
1 © 2012 IBM Corporation

Integrated Data Management

Data Masking (Deep Dive)

1

2 © 2012 IBM Corporation

Integrated Data Management

Agenda

• Background and Use Cases

• Optim Privacy Strategy

• Architecture

• Optim Data Privacy Providers

• Optim

• User Defined Functions

• Scripting

• Big Data Map/Reduce

• Guardium Integration Points

• Q&A

2

3 © 2012 IBM Corporation

Integrated Data Management

Background and Use cases

• Privacy is (or should be) a concern Gramm -Leach Bliley Act.
• Health Insurance Portability and Accountability Act.

• EU Data Protection Directive.

• Privacy laws in Canada, Japan, and Australia.

• Payment Card Industry Data Security Standards.

• Interagency Guidelines for Safeguarding Customer Information.

• Basel II operational controls, Sarbanes-Oxley internal controls.

3

4 © 2012 IBM Corporation

Integrated Data Management

Background and Use cases

4

Sensitive data exported from the
database to external reports.

5 © 2012 IBM Corporation

Integrated Data Management

Background and Use cases

5

SQL queries rendering sensitive
information.

6 © 2012 IBM Corporation

Integrated Data Management

Background and Use cases

6

Applications extracting sensitive data

7 © 2012 IBM Corporation

Integrated Data Management

Optim Privacy Strategy

• Provide consistent masking across all environments - p latforms, data
sources and use cases

• Mask “whatever”, “wherever”, “whenever”
• At rest or in flight.

• Relational data, flat files and data sets, IMS, VSAM, etc.

• During query, load, display, processing, etc.

• On Linux, UNIX, Windows and z/OS.

• Consistent behavior
• Across products, platforms and locales (including customer applications).

• Repeatable behavior
• Same inputs and masking parameters yield same outputs.

7

8 © 2012 IBM Corporation

Integrated Data Management

Optim Privacy Strategy

• Optim Data Privacy Providers
• Set of out-of-the-box privacy algorithms referred to as “providers”

• Can be extended to include user-written providers

• Simple yet powerful API.

• Consistent behavior across platforms.

• Can be used in IBM products and customer applications.

• Has data source independent design.

• Provides dynamic invocation of masking services.

• Written in cross-platform, ANSI C/C++.
• Interfaces with other languages that support the C calling conventions.

• Provides platform abstraction services.

• Is locale and character set aware.
• Supports SBCS, MBCS and Unicode.

• Deploys as a number of shared libraries.

8

9 © 2012 IBM Corporation

Integrated Data Management

Architecture

9

ODPP
Core

Age CCN
E

m
ail

Hash

Lo
ok

up

NIDCol
Use

r

Service API
Service API

S
ervice A

P
I S

er
vi

ce
 A

P
I

Optim

U
D

F
C

us
to

m
er

 A
pp

lic
at

io
ns

Data Stage

Scr
ipt

s

Java

OptimMask API

O
ptim

M
ask

A
P

I

OptimMaskAPI

O
pt

im
M

as
k

A
P

I

10 © 2012 IBM Corporation

Integrated Data Management

Architecture

10

11 © 2012 IBM Corporation

Integrated Data Management

Architecture

11

12 © 2012 IBM Corporation

Integrated Data Management

Optim Data Privacy Provider Core Features

•Single API
• Referred to as the Optim Data Privacy Provider API for Data Privacy Services.

A flexible and extensible API providing an interface that can fit into existing data masking
services as well as those that may be developed in the future.

• A command based approach for a broader range of control.

• The API allows applications to connect to the Optim Data Privacy Service Manager

which, in turn, will invoke the requested service provider.

•Extensible
• A generic intermediate Data Privacy Service API allows users/application developers

to develop their own data masking services and use them in the Optim Data Privacy
Provider framework.

• Alternatively, masking services can be directly accessed using the Data Privacy Service
API. New data masking services can be added to the existing suite of masking services
extending those services to other users.

12

13 © 2012 IBM Corporation

Integrated Data Management

Optim Data Privacy Provider Core Features

•Dynamic Invocation
• The intermediate Data Privacy Service API provides a very modular design

including a plug-n-play approach for service providers.

• New Data Privacy Service Providers can be added dynamically without the need to shut
down or recompile running applications.

•Modular Design
• Everything from the Service Manager to the Service Provider, including data

conversions, are implemented in separate modules connected to each other by a loosely
coupled generic API.

• This provides greater flexibility for plugging in additional external libraries to add new
features or enhance existing ones.

• Allows application developers to write their own implementation of the Service Manager
(also called Optim Data Privacy Provider Framework) and/or service providers.

•Usability across the Products
• The API has been designed to be used in products that are built in a variety of

languages.

13

14 © 2012 IBM Corporation

Integrated Data Management

Optim Data Privacy Provider Core Features

•Batch Processing
• The API supports batch processing with a user-defined batch size

•Multi-Platform Support
• Currently supports AIX, Linux (Red Hat & Suse), Sun Solaris, HP-Unix, HP Itanium,

zLinux (RHEL & Suse), Windows, z/OS

•Data Source Independent Design
• The purpose of the API is to handle data, not the data source.

• Data source independence provides the flexibility of supporting unlimited data sources
as data is extracted and presented to the API by the calling application.

•Simple and Standard Representation of Data
• Structures simulate data as rows and columns of a database

• Standard data types are used to represent various types of data
(e.g. integer, char, null terminated strings, date and time etc.,)

14

15 © 2012 IBM Corporation

Integrated Data Management

Service Provider: Age

•Used to age date values in source columns

•Aging is a process of incrementing or decrementing a date value

•Aging can be specific to a number of years, months, weeks or days
• Optionally, may be a combination of these units.

•Aging can also be based upon a specific 4-digit yea r value

15

16 © 2012 IBM Corporation

Integrated Data Management

Service Provider: Column Transformation

•Provides data masking of undifferentiated or dynami cally-formatted
values

•Undifferentiated value is where there are no parts that have
significance therefore all parts of the value are c andidates for
masking

(e. g. 123456, Gizmo, CDE9874)

•Dynamically-formatted value has one or more portion s that have
significance and cannot be altered without affectin g the validity of
the value

(e. g. 12-3456789, ItemCode Gizmo, CDE-9874)
• Options are provided to specify which portions of the masked value should be

unchanged

16

17 © 2012 IBM Corporation

Integrated Data Management

Service Provider: Credit Card Number

•Used to generate a valid and unique Credit Card Num ber (CCN)

•By default, it generates a consistently altered CCN based on a
source CCN

• Uniqueness is guaranteed only for unique input values

•A CCN is defined by ISO 7812 which consists of:
• 6-digit issuer identifier

• Variable length account number

• Single check digit as the final number

• Check digit is verified against the Luhn algorithm

• Maximum length = 19 digits

•Two methods for masking:
• Mask

• Random

17

18 © 2012 IBM Corporation

Integrated Data Management

Service Provider: Credit Card Number

•Mask Method:
• Includes the 1st 4-digits of the source issue identifier

• Alters the remaining 2-digits of the issue identifier and account number based upon the
source CCN

• A valid check digit is assigned

•Random Method:
• Generates a CCN that may include the 1st 4-digits of the source issue identifier

• It alternatively, uses an issuer identifier number assigned by:
American Express, Discover, MasterCard, or Visa

• A valid check digit is assigned

• If the 1st 4-digits of source issue identifier are included,
then, the 1st account number based on those digits will begin with a 1
and for each additional CCN that uses those digits, the number will be incremented by 1

18

19 © 2012 IBM Corporation

Integrated Data Management

Service Provider: Email

•Used to generate an email address consisting of:
• User name

• Separator - usually the at-sign ‘@’

• Domain name

•User name is based upon either:
• Destination data

- or -

• Literal concatenated with a sequential number
- or –

• User-supplied name values using two name-type columns

•Domain name is based upon:
• Email address in the source data

- or -

• Literal value
- or -

• Randomly selected from a list of email service providers
19

20 © 2012 IBM Corporation

Integrated Data Management

Service Provider: Hash

•Used to return a numeric hash-type value based upon an input
source value

•Multiple source values, of the same or different da ta type are
supported

• All source values are converted to a UTF-8 string and then hashed

•Output hash values may not be unique even when the input is
unique but is repeatable based upon a given input

• i.e. the same output hash value is generated for the same input hash value

•Repeatable hash values require a constant seed valu e for a given
input

•Hash values for the same input values will vary whe n the seed is
changed

20

21 © 2012 IBM Corporation

Integrated Data Management

Service Provider: Lookup

•Masking uses replacement data that is looked-up
from a data source based upon a key value

•Required when some types of data (e.g. names, addre sses)
cannot be generated using arithmetic logic

•Replacement data is typically provided as a set of rows,
with a key column, in a database

•Lookup via the key column(s) of a replacement type- table are based
upon:

• Values in the key columns of the original input data
- or -

• Hash-type value generated from original input data columns

21

22 © 2012 IBM Corporation

Integrated Data Management

Service Provider: Lookup

•Three types of key lookups are supported:
• Basic/plain lookup

• Hash lookup

• Random lookup

•Basic Lookup:
• Key source column(s) are used to find matching rows in lookup data

• There must be a one-to-one mapping between the source key data and the replacement
key data

• Supports single- and multiple-type column lookups

•Hash Lookup:
• Generates a hash value from single- or multiple-type source columns which are used as

a key value
to lookup via a sequence-type column in the replacement table

• Hash lookup is case sensitive

• Supports single- and multiple-type column lookups

22

23 © 2012 IBM Corporation

Integrated Data Management

Service Provider: Lookup

•Random Lookup:

• Selects a value at random from a specified replacement table.

• Provider generates a random number between 1 and the replacement
table row limit supplied by the caller

• When the replacement table row limit is not supplied,
then all rows from the replacement table are read and then uses the
total row count as the maximum value for generating a random number

• The random number becomes the row subscript into the replacement
table

• Supports single- and multiple-type column replacements

23

24 © 2012 IBM Corporation

Integrated Data Management

Service Provider: National ID

•Used to generate valid and unique National Identifi ers (NIDs) for:

• U.S. = Social Security Number (SSN)

• U.K. = National Insurance Number (NINO)

• Canada = Social Insurance Number (SIN)

• France = Institute for Statistics and Economic Studies (INSEE)

• Italy = Fiscal Code (CF)

• Spain = Fiscal Identification Number (NIF) / Foreign Identification
Number (NIE)

24

25 © 2012 IBM Corporation

Integrated Data Management

Service Provider: National ID

•Properties of all the NID routines:

• Generates a valid and unique NID for each unique input

• Two methods:
• Mask

• Random

•Mask:

• Algorithm-based generated destination NID based upon a source NID

•Random:

• Randomly generated NID when the source does not have a NID value
or when there is no need to transform the source NID in a consistent
manner

25

26 © 2012 IBM Corporation

Integrated Data Management

Optim

• Adopting Optim Data Privacy Providers as the underl ying masking
infrastructure

• Customer-written privacy providers available via Op tim runtime

• Customer-written privacy providers discoverable by the Optim
user interface

26

27 © 2012 IBM Corporation

Integrated Data Management

User Defined Functions

• Optim Data Privacy service providers invoked via UD Fs

• Enable sites to mask data before data leaves the da tabase

• Mask test environments in place – No need to re-extr act

• Same masking algorithms used by Optim across all DB (s) and
platforms

• Increased efficiencies while reducing masking compl exity

27

28 © 2012 IBM Corporation

Integrated Data Management

User Defined Functions

28

SELECT FIRST_NAME, LAST_NAME,
OptimMask(SSN, "Provider=NID, method=mask")
FROM EMPLOYEES WHERE ...

INSERT INTO EMPLOYEES (FIRST_NAME, LAST_NAME, E_MAIL, ...)
VALUES ("John", "Doe",

OptimMask(E_MAIL, "Provider=EML, method=random"),
...)

UPDATE EMPLOYEES SET ACCT_NUM = (SELECT
OptimMask(ACCT_NUM, "Provider=Variant,seed=@VAR1,method=MASK")
FROM EMPLOYEES WHERE ...)

• Mask social security numbers before they leave the d atabase

• Mask employee email addresses as they are added to th e
database

• Mask the existing employee account numbers in the da tabase

29 © 2012 IBM Corporation

Integrated Data Management

Scripting

• Today Customers Write Exits
• Assembler, C/C++, COBOL or PL/1 on z/OS

• C/C++ on Linux, UNIX and Windows

• Exits are different on Linux, UNIX, Windows vs. z/OS

• Optim Basic only available on Windows

29

30 © 2012 IBM Corporation

Integrated Data Management

Scripting

• Introducing Lua as Optim ’s Scripting Language
• Powerful, fast, lightweight, embeddable

• Runs on all platforms

• Used extensively in industry applications
• Netezza, Adobe, Ginga, ...

• Enhanced by IBM
• Character set support:

• SBCS, MBCS, Unicode

• Broader data type support:
• Unicode strings, decimals

30

31 © 2012 IBM Corporation

Integrated Data Management

Scripting

• Modeled on Optim Basic Column Map invocation patter n
• cm_load (optional, invoked when script has been loaded)
• cm_start_table (optional, invoked at the start of table processing)
• cm_transform (required, invoked for each row)
• cm_end_table (optional, invoked at end of table processing)
• cm_unload (optional, invoked prior to script being unloaded)

• Implemented using Lua standards and conventions
• Source and target presented to script as Lua tables
• Information about source and target available through table methods.

31

32 © 2012 IBM Corporation

Integrated Data Management

Scripting

32

-- Load
function cm_load(source, target)

local dbalias, creatorid
dbalias = source.getdbalias()
creatorid = source.getcreatorid()
report = io.open('/<some path>/report.txt', 'w')

end

-- Start of table
function cm_start_table(source, target)

local table = source.gettablename()
report:write('Table processing for "' .. table .. '" started at ' .. os.date(), '\n')

end

-- Transform
function cm_transform(source, target)

local table = source.gettablename()
-- Handle transform

end

-- End of table
function cm_end_table(source, target)

local table = source.gettablename()
report:write('Table processing for "' .. table .. '" ended at ' .. os.date(), '\n')

end

-- Unload
function cm_unload()

report:write('Processed ' .. #tables .. ' tables', '\n')
report:write('Optim processing ended at ' .. os.date(), '\n')
io.close(report)
report = nil

end

33 © 2012 IBM Corporation

Integrated Data Management

Scripting

Example:
Swap gender while increasing

the age of males and
decreasing the age of
females.

33

local sex, age
sex = source.column.getvalue('sex')
age = source.column.getvalue('age')
if sex == 'F' then

sex = 'M'
if age < 65 then

age = age + 2
else

age = age + 1
end

else
sex = 'F'
if age < 21 then

age = age - 1
else

age = age - 2
end

end
target.column.setvalue('sex', sex)
target.column.setvalue('age', age)

34 © 2012 IBM Corporation

Integrated Data Management

Scripting

34

local zip, state, ytd_sales
zip = source.column.getvalue('zip')
state = source.column.getvalue('state')
ytd_sales = source.column.getvalue('ytd_sales')
if zip == '66100' then

zip = nil
else

zip = generate_zip()
end
if state == 'WA' then

state = 'NJ'
end
local percentage
if ytd_sales >= 1000 then

percentage = -10.0
else

percentage = 7.50
end
ytd_sales = ytd_sales + (ytd_sales * percentage / 100)
if ytd_sales < 10.0 then

ytd_sales = 25.0
end
target.column.setvalue('zip', zip)
target.column.setvalue('state', state)
target.column.setvalue('ytd_sales', ytd_sales)

Example:
Change zip codes, swap states

and alter YTD sales.

35 © 2012 IBM Corporation

Integrated Data Management

Scripting

35

local ssn, ccn
ssn = source.column.getvalue('ssn')
ccn = source.column.getvalue('ccn')
ssn = optimmask(ssn, 'Provider=NID, method=mask')
target.column.setvalue('ssn', ssn)
ccn = optimmask(ccn, 'Provider=CCN, method=random')
target.column.setvalue('ccn', ccn)

Example:
Mask social security

numbers and credit
card numbers using
the ODPP providers
NID and CCN.

36 © 2012 IBM Corporation

Integrated Data Management

Big Data

• Data Masking for IBM BigData

• Integrate Optim Data Privacy Providers into Hadoop.
• Provide Java interface for masking.

• Incidentally, this works anywhere Java and the privacy providers work.

• Provide MapReduce base classes and helpers.
• Configuration.

• Distributed cache.

• Shared libraries, license files, etc.

• Use of masking in Mappers.

• Use of masking in Reducers.

• Provide ready-to-run out-of-box configurable Mapper and Reducer.
• Sub-setting.

• Masking.

36

37 © 2012 IBM Corporation

Integrated Data Management

Big Data

• Example:
24 Lines of Java - would be 400+ lines of C

37

FrameworkDefinition frameworkDefinition = new FrameworkDefinition();
frameworkDefinition.getInitializationOperands().add(new InitializationOperand(Constants.ODPP_OPR_ERRORFILE_PATH, "/<path>/"));
frameworkDefinition.getInitializationOperands().add(new InitializationOperand(Constants.ODPP_OPR_LIC_FILES_PATH, "/<path>/"));
odpp.initializeFramework(frameworkDefinition);
ServiceDefinition serviceDefinition = new ServiceDefinition();
serviceDefinition.getInitializationOperands().add(new InitializationOperand(Constants.ODPP_OPR_SWITCH_NA, 0));
serviceDefinition.getInitializationOperands().add(new InitializationOperand(Constants.ODPP_OPR_SOURCE_COLINDEX, 0));
serviceDefinition.getInitializationOperands().add(new InitializationOperand(Constants.ODPP_OPR_METHOD,

Constants.ODPP_METHOD_MASK));
serviceDefinition.getInitializationOperands().add(new InitializationOperand(Constants.ODPP_OPR_CCN_FLAGS,

Constants.ODPP_FLAG_CCN_ISSUER6));
serviceDefinition.getFieldDefinitions().add(new FieldDefinition(DataType.WVARCHAR_SZ, 0, 0, 0, "COL_1"));
int serviceToken = odpp.initializeProvider("CCN", serviceDefinition);
Rowset rowset = new Rowset();
Row row = new Row();
rowset.getRows().add(row);
Field ccn = new Field();
row.getFields().add(ccn);
ccn.setSourceSize(80);
ccn.setSource("4571442212344321");
odpp.serviceProvider(serviceToken, serviceDefinition, rowset);
System.out.printf("Masked CCN is '%s'.\n", ccn.getSource());
odpp.terminateProvider(serviceToken);
odpp.terminateFramework();

38 © 2012 IBM Corporation

Integrated Data Management

Big Data

38

Map
String line = value.toString();
String[] elements = line.split(",");
String ccn = elements[1];
double amount =
Double.parseDouble(elements[2]);
field.setSource(ccn);
try {

odpp.serviceProvider(serviceToken,
serviceDefinition, rowset);

} catch (ODPPException e) {
throw new IOException(e);

}
text.set((String) field.getSource());
output.collect(text, new
DoubleWritable(amount));

Example:
Sum up credit card transactions but mask the credit

card numbers.

Reduce
double sum = 0.0;
while (values.hasNext()) {

DoubleWritable value = values.next();
sum += value.get();

}
output.collect(key, new DoubleWritable(sum));

39 © 2012 IBM Corporation

Integrated Data Management

Guardium Integration Points

• User Defined Functions

• Guardium rules can be defined to rewrite SQL

• Based on several criteria:
• User, role, host name, IP address, ...

- from

- to

39

SELECT FIRST_NAME, LAST_NAME,
OptimMask(SSN, "Provider=NID, method=mask")
FROM EMPLOYEES WHERE ...

SELECT FIRST_NAME, LAST_NAME, SSN
FROM EMPLOYEES WHERE ...

40 © 2012 IBM Corporation

Integrated Data Management

Q&A

• Questions?

40

41 © 2012 IBM Corporation

Integrated Data Management

Reference Slides

41

42 © 2012 IBM Corporation

Integrated Data Management

ODPP APIs

•Provider_FrmwInit

• This function initializes the ODPP common framework.

•Provider_Init

• This function initializes an ODPP session and is required for each unique service type requested.
An ODPP service token is returned after the session is established. This service token is then required
on all subsequent calls for this session.

•Provider_Service

• This function takes the set of data that needs to be masked
and executes the Service Provider based upon the supplied service token.

•Provider_Term

• This function closes the Service Provider and frees all the memory allocated during the Provider_Init.
When the caller has finished with a Service, this is a required termination call.

•Provider_GetError

• This function returns the oldest available Error Control Block (ECB) and associated tokens in the supplied area.
The ECB contains all of the ODPP-related messages and errors. The caller can interpret the ECB
or supply it to the Formatted Message Processor to retrieve a message in an available language.

•Provider_GetFormattedErrorMsg

• This function returns the formatted message from the data in the supplied Error Control Block (ECB).

•Provider_FrmwTerm

• This function frees/releases the ODPP framework and all of its components.

42

43 © 2012 IBM Corporation

Integrated Data Management

Application to/from ODPP Flow

43

Provider_FrmwInit
call

Provider_Init
call

Provider_Service
call (with a batch
of data rows)

Provider_FrmwTerm
call

Provider_Term
call

ODPP Service Manager

Provider framework
initialization

Provider initialization

Service Provider
service” call

Provider termination

ODPP Service Provider

Service provider-specific
initialization

For each data row,
process each…

ODPP Framework

Provider framework
termination

Application

Return resultReceive result

Service provider-specific
termination

44 © 2012 IBM Corporation

Integrated Data Management

ODPP Licensing

• ODPP v2.1 is a licensed component
• Requires a license to function.

• Supported ODPP licenses:
• Optim Distributed

• Optim z/OS

• Optim SOA/Optim Data Masking Solution

• OEM licensing:

• In a future ODPP v2.1 fix-pack.

• ODPP license-type files:
• ODPPKEYF.OPT:

• ODPP license key file

• ODPPLICF.OPT:
• ODPP license file (encrypted XML-type file).

44

45 © 2012 IBM Corporation

Integrated Data Management

ODPP Licensing

• In Windows:
• 1. Check for the ODPPLL environment variable.

• 2. Search the current process location.

• Example:
• Optim Distributed = RTWIN\BIN

• In UNIX/Linux:
• There is no default location, the user must specify the ODPPLL environment

variable

• Via the ODPP provider-type framework initialization
• Using a pointer to a string-type path in the DP_FRMW_PARAMS_DEF

structure

45

46 © 2012 IBM Corporation

Integrated Data Management

Character Set Support

• Includes all data and control structures

• Base control structures utilize union-type sub-stru ctures:
• Wide-character (Unicode) sub-structure

- or –

• Mixed-character (SBCS/MBCS) sub-structure

• Based upon ICU 4.8

• Includes DBMS-specific ICU -type converters for all supported
databases

46

47 © 2012 IBM Corporation

Integrated Data Management

IBM z/OS Support

• Single ODPP code base with some limited z/OS-depend ent areas

• Runs as a set of USS-type libraries:
• Parallels other IBM type libraries (e.g. ICU, XML4C, etc.,)

• Accessible from USS or native z/OS

• Lookup will interface to DB2 z/OS

• Initial delivery via Optim Distributed v8.1 fix-pac k

47

