
© 2011 IBM Corporation

Los Siete Mejores Hábitos
Para Implementar

Agile con Éxito

Alan W. BrownAlan W. Brown
IBM Rational CTO for EuropeIBM Rational CTO for Europe

alanbrown@es.ibm.comalanbrown@es.ibm.com
March 2012March 2012



Topics
• Agile in context
• Seven habits of successful agile adoption

– Be explicit about you agile goals
– Understand the dimensions of scale up/out
– Use measures to govern behaviour
– Focus early on quality as a team issue
– Re-skill your project/program planners
– Grow with a clear adoption plan
– Think globally, act locally!



Why Do Software Project Fail?
Understanding the software engineering lifecycle

1. Unstable, changing requirements (95%)

2. Inadequate quality control and poor quality measures (90%)

3. Inadequate progress tracking (85%)

4. Inadequate cost and schedule estimating (80%)

5. False promises by marketing and sales personnel (80%)

6. Rejecting good schedule estimates for arbitrary dates (75%)

7. Informal, unstructured development (70%)

8. Inexperienced clients who can't articulate requirements  (60%)

9. Inexperienced project managers (50%)

10. Inadequate tools for quality/analysis, lack of inspections (55%)

11. Reusing assets filled with bugs (30%)

12. Inexperienced, unqualified software engineering teams (20%)

Visualization of change and complexityFrom Caper Jones



On-Site
(Europe)

Off-Shore
(India/China)

Near-Shore
(East Europe)

Analysis Design Construction

Function & 
Performance
Test

Component
Test

Deployment Project
Management

100%100%

40%

60%

70%

30%

60%

40%

80%

20% 20%

20%

60%

Contractors/external staffing

Global Delivery of Software: An Example



Summary:
Challenges to effective software delivery today

Complexity Challenges Team Challenges

How do I understand this new world to gain advantage?

� More granular service functionality 
in composite business applications

� Large number of projects and 
assets including custom, outsourced 
and packaged

� Geographically dispersed teams 
that often include business partners

� Effective cross-organizational 
visibility and synchronization, 
sharing becomes an imperative

Process Challenges Tools Challenges

� Need for market experimentation

� Blind adherence to process insensitive 
to potential business trade-offs

� Need for agility at scale

� Lack of standards impacts ability 
to collaborate, automate and report 
across teams and assumptions

� Frequent asset updates and 
changing interdependencies



Agile Software Delivery and Values

Working
Software
Working
Software

Individuals 
Interactions
Individuals 
Interactions

Customer
Collaboration

Customer
Collaboration

Source: www.agilemanifesto.org

Comprehensive
Documentation
Comprehensive
Documentation

Processes 
and Tools
Processes 
and Tools

Following 
a Plan

Following 
a Plan

Contract
Negotiation

Contract
Negotiation

overWe value

While there is value in the items on the right, we value the items on the left more.

Responding 
to Change

Responding 
to Change



Mainstream Agile Practices

• Regular Deployment 
of Working Software

• Non-Solo 
Development

• Refactoring

• Continuous 
Integration

• Configuration 
Management

• Test Driven 
Development (TDD)

• Agile Testing

• Agile Documentation



The Agile Construction Lifecycle



How can I be more agile?

1. Produce working software on a more regular basis.

2. Do continuous regression testing, and better yet take a 
Test-Driven Development (TDD) approach.

3. Work closely with stakeholders, ideally on a daily basis.

4. Increase your scope for self-organizing, and organize the 
team within an  appropriate governance framework.

5. Regularly reflect, and measure on how the team works 
together, and act to improve in a timely manner.



Topics
• Agile in context
• Seven habits of successful agile adoption

– Be explicit about you agile goals
– Understand the dimensions of scale up/out
– Use measures to govern behaviour
– Focus early on quality as a team issue
– Re-skill your project/program planners
– Grow with a clear adoption plan
– Think globally, act locally!



Domain Complexity

Straight
-forward

Intricate,
emerging

Compliance requirement     

Low risk Critical,
audited

Team size

Under 10
developers

1000’s of
developers

Co-located

Geographical distribution

Global

Enterprise discipline

Project
focus

Enterprise
focus

Technical complexity

Homogenous
Heterogeneous,

legacy

Organization distribution
(outsourcing, partnerships)

Collaborative Contractual

Agile Scaling Factors

Disciplined 
Agile

Delivery

Flexible Rigid

Organizational complexity



Measures Govern Behaviour

While many methods of measurement exist at various levels of depth, this forms the 
minimum necessary and sufficient set of measurement areas to assess the fundamental 
health and status of a live software project.  Other measurements can aid in determining 
root causes, but do not determine ultimate performance, thus serve a secondary role.



But What Should We Measure?
An Example Set of Candidate Agile Metrics…..lots of possibilities!

Executive
Dashboard

Project
Health

Strategic
Health

Development
Quality

Customer
Quality

� Defect Backlog
� Test Escapes
� Functional Test Trends
� Critical Situations
� System Test Trends
� S-Curve Progress
� Automation Percentage
� Customer Testcases
� Consumability Scorecard
� Defect Latency
� Quality Plan Commitments
� Test Coverage

� Defect Backlog
� Defect Density
� Defect Repair Latency
� Build Health
� Project Velocity
� Staffing Actuals
� Process Timeliness
� Milestone Status
� Severity Analysis
� Security Vulnerabilities
� Static Code Analysis
� Requirements Met
� IPD Timeliness

� Transactional Survey
� PMR / Call Rates
� Critical Situations
� Cost of Support
� Installability
� Enhancement SLA
� Useability
� Consumability
� Perceived Performance
� Scalability
� Integrations with other 

products
� User Experience / Doc 

Time to Resolution

� Sales Plays
� Partner Enablement
� Support Enablement
� Technical Enablement
� Sales Enablement
� Localization
� MCIF Index
� Competition
� Integrated into Story
� Green Threads
� LCM
� Pipeline / Multiplier
� Revenue

PracticesVulnerability Assessment
Concurrent Testing

Test Driven Development
Whole Team

Team Change Management

Evolutionary Architecture

Requirements Management



Key Project Performance Metrics:  Agile View

This is a sample view.  Metrics can take different forms.  The intent is ensure that the 
charts address core management concerns and associated questions.  

����������	�
���������������	���������
�

��

���

����

����

����

����

����

����

� � � � � � 	 
 � �� �� �� ��

�����	���������


��������������������	�����������

� ������������� �	� � �������������
���	� ���	� !��� ����"�	���

��

���

���

���


��

����

����

����

� � � � � � 	 
 � �� �� �� ��
�����	���������


#�	����	�������	�$ %���	�
�& ��'�������	������	��

���������� ��� ����������������������

���������������������� ��! "���� ������������������

��

���

���

���


��

����

����

�

��

��

��


�

���

���

���

� � � � � � 	 
 � �� �� �� ��
!
�
�
��
�
�
	�
�(
�
�
	%
��
��
�
�
�)
�
��
'
	

�����	���������


�����������	����*�����

������
�(��	%��� ��������
�(��	%��� � ��������������	�

�

��

��

��


�

���

���

���

���

� � � � � � 	 
 � �� �� �� ��

!
�
�
��
��
	�
�(
�
�
	%
��
��
�
��
)
�
��
'
	

�����	���������


������'�������	�
�!

+�, �
���+��������

-��������(��	%��� !

�
���, �
����
�(��	%��� ������
�(��	%���

Burndown/Velocity

Velocity:  Plan – – – Optimistic – – – Best Guess – – – Pessimistic – – –
Actual Burndown (Features Remaining)                    Delivered in Period



Agile Performance Metrics: Core Answers

Here are the key management questions answered by each chart.  An inability to answer 
any of these questions serves as a source of fundamental risk.

����������	�
���������������	���������
�

��

���

����

����

����

����

����

����

� � � � � � 	 
 � �� �� �� ��

�����	���������


��������������������	�����������

� ������������� �	� � �������������
���	� ���	� !��� ����"�	���

��

���

���

���


��

����

����

����

� � � � � � 	 
 � �� �� �� ��
�����	���������


#�	����	�������	�$ %���	�
�& ��'�������	������	��

���������� ��� ����������������������

���������������������� ��! "���� ������������������

��

���

���

���


��

����

����

�

��

��

��


�

���

���

���

� � � � � � 	 
 � �� �� �� ��
!
�
�
��
�
�
	�
�(
�
�
	%
��
��
�
�
�)
�
��
'
	

�����	���������


�����������	����*�����

������
�(��	%��� ��������
�(��	%��� � ��������������	�

�

��

��

��


�

���

���

���

���

� � � � � � 	 
 � �� �� �� ��

!
�
�
��
��
	�
�(
�
�
	%
��
��
�
��
)
�
��
'
	

�����	���������


������'�������	�
�!

+�, �
���+��������

-��������(��	%��� !

�
���, �
����
�(��	%��� ������
�(��	%���

Burndown/Velocity

Velocity:  Plan – – – Optimistic – – – Best Guess – – – Pessimistic – – –
Actual Burndown (Features Remaining)                    Delivered in Period

Are we on schedule?
If not, how far behind?
When will we complete?

Are scope changes 
overwhelming our 
ability to deliver?

Are our estimates good?
Do we have enough staff ?
What will it take to complete?

Do we have enough test 
coverage and execution?
Is the quality of our  
deliveries good enough?



A New Approach to Quality with Agility
• Traditional approaches to quality have a heavy focus on 

testing at multiple levels, often with separate test teams
• Agile approaches introduce many challenges:

– Focus on rapid, constant change
– Time-to-market often dominant
– Less focus on architecture modeliing
– Less detailed documentation
– Assumes collocated teams with direct communication paths
– Lack of consistency across several small, independent self-

organizing teams  can have major system test impacts

• Substantial changes may be needed to address software 
quality in agile projects

• Agile Quality is a team issue, addressed “early and often”



A day in the life... of a ‘Pig’
•Always starts with a daily scrum
•Think!... Document ... Write JUnit testcases... Code... Test

1. Check My Work
2. API First; improve the collaboration with your clients
3. Test Driven Development (TDD); solidify your code
4. Update work items; let other members know what you’ve

done
•Deliver code to the Team Stream

– Test team integration; now your component is not alone
•Deliver code to the Integration Stream

– Daily & Weekly builds
– Test project integration; we now have a product
– Control JUnit testcases execution; check the overall quality

•Recurrent activities
– Actively participate in design meetings; across Scrum teams
– Regular JUnit jam sessions; leverage the know-how within

the teams
– Scrum of Scrums meetings when appropriate; keep the 

rhythm



Continuous Integration

� Daily builds are a good start

� Agilists update and test their code 
constantly

� Therefore they need to build the system 
constantly

� Compile
� Regression testing
� Static code analysis

� Critical points:
� Must be automated
� Don’t forget database integration
� Need a protocol for automatically 

deploying builds to higher-level 
sandboxes

� Doesn’t mean that you’re deploying 
into production every 2 weeks



19

Result: Agile projects have a different test profile
Deliver sooner, fix earlier

Agile Profile
Defects 

found early 
when they 

are cheaper 
to fix

Waterfall Profile
Defects found 

later when they 
are more 

expensive to fix

Data from IBM Websphere CICS team based on their agile adoption



Agile Project and Program Planning

Most agile teams are concerned only with the three innermost levels of 
the planning onion…in may situations this is not enough!

Portfolio

Program

Based on the work of Mike Cohn



Evolving View of Software Management -1
Top 10 Management Principles for Waterfall Projects
1. Freeze requirements before design.
2. Forbid coding prior to detailed design review.
3. Use a higher order programming language.
4. Complete unit testing before integration.
5. Maintain detailed traceability among all artifacts.
6. Thoroughly document each stage of the design.
7. Assess quality with an independent team.
8. Inspect everything.
9. Plan everything early with high fidelity.
10.Control source code baselines rigorously.

From Walker Royce, “Improving Software Economics”, 2009.,

Most Project Managers Know How
To Manage Projects Like This!



Evolving View of Software Management -2
Top 10 Management Principles for Iterative Projects
1. Base the process on an architecture-first approach.
2. Establish an iterative lifecycle process that confronts risk early.
3. Transition design methods to emphasize component-based 

development.
4. Establish a change management environment.
5. Enhance change freedom with tools to support round-trip engineering.
6. Capture design artifacts in rigorous, model-based notation.
7. Instrument the process for objective quality control and progress 

assessment.
8. Use a demonstration-based approach to assess intermediate artifacts.
9. Plan intermediate releases in groups of usage scenarios with evolving 

levels of detail.
10. Establish a configurable process that is economically scalable.

From Walker Royce, “Improving Software Economics”, 2009.,

Some Project Managers Know How
To Manage Projects Like This!



Evolving View of Software Management -3
Top 10 Management Principles for Agile Projects
1. Reduce uncertainties by addressing architecturally significant decisions first.
2. Establish an adaptive lifecycle process that accelerates variance reduction.
3. Reduce the amount of custom development through asset reuse and 

middleware.
4. Instrument process to measure cost of change, quality trends, and progress.
5. Communicate honest progressions and digressions with all stakeholders
6. Collaborate regularly with stakeholders to renegotiate priorities, scope, 

resources, and plans.
7. Continuously integrate releases and test usage scenarios with evolving 

breadth and depth.
8. Establish a collaboration platform that enhances teamwork among potentially 

distributed teams.
9. Enhance the freedom to change plans, scope and code releases
10. Establish a governance model that guarantees creative freedoms to 

practitioners through automation.

From Walker Royce, “Improving Software Economics”, 2009.,

Few Project Managers Know How
To Manage Projects Like This!



Principles of Agile Planning
• Initially:

– Make early, high-level predictions about the cost and schedule

• Over time:
– Improve your prediction from your initial project plan based on actuals
– After a few iterations, your project plan should be substantially better

• Goal is to get a reasonable, not perfect estimate, and a reasonable, but not 
detailed schedule

Actual Path

Uncertainty 
in stakeholder 

satisfaction space

Variance in 
estimate to 
complete

Initial Planned Path

Initial Plan

Initial State



Analyze and Prioritize Initiatives

Compare to Current State, 
Perform Gap Analysis Define Scope & Roadmaps

Analyze Business & IT Priorities Define Transition Initiatives

Plan Projects for Integrated 
Execution and Feedback

Monitor With Executive Dashboards

Agile Planning at the Outer Levels



Agile Adoption Planning

• Achieve early, relevant and 
measurable success

• Adopt each of the practices 
incrementally – no “big bang”

• Create a suite of practices each 
with a repository of relevant 
material, guidance, governance 
to embed excellence

• Map each practice to individual 
stakeholder challenges

• Align each practice to 
organisational operational drivers

• Measure adoption of each practice 
and assess its business value 



An Example Practice Prioritization
• Foundation

– Iterative Development
– Two-Level Planning
– Team Change 

Management
– Shared Vision
– Continuous Integration
– Whole Team

• High
– Risk-Value Lifecycle
– Test-driven development
– Use case-driven 

development

• Medium
– Evolutionary Architecture
– Concurrent Testing

• Low
– Business Process Sketching
– Evolutionary Design

• Ultra Low
– Process authoring and Tailoring
– Requirements Management
– Formal Change Management
– Component Based Software 

Architecture
– Design Driven Implementation
– Test Management
– Independent Testing
– Application Vulnerability 

Assessment
– Performance Testing



Summary
• Agile in context
• Thinking agile…acting agile…living agile
• Seven habits of successful agile adoption

– Be explicit about you agile goals
– Understand the dimensions of scale up/out
– Use measures to govern behaviour
– Focus early on quality as a team issue
– Re-skill your project/program planners
– Grow with a clear adoption plan
– Think globally, act locally!




