
Gestión de configuración

multiplataforma con RTC

(or: Accelerate delivery,

reduce costs, with the IBM

Integrated Solution for

System z Development)

Keith Allen

Arquitecto Especialista en Soluciones de Modernización
de la Empresa

Agenda

• Today’s Mainframe Development Challenges

• Addressing these challenges with IBM Integrated Solution for System z

Development (ISDz)

• One customer’s story

– Overview of current client environment

– Proposed solution (ISDz)

– Road to deployment

– Results

• Summary

Customer Challenges

“Our skills gap keeps growing.
How do we stay current with all the language
and technology changes?”

“We don’t understand the effort,

risk and impact of modernizing

our legacy applications.”

“We need to enable our teams
to collaborate across platforms,
languages, and environments.”

“We need a cost effective way to improve our
infrastructure efficiency and free up capacity
to handle more workload.”

� Agile and Lean development is working

� Legacy infrastructure is restrictive

� Hybrid and collaborative applications

And Mainframe development is under pressure to change+.

Challenges

Agenda

• Today’s Mainframe Development Challenges

• Addressing these challenges with IBM Integrated Solution for System z

Development (ISDz)

• One customer’s story

– Overview of current client environment

– Proposed solution (ISDz)

– Road to deployment

– Results

• Summary

The IBM Integrated Solution for System z Development

Better productivity and quality with

quick analysis showing application

structure and relationships

Increase productivity and reduce MIPS with a modern IDE

for COBOL, PL/1 & HLASM and C/C++, Java

Collaborative

Development

Cross-platform and

Mainframe Development

Off-Host Development and Unit

Testing
Impact Analysis

AnalystQuality Professional

Deployment Engineer

Free up MIPS for production use,

and eliminate delays by providing a

low cost Unit Testing environment

Collaboration and governance across diverse

teams, platforms, and programming languages

Project Manager
Architect

Developer

IBM Services

Complete set of System z Development and Test

capabilities from an integrated development

environment

ISDz

A modern IDE for productive development of
cross-platform applications written in COBOL,
PL/I, HLASM, Java, EGL or C/C++ in System
z CICS, IMS, DB2, Batch applications

Access to typical System z
sub-system functionality in
z/OS, CICS, IMS, DB2, WAS

Integration with Development
and Testing areas

Integration with Dump Analysis

Integration with file and test
data handling

Integration with Application
Understanding and Impact
Analysis

Integration with Lifecycle and
Source Management

Integration with off host for
flexible access to System z
environment

7

8

A single platform for IT Application Planning
• Source Control� Planning� Work Items

� Method Enforcement and

Automation

� Dashboards & Reporting� Builds – Continuous

Integration

Query
Storage

Collaboration

Discovery

Administration:
Users, projects,
process

JAZZ SERVICES

Business Partner
Extensions Your Extensions

ISDz Built on an open, Web 2.0 platform
Supporting a broad range of desktop clients, IDE’s and languages

Rational IDE’s

Eclipse Clients Web Clients

Visual Studio

Microsoft .NET Clients Rational Desktop Clients

Collaboration

Web 2.0Jazz Client Extensions

Eclipse Platform

IBM Rational Extensions

Best Practices
Presentation:
Mashups

Off Host System Z - The ultimate in modern application development for
System z

Note: This Program is licensed only for development and test of applications that run on IBM z/OS. The Program may not be used to run production workloads of any kind, nor more robust
development workloads including without limitation production module builds, pre-production testing, stress testing, or performance testing.

RDz & ISPF user

ISPF user

RDz user

RDz user
RDz user

COBOL, PL/I, C++, Java, EGL, Batch,

Assembler, Debug Tool

x86 PC running Linux

RDz user

IMS

z/OS

WAS

DB2

MQ

CICS

10

� Increase availability of z/OS testing environment and resources

� Liberate developers to rapidly prototype new applications

� Develop and test System z applications anywhere, anytime!

� Eliminate costly delays by reducing dependencies on operations staff

� Improve quality and lower risk via automation, measurement, and collaboration

� Focus on what is required for the change at hand, then scale

Flexible and Incremental Adoption*

Entry Point Add Capability Add Capability Add Capability

• Increase developer

productivity to reduce

maintenance backlog

• Quickly modernize

System z apps with

coding assists and

service creation and

refactoring wizards

• Improve code quality with

code review, automated

UT, and code coverage

• More rapid, flexible

developer testing

• Reduce development

MIPS

• Reduce delivery time by understanding

the impact of change, upfront

• Shortened learning curve for new

team members

• Unified status, change

management, process, and

SCM across tools, teams,

and platforms

• Reduce risks and meet audit

an compliance mandates

with automated process

enforcement

• Reduce the cost of System z

SCM

RDz

Modern IDE for applications

that include System z

components

RD&T

Add z/OS development and unit

test environment on an z86 Linux

Server

RAA

Add rapid application understanding

RTC

Add collaboration and

governance across diverse

teams, platforms, and

programming languages

*Elements of the solution may be adopted any order based on your needs

Overview of Supported Production Scenario

4: Promote and deploy

enhancement

- Create ‘official‘ build of application

- Promote through test environments

- Build formal release package

- Deploy package to production

3: Implement required
changes, build and deliver

- Analyze source repository to
identify modifications

- Implement and test
modifications

- Perform personal build and
deliver new features

2: Analyze

- Analyze Application to be
changed

-Size/Scope the effort for the
change

- Create Bill of Materials

1: Initiate Change Request

- Submit new work item to represent a

change request

- Assign to Analyst

Project
Lead/Manager

Release
Engineer

Analyst/SME

Application
Developer

5. Track Project Status with

Rational Team Concert

Dashboard

Objective: Implement change request

1. IT has received a request that requires a change to an existing COBOL application. A requirement

(work item) is created using the ISDz browser interface.

2. The Analyst receives the request and uses ISDz to understand application structure and complexity as

well as determine the set of application artifacts involved in the change. A link to the impact analysis is

added to the original requirement (work item) and optionally a “Bill of Materials” (BOM) is generated

and added as an attachment.

3. Based on analysis, the Analyst refines original requirement into one or more work items for

development based on the scope of the change request, using ISDz to update the initial requirement,

create more fine-grained work items, and update the work item(s) with analysis information.

4. The Analyst creates work items for formal test, alerting the test team that some test cases will be

impacted by the change request (or new test cases will be required).

Analyst: Analyze to scope size and risk of change request

Overview of Supported Production Scenario

Objective: Implement change request

1. The Developer views his work using the ISDz client to verify the development level tasks.

2. The Developer reviews the analysis information in the work item and uses ISDz via the browser

interface within the ISDz workspace as well as the ISDz plugin capabilities to better understand the

programs and other assets to be modified.

3. The Developer uses ISDz to make the changes and deploys and tests the updates on the Off Host Z

platform using ISDz build capabilities.

4. The Developer completes his changes by marking the work item ready for formal test and delivers the

changes to the development stream, again using ISDz build capabilities.

Developer: Implement changes, build, and deliver

Overview of Supported Production Scenario

Objective: Implement change request

1. The Release Engineer is notified that changes are ready for promotion to the formal test system and

uses ISDz to move (promote) the set of changes to the QA stream.

2. The Release Engineer alerts the QA team that testing can be started on the set of work items

promoted to the QA stream by updating the associated test work items.

3. Once the testing is complete, the Release Engineer is notified via the test work items and uses, then

uses ISDz to build the formal release package. If problems occur during formal testing, the Release

Engineer or test resource opens new work items that are routed back to the development team.

4. The Release Engineer uses ISDz to deploy the package to production.

Note: The formal testing role is intentionally omitted from this high-level scenario for simplicity

but is covered in the Detailed Scenarios document.

Release Engineer: Promote and deploy the enhancement

Overview of Supported Production Scenario

Sequence of Events

Rational Solution: ISDz

DeveloperDeveloperAnalystAnalyst Release EngineerRelease EngineerProject ManagerProject Manager

2b.View Application*

structure, explore

transaction driving

processing

2c. Search for

components related to

enhancement request

2a. View enhancement

request (browser),

need to scope effort

and risk

1a. Submit a Work

Item for enhancement

request

*Application scanned

into analysis from QA

stream, kept in synch

during change

lifecycle

Sequence of Events

DeveloperDeveloperAnalystAnalyst Release EngineerRelease EngineerProject ManagerProject Manager

2e. Export Program

and Data Element

tables to MS Excel to

create BOM

2g. Update/refine work

item with links to

impact analysis results

and BOM

2f. Estimate risk of

changes through

complexity metrics

2d. Determine extent

of changes for each

component through

impact analysis

Rational Solution: ISDz

Sequence of Events

DeveloperDeveloperAnalystAnalyst Release EngineerRelease EngineerProject ManagerProject Manager

2h. Create “child” work

items to reflect

development work,

assign to developers.

3b. Set state of work

item to ‘Start working’

3a. Look at My Work to

find new change

request

2i. Create work item

for formal test team to

validate change

request

Rational Solution: ISDz

Sequence of Events

DeveloperDeveloperAnalystAnalyst Release EngineerRelease EngineerProject ManagerProject Manager
3c. View BOM attached

to work item with list

of application artifacts

to change

3d. Launch link in work

item to view Analysis

results

3f. Search for

Programs/Data

Elements listed in

BOM

3e. Review analysis

impact analysis results

in workspace browser

Rational Solution: ISDz

Sequence of Events

DeveloperDeveloperAnalystAnalyst Release EngineerRelease EngineerProject ManagerProject Manager

3g. Explore structure

of Programs and

details of Data

Elements

3h. Find/load files from

Repository Workspace

to local Eclipse project

*

3j. Check in changes to

Repository Workspace

3i. Implement changes

by editing/saving files

to local project
Errors

occurred

during unit

test, repeat

change

process…

*Assume Dev

workspace from Dev

stream
Rational Solution: ISDz

Sequence of Events

DeveloperDeveloperAnalystAnalyst Release EngineerRelease EngineerProject ManagerProject Manager

3l. Perform Unit Test*

3k. Perform “personal”

Repository Workspace

build* If errors,

repeat change

process…

*Build and UT

performed on MVS

or RDz UT

3m. Deliver changes to

the Development

stream

3n. Mark work item

development complete

Rational Solution: ISDz

Sequence of Events

DeveloperDeveloperAnalystAnalyst Release EngineerRelease EngineerProject ManagerProject Manager

3o. Perform a Dev

stream build

3p. Perform Unit Test

on set of changes from

development team

3q. Mark work items

ready for QA

If errors,

repeat change

process…

Rational Solution: ISDz

Sequence of Events

Rational Developer for

System z
Rational Team Concert Rational Asset AnalyzerRational Solution

Rational Asset Analyzer

Integraiton Plugin for

RDz

DeveloperDeveloperAnalystAnalyst Release EngineerRelease EngineerProject ManagerProject Manager

Formal Test Occurs:

If errors during formal

test, work item is

opened and queued to

development, return to

step 3a…

4a. Promote work

items to QA stream*

4b. Complete the

promotion request

If errors, open

work item,

return to step

3a…

*Promote does auto-

rescan into RAA of

updated source

4c. Promote QA stream

to Production stream

4d. Complete the

promotion request

If errors, open

work item,

return to step

3a…

Sequence of Events

DeveloperDeveloperAnalystAnalyst Release EngineerRelease EngineerProject ManagerProject Manager

4e. Create a

Deployment Package

4f. Load and Deploy the

package to production

environment

2j. Verify successful

implementation of

change request

If errors, open

work item,

return to step

3a…

1b. Verify completion

of enhancement

request on production

system

Rational Solution: ISDz

Agenda

• Today’s Mainframe Development Challenges

• Addressing these challenges with IBM Integrated Solution for System z

Development (ISDz)

• One customer’s story

– Overview of current client environment

– Proposed solution (ISDz)

– Road to deployment

– Results

• Summary

Customer Profile

•Changeman

•ISPF

•TSO

•MQ

•CICS

•DB2

•SDSF

•JES

•RMF

Outsourced

developers

MAINFRAME

TN3270In house

developers

Current Software Development Environment+

–Mainframe-based SCM

–ISPF for development

–Formal process for change management

–Customized front end

Lengthy Software Delivery Life Cycle

Significant degradation in system response time of the development environment

during peak hours leads to:

� Considerable delays in building COBOL components � Slow compilation times

� Lack of availability of the development environment

� Slow execution of batch processes

Lack of Quality

Testing process are shortened and the number of unit and functional tests executed

is reduced because of:

�Too much time spent during implementation so there is less time to run tests

�System availability, especially during peak hours, leads to degradation in response time to

run tests

High Development Cost / Low Development Productivity:

Overall development cost is increased because it takes more time and resources to

complete implementation of the COBOL components

Business Challenge

Plan for Improvement

Phase 1 – Adoption of a Enterprise ISDz

Before: Developers directly

accessed the source code

extracted from ChangeMan

on the mainframe through

RDz, but low priority of

development processes

caused degradation in RDz

After: Administrator accesses

the source code on the

mainframe, downloads to a

Common Source directory

accessible by the mainframe

developers

zAAP

Phase 1 –Deployment

Objective:

Implement ISDz to improve efficiency

Benefits Realized:

�Improvements in productivity, specifically in COBOL development measured

through:

• Lower actual processing time (MIPS usage)

• Reduced number of days/hours spent on development activities

�Quality Improvements measured by:

• Reduction in number of defects

Automatic synchronization

process of baseline libraries

Phase 2 – Deployment of off host Z

zAAP

Phase 2 – ISDz and off Host

Objective:

Implement Off Host Z as an additional component of the overall development

and build process

Benefits Realized:

�Improve delivery: Developers can apply changes to the databases structures and CICS

transactions in the local RD&T environment to complete builds and unit testing

� No downtime for waiting for systems administration tasks

�Improve quality of implemented changes: Developers are available to use debug

functionality freely

� Faster diagnosis of defects

�Improve overall quality: Less space restrictions in the RD&T environment means that

larger input files can be used during batch testing

�Reduce costs, improve efficiency: MIPS consumption in mainframe development

environment is decreased, leading to lower costs and higher availability of development

systems

High Availability

Phase 3 – Adoption of Team Collaboration

zAAP

Phase 3 – ISDz with Team Collaboration

Objectives:

�Implement source management through Team Collaboration for end to

end ISDz environment

�Transform Off Host into a complete testing environment in which

developers can run integrated, functional tests using main customer

applications and automated test tools

Expected Benefits:

�Improved collaboration: Developers can work closely, in context, using

online reviews, approvals, and threaded discussions

�Shorter delivery cycles: Developers can work in a flexible, integrated

environment without being gated by mainframe availability

MIPS Reduction Realized
� zAAP deployment isolates the Java-based RDz processing, releasing part of the workload of

the core mainframe processors

� Changes in usage model (use of local projects with limited connections to the mainframe)

further reduced MIPS consumption

Development Life Cycle Efficiencies
� Side-by-side comparisons of development scenarios using ISPF and RDz showed significant

reduction in development times, demonstrating increased efficiency

� The impact from the problems due to degradation in response times of the mainframe are

lessened

� Availability of the development environment is improved

Improved Overall Software Delivery Time and Cost
� The elimination of downtime caused by degradation of the performance of the mainframe

leads to a reduction in the total required of man hours

� Improvements in development efficiency overall leads to improved software delivery times

and reduction in development costs

Key Technical/Business Benefits

Lessons Learned

� RDz configuration on the mainframe requires planning in order to achieve optimum

performance in terms of MIPS consumption

� Required BOTH a mainframe expert to administer RDz running on the mainframe and an RDz usage

expert to teach mainframe developers how to realize the full advantages of the tooling

� Key Take-Away: Involve mainframe administrators up front and plan for RDz Education

� RDz usage alone will not automatically result in reduced development MIPS

consumption

� Use of RDz did not show MIPS savings during periods of high concurrency on the mainframe because

the old usage model was still in place although modern tooling was introduced

� Key Take-Away: Modernize both the tooling and the working model

� It is important that developers get support on site during the first days of use of RDz

� Immediate resolution of questions regarding the use of RDz reinforces the developers confidence in

the tools

� Developers’ first instinct is to go back to ISPF rather than wasting time clarifying any questions

regarding the use of RDz, hampering RDz adoption

� Key Take-Away: Train and assign a group of evangelists to support the wider team early!

Agenda

• Today’s Mainframe Development Challenges

• Addressing these challenges with IBM Integrated Solution for System z

Development (ISDz)

• One customer’s story

– Overview of current client environment

– Proposed solution (ISDz)

– Road to deployment

– Results

• Summary

Getting started
Next steps to modernize your enterprise applications

To learn more visit: Rational Enterprise Modernization

Try the latest System z and Power

software for free

Sign up for free web-based training

Join IBM Rational Cafe Communities

Latest news on System z twitter

Latest customer videos

Success storiesGet prescriptive service solutions

Latest skills: System z job board

Revitalize

Empower Unify

Optimize

© Copyright IBM Corporation 2012. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind, express or implied.
IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor shall have the effect of, creating any warranties
or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM software. References in these materials to IBM products,
programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or capabilities referenced in these materials may change at any time at IBM’s sole
discretion based on market opportunities or other factors, and are not intended to be a commitment to future product or feature availability in any way. IBM, the IBM logo, Rational, the Rational logo, Telelogic, the
Telelogic logo, and other IBM products and services are trademarks of the International Business Machines Corporation, in the United States, other countries or both. Other company, product, or service names may be
trademarks or service marks of others.

www.ibm.com/software/rational

