
The premiere software and product delivery event.
4 de Noviembre, Madrid

Model-Driven
Development &
Embedded Systems

Sebastian Martin Aguilar
Modeling Tool Expert, IBM
sebastian.martin.aguilar@es.ibm.com

Salvador Trujillo, Ph.D.
IKERLAN, strujillo@ikerlan.es

David Gonzalez
IKERLAN, dgonzalez@ikerlan.es

2

Model Driven Development

Model

Driven

Development

UML 2

SysML

DoDAF
Full

Application

Code

Generation

Design For

Testability

(DFT)

Dynamic

Model-Code

Associativity

Real-Time

Framework

Concurrent

Design

Collaboration

Reuse of IP

Background

R&D on embedded systems for industrial control

Application domains: energy, transportation, industrial control, etc

Paradigms & Methodologies

SysML, Code Generation, DSL, Modeling

Experience: benefits, challenges

Dependability: safety-critical

SysML & SIL4, Certification

Experience: benefits, challenges

Future: Team Orchestration

Ongoing work: Towards Jazz

3

Embedded industry

Remains reliant on the craftsmanship of skilled individuals

Labor intensive manual tasks (no automation, no product-line)

Increasing market pressure

Reduce time-to-market, reduce associated cost for hardware,

reduce maintenance cost, increasing complexity, multiple disciplines,

increasing certification needs in safety domains, etc

Undergoing Paradigm shift

MDD: Intensive use of models that can be transformed to code / test cases

Acceleration of timing, use of abstractions

Safety-critical systems with stringent requirements

Certification needs are increasingly relevant (e.g. SIL4)

SPL: a family instead of individual products, family-oriented reuse

Improved management, variability handling, business-oriented development

4

The premiere software and product delivery event.

June 6–10 Orlando, Florida

Green Energy
Engineering Challenges

A domain where reuse is
a key success factor

The premiere software and product delivery event.

June 6–10 Orlando, Florida

Railway Systems
Engineering Challenges

A domain where safety
certification is a must

Time-to-market

Decrease the time to develop a control system

Customization and roll-out
Decrease the time needed to customize an individual system

Scalability and System complexity
The size and number of elements to be controlled
by the control system is far from trivial (and still growing)

Focus on value
Reduce the time devoted to maintenance activities

Multi-disciplinary teams
Different engineers working together on highly complex problems

Dependability & Certification
Develop high-integrity systems and attain certification

General challenges

7

Model-Driven Development
Modeling Design your system

Metamodeling Design your modeling concepts

Model transformationsSpecify your code generation (RulesComposer)

Diversity of Design Artifacts
SysML, UML, DSL, Code generation, Code, Testing, etc

Variability into the System Design
SysML & Variability [Innovate 2010 talk]

DSL
Visual DSL Editors

Paradigms

8

(9)

Model-Driven Development

� Development driven by intensive use of models.

� Automate the generation of code from models.

� Some models are UML, others are specific (a.k.a.DSL).

� Bridge the gap between modeling and implementation.
InverterExecImpl

«Control lable»

«Input» _iDisconnect:IData*

«Input» _iStopCommand:IData*

«Input» _iPitchBraked:IData*

«Output» _oInverterStop:IData*

«ErrorReaction» _erGrid:IData*

«ErrorReaction» _erCut:IData*

«ErrorReaction» _erSecLoopOff:IData*

«ErrorReaction» _erStop:IData*

«Timer» _tDisconnection:ITimer*

InverterExecImpl(sysId:TCHAR*)

~InverterExecImpl()

init():bool

execute():bool

stop():bool

Idle

Running

[isIni tial ized()]
Stopped

[isIni tial ized()]

[_iStopCommand->getAsBool() == FALSE

&&

!(_erStop->getAsBool() || _erCut->getAsBool() ||

_erGrid->getAsBool())]/

_oInverterStop->set(1);

[_erCut->isActive()

||

_erSecLoopOff->isActive()]/

_oInverterStop->set(0);

[_iStopCommand->getAsBool() == FALSE

&&

!(_erStop->getAsBool() || _erCut->getAsBool() ||

_erGrid->getAsBool())]/

_oInverterStop->set(1);

[_erCut->isActive()

||

_erSecLoopOff->isActive()]/

_oInverterStop->set(0);

[_iDisconnect->getAsBool()

||

_iStopCommand->getAsBool()

||

_erStop->isActive()]/

_tDisconnection->start(); //Start

timer for inverter disconnection

delay

Stopping

[(_erCut->isActive() || _erSecLoopOff->isActive())

||

_iPitchBraked->getAsBool()

||

_tDisconnection->isExpired()]/

_oInverterStop->set(0);

[_iDisconnect->getAsBool()

||

_iStopCommand->getAsBool()

||

_erStop->isActive()]/

_tDisconnection->start(); //Start

timer for inverter disconnection

delay

[(_erCut->isActive() || _erSecLoopOff->isActive())

||

_iPitchBraked->getAsBool()

||

_tDisconnection->isExpired()]/

_oInverterStop->set(0);

M.Transf.

9

System

SysML & Variability [Innovate 2010’s talk]

UML
Design your software using *Universal* modeling notation

DSL
Design your software with “your language”

Code Generation
Write the code that specifies how
your code is to be generated

Code, etc
Remember this is *really* running
in a dedicated hardware!

Diversity of Design Artifacts

10

SysMLsystem

processorhardware

software

UML DSL

C/C++ code

Code

generation

Runtime

framework

Variability into the System models

11

Feature Model SysML’s Block Definition Diagram

Antes: Sin abstracciones
Diseño: “la pizarra es la mejor herramienta”

Desarrollo: implementar: “es lo que funciona”

Ahora: Con abstracciones
Diseño: en la herramienta de modelado

Desarrollo: el código se genera (fuera de la
charla de hoy)

Bottom-line:
Es más abstracto y cercano al dominio que un
lenguaje de programación

Domain Specific Languages & DSL Editors

12

Dependability & Safety-critical Systems

Dependability & SysML

Standards are important

IK’s methodology under certification

Metodologia base y customizable para el nivel SILx

dentro de RHP: reference profile, etc

What is new when using SILx

Why are we using SysML? Why code generation?

Explicar proceso de forma general

TERESA project: dependable design patterns

Metodologia base y customizable para el nivel SILx

Security design patterns (within the project)

13

Dependability & SysML

There is an increasing need for dependable Embedded systems in
many application domains (railway, automotive, elevation, etc.)

Dependability reference standard is IEC61508

Why SysML?

SysML improves documentation and model traceability

According to the IEC61508, SysML can be used in:

Part 1 Documentation

Parts 2/3 Traceability

Part 3 - B.5 Modelling

Part 3 - A.2 Structured diagrammatic methods

Part 3 - A.2 Automatic software generation

Part 2 - B.1, B.2; Computer aided specification and design tools

Part 3 - A.1, A.2, A.4

Part 2 - B.6 Simulation

14

Methodology & SIL Certification
Methodology is a key point in order to achieve certification

IK methodology guides the developer to the SIL expected level

Based on PRAGMA and IEC61508

Initially defined in UML

Recently extended to SysML

Integration within the tool

IK methodology can be imported into RHP

as a reference profile

IK methodology under certification

Work in progress…

15

Design patterns
We are taking part in FP7 TERESA (Trusted computing Engineering for
Resource constrained Embedded Systems Applications)

The goal is to build a repository to store frequently used design patterns for secure and/or

dependable (S&D) applications

Main ideas:

Use of MDD (UML/SysML)

RHP Repository integrated in the tool

Definition of the engineering

process in order to effectively

use the created patterns

16

Ongoing Safety Projects
Railways signaling system

Development a high-integrity system

with ongoing SIL 4 level certification

GOALS: manage complexity, reuse components, reduce testing time

Wind turbine systems

New safety product-line platform for offshore wind farms

Elevators

Catalog of components based on MDE

Ongoing SIL3 certification

More

Integral Methodology with HW, SW, FPGA, Comms, etc

Incorporating Model Based Testing

17

18

Demo time

Lessons Learned

� System-driven software design

�The ability to delay or later modify design decisions is very relevant

�software have to fit the system elements it is controlling

� Market orientation is critical

�The participation of domain, market, and technical experts is a critical success factor

� System-software boundaries

�Recognizing the significance of separating systems from runtime software seems trivial

� Design as a continuum

�each discipline focuses on certain design parts develop in parallel disciplinary teams

� Introducing variability further accelerates this

� Living with inconsistencies

�… intermediate stages during the development in which certain inconsistencies …

� The Art of Bootstrapping

�Start small, and iterate

Conclusions

Our talk
Described the line of work several teams are
following in IKERLAN for the development of
embedded systems

Different application domains and customers,
have different demands and so different
techniques

Future work
Widespread internal adoption (not yet)

Automation into the development process

Incorporation of novel techniques

Our talk
Described the line of work several teams are
following in IKERLAN for the development of
embedded systems

Different application domains and customers,
have different demands and so different
techniques

Future work
Widespread internal adoption (not yet)

Automation into the development process

Incorporation of novel techniques

22

23

24

© Copyright IBM Corporation 2010. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind,
express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor shall have
the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM
software. References in these materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or capabilities
referenced in these materials may change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future product or feature
availability in any way. IBM, the IBM logo, Rational, the Rational logo, Telelogic, the Telelogic logo, and other IBM products and services are trademarks of the International Business Machines
Corporation, in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks of others.

Learn more at:

�IBM Rational software

�Rational launch announcements

�Rational Software Delivery Platform

�Accelerate change & delivery

�Deliver enduring quality

�Enable enterprise modernization

�Rational trial downloads

�developerWorks Rational

�Leading Innovation

�IBM Rational TV

�IBM Business Partners

�IBM Rational Case Studies

�Ensure Web security & compliance

�Improve project success

�Manage architecture

�Manage evolving requirements

�Small & midsized business

�Targeted solutions

The premiere software and product delivery event.
4 de Noviembre, Madrid

Model-Driven
Development &
Embedded Systems

Sebastian Martin Aguilar
Modeling Tool Expert, IBM
sebastian.martin.aguilar@es.ibm.com

Salvador Trujillo, Ph.D.
IKERLAN, strujillo@ikerlan.es

David Gonzalez
IKERLAN, dgonzalez@ikerlan.es

