 77 2174 / 76 1.1 / 5.8
S713 174 / 19 174 / 15 137 / 15 137 / 15 149 / 15 130 / 15 0.2 / 5.4
S820 468 / 5 468 / 5 325 / 5 335 / 5 345 / 5 317 / 5 0.5 / 12.6
S832 482 / 5 482 / 5 335 / 5 344 / 5 355 / 5 324 / 5 0.4 / 8.5
S838 1 341 / 32 341 / 32 328 / 32 335 / 32 328 / 32 328 / 32 0.2 / 2.3
S9234 1 2346 / 211 2346 / 172 1896 / 172 1891 / 174 1437 / 145 1377 / 146 1.8 / 14.3
S938 341 / 32 341 / 32 328 / 32 335 / 32 328 / 32 328 / 32 0.2 / 2.3
S953 348 / 29 348 / 6 356 / 6 343 / 6 340 / 6 332 / 6 0.3 / 4.4
S967 369 / 29 369 / 6 386 / 6 370 / 6 357 / 6 355 / 6 0.3 / 4.4
S991 299 / 19 299 / 19 297 / 19 297 / 19 297 / 19 297 / 19 0.2 / 2.3

% Reduction 0.0 / 0.0 0.0 / 16.8 9.8 / 17.7 9.5 / 17.4 10.8 / 18.7 14.3 / 18.9

Table 1: Retiming results for the ISCAS89 benchmarks (number of two-input AND vertices/number of registers).

16:8% on the ISCAS benchmarks, and 50:1% on the GP cir-
cuits. Fanin-register sharing combined with vertex hashing
further reduces that count by 0:9% for ISCAS and 4:7% for
GP. In addition, the AND count is significantly decreased,
by 9:8% for ISCAS and 20:7% for GP.

The additional application of on-the-fly retiming has a
varying effect upon size. Our experiments show that on av-
erage it hurts both register count and AND count. However,
in individual cases, it can provide a substantial benefit. For
example, for seven of the 42 ISCAS circuits and 11 of the
28 GP circuits, on-the-fly retiming further reduced the over-
all AND count. In addition, for three GP circuits the number
of registers is decreased.

As illustrated in Figure 1, on-the-fly retiming alone may
result in a register reduction even without solving the retim-
ing problem. For example, the GP circuit L FLUSH is a

reconvergent feed-forward pipelined circuit. Before using
the ILP solver to calculate an optimal retiming, the options
used in columns 4 and 5 reduce the register count to 78 and
38, respectively. Nevertheless, in the majority of the cases,
on-the-fly retiming temporarily hurts register count, which
then gets rectified during the global retiming phase.

Iteration of combinational simplification and retiming
can provide dramatic reductions. Compared to the single
application, an additional average reduction of 4:5% and
1:2% on the ISCAS benchmarks, and 18:6% and 6:3% on
the GP circuits, was achieved for the number of AND ver-
tices and registers, respectively. Up to six iterations were
applied during these runs, with an average number of 2:6
for ISCAS and 4:6 for GP. The reported results in column 7
utilized on-the-fly retiming on eight of the 42 ISCAS cir-
cuits and on six of the 28 GP circuits. One particularly

5



Design Original Plain Retiming On-the-Fly Iteration of interleaved
circuit retiming with retiming retiming and combinational restructuring

[2] fanin with fanin (iterated until no further improvements)
sharing sharing Plain Best result of CPU time (sec)

retiming columns 4 or 5 Memory (MB)
CHIP RAS 2686 / 660 2686 / 585 2103 / 492 2159 / 492 2148 / 489 2039 / 489 4.9 / 32.4
CORE RAS 2297 / 431 2297 / 379 2200 / 378 2209 / 387 1735 / 341 1873 / 348 2.0 / 14.5
D DASA 1223 / 115 1223 / 100 967 / 100 968 / 100 844 / 100 815 / 100 0.8 / 8.9
D DCLA 10916 / 1137 10916 / 771 10483 / 771 10506 / 771 7853 / 750 7443 / 750 23.9 / 94.1
D DUDD 1295 / 129 1295 / 100 1143 / 100 1146 / 100 1119 / 100 1084 / 100 1.1 / 12.9
I IBBC 389 / 195 389 / 43 228 / 41 217 / 41 207 / 43 196 / 37 0.5 / 9.7
I IFAR 1202 / 413 1202 / 147 1031 / 142 1033 / 143 997 / 139 929 / 137 1.7 / 18.5
I IFEC 334 / 182 334 / 46 302 / 45 309 / 45 308 / 46 287 / 45 0.7 / 15.0
I IFPF 5896 / 1546 5896 / 705 5273 / 679 4715 / 612 2812 / 350 2768 / 355 43.9 / 78.0
L EMQ 981 / 220 981 / 88 737 / 87 745 / 88 920 / 86 632 / 74 1.2 / 16.3
L EXEC 1618 / 535 1618 / 168 1191 / 163 1193 / 197 1178 / 144 974 / 138 2.2 / 19.0
L FLUSH 893 / 159 893 / 5 495 / 1 409 / 1 358 / 1 338 / 1 0.6 / 8.7
L LMQ 14074 / 1876 14074 / 1196 12921 / 1190 12983 / 1190 5793 / 432 5363 / 428 41.5 / 91.9
L LRU 581 / 237 581 / 94 524 / 94 518 / 94 469 / 94 439 / 94 1.0 / 13.1
L PNTR 1453 / 541 1453 / 245 1351 / 245 1349 / 245 1387 / 245 1325 / 245 1.2 / 8.2
L TBWK 1160 / 307 1160 / 125 829 / 124 829 / 124 279 / 40 267 / 40 0.8 / 11.0
M CIU 4550 / 777 4550 / 459 3262 / 415 3244 / 415 2929 / 381 2757 / 379 4.8 / 35.8
S SCU1 1520 / 373 1520 / 212 1296 / 204 1346 / 207 1308 / 201 1160 / 192 2.8 / 20.2
S SCU2 8560 / 1368 8560 / 640 6632 / 566 5990 / 564 3928 / 432 4119 / 425 34.6 / 58.9
V CACH 753 / 173 753 / 103 652 / 105 649 / 110 424 / 95 393 / 97 0.8 / 14.9
V DIR 554 / 178 554 / 87 491 / 87 285 / 50 160 / 45 152 / 43 0.5 / 10.7
V L2FB 120 / 75 120 / 26 103 / 26 103 / 26 107 / 26 95 / 26 0.3 / 4.4
V SCR1 826 / 150 826 / 95 418 / 52 618 / 94 341 / 49 325 / 48 0.6 / 10.6
V SCR2 2563 / 551 2563 / 458 1157 / 86 2343 / 460 524 / 82 510 / 82 1.4 / 14.3
V SNPC 78 / 93 78 / 21 68 / 21 68 / 21 67 / 21 62 / 21 0.3 / 5.4
V SNPM 2421 / 1421 2421 / 241 1843 / 237 1814 / 241 1800 / 232 1221 / 180 33.8 / 116.8
W GAR 2107 / 242 2107 / 93 1775 / 91 1769 / 91 1896 / 91 1590 / 75 3.3 / 16.8
W SFA 471 / 64 471 / 42 329 / 42 329 / 42 324 / 41 300 / 41 0.6 / 12.7

% Reduction 0.0 / 0.0 0.0 / 50.1 20.7 / 54.8 20.3 / 51.8 33.6 / 60.3 39.3 / 61.1

Table 2: Retiming results for selected IBM Gigahertz Processor (GP) circuits.

interesting result is that an iterated application of the pre-
sented techniques with combinational restructuring signif-
icantly outperforms an interleaved classical retiming ap-
proach. This demonstrates the overall power and potential
of the presented approaches for applications in functional
verification, as well as technology-independent logic syn-
thesis.

6 Conclusions and Future Work

In this paper we present two new enhancements for min-
area retiming that are capable of significantly reducing reg-
ister and gate count by departing from the traditional ap-
proach of applying retiming on a static circuit graph. The
main focus of this research is to enhance reachability-based
verification [5] for which min-area retiming is the single ob-
jective. However, these techniques are clearly applicable to
any sequential optimization problem. It would be interest-
ing to investigate how these techniques can be adapted for
general logic synthesis.

Our future work includes continued efforts to combine
the modeling of retiming and synthesis. One research direc-
tion is to apply fanin-register sharing to a larger fragment
of logic cones, such as XOR clusters. We further investi-
gate adding more sophisticated combinational optimization
techniques to our combinational restructuring engine.

References

[1] C. Leiserson and J. Saxe, “Optimizing synchronous systems,” Jour-
nal of VLSI and Computer Systems, vol. 1, pp. 41–67, January 1983.

[2] C. Leiserson and J. Saxe, “Retiming synchronous circuitry,” Algo-
rithmica, vol. 6, pp. 5–35, 1991.

[3] S. Malik, E. M. Sentovich, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “Retiming and resynthesis: Optimizing sequential
networks with combinational techniques,” IEEE Transactions on
Computer-Aided Design, vol. 10, pp. 74–84, January 1991.

[4] S. Hassoun and C. Ebeling, “Experiments in the iterative appli-
cation of resynthesis and retiming,” in International Workshop on
Timing Issues in the Specification and Synthesis of Digital Systems,
ACM/IEEE, December 1997.

[5] A. Kuehlmann and J. Baumgartner, “Transformation-based verifi-
cation using generalized retiming,” in Computer Aided Verification
(CAV’01), (Paris, France), July 2001.

[6] M. K. Ganai and A. Kuehlmann, “On-the-fly compression of logical
circuits,” in International Workshop on Logic Synthesis, May 2000.

[7] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, “Logic
decomposition during technology mapping,” IEEE Transactions on
Computer-Aided Design, vol. 16, pp. 313–334, August 1997.

[8] G. D. Micheli, “Synchronous logic synthesis: Algorithms for cycle-
time minimization,” IEEE Transactions on Computer-Aided Design,
vol. 10, pp. 63–73, January 1991.

[9] M. S. Hung, W. O. Rom, and A. D. Waren, Optimization with IBM
OSL. Scientific Press, 1993.

[10] A. Kuehlmann, M. K. Ganai, and V. Paruthi, “Circuit-based Boolean
reasoning,” in Proceedings of the 38th ACM/IEEE Design Automa-
tion Conference, (Las Vegas, Nevada), ACM/IEEE, June 2001.

6


