
© 2010 IBM Corporation

1

DB2 10 for z/OS
Query Optimizer Enhancements

Carlos Guardia
Executive IT/S
IBM Software Group

© 2010 IBM Corporation

2

� Access path management
�Dynamic Statement Cache Enhancements

� Access Path Stability

� Instance Based Statement Hints/Options

� Query performance improvements
� Predicate application

� IN-list

� Complex ORs

� View/Table expr Merge

�Safe Query Optimization

� Parallelism Enhancements

� RUNSTATS usability and performance improvements
� Auto-Stats

� RUNSTATS Simplification/Performance

Agenda

© 2010 IBM Corporation

3

� Access path management
�Dynamic Statement Cache Enhancements

� Access Path Stability

� Instance Based Statement Hints/Options

� Query performance improvements
� Predicate application

� IN-list

� Complex ORs

� View/Table expr Merge

�Safe Query Optimization

� Parallelism Enhancements

�Runstats usability and performance improvements
� Auto-Stats

� RUNSTATS Simplification/Performance

Agenda

© 2010 IBM Corporation

4

DSC Enhancements: Literal Replacement

� Dynamic SQL with literals can now be re-used in the cache (DB2 10 NFM)
– Literals replaced with &

– Similar to parameter markers but not the same
� To enable either you:-

– Put CONCENTRATE STATEMENTS WITH LITERALS in the PREPARE ATTRIBUTES clause
– Or set LITERALREPLACEMENT in the ODBC initialization file
– Or set the keyword enableLiteralReplacement=’YES’ in the JCC Driver

� Lookup Sequence
– Original SQL with literals is looked up in the cache
– If not found, literals are replaced and new SQL is looked up in the cache

– Can only match with SQL stored with same attribute, not parameter marker
– If not found, new SQL is prepared and stored in the cache

� Example:
WHERE ACCOUNT_NUMBER = 123456

– This would be replaced by
WHERE ACCOUNT_NUMBER = &

� Performance Expectation
– Using parameter marker still provides best performance
– Biggest performance gain for repeated SQL with different literals

– NOTE: Access path is not optimized for literals
– True for parameter markers/host variables today
– Need to use REOPT for that purpose

© 2010 IBM Corporation

5

Access path stability extensions: Getting
Information on Prior Packages
� SYSIBM.SYSPACKCOPY

– New catalog table

– Hold SYSPACKAGE-style metadata for any previous or original package copies

– No longer need to SWITCH to see information on inactive copies

– Complaint from DB2 9

� EXPLAIN PACKAGE
– The package/copy must be created on DB2 9 or later

– Useful if you didn’t BIND with EXPLAIN(YES) or PLAN_TABLE entries are lost

– COPY-ID can be ‘CURRENT’, ‘PREVIOUS’, ‘ORIGINAL’

>>-EXPLAIN----PACKAGE----------->

>>-----COLLECTION--collection-name--PACKAGE--packag e-name--------->

>----+--------------------------+----+------------- ------+-------->
| | | |
+---VERSION-version-name---+ +---COPY--copy-id-- -+

© 2010 IBM Corporation

6

Access path stability extensions: Bind/Rebind packa ge
new options

� BIND PACKAGE and REBIND PACKAGE APREUSE/ APCOMPARE :
– APREUSE YES/NO: The default is APREUSE(NO).

– APREUSE(YES) - DB2 attempts to reuse existing access paths.
– Enforcement is not guaranteed in all cases.

– APCOMPARE WARN/ERROR/NONE :
– With WARN and ERROR, DB2 compares the old and new access paths.
– If the access paths are structurally dissimilar, DSNT285I message produced.

– WARN - DB2 will continue processing.
– ERROR - DB2 will terminate the processing of the package.
– NONE - DB2 does not perform access path comp. Default.

– APREUSE/APCOMPARE – supp. on packages created V9 or higher

� BIND PACKAGE EXPLAIN(ONLY) & SQLERROR(CHECK)
– Existing package copies are not overwritten

– Performs explain or syntax/semantic error checks on SQL

� REBIND option APRETAINDUP
– Default YES: Retain duplicate for BASIC or EXTENDED

– Optional NO: Do not retain duplicate access path as PREVIOUS or ORIGINAL (saves space on SPT01)
– If a duplicate is NOT kept (APRETAINDUP(NO))

– SWITCH is not possible to non-existent copy
– EXPLAIN PACKAGE not possible for non-existent copy

– APRETAINDUP – supp. on packages created V9 or higher
–

© 2010 IBM Corporation

7

Access Path Stability with Robust hints system
� Current limitations in hint matching

– QUERYNO is used to link queries to their hints – a bit fragile

– For dynamic SQL, require a change to apps – can be impractical

� New mechanisms:
– Associate query text with its corresponding hint … more robust

– Hints enforced for the entire DB2 subsystem, irrespective of static vs. dynamic, etc.

– Hints integrated into the access path repository

� PLAN_TABLE isn’t going away

– Only the “hint lookup” mechanism is being improved.
� Steps to use new hints mechanism

– Populate a user table DSN_USERQUERY_TABLE with query text

– Populate PLAN_TABLE with the corresponding hints

– Run new command BIND QUERY

– To integrate the hint into the repository

– FREE QUERY can be used to remove the hint.

SYSQUERYPLAN

SYSQUERY

Options
&
Overrides

access path
copy 1

access path
copy N

SYSQUERYOPTS

REOPT, STARJOIN, etc.

New SYSIBM tables

© 2010 IBM Corporation

8

� Access path management
�Dynamic Statement Cache Enhancements

� Access Path Stability

� Instance Based Statement Hints/Options

� Query performance improvements
� Predicate application

� IN-list

� Complex ORs

� View/Table expr Merge

�Safe Query Optimization

� Parallelism Enhancements

� Runstats usability and performance improvements
� Auto-Stats

� RUNSTATS Simplification/Performance

Agenda

© 2010 IBM Corporation

9

Predicate application: improvements
� Major enhancements to OR and IN predicates

– Improved performance for AND/OR combinations and long IN-lists

– General performance improvement to stage 1 predicate processing

– IN-list matching: DB2 10 removes the restriction that only one IN-list
predicate can be a matching predicate.

– Matching on multiple IN-lists
– Transitive closure support for IN-list predicates
– List prefetch support

– Trim IN-lists from matching when preceding equals are highly filtering

– SQL pagination

– Single index matching for complex OR conditions

� Many stage 2 expressions to be executed at stage 1

– Stage 2 expressions eligible for index screening

© 2010 IBM Corporation

10

IN-list Table - Table Type 'I' and Access Type 'IN'

� The IN-list predicate will be represented as an in- memory table if:

– List prefetch is chosen, OR

– More than one IN-list is chosen as matching.

– The EXPLAIN output associated with the in-memory ta ble will have:

– New Table Type: TBTYPE – ‘I’
– New Access Type: ACTYPE – ‘IN’

SELECT *
FROM T1
WHERE T1.C1 IN (?, ?, ?);

QBNO PLANNO METHOD TNAME ACTYPE MC ACNAME QBTYPE TBTYPE PREFETCH

1 1 0 DSNIN001(01) IN 0 SELECT I
1 2 1 T1 I 1 T1_IX_C1 SELECT T L

DSNIN indicates that it relates to IN-list
The # after DSNIN (001) represents the predicate number
The # in parenthesis (01) represents the query block number

© 2010 IBM Corporation

11

Example
SELECT P_SIZE, P_TYPE
FROM PART
WHERE P_MFGR IN ('MANUFACTURER#3','MANUFACTURER#2')
AND P_SIZE IN (1,3,5,7,10)
AND P_TYPE IN ('EC’,’AN','LA’,’ST‘,’AB’);

Index UXP@SZPT on table PART columns P_SIZE and P_TYPE

� In DB2 10, both IN-lists can be matching predicates (CM)
�Prior to DB2 10, DB2 could only match on one column of index UXP@SZPT.
�If both of the IN-lists are matching predicates, then the values of the IN-list predicates are merged
and stored in an IN-list in-memory table

�The values of the IN-list predicates are merged and stored in an IN-list in-memory table
�in-memory table is populated with the following pairs of values for the pairing P_SIZE, P_TYPE:

�Performance:
�77% reduction in elapsed time
�98% reduction in CPU time
�99.2% reduction in the number of index getpages
�96% reduction in the number of list prefetch requests (1,’EC’),(1,’AN’),(1,’LA’),(1,’ST’),(1,’AB’),

(3,’EC’),(3,’AN’),(3,’LA’),(3,’ST’),(3,’AB’),
(5,’EC’),(5,’AN’),(5,’LA’),(5,’ST’),(5,’AB’),
(7,’EC’),(7,’AN’),(7,’LA’),(7,’ST’),(7,’AB’),
(10,’EC’),(10,’AN’),(10,’LA’),(10,’ST’),(10,’AB’)

© 2010 IBM Corporation

12

IN-list Predicate Transitive Closure (PTC)

� Without IN-list PTC (DB2 9)

– Optimizer will be unlikely to consider T2 is the first table accessed

� With IN-list PTC (DB2 10)

– Optimizer can choose to access T2 or T1 first.

SELECT *
FROM T1, T2
WHERE T1.C1 = T2.C1

AND T1.C1 IN (?, ?, ?)

AND T2.C1 IN (?, ?, ?) � Optimizer can generate
this predicate via PTC

© 2010 IBM Corporation

13

Reducing Matchcols for IN-lists

� If the equals (=) predicates provide strong filtering

– Optimizer may choose not to match on the IN-list

– Instead apply as index screening

– To avoid overhead of additional index probing

– Example above
– MATCHCOLS reduced from 2 to 1
– ACCESSTYPE changed from “N” to “I”

– Change in the access type from an IN-list index scan to an index access.

– Example: DB2 10 MATCHCOLS reduced from 4 to 3, ACCESSTYPE
changed from “N” to “I”

– About a 15% reduction in CPU time

SELECT *
FROM T1
WHERE C1 = ?

AND C2 IN (?, ?, ?, ?, ?) � Optimizer may
choose not to match

Index on C1,C2

© 2010 IBM Corporation

14

Complex ORs: SQL Pagination targets 2 classes of OR
queries:
� Cursor scrolling (pagination) SQL

– Retrieve next n rows

– the same value for the first key column and with values higher than the last returned value for the
second key column

– OR, a value for the first key column that is higher than the last returned value for the first key col.

– Common in COBOL/CICS and any screen scrolling application
� Complex OR predicates against the same columns

– Common in SAP

� In both cases:
– The OR (disjunct) predicate refers to a single table only.

– Each OR predicate can be mapped to the same index.

– Each disjunct has at least one matching predicate.

� DB2 V9 can’t use OR predicates as matching predicates with single index access.
– Multi-index access (index ORing) used. It retrieves all RIDs that qualify from each OR

condition and then unions the result.

� DB2 10 can process these types of queries with a si ngle index access

© 2010 IBM Corporation

15

• Scroll forward to obtain the next 50 rows
– Assumes index is available on (LASTNAME, FIRSTNAME)

– WHERE clause may appear as:

• DB2 10 supports: Single matching index access with sort avoided
• Range-list index scan (one matching index scan+list prefetch)

� DB2 9 requires: Multi-index access, list prefetch and sort
• Scans the index multiple times

• Performance:
• 62% reduction in elapsed tim, 61% reduction in CPU time.
• 99% reduction in the number of index getpages and no work file required

WHERE (LASTNAME='JONES' AND FIRSTNAME>'WENDY')

OR (LASTNAME>'JONES')

ORDER BY LASTNAME, FIRSTNAME;

Simple scrolling – Index matching and ORDER BY

QBlockno Planno Accessname Access_Type Matchcols Mixopseq

1 1 IX1 NR 1 1

1 1 IX1 NR 2 2

New access type (NR = IN-List Range)

© 2010 IBM Corporation

16

• Given WHERE clause
– And index on one or both columns

• DB2 9 requires
– Multi-index access with list prefetch

• DB2 10:
– Converts this OR predicate into a range list with two ranges.

– There will be 2 index probes, the 1st one is (LASTNAME='JONES' AND
FIRSTNAME='WENDY'), the 2nd one is (LASTNAME='SMITH' AND FIRSTNAME='JOHN').

– Both index probes have two matching columns on the index.

WHERE (LASTNAME='JONES' AND FIRSTNAME='WENDY')

OR (LASTNAME='SMITH' AND FIRSTNAME='JOHN');

Complex OR predicates against same index

© 2010 IBM Corporation

17

View/Table Expression Merge

� Physical materialization is an overhead. In prior versions of DB2, qualifying rows
from views and table expressions frequently had to be materialized into a work
file for additional processing by a query:

– Can limit the join sequence considered.

– Can limit the ability to apply predicates early

– Cannot create indexes on materialized work files

� Generally merge is preferred over materialization

� DB2 10 provides enhancements to avoid materialization to a work file for
views and table expressions, especially when they are involved in outer
joins.

© 2010 IBM Corporation

18

Correlated table expression
Table expression is materialized into a work file i n DB2 9 while, in DB2 10, no
materialization is necessary

SELECT *
FROM T1,
TABLE(
SELECT T1.C2 FROM T1 AS T2
WHERE T1.C1 = T2.C1
) AS X;

| QUERYNO | QB# | PL# | JT | AT | TNAME | CORNM |
+--
1_| 100 | 1 | 1 | | R | T1 | ? |
2_| 100 | 1 | 2 | | R | X | ? |
3_| 100 | 2 | 1 | | I | T1 | T2 |
+--
+--
| ACCESSNAME | TT | T# | METH | MATC | MJC | PF |

	T	1	0	0		S
	W	3	1	0		S
X1	T	2	0	1		

| QUERYNO | QB# | PL# | JT | AT | TNAME | CORNM |
+--
1_| 100 | 1 | 1 | | I | T1 | ? |
2_| 100 | 1 | 2 | | I | T1 | T2 |
+--
+--
| ACCESSNAME | TT | T# | METH | MATC | MJC | PF |

| X1 | T | 1 | 0 | 0 | | |
| X1 | T | 2 | 1 | 1 | | |

The aggressive merge of the correlated table
expression results in a 59% reduction in
elapsed time, a 49% reduction in CPU time and
a 100% reduction in work file getpages.

Expression materialization

DB2 V9 DB2 10

© 2010 IBM Corporation

19

Correlated table expression merge query rewritten

SELECT T1.*, T2.C2 Not materialized in V10
FROM T1, T3 AS T2 Query rewritten
WHERE T1.C1 = T2.C2;

SELECT *
FROM T1,

TABLE(
SELECT * from T3 AS T2
WHERE T1.C1= T2.C1

) AS X; <-- table expression X is materialized in V9

© 2010 IBM Corporation

20

Safe query optimization: Minimizing Optimizer
Challenges

� Potential causes of sub-optimal plans

– Insufficient statistics

– Unknown literal values used for host variables or parameter markers

� Safe Optimization has the goal to generate an access plan that has the lowest
risk associated with it, within the range of access paths that are considered close
to being the lowest cost.

– Optimizer will evaluate the risk for each predicate

– For example: WHERE BIRTHDATE < ?
– Could qualify 0-100% of data depending on literal value used

– As part of access path selection

– Compare access paths with close cost and choose lowest risk plan

© 2010 IBM Corporation

21

Minimizing impact of RID failure

� RID access, including List prefetch and Hybrid Join, becomes a performance
challenge when the RID-pool overflows

� RID overflow can occur for

– Concurrent queries each consuming shared RID pool

– Single query requesting > 25% of table or hitting RID pool limit

� DB2 9 will fallback to tablespace scan and it loses all index filtering
– to prevent RID pool overflow, query optimization has introduced threshold checking logic at bindtime.

� DB2 10 will continue by writing new RIDs to workfile

– Work-file usage may increase

– Mitigate by increasing RID pool size (default increased in DB2 10).
– MAXTEMPS_RID zparm for maximum WF usage for each RID list

© 2010 IBM Corporation

22

Parallelism enhancements: Removal of restrictions
� Support parallelism for multi-row fetch

– In previous releases
– parallelism is disabled for the last parallel group in the top level query block

– if there is no more table to join after the parallel group
– and there is no GROUP BY clause or ORDER BY clause

– Example:- SELECT * FROM CUSTOMER if multi row fetch is used
– There is no parallel group in the query and there are no table joins
– There is no GROUP BY clause
– There is no ORDER BY clause
– So NO PARALLELISM will be used

– This restriction forces customer to choose between multi-row fetch and parallelism.
� DB2 10 removes the restriction if the CURSOR is DECLARED as READ ONLY

– Ambiguous Cursors will not have the restriction removed

� Allow parallelism if a parallel group contains a wo rk file
– DB2 generates temporary a work file when view or table expression is materialized
– This type of work file can not be shared among child task in previous releases of DB2,

hence parallelism is disabled
– DB2 10 will make the work file shareable

– only applies to CP mode parallelism and no full outer join case

© 2010 IBM Corporation

23

Parallelism Enhancements - Effectiveness

� Previous Releases of DB2 use Key Range Partitioning
– Key Ranges Decided at Bind Time

– Based on Statistics (low2key, high2key, column cardinality)

– Assumes uniform data distribution

– Histograms can help
– But rarely collected

– If Statistics are outdated or data is not uniformly distributed what happens to performance?

– The uneven distribution of the workload could result in elongated elapsed times and/or
– More of the parallel tasks processing considerably more data than the other tasks.

� Record range partitioning differs from key range pa rtitioning in that the
partitioning is done at execution time instead of b ind time and that partitioning is
based on an equal number of records instead of base d on keys.

– These inefficiencies no longer exist with record range partitioning:

– Limited number of distinct values for leading columns

– Data skew or data correlation

– Lack of accurate statistics

© 2010 IBM Corporation

24

Key range partition - Today
Large_T

10,000,000 rows
C2 C3

Workfile

SELECT *
FROM Medium_T M,
 Large_T L
WHERE M.C2 = L.C2
 AND M.C1 BETWEEN (CURRENTDATE-90) AND CURRE NTDATE

M.C1 is date column, assume currentdate is 8-31-200 7, after the
between predicate is applied, only rows with date b etween
06-03-2007 and 8-31-2007 survived, but optimizer ch ops up the key
ranges within the whole year after the records are sorted :-(

SORT
ON C2

2,500 rows

3-degree parallelism

Partition the
records according
to the key ranges

25%

12-31-2007

09-30-2007
08-31-2007

01-01-2007

05-01-2007
04-30-2007

Medium_T
10,000 rows
C1 C2

5,000,000 rows

© 2010 IBM Corporation

25

Dynamic record range partition
Large_T

10,000,000 rows
C2 C3

Workfile

SELECT *
FROM Medium_T M,
 Large_T L
WHERE M.C2 = L.C2
 AND M.C1 BETWEEN (CURRENTDATE-90) AND CURRE NTDATE

SORT
ON C2

2,500 rows

3-degree parallelism
10 ranges

Partition the records -
each range has same
number of records

25%

Medium_T
10,000 rows
C1 C2

5,000,000 rows

Task 1

Task 3

Task 2

� Materialize the intermediate result in a sequence o f join processes
� Results divided into ranges with equal number of re cords
� Division doesn't have to be on the key boundary

– Unless required for group by or distinct function

� Record range partitioning is dynamic
– no longer based on the key ranges decided at bind time

– Now based on number of composite records and number of workload elements

© 2010 IBM Corporation

26

Parallelism Effectiveness - Straw Model

� Previous releases of DB2 divide the number of keys or pages by the number representing
the parallel degree

– One task is allocated per degree of parallelism

– The range is processed and the task ends

– Tasks may take different times to process

� DB2 10 can use the Straw Model workload distribution method

– More key or page ranges will be allocated than the number of parallel degrees

– The same number of tasks as before are allocated (same as degree)

– Once a task finishes it’s smaller range it will process another range

– Even if data is skewed this new process should make processing faster

© 2010 IBM Corporation

27

STRAW Model

SELECT *
FROM Medium_T M
W HERE M .C1 BETW EEN 20 AND 50

100

M edium _T
10,000 rows

C1 C2

index on C1

50
47
44
41
38
35
32
29
26
23
20

0

degree=3
#ranges=10

100

M edium _T
10,000 rows

C1 C2

index on C1

50

0

20

30

40

degree = 3

Divided in key ranges with Straw ModelDivided in key ranges before DB2 10

Task 1

Task 3

Task 2

�Break up the data into a greater number of key rang es
� Executes a number of tasks equal to the degree of parallelism.
� Each task is a smaller key range, so the elapsed time for each task is smaller.
� Each task will continue on the next available range after it finishes the current one

�The straw model provides perfm. benefits over recor d range
part. for queries having a skewed dist. of keys

© 2010 IBM Corporation

28

Misc. query performance enhancements

� FETCH FIRST n ROWS ONLY (FFnR) and Sort

– DB2 9 added in-memory replacement for FFnR to avoid sort
– Provided (n * (sort key + data)) < 32K

– DB2 10 extends this to 128K
� Avoid workfile usage for small sorts

– DB2 9 avoided allocating WF for final sort only

– DB2 10 extends this to intermediate sorts also
– Except for parallelism or SET function

� Hash support for large sorts

– Potential for reduction in number of merge passes

� Index include columns

� Hash access path

© 2010 IBM Corporation

29

Extending VOLATILE TABLE usage
� VOLATILE TABLE support added in DB2 V8

– Targeted to SAP Cluster Tables

– Use Index access whenever possible

– Avoids list prefetch
– Can be a problem for OR predicates or UPDATEs at risk of loop

� DB2 10 provides VOLATILE to general cases
– Tables matching SAP cluster tables (Table with 1 unique index) will maintain original limitations

– Tables with > 1 index will follow NPGTHRSH rules

– Use Index access whenever possible

– No limitation on list prefetch
– Less chance of getting r-scan when list-prefetch plan is only alternative

NPGTHRSH indicates the tables for which DB2 favors matching index access.
Values are:
-1: Favors matching index access for all tables.
0: Selects the access path based on cost, and no tables qualify for special handling. This is the d efault.
n>=1: Favor matching index access for tables for wh ich NPAGES<=is less than n.

© 2010 IBM Corporation

30

� Access path management
�Dynamic Statement Cache Enhancements

� Access Path Stability

� Instance Based Statement Hints/Options

� Query performance improvements
� Predicate application

� IN-list

� Complex ORs

� View/Table expr Merge

�Safe Query Optimization

� Parallelism Enhancements

�Runstats usability and performance improvements
� Auto-Stats

� RUNSTATS Simplification/Performance

Agenda

© 2010 IBM Corporation

31

Autonomic RUNSTATS

� Collecting stats is a difficult and time consuming manual process
– Need to look at the queries to figure out what stats are needed

– Need to repeatedly look at the RTS tables to figure out when to recollect

� Inadequate stats collection leads to poor or inconsistent query performance
� Solution is to automate the process

– More efficient, accurate and stable

� Autonomic Statistics is implemented though a set of Stored Procedures

–Stored procedures are provided to enable administration tools and
packaged applications to automate statistics collection.

– ADMIN_UTL_MONITOR

– ADMIN_UTL_EXECUTE
– ADMIN_UTL_MODIFY

– Working together, these SP’s
– Determine what stats to collect

– Determine when stats need to be collected

– Schedule and Perform the stats collection

– Records activity for later review

© 2010 IBM Corporation

32

RUNSTATS Simplification/Performance Overview
� Autonomics: RUNSTATS options to SET/UPDATE/USE a stats profile

– Integrate specialized statistics into generic RUNSTATS job

– Stored in catalog table SYSIBM.SYSTABLES_PROFILES

– RUNSTATS … TABLE tbl COLUMN(C1)… SET PROFILE
– RUNSTATS … TABLE tbl COLUMN(C5)… UPDATE PROFILE
– RUNSTATS … TABLE tbl USE PROFILE

� New option for page-level sampling: TABLESAMPLE
– SAMPLE worked at the row level, TABLESAMPLE works at page level.

– The TABLESAMPLE SYSTEM sampling applied to a table means that each page of the table is
included in the sample with probability P/100.

– For each page that is included, all rows on that page qualify for the sample.

– AUTO option: RUNSTATS will determine a sampling rat e based on the size of the table , the
larger the table the smaller is the sampling rate.

– REPEATABLE option : ensures that repeated executions of RUNSTATS return the same sample.

– RUNSTATS … TABLE tbl TABLESAMPLE SYSTEM AUTO

© 2010 IBM Corporation

33

Carlos Guardia
cguardia@es.ibm.com

Thank You

Merci

Bedankt

Gracias!

Obrigado

Danke

Japanese

English

French

Russian

GermanNederlands

Spanish

Brazilian PortugueseArabic

Traditional Chinese

Simplified Chinese

Thai

Korean

